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Background Reading

Guido Imbens and Jeffrey Wooldridge (2008), “Recent Devel-

opments in the Econometrics of Program Evaluation,” under

revision for Journal of Economic Literature

Guido Imbens and Donald Rubin, (2009), Statistical Methods

for Causal Inference in Biomedical and Social Sciences forth-

coming, Cambridge University Press.

These slides and Imbens-Wooldridge paper are available on

Imbens home page at Harvard University, Department of Eco-

nomics.

http://www.economics.harvard.edu/faculty/imbens
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General Motivation

In seventies empirical work on evaluation of social programs

(Ashenfelter & Card).

Since then much empirical and methodological work, in both

statistics and econometrics literature.

Here: my views on current state of the art, with emphasis on

recommendations for empirical researchers in this area.

Based on work with various coauthors, Abadie, Angrist, Athey,

Chamberlain, Crump, Hirano, Hotz, Manski, Mitnik, Newey,

Ridder, Rubin, Rosenbaum, Wooldridge (without implicating

them)
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Many Applications in Social Sciences

Labor market programs (main focus in economics):

Ashenfelter (1978), Ashenfelter and Card (1985), Lalonde (1986),

Card and Sullivan (1989), Heckman and Hotz (1989), Fried-

lander and Robins (1995), Dehejia and Wahba (1999), Lechner

(1999), Heckman, Ichimura and Todd (1998).

Effect of Military service on Earnings:

Angrist (1998)

Effect of Family Composition:

Manski, McLanahan, Powers, Sandefur (1992)

Effect of Regulations:

Minimum wage laws (Card and Krueger, 1995), Tax reforms

(Eissa and Liebman, 1998), Information Disclosure (restaurant

hygiene, Leslie and Jin, 2004)
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Literature

1. Large theoretical literature:

(a) efficiency bounds: Hahn, 1998.

(b) estimators: Hahn, 1998; Heckman, Ichimura and Todd,

1998; Hirano, Imbens and Ridder, 2003, Abadie & Im-

bens, 2006; Robin and Rotnitzky, 1995.

2. Few concrete recommendations for finite samples

(a) Simulations: Frölich, 2004, Zhao, 2004.

(b) Covariate selection: Caliendo, 2006; De Luna, Richard-

son, Waernbaum, 2008.
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Outline for Talk

1. Introduction & Notation

2. Two Illustr: Lottery Data, Lalonde (Dehejia-Wahba) Data

3. Key Assumptions: Unconfoundedness and Overlap

4. Prelim: Specifying and Estimating the Propensity Score

5. Design Stage: Creating a Sample with Overlap

6. Estimation, Variance Estimation & and the Bootstrap

7. Assessing Unconfoundedness
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1.A Introduction

Steps for Estimating Ave Treatm Effects Given Unconf

1. Estimate the propensity score

2. Assess Overlap: If necessary create balanced sample

3. Re-estimated the propensity score in the balanced sample.

4. Estimate ate by blocking/matching on cov, with regression

5. Estimate conditional variance

6. If possible, assess unconf assump using pseudo outcomes
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1.B Rubin Causal Model Notation

N individuals/firms/units, indexed by i=1,. . . ,N,

Wi ∈ {c, t}: Binary treatment,

Yi(t): Potential outcome for unit i given active treatment,

Yi(c): Potential outcome for unit i given control treatment,

Xi: k × 1 vector of covariates.

We observe {(Xi, Wi, Yi)}N
i=1, where

Yi =

{
Yi(c) if Wi = c,
Yi(t) if Wi = t.

Fundamental problem of Causal Inference (Holland, 1986): we

never observe Yi(c) and Yi(t) for the same individual i, so unit-

level causal effect τi = Yi(t) − Yi(c) is never observed.
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Notation (ctd)

µw(x) = E[Yi(w)|Xi = x] (conditional means)

σ2
w(x) = E[(Yi(w) − µw(x))2|Xi = x] (conditional variances)

e(x) = pr(Wi = t|Xi = x) (propensity score, Rosenbaum and

Rubin, 1983)

τ(x) = E[Yi(t) − Yi(c)|Xi = x] = µt(x) − µc(x) (conditional av-

erage treatment effect)

τSP = E[Yi(t)−Yi(c)] Super Population Average Treatment Effect

τcond = 1
N

∑N
i=1 τ(Xi) Conditional Average Treatment Effect
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2.A Illustr 1: The Imbens-Rubin-Sacerdote Lottery Data

IRS (American Economic Review, 2000) were interested in es-

timating the effect of unearned income on behavior including

labor supply, consumption and savings.

