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estimated first by pseudo maximum likelihood methods. This step is followed by a simple 
second step fixed effect method by which individual-specific structural parameters are 
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how earnings inequality over the life-cycle is affected by changes in structural parameters. 
Under some conditions, even small changes in life expectancy seem to imply large changes 
in earnings inequality. 
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1 Introduction1

Since the seminal work by Lillard and Willis (1978) on the estimation of reduced form earnings

dynamics an extensive literature has emerged. Its main motivation comes from the assessment of

differences between short-run and long-run earnings inequalities (see for instance Bönke, Corneo

and Lüthen, 2011 for a survey) and from the joint modeling of consumption and income variance

(for instance, Meghir and Pistaferri, 2010). While a very large set of empirical studies estimating

ARMA models on earnings residuals has been conducted over recent years, the literature has

not reached any consensus on a unique specification of the earnings process. Most authors

admit that a mixed process with individual-specific effects along with autoregressive and moving

average components seems necessary to fit the longitudinal change in earnings dispersion that is

commonly observed although they do not agree on the description of earnings growth. Several

papers have considered a beauty contest between a specification in which earnings growth is

random and a specification in which earnings growth is governed by a linear trend multiplied

by a fixed individual effect (see Baker, 1997, Guvenen, 2009, and Hryshko, 2012, for instance).

Yet, the theoretical structural background justifying the reduced forms used in these papers are

unclear although additional structure would help discriminating between them.

This is why the first contribution of this paper is to develop an empirically tractable theoret-

ical model of human capital investments accommodating substantial unobserved heterogeneity

and from which we derive a convenient reduced-form for the dynamics of earnings —in logar-

ithms as this is the most popular specification. We follow Mincer (1974) and more specifically

his research program on post schooling wage growth Accounting identity model as presented by

Heckman, Lochner and Todd (2006) and as formalized in the theoretical model of Ben Porath

(1967). We explain differences in individual earnings life-cycle profiles by heterogenous choices

of human capital investments driven by heterogeneous individual characteristics. In a sense, we

are extending to post-school investments what has been developed times ago by Heckman (see

Heckman, Lochner and Todd, 2006, for a survey) and Card (for instance in the Econometrica

lecture in 2001) for schooling investments in human capital.

The model delivers the well known predictions of a human capital setting (Rubinstein and

Weiss, 2006). Earnings profile are increasing and concave and this reflects the shortening of the

1This is a substantially revised version of an earlier paper of ours presented at the 1st French Econometrics
Workshop in 2009. We thank Christian Belzil and Bernard Salanié for helpful discussions and seminar participants
at Yale, Tilburg, Toulouse, CREST, Pompeu Fabra, Leuven University, Panel Data’12 in Paris, ESEM’12 in
Malaga, Jean-Pierre Florens’Festschrift in Toulouse, Duke and Hong Kong University for their helpful comments.
All errors remain ours.
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investment horizon. Second, the variance of earnings has a U-shape along the life-cycle because

large-returns investors have a steeper earnings profile than low-returns individuals experiencing

a flatter profile and these profiles cross after a few years. Third, because investments in human

capital are more intensive at the beginning of the life cycle for the high return investors, the

cross-section correlation, at the beginning of the life cycle, between earnings growth and level is

negative although this correlation increases along the life-cycle and becomes positive.

Adopting a highly stylized human capital model comes at the price of symplifying other

elements that might drive earnings dynamics. We first take as given past investments in schooling

although this is an important heterogeneity dimension in our model. We treat search and job

mobility as frictions under the form of exogenous shocks (see e.g. Postel-Vinay and Turon, 2010).

Some reduced-form specifications such as Alvarez, Browning and Erjnaes (2010) who try to model

the whole distributions of earnings are richer in terms of heterogeneity but ours is enough to

model life-cycle profiles of mean and variances of earnings that condition the main diagnostics

about life-cycle earnings inequality. We neglect taxes because we cannot reconstruct their value

from our data and we find a simple way of modeling the interactions between investments and

uncertainty which partially neutralize the importance of risk (see e.g. Huggett, Ventura and

Yaron, 2011). Finally, we do not model general equilibrium effects as in Heckman, Lochner and

Taber (1998).

In a nutshell, the model developed in this paper summarizes life-cycle profiles of individual

earnings by a limited number of individual-specific components which are economically inter-

pretable. Individuals differ in four dimensions. Firstly, they have different initial human capital

levels when they enter the labor market. Secondly, they differ in their returns to skill invest-

ments, that is, some are more productive in transforming invested time in productive skills as

in Mincer’s original model. We also assume that the marginal cost of producing skills is het-

erogenous within the population. Finally, we allow the terminal value of human capital to vary

across individuals and infer from the curvature of the earnings profile, the implicit horizon of

investment that agents consider. This follows a suggestion by Lillard and Reville (1999) insisting

on this crucial aspect of earnings growth. As a result of this set-up, this model predicts a linear

factor model for the earnings equation in which factor loadings are functions of the individual

specific structural parameters. Some structural restrictions are testable and some structural

parameters can be identified while others are only partially identified. Ironically, our set-up is

able to generate the two most popular specifications —random growth and random walk —used

in the reduced form literature albeit in a sequential way along the life cycle.
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Our second contribution is to estimate the model on a very long panel for a single cohort of

male French wage earners working in the private sector and observed from 1977 to 2007. DADS

data is an administrative dataset collecting earnings in the private sector and having advantages

and drawbacks for our purpose. The first key advantage is that it includes enough observations

so that we can study a large single cohort of individuals (more than 7,000). They enter the labor

market simultaneously and face the same economic environment over their life-cycle, in contrast

with most studies of earnings dynamics that must pool different cohorts to collect samples

large enough (Meghir and Pistaferri, 2010). Secondly, as the data come from social security

records, we expect fewer measurement errors than in usual surveys or other administrative

data although this is not entirely convincing in our application. Finally, the DADS data are

long and homogeneous enough to study the dynamics of earnings over a long period of time.

We will see that we find much longer dependence for transitory earnings than what is usually

found in the literature. These data have shortcomings as well since first, few other individual

characteristics than age and broad skill groupings are available. The panel is also affected by

attrition since some individuals leave the private sector, temporarily or definitely, because of

unemployment, self-employment, non-participation or because they start working in the public

sector. This explains why we choose to use male earnings data only in order to mitigate the

non-participation selection issue.

Our third contribution is an original empirical strategy that uses a sequence of random and

fixed effect methods in order to be able to compute interesting counterfactuals i.e. the non-

linear impacts of changes in the environment. We first estimate the model by random effect

pseudo maximum likelihood (Alvarez and Arellano, 2004) and then derive fixed effect estimates

of the individual factors in a second step. As fixed effect estimates are biased, we evaluate their

bias and show that it becomes second-order when the number of period observations is roughly

above 20. We also correct for bias and find that it tends to overcorrect. Using those fixed effect

estimates, we evaluate structural restrictions and compute estimates of the structural unobserved

heterogeneity terms. This enables us to construct counterfactuals measuring the impact of

changes in those structural estimates. The alternative strategy of estimating distributions of

individual-specific effects as in Cunha, Heckman and Schennach (2010) turns out to be diffi cult

because of structural constraints on individual effects while direct fixed effect estimation is

performed at a reasonable cost.

Our main results can be summarized as follows. In the first-step random effect estimation,

we find that ARMA orders for individual-and-period specific shocks are much larger than in the
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literature. Our preferred specification is an ARMA(3,1) in which period-heteroskedastic variance

decreases over time. This indicates much longer persistence than usually thought although the

presence of a unit root is strongly rejected as in for instance Alvarez et al (2010) or Alvarez and

Arellano (2004). Levels and growth of earnings are positively correlated in the long run and

long-run and initial levels are negatively correlated which corroborates one of the predictions of

the human capital setting as seen above. Finally, the larger the level and the slope of earnings

profiles, the more concave they are and this stems from the horizon effect.

The second step fixed effect estimates show that structural restrictions are satisfied in most

of the sample although there seems to exist a small fraction of earnings profiles which do not

agree with the set-up. It is our maintained assumption that human capital investments are

positive until the end of the observation period that seems mostly rejected.

Finally, a counterfactual analysis shows that an increase in the horizon of investment or life

expectancy by two years increases means and variances of earnings, above all at the end of the

observation period and those increases can be attributed to investment heterogeneity between

individuals. Cross-section inequality increases by around 20% at the end of the period although

this figure has quite a large standard error.

In the next Section we briefly review the literature on the estimation and the empirics of

earnings equations. Next in Section 3, we describe the model of human capital accumulation and

derive the structural equation for log earnings. In Section 4 we present our empirical strategy

and detail the econometric estimation methods that we use. Data are described in Section 5

and results are presented in Section 6. After a discussion of a possible extension, a final Section

concludes.

2 A Brief Review of the Literature

The literature connected to what we are doing is huge and this brief presentation cannot sum-

marize all these connections in a comprehensive way.

First, the empirical literature on earnings dynamics, as reviewed in Meghir and Pistaferri

(2010), began with the seminal works by Lillard and Willis (1978), Lillard and Weiss (1979) and

MaCurdy (1982). These papers are the starting points of the random growth and random walk

specifications that are designed to fit the evolution of variance of earnings over the life cycle —

or more exactly of their residuals after a first-stage regression on covariates like education and

age —as well as their autocorrelation.
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The random growth or heterogeneous income profile model consists in having unobserved

heterogeneity in levels as well as in first differences or growth in earnings. This model was

estimated on various datasets, though mostly the PSID, and their results are reported in papers

by Lillard and coauthors cited above, and for instance by Hause (1980), Lillard and Reville

(1999) on US data, Dickens (2000) on U.K. data, Cappellari (2004) on Italian data, Sologon and

O’Donoghue (2009) on European data and many others. Importantly, this specification allows

to test Mincer’s (1974) theoretical prediction that the variance of earnings should decrease at

the beginning of the life cycle until those highly investing in human capital catch up weaker

investors. Empirically this would translate into a negative covariance between the individual

heterogeneity terms in level and growth and this result has been confirmed by these studies.

