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Abstract

The attractiveness of the Regression Discontinuity Design (RDD)
rests on its close similarity to a formal experimental design. On the
other hand, it is of limited applicability since it is not often the case
that units are assigned to the treatment group on the basis of an ob-
servable (to the analyst) pre-program measure. Besides, it only allows
to identify the mean impact on a very specific sub-population. In this
paper we show that the RDD straightforwardly generalizes to the in-
stances in which the units eligibility is established on an observable
pre-program measure with eligible units allowed to freely self-select
into the program. This set-up also turns out very convenient to build
a specification test on conventional non-experimental estimators of the
program mean impact. Data requirements are made explicit.

Keywords : program evaluation, second control group, specification tests

1 Introduction

The central issue in evaluating the impact of interventions is to separate
their causal effect from the confounding effect of other factors influencing
the outcomes of interest.

∗Address for correspondence: enrico.rettore@stat.unipd.it
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Random assignment of units to the intervention produces treatment and
control groups that are equivalent in all respects, except for their exposition
to the intervention. Thus, in a completely randomized experiment any post-
intervention difference between the two groups by construction doesn’t reflect
pre-intervention differences. As a result, differences between exposed and
control units is entirely due to the intervention itself.

However, in most instances assignment is not controlled by the analyst,
hence random assignment is unfeasible. Besides, even in those instances in
which in principle the analyst can randomize the assignment, units may not
comply with the assigned status and either drop out of the intervention or
seek an alternative program (see Heckman and Smith, 1995).

A well-known (and widely used) example of randomized assignment to
the treatment group is the US JTPA program, which currently serves close
to one million economically disadvantaged people every year (see Friedlander
et al., 1997). Random assignment occurs prior to the actual enrollment in the
program, but a consistent fraction of those randomized into the treatment
group don’t participate. For certain components of the JTPA, such non-
complying behavior seems to be non-negligible (see, for example, Heckman
and Smith, 1998).

In this situation, the ideal experiment is not fully realized since partic-
ipation turns out (at least partly) voluntary: training is provided only for
those individuals who meet certain criteria of need and comply with the re-
sult of randomization. It follows that participation depends on observable
and unobservable personal characteristics that might be correlated with the
outcome of interest. In this situation, differences between treated and control
groups with respect to the outcome of interest might be the result of units’
self-selection into the intervention.

There are instances in which the so called Regression Discontinuity Design
(RDD) arises (see Campbell, 1964, Rubin, 1977, Trochim, 1984). Accord-
ing to this design, assignment is solely based on whether a pre-intervention
measure is above/below an established threshold. To fix ideas, consider the
case in which a pool of units willing to participate are split into two groups
according to whether the pre-intervention measure is above or below a spec-
ified threshold. Those who score above the threshold are exposed to the
intervention while those who score below are denied it.

This design features both advantages and disadvantages relative to its
competitors. On the one hand, in a neighborhood of the threshold for selec-
tion a RDD presents some features of a pure experiment. In this sense, it
is certainly more attractive than a non-experimental design. By exploiting
the fact that subjects assigned to the comparison and the intervention group
solely differ with respect to the variable on which the assignment to the in-
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tervention is established (and with respect to any other variable correlated to
it), one can control for the confounding factors just by contrasting marginal
participants to marginal non-participants.

In this context, the term marginal refers to those units not too far from
the threshold for selection. Contrasting marginally treated and marginally
control units identifies the mean impact of intervention locally with respect to
the threshold for selection. Intuitively, for identifiability to hold it must not
be that any spurious discontinuity in the relationship between the outcome
and the variable on which selection is based happens to coincide with the
cutoff point.

On the other hand, the design features two main limitation. Firstly, its
feasibility is by definition confined to those instances in which selection takes
place on an observable pre-intervention measure. As a matter of fact, this is
not often the case.

Secondly, even when the design is feasible it only identifies the mean im-
pact at the threshold for selection. Which in the presence of heterogeneous
impacts tells us nothing about the impact on units away from the threshold
for selection. In this sense, we only identify a local mean impact of the treat-
ment. To identify the mean impact on the broader population one can only
resort to a non-experimental estimator whose consistency for the intended
mean impact intrinsically depends on behavioral assumptions.