(also on children’s outcomes and happiness, but too few obser-

vations for answerin first question, and wrong survey questions

for answering second)

They surveyed individiuals who had played and won large sums

of money in the lottery in Massachusetts (400K on average).

As a comparison group they collected data on a second set of

individuals who also played the lottery but who had not won

big prizes (the “losers”)
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Summary Statistics Lottery Data

Covariates All Losers Winners
(N=496) (N=259) (N=237) Norm.

mean (s.d.) mean mean [t-stat] Dif.

Year Won 6.23 (1.18) 6.38 6.06 [-3.0] 0.19
# Tickets 3.33 (2.86) 2.19 4.57 [9.9] 0.64
Age 50.2 (13.7) 53.2 47.0 [-5.2] 0.33
Male 0.63 (0.48) 0.67 0.58 [-2.1] 0.13
Education 13.7 (2.2) 14.4 13.0 [-7.8] 0.50
Working Then 0.78 (0.41) 0.77 0.80 [0.9] 0.06
Earn Y-6 13.8 (13.4) 15.6 12.0 [-3.1] 0.19
...
Earn Y-1 16.3 (15.7) 18.0 14.5 [-2.5] 0.16
Pos Earn Y-6 0.69 (0.46) 0.69 0.70 [0.3] 0.02
...
Pos Earn Y-1 0.71 (0.45) 0.69 0.74 [1.2] 0.07
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Normalized difference is

norm. dif . =

∣∣∣∣∣∣∣

Xt − Xc√
S2

t + S2
c

∣∣∣∣∣∣∣

If the normalized difference is greater than 0.2, linear regression

based estimates for average treatment effect are likely to be

sensitive to specification.

Recall: OLS estimator for average control outcomes for treated

units has the form

Ê[Yi(c)|Wi = t] = Y obs
c + β̂′

ols,c

(
Xt − Xc

)

so if Xt − Xc is far from zero, the estimator relies heavily on

extrapolation.
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Summary Statistics Lalonde/Dehejia/Wahba Data (CPS

Comparison Group)

Covariates All Contr Trainees
(N=16,177) (15,992) (N=185) Norm.
mean (s.d.) mean mean [t-stat] Dif.

black 0.08 (0.27) 0.07 0.84 [28.6] 1.72
hispanic 0.07 (0.26) 0.07 0.06 [-0.7] 0.04
age 33.1 (11.0) 33.2 25.8 [-13.9] 0.56
married 0.71 (0.46) 0.71 0.19 [-18.0] 0.87
nodegree 0.30 (0.46) 0.30 0.71 [12.2] 0.64
education 12.0 (2.9) 12.0 10.4 [-11.2] 0.48
earn ’74 13.9 (9.6) 14.0 2.1 [-32.5] 1.11
unempl ’74 0.13 (0.33) 0.12 0.71 [17.5] 1.05
earn ’75 13.5 (9.3) 13.7 1.5 [-48.9] 1.23
unempl ’75 0.11 (0.32) 0.11 0.60 [13.6] 0.84
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3. Key Assumptions

3.A Unconfoundedness

Yi(c), Yi(t) ⊥⊥ Wi

∣∣∣ Xi.

This form due to Rosenbaum and Rubin (1983). Like selection

on observables, or exogeneity. Suppose

Yi(c) = α + β′Xi + εi, Yi(t) = Yi(c) + τ,

then

Yi = α + τ · 1Wi=t + β′Xi + εi,

and unconfoundedness ⇐⇒ εi ⊥⊥ Wi|Xi.
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3.B Overlap

0 < pr(Wi = t|Xi = x) < 1

For all x in the support of Xi there are treated and control

units.

In practice we typically use stronger version

c < pr(Wi = t|Xi = x) < 1 − c

for some positive c.
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3.C Motivation for Unconfoundedness Assumption

I. Descriptive statistics. After simple difference in mean out-

comes for treated and controls, it may be useful to compare

average outcomes adjusted for covariates.