The random walk model of MaCurdy (1982), alternatively called restricted income profile

posits that earnings residuals are the sum of a random walk and a transitory earnings process

which is of an ARMA type. The same specification has also been estimated by Abowd and Card

(1989), Moffi t and Gottschalk (1995, 2002, 2008), Kalwij and Alessie (2007) although there are

variations in the orders of ARMA processes which are used in those papers.

Baker (1997) was the first to compare the performance of random growth and random walk

models. He primarily concluded that tests of one against the other had low power even if the

randow walk seems to slightly dominate the other. Guvenen (2007) followed up and studied

the implications of the form of the income process on consumption inequality. He compares

predictions of random walk and random growth models using life cycle consumption and simu-

lated data. Guvenen concludes that a model with heterogenous earnings growth is better able

to replicate the observed change in consumption inequality than a model with a unit root. In

Guvenen (2009) the sources of identification between the two income processes are more deeply

investigated. A major difference between the model in which agents have heterogenous earnings

profiles and the model in which they are subject to persistent shocks is that in the former case,

the autocorrelation of first differences of earnings residuals remains significant because of the

presence of unobserved heterogeneity in earnings growth. Guvenen’s analysis favours the hetero-

genous growth specification. In contrast, Hryshko (2012) arrives at the opposite conclusion that

random walk specification offers the best fit when trying to test random walk against random

growth specifications using PSID data on earnings and a fixed number of ARMA lags.

Other contributions have generalized the model in the direction of non linear and non normal

models that would allow a less parametrically driven view of what happens in the tails of

the earnings distribution. Geweke and Keane (2000) implements Bayesian inference methods
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and show that the share of variance explained by permanent individual heterogeneity terms is

larger than under a Gaussian model. Hirano (2002) uses a Bayesian framework to propose a

semi-parametric estimator for autoregressive panel data models. Bonhomme and Robin (2009)

focus on the same issue and model the change over time in earnings using copula. Marginal

distributions of earnings are fully non parametric and the joint distribution is flexibly modelled

over a three-year span of panel data.

Alvarez, Browning and Ejrnaes (2010) allows for a lot of heterogeneity and non-linearities

in earnings distributions in order to get a better fit of the tails of the earnings distribution and

estimate the model using indirect inference. In contrast with Hryshko (2012), they do not find

any evidence of a unit root in the dynamics. In a different vein, Meghir and Pistaferri (2004)

postulate a non-linear ARCH(1) data generating process for the permanent and for the transitory

shocks. Estimating the model by educational group, Meghir and Pistaferri (2004) conclude

that the variance of shocks is persistent in some education groups. In a similar framework,

Hospido (2010) models the heterogenous variance of earnings but instead of implementing a

GMM approach, she uses bias-corrected likelihood methods. Finally, an alternative strand of

research simultaneously consider earnings dynamics and mobility on the labor market (see for

example Altonji, Smith and Vidangos, 2009).

Methodological issues also arise in this context. The model of earnings residuals that we

specify in this paper can be viewed as resulting into a specific covariance structure over time

that can be fitted to the empirical covariance of earnings. Minimum distance as in Abowd and

Card (1989) is severely small-sample biased (see Arellano, 2004 for a review) and although the

emphasis in the dynamic panel data literature is slightly different, the lessons from this literature

are useful to remember here. As is well known in GMM estimation, the range of moments

involved when the time dimension becomes larger makes first order asymptotics a poor guide in

empirical research. This is why some researchers proposed to return to an OLS set up adding a

bias correction step (Hahn and Kuersteiner, 2002) or to maximum or quasi-maximum likelihood

estimators (Hsiao, Pesaran and Tahmiscioglu, 2002, Dhaene and Jochmans, 2009). Another

direction was recently proposed by Han, Philips and Sul (2010) in the case of AR(p) models

under mean stationarity whose properties are robust and simple to derive under both stationary

and non stationary cases.

As T is neither large nor small in our application and as we stick to a framework in which

the initial conditions are supposed to have been generated by another stochastic process so that

asymptotic stationarity properties are not satisfied, the GMM framework remains our reference.
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Alvarez and Arellano (2003) analyses the asymptotic properties of GMM estimators using double

asymptotics in N and T . Okui (2009) derives the small sample biases not only in the mean but

also in the variance of GMM estimates because of the presence of too many moments even

in the case in which T is small. Okui suggests some moment selection mechanism in order

to limit the importance of these biases by, to put it briefly, selecting out moments between

variables which are too far apart in time. Those moments are far more likely to contribute

to larger bias and not to smaller variance. There is another route through quasi-maximum

likelihood methods that reduces the number of moments available for estimation as suggested

by Alvarez and Arellano (2004). In a comparison with other fixed T consistent estimators, this

estimator seems to dominate in most Monte Carlo exercises the maximum likelihood estimator

using differenced data (Hsiao et al., 2002) and the corrected within group estimator. In their

application to PSID, they do not find any evidence of a unit root.

Closely related to our model is an empirical factor model using panel data on earnings

whose use was pioneered by Jim Heckman through a series of papers with diverse coauthors.

The first objective of this research was to restrict the set of joint distributions of two or more

potential outcomes. If these outcomes are selectively observed such as in the case of a binary

treatment, their joint distribution albeit not identifiable in the generic case becomes identified in

the linear factor case. Aakvik, Heckman and Vytlacil (2005) makes this point in a general Roy

model using one factor and Carneiro, Hansen and Heckman (2003) extends it to the multiple

factor case. Furthermore, this setting allows to address the issue of discriminating between

heterogeneity from uncertainty in educational decisions (Cunha, Heckman and Navarro, 2007)

and to investigate the empirics of skill formation (Cunha and Heckman, 2008). Finally, Cunha,

Heckman and Schennach (2010) extends these results and results from Schennach (2004) to a

non linear factor set up and show how non parametric estimates of moments of latent variables

can be constructed from various measurements of these variables using empirical characteristic

functions and inverse Fourier transforms.

In our factor model, factors are known. Arellano and Bonhomme (2010) look in detail to the

identification of the distribution of individual effects or factor loadings when the time dimension

is fixed and show that its variance is identified under restrictions of the dynamics. They also

propose the construction of non parametric estimates for the distribution of the individual factor

loadings. That factors are known is in contrast with Bai (2009) who derives MLE estimates in

factor models in which the time factors are unknown and in the presence of covariates. In contrast

to the linear factor approach we adopt, deconvolution methods might also be an interesting
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but more arduous route to follow. Horowitz and Markatou (1996) estimate semi-parametrically

the distributions of idiosyncratic terms and individual effects. However, in their approach the

dynamic dimension has to be restricted to be AR(1). Geweke and Keane (1998) and Hirano

(2002) generalized the model in the same direction by implementing a Bayesian approach to

estimate posterior distributions of the parameters. Bonhomme and Robin (2010) construct an

estimator of the distribution of factors using empirical characteristic functions and apply this

estimator to analyze the distributions of permanent and transitory components of earnings using

the PSID i.e. in a random growth setting.

Finally, general equilibrium effects with microeconomic foundations is another direction taken

in the literature. Heckman, Lochner and Taber (1998) were among the first to model human

capital investments at school and later in life in a dynamic and stochastic general equilibrium

set-up. This allows them to estimate the effects on inequality of counterfactual productivity

shocks. In the recent literature, Guvenen and Kuruscu (2012) analyze as well the effect of

skill biased technical change on inequality in an equilibrium set-up with heterogeneous agents

investing in human capital. This is also the object of Huggett, Ventura and Yaron (2011) who

use such a microeconomic model calibrated on the US PSID data to decompose inequality into

their long-run individual determinants and short-run shocks, the latter resulting to be the larger

component of variance. The previous literature on this theme is reviewed in these two last

papers.

3 The Model

We present a model of human capital investment in discrete time and in which agents face

individual specific costs, individual specific rates of return and individual specific terminal values

of human capital stocks. As in Ben Porath (1967) and Mincer (1974), we characterize the

optimal sequence of human capital investments over the life cycle. The key new point is that the

reduced form of the life cycle earnings equation is a log-linear factor model with three factors

whose factor loadings are in relation with the individual specific structural determinants. We

analyze the transformation between parameters of the reduced and structural forms and the

ensuing structural restrictions on factor loadings.
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3.1 The set up

Individuals enter the labor market at a period which is normalized to t = 1. The entry decision

in the labour market is endogenous and depends on previous human capital accumulation. We

take, however, these initial conditions as given and depending on unobserved variables, among

which the human capital stock at entry. These initial conditions are potentially correlated with

all shocks affecting the life-cycle dynamics of earnings.

From period 1 onwards, agents can acquire human capital through part-time training. Human

capital is supposed to be single-dimensional so that skills are general and costs are borne by

the workers. Labor supply is inelastic and potential individuals earnings, yPi (t) are given by

an individual-specific stock of human capital, Hi(t), times an individual specific rental rate,

exp(δi(t)) that is yPi (t) = exp(δi(t))Hi(t). Individuals face uncertainty through the variability

of the rental rate of human capital δi(t) which is mainly affected by aggregate shocks but also

by individual ones if there are some frictions in the labor market. Firms might temporarily

value individual specific human capital differently than the market in order to attract, retain or

discourage specific individuals. The rental rate is supposed to follow a stochastic process and

δi(t) is fully revealed at period t to the agent. We do not provide a market analysis of the wage

equilibrium process and take it as given (in terms of its distribution).

By substracting human capital investments, current individual earnings are assumed to be

given by:

yi(t) = exp(δi(t))Hi(t) exp(−τ i(t))

where 1 − exp(−τ i(t)) can be interpreted as the fraction of working time devoted to investing
in human capital as in the original Ben Porath formulation. It might also be interpreted as the

level of effort put in the acquisition of human capital at the cost of losing a fraction of potential

earnings. We call, τ i(t), somewhat abusively the level of investment in human capital at time t

and actual earnings are equal to potential earnings when τ i(t) = 0. There is no upper bound on

τ i(t) although an infinite investment value would mean that the individual has not yet entered

the labor market.