In this paper we derive two results which to the best of our knowledge
are new. Firstly, we show that the range of applicability of the RDD is wider
than it has been thought before. It includes all the instances in which the
relevant population is split into two subpopulation, eligible and non-eligible
units respectively, provided that (i) the eligibility status is established with
respect to a continuous variable and (ii) both non-eligible and eligible non-
participant units are observable. Then, the mean impact on participant
units in a neighborhood of the threshold for eligibility is identified under the
standard RDD conditions no matter how eligible units self-select into the
program.

Secondly, as a straightforward corollary of the previous result, the selec-
tion bias at the threshold for eligibility turns out identifiable. Then, one
can formally test whether any of the long array of existing non-experimental
estimators is able to compensate for such selection bias. On finding an esti-
mator able to compensate for the selection bias even if only with reference
to a particular subpopulation - namely, the units in a neighborhood of the
threshold for eligibility - one might feel more confident to use it on the broader
population.

Links to related literature are established. In particular, we show that
our first result is closely linked to Bloom (1984) and to Angrist and Imbens
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(1991). We also stress that our result is closely related to the idea stated
by Rosenbaum (1987) of using two alternative comparison groups to better
identify a program impact. Lastly, we point out the similarities between our
specification test of a non-experimental estimator and the specification tests
derived by Heckman and Hotz (1989) as well as the link to the characterisa-
tion of the selection bias provided by Heckman et al. (1998a).

The remaining of this paper is organized as follows. Section 2 discusses
the similarities between a fully randomized experiment and a RDD. Section
3 generalizes the use of a RDD when participation into the treatment group
is determined by self-selection. Section 4 shows how to validate the use of
non-experimental estimators for the treatment effect using a RDD. Section
5 presents some concluding remarks.

2 Regression Discontinuity Design vs Ran-

domized experiments

This section highlights similarities between a randomized experiment and a
RDD.

Following the notation of the potential outcome approach to causal in-
ference (see Rubin, 1974), let (Y T

i , Y NT
i ) be the potential outcomes the i-th

subject would experience by taking and not taking part into the program,
respectively.

The causal effect of the treatment on a specific unit is then defined as
the difference between these two potential outcomes, βi = Y T

i − Y NT
i , which

is not observable since being exposed to (denied) the program reveals Y T
i

(Y NT
i ) but conceals the other potential outcome.
Let E be the binary variable for the treatment status, with E = 1 sig-

naling that the subject takes part into the program. If the assignment is
determined by randomization, the treatment status doesn’t depend on indi-
vidual characteristics, hence the following condition holds true

(Y T , Y NT )⊥E. (1)

Typically randomization is administered only to people who previously
applied for a certain program, who in general are not representative of the
overall population (as for the JTPA case in the US). In this situation con-
dition (1) holds with respect to the group of units actually randomized, not
with respect to the overall population.

The attractiveness of randomization is that the difference between the
mean outcome for treated units and the mean outcome for control units
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identifies the mean impact of the program

E(Y T − Y NT ) = E(Y T |E = 1)− E(Y NT |E = 0), (2)

since conditioning on E in the right-hand side of (2) is irrelevant by con-
struction. In other words, randomization allows using information on non-
participants to identify the mean counterfactual outcome for participants,
that is what participants would have experienced had they not entered the
program.

Although the RDD lacks random assignment of units to the treatment
group, it shares some interesting features with an experimental design. Let
S be the random variable according to which units are selected into the
treatment and let s̄ be the threshold for selection. Units are assigned to the
treatment if and only if they score at or above s̄, that is

E = 1l(S ≥ s̄). (3)

The probability of selection into the treatment conditional on S is then
discontinuous at s̄, stepping from zero to one as S crosses the threshold
s̄. Following Trochim (1984), we will refer to this situation as sharp RDD,
since the status with respect to the program is a deterministic function of an
observable pre-program characteristic.

In this context, conditioning on S allows to identify the average impact
of the program on subjects scoring s̄, thus a local version of the parameter
in (2). In fact, in a neighborhood of s̄ this design presents the same features
of a ‘pure’ randomized experiment (see Rubin, 1977), since for any positive
ε the following condition holds approximately

(Y T , Y NT )|S = s̄ − ε ≈ (Y T , Y NT )|S = s̄ + ε.

Exploiting the relationship between S and E in (3), it follows that the fol-
lowing condition holds true

(Y T , Y NT )⊥E|S = s̄. (4)

Because of this property, the RDD is often referred to as a quasi-experimental
design (Cook and Campbell, 1979).