II. Dropping Unconfoundedness Assumption loses identifica-

tion, and leads to bounds (e.g., Manski, 1990)

III. Unconfoundedness is consistent some optimizing behavior.
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3.D Identification

τ(x) = E[Yi(t) − Yi(c)|Xi = x]

= E[Yi(t)|Xi = x] − E[Yi(c)|Xi = x]

By unconfoundedness this is equal to

E[Yi(t)|Wi = t, Xi = x] − E[Yi(c)|Wi = c, Xi = x]

= E[Yi|Wi = t, Xi = x] − E[Yi|Wi = c, Xi = x]

By the overlap assumption we can estimate both terms on the

righthand side.

Then

τSP = E[τ(Xi)] = E[Yi(t) − Yi(c)]
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4. Preliminaries: Estimating the Propensity Score

For a number of analyses we need an estimate of the propensity

score.

General problem: given (Xi, Wi)
N
i=1, estimate

e(x) = pr(Wi = t|Xi = x)

Here: use logit model

e(x) =
exp(h(x)′γ)

1 + exp(h(x)′γ)

for some selected vector of functions h(x) (no loss of generality

yet).

Given specification estimate γ by maximum likelihood.
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4.A Selecting Covariates

Implementation: h(x) contains linear and second order terms.

Step 1: Select some covariates to be included linearly (a priori

important covariates, e.g., lagged outcomes). Could be none.

Step 2: Select additional linear terms sequentially, adding those

with the largest value for likelihood ratio test for zero coeffi-

cient, till the largest likelihood ratio test statistic is less than

Clin = 1.

Step 3: Select second order terms sequentially (based on in-

cluded linear terms), adding those with the largest value for

likelihood ratio test for zero coefficient, till the largest likeli-

hood ratio test statistic is less than Cqua = 2.72.
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4.B Illustration 2: The Lottery Data

Covariates in Propensity Score: 18 covariates

1. 4 Pre-selected: # Tickets, Education, Working Then, Earn

Y-1

2. 4 Additional Linear Terms Selected: Age, Year Won, Pos Earn

Y -5, Male

3. 10 Second Order Terms Selected: Year Won×Year Won,

Earn Y-1×Male, # Tickets×# Tickets, # Tickets×Working Then,

Education×Education, Education×Earn Y-1, # Tickets×Education,

Earn Y-1×Age, Age×Age, Year Won×Male
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4.C Illustration 2: The Lalonde Data

Covariates in Propensity Score: 10 covariates

1. 4 Pre-selected: earn’74, unempl’74, earn’75, unempl’75

2. 5 Additional Linear Terms Selected: black, married, nodegree,

hispanic, age (only educ is not selected)

3. 5 Second Order Terms Selected: age×age, unempl’74×unempl’75,

earn’74×age, earn’75×married, unempl’74×earn’75
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4.D Assessing Adequacy of Specification

Given estimated propensity score, construct subclasses. Then

for each covariate test whether the average value of the co-

variate in each subclass is the same for treated and controls.

Compare the K p-values (one for each covariate) to a uniform

distribution.
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Construction of subclasses

Start with single subclass. Calculate the t-statistic for the null-

hypothesis that the average value of the propensity score for

treated in the subclass is the same as the average value for the

controls in the same subclass.

If the subclass were to be split, it would be split by the median

value of the estimated propensity score. Count how many

treated and control units would be in each new subclass, Nc,low,

Nt,low, Nc,high, and Nt,high.

Split the block if:

1. |t| ≥ tmax = 1 and

2. min(Nc,low, Nt,low, Nc,high, Nt,high) ≥ nbmin1 = 3, and

3. min(Nc,low+Nt,low, Nc,high+Nt,high) ≥ nbmin2 = dim(Xi)+2
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Note that this specification of the propensity score leads to

better covariate balance than simply including all covariates

linearly.
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5. Design: What Do We Want to Learn / What Can We

Learn?