Because of these investments, individuals accumulate human capital in a way that is described

by the following equation

Hi(t+ 1) = Hi(t) exp[ρiτ i(t)− λi(t)] (1)

whereHi(t) is the stock of human capital, ρi an individual specific rate of return of human capital

investments and λi(t) is the depreciation of human capital in period t. This latter component
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embeds individual-specific shocks or innovations at the economy level as these innovations de-

preciate previous vintages of human capital. Individual-specific shocks can be negative because

of unemployment periods or of layoffs followed by mobility across sectors. These shocks can

also be positive when certain components of human capital acquire more value or because of

voluntary moves across firms or sectors. As δi(t), the variable λi(t) is supposed to be revealed

at period t to the agent and is uncertain before. We also take the stochastic process λi(t) as a

given.2

The next step is to formulate a utility flow and the way individuals move assets across time.

In order to generate the popular log-linear specification for the earnings equation, we assume

that period t utility is equal to current log earnings net of investment costs so that there is no

consumption smoothing over time.3 Period-t utility is written as :

δi(t) + log Hi(t)−
(
τ i(t) + ci

τ i(t)
2

2

)
in which ci represent between-individual differences in the cost of human capital accumulation

in utility terms and the cost is quadratic. Note that the coeffi cient of τ i(t) is set to 1 because it

corresponds to the standard formulation of Ben Porath (1967) in which the objective function

would be a function of current earnings or their logarithm only :4

δi(t) + log Hi(t)− τ i(t). (2)

Quadratic costs adds richness to the setting and it fits well with the interpretation of τ i(t)

in terms of effort exerted for human capital investments and not only time as in the simple

specification. Quadratic costs makes the solution in τ i(t) unique (see below).

Nonetheless, the costs of investments do not depend on the level of human capital Hi(t) as

in a Ben Porath setting in which equation (1) would include a non linear term Hi(t)
α instead

of setting α = 1 as we do. This is in fact another way of making the solution τ i(t) uniquely

determined. Furthermore, our specification avoids the "regression to the mean" effect emphasized

by Huggett, Ventura and Yaron (2006) that makes individuals closer and closer at the end of

2We shall also assume additional technical assumptions such as Et−h(|δi(t)|) < ∞ and Et−h(|λi(t)|) < ∞ so
that the dynamic program is well defined. For the sake of readability these standard assumptions are not stated
here (see Stokey and Lucas, 1989).

3Our conjecture is that there does not exist a dynamic model with financial and human capital accumulation
that would generate a log-earnings equation if the financial asset accumulation equation is written linearly in
income. In contrast, there does exist a dynamic model which generates a factor-like earnings equation in levels,
allows both financial and human capital and has a factor format. This case is developed in a companion paper.

4We investigated the case in which the linear cost parameter is left free and this parameter is diffi cult to
separately identify from ρi and ci (see also below).
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their working life. Moreover, Section 7 proposes a convenient generalization of our setting to the

case of increasing costs of investment with the level of human capital. It comes at the price of

having additional factors in the econometric model.

Returning to the main argument, the decision program of individuals maximizing their dis-

counted expected utility stream over the present and future is given by the following Bellman

equation:

Vt(Hi(t), τ i(t)) = δi(t) + logHi(t)−
(
τ i(t) + ci

τ i(t)
2

2

)
+ βEt [Wt+1(Hi(t+ 1))] (3)

in which β is the discount factor and:

Wt+1(Hi(t+ 1)) = Vt+1(Hi(t+ 1), τ ∗i (t+ 1)) = max
τ i(t+1)

Vt+1(Hi(t+ 1), τ i(t+ 1)).

This dynamic program is completed by a terminal condition that at a future date T + 1 the

value function or the discounted value of utility stream from T + 1 onwards is given by:

WT+1(Hi(T + 1)) = δ∗ + κi logHi(T + 1). (4)

In this expression, κi can be interpreted as the capitalized value of one euro over the remaining

period of life after T + 1 and:

κi = 1 + βT+2 + βT+3 + ...

in which discount rates βt vary with period t and embody heterogenous survival probabilities

after T + 1. If we assume that discount factors βt>T+1 ≤ β e.g. βt>T+1 = β Pr(Survival at t)

then :

κi ≤
1

1− β . (5)

This suggests that a general interpretation of period T + 1 is as a separating date between a

span of periods before T in which the probability of survival is equal to 1 and a span of periods

after T + 1 in which the survival probability is less than one.5 As human capital investments

are embodied, a smaller discount rate is a source of decreasing returns to investment as in the

original argument used by Mincer and this explains the concavity of earnings profiles.

3.2 The life-cycle profile of investments

When human capital investments are always positive, the profile of investments is summarized

in:
5As we will see in the empirical section, we fix the value of β at .95 because of weak identification issues. As

usual in empirical dynamic models, experiments show that the likelihood function is flat wrt to this parameter.
This also explains why we do not make this parameter individual specific and assume that it is homogenous.
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Proposition 1 Suppose that :

βρiκi > 1, (6)

then:

τ i(t) =
1

ci

{
ρi

[
β

1− β + βT+1−t(κi −
1

1− β )

]
− 1

}
> 0, ∀t < T + 1 (7)

Proof. See Appendix A.1

Equation (7) expresses the well known result that human capital investments decrease with

time. The term in β−t indeed means that it is always better to invest earlier than later because

the horizon over which investments are valuable is becoming smaller and smaller. This is the

negative value of κi− 1
1−β (condition 5) that commands the intensity of the decrease. In addition,

levels of investments increase with returns, ρi, and decrease with costs, ci. Finally, condition (6)

ensures that investments as given by equation (7) are positive until period T .

It is now easy to analyze cases in which investments in human capital stop before period

T . Because investments are decreasing, the absence of investments in a period t, τ i(t) = 0,

means that no investments would take place later on, τ i(t′) = 0, ∀t′ ≥ t. In consequence, we

can proceed backwards and analyze the conditions under which human capital investments stop

before the last period.

Proposition 2 There exists an optimal stopping period for human capital investments denoted

Si ∈ {1, ., T + 1} so that :

∀t ≥ Si, t < T + 1, τ i(t) = 0, and τ i(Si − 1) > 0

if and only if:
1

κi,Si
< βρi ≤

1

κi,Si+1

, (8)

where κi,T = κi and κit = 1+βκi,t+1 for all t < T +1 (and by convention 1
κi,T+1

= +∞, 1
κi,1

= 0).

Additionally, equation (7) describing human capital investments remains valid for all t < Si.

Proof. See Appendix A.2

Because, the sequence κit of the previous proposition is given by:

Lemma 3 For all t ∈ (1, T + 1) :

κit =
1

1− β + βT−t(κi −
1

1− β ) (9)
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Proof. Using definitions in Proposition 2 and by backward induction from T.

we can summarize the two propositions into the following:

Corollary 4 There exists Si ∈ {1, ., T + 1} such that:

1

κi,Si−1

< βρi ≤
1

κi,Si
,

and:

τ i(t) =
1

ci

{
ρi

[
β

1− β + βSi−t(κi,Si −
1

1− β )

]
− 1

}
> 0, ∀t < Si.

Proof. From Proposition 2, human capital investments stop at period Si. We can then use

equations (7) and (9).

This corollary proves that the profile of life-cycle investments is truncated at zero but there

are no dynamic effects of the truncation. The profile remains similar even if investments stop.

This corollary also shows that if we had information about the duration of the sequence of human

capital investments, we would be able to relate this information to parameters ρi and κi only. In

particular, note that the cost parameter, ci, does not affect this duration and only the level of

investments. This is a strong prediction of our set-up and this is due to the separability between

investment costs and human capital stocks.

3.3 The Lifecycle Profile of Earnings

We start by deriving the earnings profile when human capital investments remain positive until

period T . First, the stock of human capital in period t depends on previous investment choices

and past depreciation that is

Hi(t) = Hi(1) exp

[
t−1∑
l=1

ρiτ i(l)−
t−1∑
l=1

λi(l)

]
for t ≥ 2.

We can write the logarithm of observed earnings in period t as

log yi(t) = δi(t) + log Hi(1) +
t−1∑
l=1

ρiτ i(l)−
t−1∑
l=1

λi(l)− τ i(t). (10)

It shows that returns to human capital δi(t) cannot be distinguished from depreciation effects∑t−1
l=1 λi(l) and we will therefore write that transitory earnings are equal to:

δyi (t) = δi(t)−
t−1∑
l=1

λi(l).

14



Furthermore, inserting into the first sum the structural expression for τ i(·) given by equation
(7) we get :

E
t−1∑
l=1

ρiτ i(l) =
ρ2
i

ci

t−1∑
l=1

[
β

1− β + βT+1−l(κi −
1

1− β )

]
− ρi
ci

(t− 1),

=
ρ2
i

ci

β

1− β (t− 1) +
ρ2
i

ci
(κi −

1

1− β )βT
t−1∑
l=1

β1−l − ρi
ci

(t− 1)

=

(
ρ2
i

ci

β

1− β −
ρi
ci

)
(t− 1) +

ρ2
i

ci
(κi −

1

1− β )βT
1− (1/β)t−1

1− 1/β

= −ρ
2
i

ci
(κi −

1

1− β )
βT+1

1− β +

(
ρ2
i

ci

β

1− β −
ρi
ci

)
(t− 1)

+
ρ2
i

ci
(κi −

1

1− β )
βT+2

1− ββ
−t,

which writes as the sum of three factors whereas one factor is in levels, the second one is a linear

trend and the last one is a geometric trend.