In a finite sample for the condition to hold ε needs to go to zero at a
proper rate as the sample size grows to infinity, implying a non-standard
asymptotic theory for the resulting estimator of the mean impact (see Hahn,
Todd and Van der Klaauw, 2001).

Note that to meaningfully define marginal units (with respect to s̄) thus
allowing the use of a RDD, S needs to be continuous.
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In some cases, units do not comply with the mandated status, dropping
out of the program or seeking alternative treatments. Any of these violations
of the original assignment might lead to biased conclusions about program
effects, since conditions (1) or (4) are no longer valid. The presence of non-
complying units in a RDD leads to the so called fuzzy RDD, which is not
directly relevant in what follows (see Hahn, Todd and Van der Klaauw, 2001
and Battistin and Rettore, 2002).

Two major drawbacks hamper the applicability of RDD. Firstly, in an
observational study it is more often the case that units self-select into the
treatment rather than being exogenously selected on a pre-program measure.
Secondly, even in those instances in which the RDD applies, such a design is
not informative about the impact on units away from s̄. These are the two
issues we look at in the next sections.

3 A generalization of the Regression Discon-

tinuity Design

Let the eligibility to a specific program be determined on the basis of the
value taken on by the continuous variable S according to the rule (3). If all
eligible units participated into the program, the standard RDD would arise
and the mean impact on units in a neighborhood of s̄ would be identifiable.

In fact, it is a widespread evidence that not all eligible units participate
into the program they are eligible for. Across units heterogeneity in the
information available on the program, in the individual preferences and in
the opportunity costs are likely factors influencing participation in several
instances.

As a result of both the eligibility rule and the process leading to partic-
ipation, the population turns out split into three subgroups: non-eligibles,
eligible non-participants and participants. To label these subgroups we intro-
duce a further binary variable to distinguish, amongst units eligible for the
treatment, those who actually received it. Let D = 1 (D = 0) indexes the
group of eligible units who participate (do not participate) into the program.

To stress that the eligibility status E affects the actual treatment status
we will write DE. Non-participants are therefore a mixture of those who
don’t meet eligibility criteria, (E = 0), and those who choose not to enter
the program, (E = 1, D1 = 0). DE is a potential variable itself and it is
logically defined also for units belonging to the E = 0 group.

Carefully note that in the set-up we are considering participation into the
program amongst eligible units does not take place by design; it is due to
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self-selection.
Let

E(Y T |E = 1, D1 = 1, S = s) (5)

be the mean outcome for eligible units scoring S = s and actually receiving
the treatment, with s ≥ s̄. This quantity is identified exploiting information
on the outcome of participants for any given value of S. Let

E(Y NT |E = 1, D1 = 1, S = s) (6)

be the counterfactual mean outcome for the same group of units, that is
what their response would have been had they not participated. The mean
impact of the program on treated units scoring S = s is then defined as the
difference between factual and counterfactual results in (5) and (6)

τ(s) = E(Y T |E = 1, D1 = 1, S = s)− E(Y NT |E = 1, D1 = 1, S = s).

Accordingly, the mean impact on participants τ is obtained as a weighted
average of these quantities, with weights given by the proportion of eligible
units scoring S = s.

Neither τ(s) nor τ are directly identifiable, since the counterfactual mean
outcome in (6) is not observed by construction. Nor we can replace it by the
factual mean outcome observed on eligible non-participants. In fact, due to
the self-selection process determining the group of participants (E = 1 and
D1 = 1) and the group of non-participants (E = 1 and D1 = 0), eligible
non-participants are not a random sample from the pool of eligible units,
implying that in general

E(Y NT |E = 1, D1 = 0, S = s) (7)

is different from (6). Note that this result holds true for any given value of
S, in particular when S = s̄.

Now let information on the outcomes experienced by non-eligible units,
(E = 0), be available. Since this group of units is by construction charac-
terized by values of S below the threshold for selection s̄, it cannot be used
to approximate the counterfactual mean outcomes of participants. Nor we
can use non-eligible units in a neighborhood of s̄ to approximate the coun-
terfactual mean outcome of participant units in a neighborhood of s̄. The
quantity

E(Y NT |E = 0, S = s̄) (8)
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is in fact different from the counterfactual result (6) evaluated at s̄ because of
the non-random selection of units into the treatment group discussed above.