Population average effect

τSP = E[Yi(t)− Yi(c)], τSP,T = E[Yi(t) − Yi(c)|Wi = t]

may be difficult to estimate if overlap is limited. Instead we

focus on “easier” estimands: conditional average treatment

effect:

τcond =
1

N

N∑

i=1

τ(Xi), τcond,T =
1

Nt

∑

i:Wi=t

τ(Xi)

and, for subsets A of the covariate space X,

τcond (A) =
1

#(A)

∑

i:Xi∈A

τ(Xi)
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5.A Preliminary Result: Efficiency Bounds

Efficiency bound for τ (Hahn, 1998). For τ̂ with

√
N(τ̂ − τSP)

d−→ N(0, V),

V ≥ E

[
σ2

t (Xi)

e(Xi)
+

σ2
c (Xi)

1 − e(Xi)
+ (τ(X) − τ)2

]

.

Bound for τcond(A) can be much lower:

√
N(τ̂ − τcond(A))

d−→ N(0, V),

V ≥ 1

pr(Xi ∈ A)
E

[
σ2

t (Xi)

e(Xi)
+

σ2
c (Xi)

1 − e(Xi)

∣∣∣∣∣ Xi ∈ A

]

.
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5.B Matching Without Replacement on the Propensity

Score to Create Balanced Sample

- Appropriate when interest in average effect for treated, and

large pool of potential controls.

Step 1. Rank treated by decreasing value of estimated propen-

sity score (those with highest propensity score are most difficult

to find good matches for)

Step 2. For each treated find closest control in terms of esti-

mated propensity score, without replacement.

(not optimal, but jointly matching is considerably more difficult

and little gain)
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5.C Summary Statistics Lalonde/Dehejia/Wahba Data

(CPS Comparison Group), Matched Sample

Covariates All Comp. Trainees Full Matched
(N=370) (N=185) (N=185) Norm. Norm.

mean (s.d.) mean mean Dif. Dif.

black 0.85 (0.36) 0.85 0.84 1.72 0.02
hispanic 0.06 (0.24) 0.06 0.06 0.04 0.02
age 25.9 (7.4) 25.9 25.8 0.56 0.01
married 0.22 (0.41) 0.25 0.19 0.87 0.10
nodegree 0.64 (0.48) 0.57 0.71 0.64 0.20
education 10.6 (2.5) 10.9 10.4 0.48 0.16
earn ’74 2.45 (5.27) 2.81 2.10 1.11 0.10
unempl ’74 0.69 (0.46) 0.66 0.71 1.05 0.07
earn ’75 1.68 (3.52) 1.82 1.53 1.23 0.06
unempl ’75 0.55 (0.50) 0.50 0.60 0.84 0.14
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Re-estimating the Propensity Score

Still substantial differences in covariates by treatment group:

e.g., earn ’74 differs by $700. Need for further adjustment,

partly based on propensity score.

Covariates in Propensity Score in Matched Sample:

1. 4 Pre-selected: earn’74, unempl’74, earn’75, unempl’75

2. 2 Additional Linear Terms Selected: nodegree, married

3. 2 Second Order Terms Selected: unempl’75×married,

earn’74×earn’75
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5.C Crump, Hotz, Imbens and Mitnik (2007): Trim units

that create problems for estimation.

Choose A = A∗ to minimize variance bound for τcond(A):

A
∗ =

{

x ∈ X

∣∣∣∣∣
σ2

t (x) · (1 − e(x)) + σ2
c (x) · e(x)

e(x) · (1 − e(x))
≤ γ

}

where γ solves

γ = 2 · E

[
σ2

t (Xi) · (1 − e(Xi)) + σ2
c (Xi) · e(Xi)

e(Xi) · (1 − e(Xi))

∣∣∣∣∣

σ2
t (Xi) · (1 − e(Xi)) + σ2

c (Xi) · e(Xi)

e(Xi) · (1 − e(Xi))
< γ

]
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Optimal Subset Under Homoskedasticity: (relevant case in

practice, because σ2
w(x) is difficult to estimate)

Suppose σ2
c (x) = σ2

t (x) = σ2 for all x.

Then

A
∗ = Aα = {x ∈ X |α ≤ e(x) ≤ 1 − α} ,

where α is the solution to

1

α · (1 − α)
= 2 · E

[
1

e(Xi) · (1 − e(Xi))

∣∣∣∣∣ α < e(Xi) < 1 − α

]

.