Finally, using equation (7):

τ i(t) =
1

ci

(
ρi

β

1− β − 1

)
+
ρi
ci
βT+1(κi −

1

1− β )β−t

and rearranging expression (10) we have the following reduced form expression for log earnings

log yi(t) = ηi1 + ηi2t+ ηi3β
−t + δyi (t), (11)

in which:

ηi1 = logHi(1)− ρ2
i

ci

(
κi −

1

1− β

)
βT+2

1− β −
ρi + 1

ci

(
ρi

β

1− β − 1

)
, (12)

ηi2 =
ρ2
i

ci

β

1− β −
ρi
ci
, (13)

ηi3 =
ρ2
i

ci

(
κi −

1

1− β

)
βT+2

1− β −
ρi
ci
βT+1(κi −

1

1− β ). (14)

From these reduced form equations, it is clear that different permanent and transitory factors

contribute to individual earnings trajectories. On the one hand, three types of permanent het-

erogeneities drive earnings dynamics. Firstly, differences in initial capital investment at school,

Hi(1), lead to permanent differences in log earnings. Secondly, between-individual differences in

marginal return to investment, ρi, and in the cost parameter ci make earnings growth rates indi-

vidual specific. Thirdly, the interaction between the marginal return and the cost of investment,

ρi/ci, makes earnings profiles differ in amplitude. We shall look below at the form of transitory

earnings.
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In the case in which human capital investments stop before period T , the previous results

can be adapted by replacing period T + 1 by period Si as developed in Corollary 4. This affects

the definitions of the factors (ηi1, ηi2, ηi3) as derived in equations (12) to (14) although it does

not affect the form of the earnings equation (11) before and including period Si−1. Nonetheless

after period Si, human capital investments are equal to zero and the earnings equation (11) is

derived by using potential earnings and the accumulation equation:

log yi(t) = δi(t) + log Hi(t), log Hi(t+ 1) = log Hi(t)− λi(t),∀t ≥ Si

so that we have:

log yi(t+ 1) = log yi(t) + δi(t+ 1)− δi(t)− λi(t). (15)

Earnings growth becomes stochastic and is no longer determined by the terms ηi2 and ηi3.

An interesting conclusion of these theoretical developments is therefore that the two most

popular specifications, the heterogeneous growth and random walk ones, are both predicted by

the theoretical model although not concurrently but as a sequence in the working life of each

worker. As long as human capital investments are positive the heterogeneous growth specification

applies. It is only when investments stop that the random walk hypothesis becomes the rule.

We shall assume in the empirical section, for want of better identification, that the econometric

model is given by the heterogeneous growth model and equation (11) so that investments in

human capital are positive until the last period of observation T. Next section shows that this

condition is testable. If this condition were not true, the earnings equation would be a mixture

between a generalized random growth model (11) and a random walk (15) and identification

would rely on specific distributional assumptions (see below).

3.4 From the Reduced to the Structural Forms

The structural model not only imposes a three-factor structure on the reduced form but it also

imposes restrictions on reduced-form parameters, (ηi1, ηi2, ηi3). In addition, the transformation

formulas between reduced and structural forms help recovering the distribution of unobserved

heterogeneity structural components. We answer in this section two questions. Do restrictions

on structural parameters and this system of equations imply any restrictions on the reduced

form parameters? Second, are structural parameters identified?

First, equation (12) which describes unobserved heterogeneity in levels in earnings equations

allows us to identify the level of initial human capital if the other individual specific terms are

fixed. It thus imposes no constraint.
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The other equations (13) and (14) are more interesting and can be rewritten as:

ηi2 =
ρi
ci

(
ρi

β

1− β − 1

)
, (16)

ηi3 =
ρi
ci
βT+1(κi −

1

1− β )

(
ρi

β

1− β − 1

)
. (17)

This is a non linear system of two equations with three unknowns: ρi, ci and κi so that parameters

are underidentified. Some structural restrictions can nevertheless be binding.

Namely, structural restrictions consist in statements about the lower discount factor after

period T + 1 and about costs and returns parameters i.e.:

κi ∈ [0,
1

1− β ], ci > 0, ρi > 0. (18)

As developed at the end of the previous section, we shall also impose that human capital invest-

ments remain positive so that:

τ i(t) > 0 for all t ≤ T. (19)

We can now summarize reduced-from restrictions and the identification of structural parameters

as:

Proposition 5 Structural restrictions (18) and (19) imply the following restrictions on reduced

form parameters :

ηi2 > 0,
ηi3
ηi2
∈ [− β

T+1

1− β , 0].

Parameter κi is identified and:

κi =
1

1− β + β−(T+1)ηi3
ηi2
.

Furthermore, parameters (ρi, ci) are partially identified in the sense that there exists values

(ρLi , c
L
i ) such that

ρi ≥ ρLi , ci ≥ cLi .

and there exits a one-to-one relationship:

ci = c(ρi, ηi2, ηi3).

Proof. See Appendix A.3

Its interpretation is intuitive. The random growth parameter ηi2 is positive because human

capital investments are productive and the curvature term ηi3 is negative because the horizon is

finite and profiles are concave. It is also this curvature relative to the random growth term, and

therefore the implicit horizon over which investments are valued, which identifies the capitalized

value of future returns to human capital after period T + 1.
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3.5 Transitory earnings

In equation (11), transitory earnings δyi (t) are due to individual specific and aggregate shocks,

δi(t) net of human capital depreciations, λi(t). To this we add measurement errors ζ i(t) to

obtain that random shocks are described by:

δyi (t) = δi(t)−
t−1∑
l=s

λi(l) + ζ i(t).

Even if measurement errors are independent over time, the effects of the first two transitory

components may persist across periods and generates autocorrelation in the earnings residuals.

Indeed, the deviation of the rate of return δi(t) from the market rental rate is due to individual

specific factors and the match each worker forms with a specific firm. This is likely to persist over

time. Depreciation factors included in
∑t−1

l=0 λi(l) are highly persistent if λi(t) is independent

over time. It indeed generates a random walk if λi(t) is iid over time. Nevertheless it needs

not be so if
∑t−1

l=0 λi(l) is stationary, that is that depreciation shocks are partly compensated

in the future. Layoff shocks that force agents to change sectors might be an example of a long

persistence in these factors. In order to identify the individual specific parameters ηs, we shall

impose in the econometric model, a period-heteroskedastic ARMA structure on these shocks

though alternatives such as factor structures might be an interesting route to explore.

Another interpretation stems from a model of search and mobility. Indeed what Postel-

Vinay and Turon (2010) nicely explicit in their presentation is that the dynamics of the earnings

process is partly controled by two other processes which are individual productivity in the current

match and outside offers that the agent receives while on the job. In this setting, three things can

happen: either earnings remain in the band within the two bounds defined by these processes;

or the earnings is equal to the productivity process because adverse shocks on that process

make employee and employer renegociate the wage contract; or alternatively, the wage is equal

to the outside offer in the case the employee can either renegociate with his employer or take

the outside offer if the productivity is lower that the outside option. We do not impose these

structural constraints in this paper and we treat them as an element of idiosyncratic shocks.

Next section describes how we deal with estimation and inference in this model of the earnings

formation process.
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4 Econometric Modelling of earnings Dynamics

In this section we state our empirical and estimation strategy and details our arguments for the

steps we use.

The first key high-level assumption is our choice of estimating the generalized random growth

model as given by earnings equation (11) only. It corresponds to estimating parameters of

earnings profiles under the null hypothesis that investments are positive until the end of the

period of observation. This assumption is one of our structural restrictions and is testable. One

reason to proceed this way is that it seems diffi cult to identify the model under the alternative

hypothesis unless one is ready to adopt more parametric assumptions for individual heterogeneity

terms. The alternative would indeed imply that the data generating process is a random mixture

between a random growth model and a random walk model where the random mixture depends

on the value of individual heterogeneity terms. We leave these developments for future research.

Our second key assumption consists in fixing the discount rate at a value equal to 0.95. This

solves the identification issue that we face in decomposing empirical variances and covariances

of log earnings over time into the effects of the individual specific factors and the effects of the

idiosyncratic error terms. Arellano and Bonhomme (2010) shows that along with a finite lag

specification assumption about the ARMA process, this assumption is suffi cient to get identi-

fication. Experiments that we performed in simpler identically and independent settings indeed

seemed to indicate that the discount rate parameter is not well identified.

Furthermore, we adopt a strategy in two steps. We first specify a model that is estimable

by random effect methods and specifically, we use the pseudo-likelihood estimator suggested

by Alvarez and Arellano (2004). Under a normality assumption, the implicit moment selection

underlying this estimation method is optimal and though the method loses optimality in the

general case, it is still useful for moment selection and for small-sample bias reduction. Though

we recover consistent estimates of covariance matrices of individual effects and transitory idio-

syncratic terms, using those estimates to impose restrictions, derive structural estimates and

compute counterfactuals is computationally diffi cult. One route would be to use deconvolution

techniques although it would require the development of estimation under structural constraints

on distributions.

As a simpler next step, we chose to turn to fixed effects estimation which is simple to

implement when covariance matrix estimates are known or estimated in the previous random

effect step. These fixed effect estimates are admittedly biased if the time span is not long enough
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since the order of the bias is 1/T . Nonetheless we show that for individuals observed over a

suffi ciently long time period, the bias is empirically of a second order magnitude by comparing

variance estimates across fixed and random effect specifications. Using fixed effect estimates,

structural restrictions become easily testable and estimates of the reduced-form parameters under

structural constraints are easily computed. Yet, these constrained parameters are likely to be at

the frontier of these structural restrictions and because the frontier structural parameters are

implausible in economic terms, we adopt a simulated approach to draw more plausible estimates

of the structural parameters. We directly draw those estimates into the normal approximation

of the asymptotic distribution of the fixed effect estimates. The last leg of our empirical strategy

is to compute counterfactuals by changing the values of those structural parameters.