Non-eligibles alone do not allow to solve the problem. It is the joint use
of information on non-eligibles and eligible non-participants to allow solving
the problem at least for a particular subpopulation of participants. The key
relationship to obtain this result is the following

E(Y NT |E = 1, S = s̄) = E(Y NT |E = 0, S = s̄). (9)

In a neighborhood of the cutoff point s̄ eligible and non-eligible units are
nearly alike with respect to S, so that in the counterfactual scenario the two
marginal groups would experience the same mean outcome. This result rests
on the standard RDD as reviewed in the previous section.

The left-hand side of equality (9) can be written as the weighted mean
of the mean outcomes experienced by eligible participants and eligible non-
participants, respectively, in a neighborhood of s̄

E(Y NT |E = 1, D1 = 1, S = s̄)φ(s̄) + E(Y NT |E = 1, D1 = 0, S = s̄)[1− φ(s̄)],

where φ(s̄) = Pr(D1 = 1|E = 1, S = s̄) is the probability of self-selection into
the program for units marginally eligible. Substituting the last expression in
(9) and solving for E(Y NT |E = 1, D1 = 1, S = s̄) we obtain

E(Y NT |E = 1, D1 = 1, S = s̄) =
E(Y NT |E = 0, S = s̄)

φ(s̄)

− E(Y NT |E = 1, D1 = 0, S = s̄)
1− φ(s̄)

φ(s̄)
.(10)

Namely, the counterfactual mean outcome for participants presenting S = s̄
is a linear combination of the factual mean outcome for non-eligible units
at S = s̄ and of the factual mean outcome for eligible non-participants at
s̄. The coefficients of the linear combination add up to one and are function
of the probability φ(s̄) which in turn is identifiable. Hence, equation (10)
implies that τ(s̄), the mean impact on participants at s̄, is identifiable.

Since subtracting (10) from (5) the mean impact can be expressed as

E(Y |E = 1, S = s̄)− E(Y |E = 0, S = s̄)

φ(s̄)
,

it can be interpreted as the ratio of the intention to treat effect, the mean
impact we would observe if all eligible units actually took part in the program,
to the mean impact of E on D at s̄.

Results by Hahn et al. (2001) on non-parametric estimation in a RDD
apply straightforwardly.

Note that
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• condition (9) is the cornerstone on which we build the result. Other-
wise stated, it is crucial that in the absence of self-selection amongst
eligibles, conditions for the RDD to hold are met.

• to derive the result we don’t need to specify how eligible units self-
select into the treatment. Thus, identifiability of τ(s̄) doesn’t require
any behavioral assumption on the process itself.

• to identify τ(s̄) information on three different groups of units, partici-
pants, eligible non-participants and non-eligibles, are required.

3.1 Related results

In a fully randomized experiment, Bloom (1984) deals with the case where
some units assigned to the program do not actually participate (no-shows).
Exploiting information on participants, eligible non-participants and non-
eligibles the author proves that the mean impact on participants is identifi-
able. The result in the previous section can be seen as a special case of Bloom
(1984) since according to the condition (4) it is as if randomization took place
at the threshold for eligibility s̄. In our case eligible non-participants at s̄
play the role of Bloom’s (1984) no-shows.

Our result (as well as Bloom’s one) can also be derived as a special case
of Angrist and Imbens (1991). The authors prove that, even if participation
takes place as a result of self-selection, the mean impact on participants is
identifiable provided that (i) there exists a random variable Z affecting the
participation into the program and orthogonal to the potential outcomes
(Y T

i , Y NT
i ) and (ii) the probability of participation conditional on Z is zero

for at least one value of Z. Condition (i) qualifies Z as an Instrumental
Variable for the problem.

In the Bloom (1984) context, self-selection arises as a consequence of the
non-complying behavior of some units randomly assigned to the program.
The natural choice for Z in that case is the mandated status as it results from
randomization. Condition (i) is satisfied since Pr(D = 1|Z = 1) > Pr(D =
1|Z = 0) and Z is orthogonal to the potential outcomes while condition (ii)
is satisfied since Pr(D = 1|Z = 0) = 0. In our case, since E is orthogonal to
the potential outcomes in a neighborhood of s̄ and Pr(D = 1|E = 0) = 0, E
meets the conditions stated by Angrist and Imbens (1991) in a neighborhood
of s̄. Hence the identification of the mean impact on participants at s̄ follows.
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4 Validating non-experimental estimators of

the mean impact on participants

In the previous section we have shown that the existence of an eligibility rule
allows to identify the mean impact of an intervention on marginally eligible
participants even if participants are self-selected from the eligible pool. If the
gain of being treated is heterogeneous with respect to S, such mean impact
is not informative on the impact of the intervention on units away from the
threshold for eligibility. Nor non-eligible units and eligible non-participants
can be used as valid comparison groups, since they differ systematically from
participants (the former with respect to S and the latter with respect to the
variables driving the self-selection process).