Simple, Good Approximation to Optimal Set:

A0.10 = {x ∈ X |0.10 ≤ e(x) ≤ 0.90} ,
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5.E Trimming for Lottery Data

Sample Sizes for Selected Subsamples with the Propen-

sity Score between α and 1 − α (Estimated α =0.0891)

low middle high All
e(x) < α α ≤ e(X) ≤ 1 − α 1 − α < e(X)

Losers 82 172 5 259
Winners 4 151 82 237
All 86 323 87 496
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Summary Statistics Lottery Data, Trimmed Sample

Covariates All Losers Winners Full Trimm.
(N=323) (N=172) (N=151) Norm. Norm.

mean (s.d.) mean mean [t-stat] Dif.

Year Won 6.36 1.15 6.40 6.32 0.19 0.04
# Tickets 2.99 2.52 2.40 3.67 0.64 0.36
Age 51.0 13.3 51.5 50.4 0.33 0.06
Male 0.63 0.48 0.65 0.60 0.13 0.08
Education 13.6 2.1 14.0 13.0 0.50 0.33
Working Then 0.80 0.40 0.79 0.80 0.06 0.02
Earn Y-6 14.3 13.3 15.5 13.0 0.19 0.13
...
Earn Y-1 17.0 15.7 18.4 15.5 0.16 0.13
Pos Earn Y-6 0.71 0.45 0.71 0.71 0.02 0.00
...
Pos Earn Y-1 0.71 0.45 0.72 0.71 0.07 0.01
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Re-estimating the Propensity Score in the Trimmed Lot-

tery Sample:

1. 4 Pre-selected: # Tickets, Education, Working Then, Earn

Y-1

2. 4 Additional Linear Terms Selected: Age, Pos Earn Y -5,

Year Won, Earn Y -5

3. 4 Second Order Terms Selected: Year Won×Year Won,

# Tickets×Year Won, # Tickets×# Tickets,

Working Then×Year Won
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6.A Estimation of and Inference for Average Treatment

Effect under Unconfoundedness

I. Regression estimators: estimate µw(x), and average µ̂t(Xi −
µ̂c(Xi). Unreliable when covariate distributions far apart.

II. Propensity score estimators: estimate e(x), and block on

ê(x), or do inverse probability weighting. (Horvitz and Thomp-

son, 1951; Rosenbaum and Rubin, 1984; Robins and Rotznitzky,

1995; Hirano, Imbens and Ridder, 2003) sensitive to specifi-

cation of propensity score

III. Matching: match all units to units with similar values for

covariates and opposite treatment, and average within pair difs

(Abadie and Imbens, 2006) considerable bias remains

IV. Combining Regression with Propensity score blocking or

Matching Methods. Recommended
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6.B Blocking and Regression

1. Estimate propensity score ê(x), using logistic regression,

select main effects and interactions/quadratic terms.

2. Construct blocks so that within blocks the propensity score

does not vary too much, and number of treated and control

observations is not too small. (tuning parameters: tmax =

1.96, nbmin1 = 3, nbmin2 = dim(Xi) + 2.)

3. Within blocks estimate average treatment effect using re-

gression on all covariates.

4. Average within-block estimates of average effect.
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6.C Lalonde/Dehejia/Wahba Data: Subclassification

Optimal Subclassification with LDW Data in Matched

Sample

Pscore # of Obs Ave Pscore
Subclass Min Max Contr Treat Contr Treat t-stat

1 0.00 0.39 53 22 0.32 0.34 0.7
2 0.39 0.50 40 35 0.44 0.44 0.7
3 0.50 1.00 92 128 0.57 0.58 1.1

all 0.00 1.00 185 185 0.47 0.53 4.6
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6.C Lalonde/Dehejia/Wahba Data: Normalized Differ-

ences After Subclassification in Matched Sample

Covariates Comp. Trainees Full Matched Blocked
(N=185) (N=185) Norm. Norm. Norm.

mean mean Dif. Dif. Dif.