In Section 4.1, we specify the covariance structure implied by the reduced form earnings

equation (11) and the time-heteroskedastic ARMA assumption that we adopt for transitory

earnings. We estimate covariance parameters by random effect methods using the pseudo-

likelihood approach as explained in Section 4.2 and then turn to fixed effect estimation and the

imposition of structural constraints. We end this section with the computation of counterfactuals.

4.1 Model Specification

Equation (11) can be written as a three-factor model with factor loadings, ηi = (ηi1, ηi2, ηi3) :

log(yit) = ηi1 + ηi2t+ ηi3
1

βt
+ δyi (t) for any t = 1, ., T. (20)

We follow the literature and take deviations from the mean of log(yit) using the finest groupings

that are observed in the data as a function of age of entry, skill level and time, say:

log(yit) = E(log(yit) | i ∈ g) + uit.

Denote ηgk = E(ηik | i ∈ g) for k = 1, 2 or 3 and the centered individual effects as:

ηcik = ηik − ηgk if i ∈ g,

so that equation (20) becomes:

uit = ηci1 + ηci2t+ ηci3
1

βt
+ vit for any t = 1, ., T, (21)

which is the equation of interest in the random effect estimation below. It will also be useful to

remember the between group equation:

E(log(yit) | i ∈ g) = ηg1 + ηg2t+ ηg3
1

βt
+ E(δyi (t) | i ∈ g)
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which allows the identification of the group means of (ηi1, ηi2, ηi3) under a restriction on group

and period specific effects E(δyi (t) | i ∈ g). Estimates of these quantities will be used in the fixed

effect estimation of the ηis.

On the one hand, our main parameters of interest are factor loadings in equation (21). On

the other hand, we specify the stochastic process followed by the shock vit as a "reduced-form"

process. Its variances and autocovariances are given by an ARMA structure whose order is

known in advance with the additional feature of period heteroskedasticity. Similar specifications

of the dependence structure are developed in Alvarez and Arellano (2004), Guvenen (2009) and

Arellano and Bonhomme (2010). We define vit as

vit = α1vi(t−1) + ...+ αpvi(t−p) + σtwit,

where wit is MA(q):

wit = ζ it − ψ1ζ it−1 − ...− ψqζ it−q.

Whereas alternatives could be the composition of permanent and transitory shocks (Bonhomme

and Robin, 2009) or general factor models (Bai, 2009), we chose ARMA models in order to easily

test for the presence of any non stationary elements in those stochastics.

4.2 Random Effect Estimation

Redefining the time index accordingly, we shall assume that initial conditions of the process

(ui(1−p), ., ui0) are observed. The dynamic process is thus a function of the random variables

zi = (vi(1−p), ., vi0, ζ i(1−q), ., ζ iT ) which collect initial conditions of the autoregressive process

(vi(1−p), ., vi0), initial conditions of the moving average process (ζ i(1−q), ., ζ i0) and the idiosyncratic

shocks affecting random shocks between 1 and T . We write the quasi-likelihood of the sample

using a multivariate normal distribution

zi  N(0,Ωz)

The structure of Ωz structure is detailed in Appendix B although it can be summarized eas-

ily. The correlations between initial conditions and individual effects are not constrained, while

innovations ζ it are supposed orthogonal to any previous terms including initial conditions. How-

ever, the initial conditions (vi(1−p), ., vi0) can be correlated with previous shocks as ζ i0, ., ζ i(1−q).

As for the individual effects (ηci1, η
c
i2, η

c
i3) we assume that they are independent of the idio-

syncratic shocks ζ i(1−q), ., ζ iT while they can be correlated with the initial conditions of the
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autoregressive process (vi(1−p), ., vi0) in an unrestricted way. From these restrictions it is possible

to build the covariance matrix of the observed variables

V ui = (ui(1−p), ., ui0, ui1, ., uiT ) ≡ Ωu.

This covariance matrix, Ωu, is a function of the parameters of the model that are the autoregress-

ive parameters {αk}k=1,...,p, the moving average parameters {ψk}k=1,...,q, the covariance matrix

(conditional on groups) of ηc, Ση, the heteroskedastic components {σt}t=1,...,T and the covariance

of fixed effects and initial conditions, Γ0η (see Appendix B).

A pseudo likelihood interpretation can always be given to this specification. As in Alvarez

and Arellano (2004), the estimates remain consistent under the much weaker assumption that:

E(ζ it | ηi, ut−1
i ) = 0,

although optimality properties of such an estimation method are derived under the normality

assumptions only.

The pseudo likelihood setting is particularly well adapted to the case in which there are

mssing data in earnings dynamics. In the case of GMM estimation procedures, we would have

to rewrite each moment condition in which there are missing data by replacing the missing

variables by their expressions as a function of observed variables. This is untractable in such a

dataset in which the number of different missing structures is very large while this is handled

with parsimony in a pseudo likelihood setting. For any missing data configuration, it consists

in deleting the rows and columns of the covariance matrix corresponding to missing data and

write the likelihood function accordingly. Random effect estimates remain consistent if data are

missing at random.

4.3 Fixed Effect Estimates

It is not possible to impose structural constraints on parameters at the estimation stage in the

random effect model. It is nonetheless useful to use random effect estimates in order to construct

fixed effect estimates of individual factor loadings in a second step. In a log likelihood framework,

we obtain fixed effect estimates as linear combinations of residuals, the linear combinations being

given by the covariance matrix estimated in the random effect model. Appendix C.1 develops

the corresponding analytic computations that lead to define the individual effects estimates as:

η̂ci = B̂u
[1−p,T ]
i .
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in which matrix B is a function of random effect parameters and B̂ its plug-in estimate.

The bias for the estimated variance of earnings can be computed as in Arellano and Bon-

homme (2010). To abstract first from sampling errors, an unfeasible estimate is naturally defined

as:

η̃ci = Bu
[1−p,T ]
i = ηci +Bw

[1−p,T ]
i ,

in which random vector w[1−p,T ]
i has mean zero and covariance matrix, Ωw whose expression is

computed in Appendix C.1. We have :

V (η̃ci) = EV (η̃ci | ηci) + V E(η̃ci | ηci)

=⇒ V (η̃ci) = BΩwB
′ + V (ηci).

The bias term is given by BΩwB
′ and it is easy to show that the dominating term is of order

1/T .6

Our estimate has an additional bias term which is given by the measurement equation:

η̂ci = B̂u
[1−p,T ]
i = η̃ci + (B̂ −B)w

[1−p,T ]
i ,

although this term is in 1/
√
N and thus dominated in large N and moderate T samples by

the bias in 1/T . Note that these biases can be estimated and bias-corrected estimates of those

variance terms can be constructed. We shall evaluate them in the empirical section below.

4.4 Constraints and Structural Parameters

From those individual-specific estimates, we now show how to impose the structural constraints

derived in Proposition 5. If those constraints are satisfied, structural individual specific estimates

can be derived from fixed effect estimates.

Indeed, estimates η̂i do not necessarily satisfy the constraints:

ηi2 > 0 and
ηi3
ηi2
∈ [− β

T+1

1− β , 0].

We let πT = βT+1

1−β and write these contraints as:

ηi2 > 0, ηi3 < 0 and ηi3 + πTηi2 > 0.

As we know the asymptotic distribution of each factor loadings, we can test each single restriction

at the individual level.
6Because our factors are a constant, a linear trend and a geometric one, there are also bias terms in 1/T 2 and

exp(−βT ) that are dominated by the leading one, 1/T .
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Furthermore, we can construct constrained estimates by projecting unconstrained estimates

on the set of restrictions using the distance defined by the (log)-likelihood function criteria

as explained in Appendix C.3. We have to reintroduce first the estimates of individual effect

averages i.e.:

η̂i = η̄g + η̂ci if i ∈ g

We can then construct the distribution of the distance in the data between the unconstrained

and the constrained estimates, η̂Ri :

d(η̂Ri , η̂i) = (η̂Ri − η̂i)′Ω̂−1
η (η̂Ri − η̂i),

which is the basis for a Quasi-Likelihood Ratio test of all structural restrictions (e.g. Silvapulle

and Sen, 2005). The distribution of this statistic under the null hypothesis is a mixture of

chi-square distributions and we evaluate this distribution by simulation in the empirical section

below.

Nevertheless, constrained estimates are on the frontier of structural restrictions by construc-

tion when the unconstrained estimates are outside the set of structural constraints. This happens

quite often even when the null hypothesis is true and when the number of observed periods Ti is

small. For instance, it could be that constrained estimates verify the constraint, ηi3 +πTηi2 = 0,

which would mean that the estimate of parameter κi is equal to 0. Because ρi > 1/βκi, this

would generate an implausible large estimate for ρi.

This is why we use simulation to sample into the asymptotic distribution of constrained

estimates. We use that the likelihood function of an individual earnings profile is given by:

L(ηci | u
[1−p,T ]
i ) = H(u

[1−p,T ]
i ). exp

(
−1

2
(ηci −Bu

[1−p,T ]
i )′Ω−1

η (ηci −Bu
[1−p,T ]
i )

)
L0(ηci),

in which structural restrictions are implicitly stated in the prior distribution L0(ηci). We draw

into this posterior distribution to construct simulated constrained estimates, η̂si , of ηi using the

developments in Appendix C.4. Some additional trimming to avoid frontier points is used.

4.5 Counterfactuals

We want to analyze the impact of a change in the levels of the terminal capitalization rate κi or

in the rate of return ρi for instance. Other parameters will remain fixed since it would require a

proper modelling or specific assumptions. This applies in particular to the initial level of human

capital as well as to the rental price of human capital over time which will assumed constant

across these experiments. It is fair to note that counterfactuals we construct are independent of

these variables only under restrictions that we state below.
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4.5.1 Survival probabilities

We assume that there is a "technological" improvement in survival probabilities in such a way

that there are additional K years after period T during which the survival probability remains

equal to 1 (instead of starting declining). This amounts to the transformation of κi into κ∗i :

κ∗i −
1

1− β = βK(κi −
1

1− β )

as if we were prolonging, all of a sudden, life expectancy by K years. Other parameters ρi and

ci are held fixed.