In order to identify the mean impact on the overall population of par-
ticipants, one has to resort to one of the long array of non-experimental
estimators available in the literature which adjust for the selection bias un-
der different assumptions (see Heckman et al., 1999, and Blundell and Costa
Dias, 2000, for a review). The problem with these non-experimental estima-
tors is that the assumptions on which their consistency relies most times are
not testable.

Over the years the literature took two main routes to deal with this prob-
lem. The first route amounts to seek whether any over-identifying restriction
on the data generating process arises from a behavioral theory of the phe-
nomenon under investigation, possibly exploiting it to test the assumptions
on which the non-experimental estimator rests (see Rosenbaum, 1984 and
Heckman and Hotz, 1989).

The second route is feasible only when an experimental design has been
run, so that an experimental estimate of the impact comes available. Then,
besides estimating the mean impact, one can exploit the experimental set up
to study the selection bias and to assess whether the non-experimental esti-
mators are able to reproduce the experimental estimate (see LaLonde, 1986
and Heckman et al., 1998a). When information from a randomized experi-
ment is available, one can meaningfully check how closely non-experimental
comparison groups methods approximate experimental impact estimates. At
the same time, this allows us to assess the performance of alternative non-
experimental estimators for the treatment effect, thus suggesting the best
strategy to follow when experimental data are not available.

In this section we show that if the three groups of units are available
resulting from the set-up of Section 3, then one can test the validity of any
non-experimental estimators on a specific subpopulation. To fix the ideas,
we will focus on the well known matching estimator, but the same line of
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reasoning applies to other non-experimental estimators.
The key assumption on which the matching estimator rests is that all the

variables driving the self-selection process and correlated to the outcome are
observable to the analyst.

Formally, the assignment to the treatment is told strongly ignorable given
a set of characteristics x if conditional on x the treatment can be thought as
randomly assigned to units provided that at each value x there is a positive
probability of being treated

(Y T , Y NT )⊥D|x, 0 < Pr(D = 1|x) < 1. (11)

If this condition holds, then it is as if units were randomly assigned to
the treatment with a probability depending on x; the counterfactual outcome
for participants presenting characteristics x can be approximated by the ac-
tual outcome of non-participants presenting the same characteristics. Since
units presenting x have a common probability to enter the program, then an
operational rule to obtain an ex post experimental-like data set is to match
participants to non-participants on such probability (the so called propensity
score), whose dimension is invariant with respect to the dimension of x (see
Rosenbaum and Rubin, 1983).

The critical assumption of this procedure is that the available x is enough
rich to guarantee the orthogonality condition in (11). In principle, this im-
poses strong requirements on data collection. Moreover, the violation of the
second condition in (11) would rise the so called common support problem
(see for example Heckman et al., 1998a, and Lechner, 2001).

Let

sb(s) = E(Y NT |E = 1, D1 = 1, S = s)− E(Y NT |E = 1, D1 = 0, S = s) (12)

be the selection bias affecting the raw comparison of eligible participants to
eligible non-participants. The first term on the right-hand side is a coun-
terfactual mean outcome while the second is a factual one. This quantity
captures pre-intervention differences between eligible units self-selected in
and out the intervention, respectively, at each level of S, with S ≥ s̄.

Using the results of the previous section, the mean counterfactual outcome
for participants is identifiable in a neighborhood of s̄ by means of (10). This
also implies that the selection bias for units marginally eligible, sb(s̄), is
identifiable as the difference between (10) and (7) evaluated at s̄.

Note that the identification of the counterfactual term on the right-hand
side of (12) at s̄ exploits information on the subgroup of non-eligible units
closest to the group of eligible units, thus in a neighborhood of the threshold
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for eligibility. Apparently, identification is precluded as S moves away from
s̄.

Then, let

sb(s, x) = E(Y NT |E = 1, D1 = 1, x, S = s)− E(Y NT |E = 1, D1 = 0, x, S = s)

be the selection bias on the specific subpopulation indexed by x, where x are
the variables advocated to properly account for the selection bias in a match-
ing estimation of the intervention impact. If the orthogonality condition in
(11) holds, then

sb(s, x) = 0

uniformly with respect to x and s. In particular, a necessary condition for the
matching estimator to work is that sb(s̄, x) = 0, which is directly testable.