black 0.85 0.84 1.72 0.02 0.02
hispanic 0.06 0.06 0.04 0.02 0.03
age 25.9 25.8 0.56 0.01 0.01
married 0.25 0.19 0.87 0.10 0.04
nodegree 0.57 0.71 0.64 0.20 0.06
education 10.9 10.4 0.48 0.16 0.08
earn ’74 2.81 2.10 1.11 0.10 0.05
unempl ’74 0.66 0.71 1.05 0.07 0.00
earn ’75 1.82 1.53 1.23 0.06 0.02
unempl ’75 0.50 0.60 0.84 0.14 0.01
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6.D Lottery Data: Optimal Subclassification

Pscore # of Obs Ave Pscore
Subclass Min Max Contr Treat Contr Treat t-stat

1 0.00 0.24 67 13 0.16 0.16 -0.14
2 0.24 0.32 32 8 0.28 0.28 0.92
3 0.32 0.44 24 17 0.37 0.39 1.66
4 0.44 0.69 34 47 0.54 0.57 1.95
5 0.69 1.00 15 66 0.80 0.83 1.58

All 0.00 1.00 172 151 0.34 0.61 10.9
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6.D Lottery Data: Normalized Differences After Subclas-

sification in Trimmed Sample

Covariates Comp. Trainees Full Trimmed Blocked
(N=172) (N=151) Norm. Norm. Norm.

mean mean Dif. Dif. Dif.

Year Won 6.40 6.32 0.19 0.04 0.04
# Tickets 2.40 3.67 0.64 0.36 0.06
Age 51.48 50.44 0.33 0.06 0.03
Male 0.65 0.60 0.13 0.08 0.10
Education 14.01 13.03 0.50 0.33 0.08
Working Then 0.79 0.80 0.06 0.02 0.03
Earn Y-6 15.49 13.02 0.19 0.13 0.02
...
Earn Y-1 18.38 15.45 0.16 0.13 0.01
Pos Earn Y-6 0.71 0.71 0.02 0.00 0.05
...
Pos Earn Y-1 0.72 0.71 0.07 0.01 0.05
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6.C Matching (see Abadie and Imbens, 2006)

For each treated unit i, find untreated unit `(i) with

‖X`(i) − x‖ = min
{l:Wl=c}

‖Xl − x‖,

and the same for all untreated observations. Define:

Ŷi(t) =

{
Yi if Wi = t,

Y`(i) if Wi = c,
Ŷi(c) =

{
Yi if Wi = c,

Y`(i) if Wi = t.

Then the simple matching estimator is:

τ̂sm =
1

N

N∑

i=1

(
Ŷi(t)− Ŷi(c)

)
.

Note: since we match all units it is crucial that matching is

done with replacement.
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6.D Matching and Regression

Estimate µw(x), and modify matching estimator to:

Ỹi(t) =

{
Yi if Wi = t,

Y`(i) + µ̂t(Xi) − µ̂t(Xj(i)) if Wi = c

Ỹi(c) =

{
Yi if Wi = c,

Y`(i) + µ̂c(Xi)− µ̂c(Xj(i)) if Wi = t

Then the bias corrected matching estimator is:

τ̂ bcm =
1

N

N∑

i=1

(
Ỹi(t) − Ỹi(c)

)
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6.E Variance Estimation

Most (all sensible) other estimators for Average Treatment

Effects have the form

τ̂ =
∑

i:Wi=t

λi · Yi −
∑

i:Wi=c

λi · Yi,

(linear in outcomes) with weights

λi = λ(W,X, i),
∑

i:Wi=c

λi = 1,
∑

i:Wi=t

λi = 1

λ(W, X, i) (known) is very non-smooth for matching estimators

and bootstrap is not valid as a result. (not just no second

order justification, but not valid asymptotically – see Abadie

& Imbens 2008). For other estimators leads to variance for

τ̂ − τSP.
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Variance conditional on W and X (relative to τ̂ − τcond) is

V (τ̂ |W, X) =
N∑

i=1

λ2
i · σ2

Wi
(Xi)

All components of variance known other than σ2
Wi

(Xi).

Abadie-Imbens Variance Estimator: for each unit find the clos-

est unit with same treatment:

h(i) = min
j 6=i,Wj=Wi

‖Xi − Xj‖.

Then

σ̂2
Wi

(Xi) =
1

2

(
Yi − Yh(i)

)2
.