We evaluate the consequences on the earnings profiles of these changes as if these news had

been revealed at time t = 1 so that the initial level of human capital would remain the same. We

assume that there is infinite demand for human capital at the rental prices that were effectively

observed and we assume that decumulation shocks remain the same so that the transitory

earnings process also remains the same.

Evaluating equations (12) to (14) at the new values (κ∗i , ρi, ci, Hi(1)) demonstrate that the

new values (η∗1i, η
∗
2i, η

∗
3i) are such that η

∗
2i = η2i, η

∗
i3 = βKηi3 and that:

η∗i1 − ηi1 = −ρ
2
i

ci

(
κi −

1

1− β

)
βT+2

1− β (βK − 1). (22)

In order to abstract from the idiosyncratic noise of transitory earnings which is supposed to

remain fixed, we shall then compare the earnings variance profile V (M(β)η∗i ) with the original

profile of V (M(β)ηi).

Nonetheless, parameters ρi and ci in equation (22) are not identified and only a lower bound

(ρLi , c
L
i ) on their values can be computed. We shall then proceed by making different assumptions

like ρi = ρLi , ρ
L
i = 1.20ρi etc to assess the robustness of this construction.

4.5.2 Human capital technology

The construction of counterfactuals for the human capital technology is more speculative. Since

only a lower bound for rates of returns can be identified, experiments for constructing counter-

factuals led to very large bounds. It is thus fair to say that those specific counterfactuals are

not identified. As mentioned earlier, one possible route would be to use parametric assumptions

for structural parameters in order to identify rates of return and consequently counterfactuals

involving these rates.
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5 Descriptive Analysis of the Data

5.1 Sample Selection

Our panel dataset on earnings is extracted from a French administrative source named Déclar-

ations Annuelles de Données Sociales (DADS). DADS data is collected through a mandatory

data requirement (by French law) for social security and tax verification purposes. All employers

must send to the social security and tax administrations the list of all persons who have been

employed in their establishments during the year. Firms report the full earnings they have paid

to each person but this does not include other wage costs borne by the firm. Each person is

identified by a unique individual social security number which facilitates the follow-up of indi-

viduals through time although it is impossible to reconstruct taxes they pay. The tax system is

household-based in France and the linking of this dataset with fiscal records is not authorized

yet.

The French National Statistical Institute (INSEE) has been drawing a sample from this

dataset at a sampling rate of 4% since 1976. Regarding the sampling device, all individuals who

were born in October of even years should be included in this sample. Nevertheless, there are two

main reasons why observations can be missing. First, data were not collected in three years (1981,

1983 and 1990) for reasons specific to INSEE. Second, this dataset is restricted to individuals

employed in the private sector or in publicly-owned companies only. As a consequence, this

analysis is restricted to individuals who have been employed at least one year between 1976 and

2007 in the private sector or in a publicly-owned company.

In addition, we aim at keeping only employees with a permanent full-time attachment to the

private sector. Firstly, we considered persons employed full time only and censor information

about part-time jobs. We also restricted the sample to men entering the labor market in 1977

and working in the private sector in 1978, 1982 and 1984 to avoid non-participation and also

because the bulk of entries as a public servant occurs at the beginning of the working life. The

definition of entry here is the same as in Le Minez and Roux (2002). We consider that an

individual has entered the labor market as soon as this individual has occupied the same job for

more than 6 months and is still employed the following year, possibly in a different firm. The

date of entry defines the cohort to which the individual belongs and we focus on a single cohort

of entrants in 1977, the first year of our panel which lasts until 2007.

We impose these restrictions in order to concentrate on a relatively homogeneous sample of

workers with a long term attachment to the labor market to which private firms have access.
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Admittedly, it does not represent the full working population. Because of the lack of a cred-

ible identification strategy to correct for selection, we shall assume that selection is at random

or can be conditioned on individual-specific effects only. The distribution functions of unob-

served factor loadings or idiosyncratic components that we estimate in the following refer to this

subpopulation.

The empirical analysis uses "annualized" earnings. It is defined as full earnings divided by

the number of days worked and remultiplied by the average annual workload. In order to weaken

the possible impact of measurement error, we coded as missing the first and last percentiles of

the earnings distribution in every period. A shortcoming of using administrative data is that few

observable characteristics are available apart from a rough measure of age at labor market entry

and a rough measure of education grouping the first job into three categories. As a measure of

skill, we can also use a grouping given by the age of entry. The first group includes individuals

entering the labor market when they are less than 20 years old, the second group of individuals

enters between age 20 and 23 and the last group after age 24.

We analyze deviations of log earnings with respect to the mean log earnings of workers within

the same age of entry and education group at each point in time. That is, we compute earnings

residuals, uit as in equation (21):

uit = log(yit)− log(yit)gt, for i ∈ g = 1, ., G

in which g is the index of groups formed by age of entry and education.

5.2 Earnings Inequality in France Over the Period

As regard earnings inequalities in France, a few recent studies investigate their evolution over

roughly the same period as our data. First and foremost, wage dispersion in France has not

increased over the last thirty years in contrast with the US or the UK (Moffi t and Gottschalk,

2008, Dickens, 2000). It represents an important distinction from previous studies mostly using

US data that one should keep in mind.

Charnoz, Coudin and Gaini (2011) use quantile regressions using the same DADS data on

full time private sector earnings. They show that earnings inequality in France has been rather

stable from 1976 to 1992 and has been slightly decreasing from 1995 to 2004. They point out the

important role of the natural replacement of older cohorts by younger ones and the large part

played by several increases in the minimum wage over the period. Cornilleau (2012) uses the

same data set and looks at changes in means and dispersion of earnings from the nineteen sixties
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to 2004. This author concludes to a slight decrease in inequality that balances two counteracting

effects. A reduction in inequality at the bottom of the distribution (the ratio of the minimum

wage over the median increasing from 51 to 66%) was slightly mitigated by a small increase in

dispersion in the upper part of the distribution (the ratio of median wage to the limit of the last

decile decreasing from 52 to 50%). In a different vein, Verdugo (2012) relates changes in the

wage structure with changes in educational attainment using various datasets. He concludes to

a reduction in wage inequality in the lower part of the distribution and a stable dispersion in

the upper part.

A final note of caution is in order. While these studies consider changes in the cross-sectional

wage distributions, we adopt in this paper a different perspective by following a single cohort of

individuals entering the labor market in 1977. Changes in the structure of the population that

has been given a large role by the previous studies are neutralized in this paper.

5.3 Data description

Table 1 reports descriptive statistics of the sample. The sample size is 7446 observations in

1977 and 4670 in 2007. Age of entry groups defined above are of unequal size, the low skill

group being the largest. Attrition follows a somewhat irregular pattern which is partly due in

the first years to our sampling design since we required that wage earners be present in 1977,

1978, 1982 and 1984. Some years are also completely missing (1981, 1983 and 1990). There are

also more surprising features for instance in 1994 (or 2003 at a lesser degree) a year in which

many observations are missing. This is due to the way INSEE reconstructed the data from the

information in the original files and missing data patterns in 1994 are very similar across age of

entry groups.

To complete this information, Table 2 gives a dynamic view of attrition. This Table reports

the frequencies of reported values by pairs of years. For instance, the column 1977, describes the

global features of attrition. Attrition is quite severe in the first "normal" (after selection) year,

1985 since 15% of individuals exit between 1984 and 1985. This is true in every adjacent years

at the beginning of the sample period (other columns for instance in cell 1987, 1988) but it is

decreasing over time to reach 7 or 8% at the end of the panel. Year 1994 confirms its exceptional

status as attrition between 1994 and 1995 is very low. More generally though, most individuals

reenter the panel quickly since the attrition at two year intervals is only marginally larger than

the one observed at one year intervals (for instance the two cells in 1977, 1985 and 1986, indicate

attrition of 15% and 16.5%) although this varies somewhat over time. Finally, there is a core
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of observations which are almost always present in the panel. Looking at row 2007, we can see

that out of the 62.7% of the complete sample of individuals present in this year, it is hardly less

than 80% of this sample which is not present between 1985 and 2006 —with the exception of

1994 again.

We report in Figure 1, the increase of average log-earnings over the period for the three

groups defined by age of entry. These are log-earnings at current prices although the shape

of real log-earnings is hardly different. Inflation, as measured by consumer prices, leads to a

substracting factor for current log-earnings over the whole period which is equal to 1.17. This

can be roughly subdivided into two sub-periods between 1977 and 1986 in which this factor is

equal to .77 and between 1986 and 2007 during which inflation levelled offand this factor is equal

to .40. We do not report the evolution of average log-earnings by groups defined by education

and age of entry, the only individual characteristics that are available in the dataset although

these evolutions are parallel to the ones graphed in Figure 1. Nonetheless, as already said, the

variance of log-earnings that we consider from now on are computed by taking deviations of

log-earnings with respect to their means in groups defined by covariates and periods.

The left panel of Figure 2 represents the change in the cross-sectional variance of (log)

earnings for the full sample, while the right panel represents the variance by groups defined by

age of entry.7 The first few years witness a strong variability of earnings. Until the sixth year

of observation, 1982 (respectively the fourth, 1980), the variance of log earnings drops for the

low skill groups (resp. for the other groups) whereas it increases gradually over the rest of the

sample period till around 1995. The variance profile is flat afterwards in contrast to the US

(PSID) where it continues to grow (Rubinstein and Weiss, 2006). From the right panel one

can notice that late entrants in the labor market experience higher earnings variance levels and

a larger rate of variance growth over their life-cycle. The full covariance matrix is reported in

Table 3 and gives information about correlations although this is easier to use graphs to describe

the main features of this matrix. Figure 3 displays for the full sample the autocorrelation of

residuals of log earnings with residuals in an early (resp. late) year, 1986 (resp. 2007). This

Figure reveals an asymetric pattern over time which is quite robust to the choice of these specific

years (1986 and 2007). The correlation between earnings at years t−k and posterior t is quickly
disappearing between t and t− k in early years of the panel while it is roughly linear in lags in

7Choosing the variance as a description of the process is adapted to the random effect specification that we
estimate. Using other inequality indices (Gini , Theil or Atkinson) does not change the qualitative features of
our descriptions.
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late years. Figure 4 takes a different view that confirm the previous diagnostic by plotting the

autocorrelations of order 1 and 6. Note that their shape are very similar and increase uniformly

over time although at different levels. The closer we move to the end of the period, the larger

the autocorrelation coeffi cients are.