Operationally, in a neighborhood of s̄ any test of the equality of the mean
outcomes of the non-eligible units and of the eligible non-participants, respec-
tively, conditional on x is a test of the strong ignorability of the assignment
to intervention, thus a test of the validity of the matching estimator. Clearly,
the rejection of the null hypothesis is sufficient to conclude that condition
(11) does not hold.

On the other hand, on accepting the null hypothesis one might feel more
confident in using the matching estimator but by no means it can be said
that the validity of the estimator has been proved. In fact, the specification
test tells nothing on whether the strong ignorability condition holds away
from s̄.

4.1 Related results

Since the RDD can been seen as a formal experiment at S = s̄, the spec-
ification test developed above displays a similarity to what Heckman et al.
(1998a) develop in an experimental set-up. In both cases there is a bench-
mark estimate of the intervention mean impact - the RDD estimate in the
former, the experimental one in the latter - to which the analyst is ready
to attach credibility. Then, the analyst tests non-experimental estimators
against the benchmark to discover whether the assumptions they rest upon
are met.

The similarity between the two approaches stops here. On the one hand,
the availability of an experimental set-up as in Heckman et al. (1998a)
allows to fully characterize the selection bias and to test non-experimental
estimators with reference to the population of participants. If a RDD is
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available, this is feasible only with reference to the population of participants
at S = s̄.

On the other hand, it is very often the case that an intervention is targeted
to a population of eligible units among which it is actually delivered only to
those showing up to participate while it is much less frequent to have available
an experimental set-up. Then, the three groups of units needed to implement
the results in this paper in principle should be available1. This opens the door
to a routinely application of the specification test based on the RDD as a tool
to validate non-experimental estimators of the mean impact on participants.

Rosenbaum (1987) in his discussion of the role of a second control group
in an observational study gives an example (example 2 on p. 294) which
resembles very closely the set-up we refer to. The Advanced Placement (AP)
Program provides high school students with the opportunity to earn college
credits for work done in high school. Not all high schools offer the AP
program, and in those that do, only a small minority of students participate.
Two comparison groups naturally arise in this context, (i) students enrolled
in high school not offering the program and (ii) students enrolled in high
schools offering the program who did not participate.

Then, Rosenbaum (1987) goes on discussing how the availability of two
comparison groups can be exploited to test the strong ignorability condition
needed to believe the results of a matching estimator.

Apparently, the first comparison group resembles our pool of non-eligible
units while the second comparison group resembles our pool of eligible non-
participant units. The main difference between the Rosenbaum’s example
and our set-up is that in the former case the rule according to which high
schools decide whether to offer the AP program or not is unknown to the
analyst while in our set-up the eligibility rule is known. It is exactly this
feature to allow identifying the mean impact on participants as well as the
selection bias at S = s̄.

5 Conclusions

The main message from this paper is that every time an intervention is tar-
geted to a population of eligible units but is actually administered to a sub-set
of self-selected eligible units, it is worth collecting information separately on
three groups of units: non-eligibles, eligible non-participants and eligible par-
ticipants. Also, the variables with respect to which eligibility is established
have to be recorded.

1Whether they are actually available it depends on the design of the data collection.
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The relevance of distinguishing between non-eligibles and eligible non-
participants to improve the comparability between the treated and the com-
parison groups has already been stressed in the literature (see, amongst oth-
ers, Heckman et al., 1998a).

As a complementary result here we have shown that provided the el-
igibility rule is based on a continuous variable, jointly exploiting the two
comparison groups the mean impact on participants on the margin between
eligibility and non-eligibility is identifiable no matter for how the self-selection
of participants takes place.

Then, we have shown that as a straightforward consequence of the previ-
ous result also the selection bias for units on the margin between eligibility
and non-eligibility is identifiable. This opens up the door to a specification
test in a neighborhood of the threshold for eligibility so that the properties
of non-experimental estimators can be assessed. By design, such a test is in-
formative on their performance only for a particular subgroup of units, thus
results cannot be generalized to the whole population (unless we are will-
ing to impose further identifying restrictions). The value of the specification
test is that if it rejects the estimator locally then this is enough to reject it
altogether.
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