Even though σ̂2
w(x) is not consistent for V(Yi(w)|Xi = x), the

estimator for V(τ̂ |W, X) is because it averages over all σ̂2
w(Xi).
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6.F Estimates

Lalonde/Dehejia/Wahba Data

Estimator Estimate (s.e.)

Subclassification 1.89 0.76
Matching (single nearest neighbor) 1.74 0.76

Lottery Data (outcome rescaled by average prize, 55.2K)

Estimator Estimate (s.e.)

Subclassification -0.104 0.021
Matching (single nearest neighbor) -0.080 0.019

Subclassification and matching estimates similar.
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7.A Assessing Unconfoundedness by Estimating Effect on

Pseudo Outcome

We consider the unconfoundedness assumption,

Yi(c), Yi(t) ⊥⊥ Wi | Xi.

We partition the vector of covariates Xi into two parts, a

(scalar) pseudo outcome, denoted by X
p
i , and the remainder,

denoted by Xr
i , so that Xi = (Xp

i , Xr′
i )′.

Now we assess whether the following conditional independence

relation holds:

X
p
i ⊥⊥ Wi | Xr

i .

The two issues are

(i) the interpretation of this indendepence condition

(ii) the implementation of the test.
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7.B Link between the conditional independence relation

and unconfoundedness

This link is indirect, as unconfoundedness cannot be tested

directly.

First consider a related condition:

Yi(c), Yi(t) ⊥⊥ Wi | Xr
i

If this modified unconfoundedness condition were to hold, one

could use the adjustment methods using only the subset of

covariates Xr
i . In practice this is a stronger condition than the

original unconfoundedness condition.

The modified condition is not testable. We use the pseudo

outcome X
p
i as a proxy variable for Yi(c), and test

X
p
i ⊥⊥ Wi | Xr

i
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A leading example is that where Xi contains multiple lagged

measures of the outcome.

In the lottery example we have observations on earnings for

six, years prior to winning. Denote these lagged outcomes by

Yi,−1, . . . , Yi,−6, where Yi,−1 is the most recent and Yi,−6 is the

most distant pre-winning earnings measure.

One could implement the above ideas using X
p
i = Yi,−1 and

Xr
i = (Yi,−2, . . . , Yi,−6) (ignoring additional pre-treatment vari-

ables).
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7.C Implementation of Assessment of Unconfoundedness

One approach to testing the conditional independence assump-

tion is to estimate the average difference in X
p
i by treatment

status, after adjusting for differences in Xr
i .

This is exactly the same problem as estimating the average

effect of the treatment, using X
p
i as the pseudo outcome and

Xr
i as the vector of pretreatment variables.
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7.D Lottery Data

subclassification estimator

Pseudo Outcome Remaining Covariates est (s.e.)

Y−1 X, Y−6:−2, Y−6:−2 > 0 -0.010 (0.010)

Y−1+Y−2
2 X, Y−6:−3, Y−6:−3 > 0 -0.021 (0.013)

Y−1+Y−2+Y−3
3 X, Y−6:−4, Y−6:−4 > 0 -0.013 (0.018)

Actual Outcome

Y X, Y−1:−6, Y−6:−1 > 0 -0.104 (0.021)
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Conclusion for Lottery Data

Unconfoundedness is plausible (based on analysis without out-

come data)

Estimates are robust, -0.09 is reduction in yearly labor earnings

per dollar of yearly unearned income.
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7.E Lalonde-Dehejia-Wahba Data

subclassification estimator

Pseudo Outcome Remaining Covariates est (s.e.)

earn ’75 X,earn’74,unempl’74 -1.51 (0.33)

Actual Outcome

earn ’78 X,earn’74,unempl’74, 1.89 (0.76)
earn’75,unempl’75
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Conclusion for Lalonde/Dehejia/Wahba Data

It is not clear whether unconfoundedness holds based on anal-

ysis without outcome data.

Estimates are robust, and in fact close to experimental esti-

mates, but that they are accurate would have been difficult to

ascertain without experimental data.
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8. Overall Conclusion

Progam Evaluation methods under unconfoundedness are well

established now.

Work well in practice.

Subclassification with regression, and matching with regression

are more robust and credible than regression alone.
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