Finally, Table 4 reports the autocorrelation patterns of the first differences in the earnings

residuals. Contrary to what is found in some papers in the literature using PSID data (for

instance, Meghir and Pistaferri, 2010) we do not find strong evidence that the correlation dis-

appears after taking a two period difference. A few very long difference autocorrelations seem

significant and no regular pattern seems to emerge.

6 Results

We first present the estimated parameters of the reduced form earnings equation by random

effect ML estimation and we discuss the selection of the ARMA specification. In section 6.2 we

detail the procedure we implement to estimate unconstrained individual factor loadings or fixed

effects. Next, we test and impose structural constraints on estimates. This leads us in Subsection

6.4 to the estimation of structural parameters which are identified (the terminal value coeffi cient)

or partially identified (rates of return). Then we assess the counterfactual impact of changes in

life expectancy on the variance of earnings.

6.1 Random effect estimation and reduced form parameters

Firstly, we estimate covariance matrices of the permanent and transitory components of the

errors as well as their correlation with the initial conditions. The former is composed by three

individual unobserved factors (ηci1, η
c
i2, η

c
i3), while the latter is represented by an ARMA process

as explained in the previous section. Table 5 provides the values of the Akaike criterion based

on the log-likelihood values for specifications in which orders of the autoregressive and moving

average components vary from (1,1) to (3,3). Unsurprisingly, enlarging the number of AR or

MA components strongly increases the value of the sample likelihood function. Nonetheless,

increasing it beyond 3 lags is diffi cult to implement since it involves a year, 1981, in which

observations are missing altogether. This is why we did not pursue further the exploration of

higher orders for the ARMA processes. According to the Akaike criterion we should choose

the ARMA(3,3) specification, a much more persistent specification than in most studies in the

literature. Nevertheless, the estimates of the ARMA(3,3) exhibit some estimates which are very
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imprecise, specifically the ones describing the correlations between initial conditions and the MA

components (Table 6). That is why in the rest of the analysis we will use as a pivot, results from

the ARMA(3,1) model.

Table 6 presents parameter estimates. Each column reports results for different ARMA(p,q)

specifications for (p, q) ∈ {1, 2, 3}2. In every model, autoregressive coeffi cients remain largely

lower than one. Their sum reflects the high persistence of shocks though it is far enough from

one to reject a unit root. A formal statistical test concludes with no doubt that the process is

stationary (see Magnac and Roux, 2009). This result parallels the result of Alvarez and Arellano

(2004) on US and Spanish data or of Guvenen (2009). Autoregressive coeffi cients are ranging

from .2 to .02 in the ARMA(3,1) specification and describe the persistence of shocks due to

unemployment spells or mobility for instance while the MA coeffi cient is negative and might

stand for measurement errors.

The estimate of the covariance matrix of individual factor loadings is quite stable across the

different specifications. Their variances are very precisely estimated at around .30 for the fixed

level factor, η1, and .25 for the geometric factor, η3, and at around .04 for the linear trend factor,

η2. The correlation between the linear trend and geometric factors is very strongly negative and

equal to -.95 consistently across specifications. This is to be expected if the structural constraint

derived above between η2 and η3 (η3 ∈ [−πTη2, 0]) is verified and we will analyze this issue more

in detail below. The correlation coeffi cient between the geometric and the level factors, η3 and

η1 is also significantly negative —around -0.6 —and the one between the level and linear trend

individual specific terms is positive and around .4. The sign of the latter correlation coeffi cient

is to be expected if the level of human capital at the entry date is positively correlated with the

returns to human capital which govern the factor loading of the linear trend.

The correlations between initial conditions and these individual factor loadings are also in-

formative. They are significant and have an economically significant magnitude of around .2 or

.3 in absolute value. The estimated correlations between the linear trend and geometric factors

η2 and η3, and the initial conditions are similar to the estimated correlations between both

of them and the level factor. They are respectively significantly positive and negative. More

surprisingly, the correlation between η1 and the initial conditions is also negative. That would

indicate that individuals endowed with higher starting human capital stock have more diffi culties

to acquire immediately the level of potential earnings that correspond to their skill levels.

Finally, the estimated variance of the idiosyncratic terms is reported in Table 7. Note first

that these parameters are identified even in years 1981, 1983 and 1990 for which information is
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missing. Nonetheless, estimates for those years are imprecise and have a magnitude that can

differ widely from the others and across ARMA specifications because they are identified only

out of the structural restrictions that we placed by assuming an ARMA process. Regarding

the "normal" years, period-specific variances start from a rather high level in the first three

years between .20 and .30. They generally decrease over the sample periods albeit very slowly.

Between 1984 and 2000 they are quite precisely estimated at a level around .18, except the

exceptional year 1994 in which we know that the measurement error is large, and levels off at

around .14 after 2000 (except the exceptional year 2003). These estimates certainly pick up the

patterns of autocorrelations increasing over time that we spotted in the raw data (see Table 3).

Part of it is certainly attributable to measurement errors although another part of it could be

attributed to a decreasing impact of shocks along the life cycle.

Long-run vs Short-run decompositions and Goodness-of-Fit

Table 8 provides a decomposition of the cross-sectional inequality into permanent and trans-

itory components. The first column indicates the variance of logs earnings at three points in time

1977, 1981 and 2007 and the mean value over the sample period 1977-2007 for the full sample

and three different sub-samples by age of entry on the labor market (for which we estimated

the same random effect model). The second column measures the share of the variance due to

permanent factors and the third measures the share due to the dynamic component. Firstly, on

average, 64% of the variance is due to permanent factors. This share displays a sharp increase

over the life cycle from 3% at entry on the labor market to 88% thirty years later. Secondly,

there are strong differences by sub-groups. On the one hand, individuals entering the labor

market earlier witness less inequality on average than more skilled ones (0.104 vs 0.233), on the

other hand they experience a larger share of transitory inequality, while permanent individual

heterogeneity is more important for individuals entering the labor market at an older age (72.1%

vs 57.4%).

Goodness-of-fit is examined in different graphs. In Figure 2, we report how the estimated

variances as well as the observed variances evolve over time. They fit very nicely in the first part

of the sample (until 1994) but this breaks down after 1994 after which the evolution of variances

is reproduced but at a level which is higher than the observed level. It confirms that 1994 is an

abnormal year even if the goodness-of-fit for autocorrelations is good as reproduced in Figures

3 and 4.

We tried different mechanisms in order to understand better the discrepancy between ob-

served and predicted variance profiles. One possibility is to allow for an additional measurement
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error term in 1994 for instance, like in Guvenen (2009) or to drop this year altogether. These

attempts did not affect goodness-of-fit. A more disturbing explanation for those discrepancies is

that it reflects a failure in the missing at random hypothesis. When one represents the evolution

of earnings variance over the life-cycle using fixed effect estimates (see below), it clearly appears

that the level of these variances depend on the number of periods of observation we have for

each person. Variances are higher for persons being present in the panel shorter periods of time

and biases do not seem to be able to fully explain this feature. Nevertheless, correcting for non

random attrition seems out of the scope of this paper and we leave it for further research.

6.2 Fixed effect estimation

Using previous estimates, it is easy to construct fixed effect estimates of the three individual

factor loadings. Appendix C.1 shows how we use, for this purpose, random effect estimates of

the covariance matrices of log earnings residuals as well as the way we impute back the earnings

averages to individual factors. Standard errors for any function of fixed effects are computed

using sampling variability to which is added the effects of parameter uncertainty due to random

effect estimation. We use Monte Carlo simulations to compute the latter by sampling 1000 times

in the asymptotic distribution of random effects estimates.

It is worth recalling that fixed effect estimates are not consistent if the number of periods T is

fixed (for instance, Arellano and Bonhomme, 2010). Table 9 presents the estimates of quantiles of

their distributions distinguishing subsamples of observations according to the number of periods

they are observed (between 4 and 28). The bias in 1/T is noticeable as the larger the number of

observed periods is, the lower the inter-quartile ratio for all three factors. Overall the median of

the coeffi cient attached to the level factor is of the order of magnitude of the mean earnings at

around 2.5 and the range between the 20th and 80th percentile is .5 if the number of observed

periods is maximal (T = 28). The median of the coeffi cient of the linear trend factor which can

be interpreted as the return to experience at the initial stage is of the order of 3 or 4% while its

20-80 quantile range is about 6-8%. Finally, the median of the coeffi cient of the geometric factor

lies around -.17 and its inter-quantile range is about .40. This coeffi cient enters multiplicatively

in the curvature of the earnings profiles over time since the second derivative of the latter with

respect to time is this coeffi cient multiplied by (log β)2 = 2.5.10−3. This fits well with the usual

estimates of earnings equations predicting the maximal value of earnings at a time t close to

log(log(β)η2/η3)/ log β which is equal to 31.2 at the median estimates.

Table 10 presents estimates of the covariance matrix of individual effects or factor loadings
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obtained by fixed and random effect methods. We find again that for a small number of periods

of observation (less than 22) the estimates are severely biased upwards and this affects the

fixed effect estimates for the complete sample when compared to the consistent random effect

estimates. For the two remaining grouping of observed periods ( (22,26] and (27,28]), random

effect estimates lie between or close to these two fixed-effect estimates. This might be due not

only to a remaining 1/T bias but also to different underlying stochastics which characterize these

two sub-populations. Random effect estimates would be the mixture of these two groups. Table

11 reports the statistics using bias corrected estimates. First, bias-correction at the first order

does not seem suffi ciently precise to correct the bias for observations which are observed less

than 22 periods. Bias correction works much better for the other observations with a tendency

to overcorrect in the group of observations observed more than 26 periods.

This interpretation finds some confirmation in the representation of the profile of variances

of earnings along the life-cycle in Figure 5. This sets more clearly the question whether these

fixed effect estimates are able to reproduce the pattern of earnings variances over time. In both

panels of this Figure, we graphed the life-cycle profile of variances due to the factor part of the

model only (i.e. the permanent effects due to factors and factor loadings V (M(β)ηci)) in which

matrix M(β) is composed by a constant, a trend and the geometric rate β−t (see Appendix

B). Transitory earnings are fixed and their passive rôle obscures these comparisons so that we

found it better not to include them. Figure 5 graphs the prediction of the variance profiles that

can be computed using random effects first, fixed effects second and bias-corrected fixed effects

third. We use the subsample in which the number of observed periods is larger than 23 because

Table 10 and Table 11 show that the bias is much less severe for such observations. Earnings

profiles using fixed effect estimates reproduce the random effect profile at a higher level in Figure

5 although correcting the bias tend to overcorrect. Discrepancies with random effect estimates

seem nevertheless second order and this validates the use of this selected sample in the following.

6.3 Structural restrictions and Constrained estimates

With these estimates in hand, we can directly evaluate the relevance of economic restrictions;

We have three restrictions, the coeffi cient of the linear trend should be positive (η2 > 0), the

coeffi cient of the geometric factor should be negative (η3 < 0) and a weighted sum of these two

coeffi cients should be positive (η3 +πTη2 > 0). Parameter πT > 0 is fixed in the population and

a function of β (see Section 4.4).

An informal way of representing those restrictions is brought about by Figure 6. The clouds
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of points for η2 and η3 is scattered around a downward sloping line and this reflects the strong

negative correlation between these two factor loadings that was found using random effect es-

timates. This is no doubt attributable to the very different asymptotic behaviour of the two

factors, one being a linear trend and the other being geometric. Second, points in orange (or

light) refer to observations for which the sample periods are few (less than 20) and they are more

scattered than the blue (or dark) points which refer to more continuously observed individuals.

Finally, constraints are represented by the triangle in red (or dark). This Figure makes clear

that the satisfaction of the constraints are very sensitive to two key elements. The position of

the origin point (0,0) whose estimation depends on the model we have for average earnings that

is described in Appendix C.1 and that leads to the imputation of averages for ηs. Second, the

πT parameter which determines the slope of the bottom-left side of the triangle.

More formally, Tables 12 and 13 report frequencies of restriction violations using previous

estimates and the same presentation regarding the number of observed periods. In Table 12,

we report the sample frequency of individual rejections at level 5% of each of the three single

restrictions using a standard asymptotic approximation. This frequency tends to decrease with

the number of observed periods and this may be partly due to the quality of the normal asymp-

totic approximation that we use for testing. Concentrating on the two groups for which the

number of observed periods belongs to (22,26] and (26,28], we see that the first two restrictions

that the random growth parameter, ηi2, is positive and the curvature parameter, ηi3, is negative

is plausible.

The last restriction involving both parameters is less acceptable at least in the group (22,26]

and this restriction is related to the assumption that investments are positive until period T .

This hypothesis seems to be more acceptable in the last group in the almost complete subsample,

(26,28]. This means that some people stop investing before the end of the period of observation

and this agrees with hours of formal learning decreasing with age as emphasized by Mincer

(1997).

Table 13 reports testing experiments of the three restrictions, globally and it is convenient

to compute first constrained estimates of the individual factors. Unconstrained factors are pro-

jected on the set of constraints using the quadratic metric given by the covariance matrix of the

ηs estimated in the first-step random effect estimation. This procedure is explained in Appendix

C.3. The value of the quadratic metric measuring the distance between constrained and uncon-

strained estimates is the quasi likelihood ratio (QLR) statistic associated to the global restriction

(Silvapulle and Sen, 2005). P-values are obtained by simulation in the distribution of the stat-
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istic under the null. Table 13 reports the sampling frequency of individual rejections using three

different levels (0.01, 0.05 and 0.10) using the standard asymptotic approximation.8 Overall,

these results are slightly less favourable for the specification that we use and the frequency of

rejections is far larger than the level, in particular in the incomplete group (Ti ∈ (22, 26]) and

when the level is small (0.01, 0.05). There seems to exist a "fat tail" of observations for which

we reject these restrictions.

To confirm this diagnostic by evaluating the distribution of the QLR statistic, we computed

the distance between the unconstrained and the constrained estimates and compare this distance

with the distance between the same constrained estimates and simulated unconstrained estimates

using normal random draws for the simulations. In all these experiments, we use the covariance

matrix of the ηs as a weighting matrix to compute the distance and as the basis for simulating

the normal errors. Table 14 reports the quantiles of the distributions of the actual and simulated

distances. The two distributions coincide rather well for all quantiles until .6 but the divergence

becomes severe over .6 and specifically at the upper end. This can either be due to the rejection

of the constraints or to the non normality of the factors which is a standard finding in studies

that assess the normality of individual effects in earnings functions (Hirano, 2002 for instance).

Figure 7 reports the graphs of the life-cycle profile of variance earnings using constrained and

simulated estimates. The concavity pattern is more pronounced when we use these estimates

than when we use random or unconstrained fixed effect estimates as in Figure 5. The trough

of the profile due to permanent effects (the Mincer "dip") is happening latter in the life cycle

(t = 12) in this Figure with respect to t = 5 using the random effect specification.

6.4 Structural parameter estimates and Counterfactuals

These constrained reduced form estimates can be used to construct structural parameter estim-

ates and counterfactuals. There are two empirical strategies: keep the whole sample or keep only

observations for which the period of observation is long enough and the bias is second-order. We

chose the second strategy and kept for these estimations and counterfactuals only observations

for which the number of observations is larger than 23.

Parameter κi that governs the magnitude of post-retirement returns in human capital can be

easily estimated using the distribution of η2 and η3 and its distribution is bounded between 0

and 1/(1−β) = 1/(1− .95) = 20 (Proposition 5). As said above, reduced-form parameters at the

8Because these computations are numerically intensive, the number of simulations in assessing standard errors
due to parameter uncertainty is smaller than previously (see notes to Tables).
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frontier of the constrained set generate implausible economic estimates of structural parameters

κi or ρi. This is why instead of using constrained estimates, we draw simulated estimates into

the posterior distribution of the constrained estimates as explained in Appendix C.4. Figure 8

presents a standard kernel estimate of the distribution of the structural parameter κi (with no

corrections for the left-hand side bound at 0) that shows that the distribution of this parameter

is skewed towards value 0. Only a lower bound of parameter ρi is identified and its distribution

is reported in Table 15. The lower bound lies between .05 and a large maximal value that is due

to the constraint that ρiL > 1/βκi.

The counterfactual exercise of prolonging life expectancy is easily implemented. Life expect-

ancy is increased by two years (K = 2) and we use the simulated structural estimates as derived

in the previous section to compute those counterfactuals. Nonetheless, as developed in Section

4.5, this counterfactual is only partially identified because the rate of return is only partially

identified. We first set the individual specific rate of return to the minimal estimated value and

check the robustness of results by using larger and larger rates of return by multiplying them by

fixed values. We report results for the minimal value and not the robustness checks that show

that these estimates are quite robust to changes in the assumptions about ρ.9 In Figure 9, the top

panel reports the effect on mean earnings for those individuals who are observed more than 23

periods. Mean earnings increase and the more so the closer we are to the end of the observation

period. This change has also an impact on the profile of earnings variance reported in Figure 9,

bottom panel. Variances are increasing in particular at the end of the period. Because rates of

return are heterogenous, a larger life expectancy magnifies individual differences in earnings and

this implies more earnings inequalities. In the last period, this increases cross-section inequality

by 20% although this figure is quite imprecise because standard errors are quite large. Nonethe-

less, we chose an experiment of K = 2 years because it is the limit case for which observed and

counterfactual 95% confidence intervals are contiguous. When K = 3, they are well separated.

7 Extensions

In order to show the versatility of our theoretical approach, we finally develop an extended

model in which investment costs depend on human capital levels. Human capital depreciates

at a common and exogenous exponential rate α ∈ (0, 1) in the human capital accumulation

equation

9In theory, the true identified set is obtained by making the parameters controling partial identification
individual specific. Analyzing results in this case is left for future research.
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Hi(t+ 1) = Hi(t)
α exp[ρiτ i(t)− λi(t)].

This is equivalent to making human capital investments more and more costly when human

capital levels increase.

Individuals maximize the present discounted value of their earnings streams, and their ob-

jective function is given by

Vt(Hi(t), τ i(t)) = δ(t) + logHi(t)−
(
τ i(t) + ci

τ i(t)
2

2

)
+ βEt [Wt+1(Hi(t+ 1))]

The first order condition of the maximization problem for t < T is

− [1 + cτ i(t)] + βρiHi(t+ 1)Et

[
∂Wt+1

∂Hi(t+ 1)

]
= 0. (23)

The marginal value of human capital is the derivative of the Bellman equation so that by the

envelope theorem:
∂Wt

∂Hi(t)
=

1

Hi(t)
+ αβEt

[
∂Wt+1

∂Hi(t+ 1)

]
Hi(t+ 1)

Hi(t)
(24)

Introducing condition (23) into condition (24) we obtain

∂Wt

∂Hi(t)
=

1

Hi(t)
+
α

ρi

[1 + ciτ i(t)]

Hi(t)
.

Inserting this condition at lead t+ 1 in condition (23), we obtain the Euler equation for τ i(·)

(1 + ciτ i(t)) = β [ρi + αEt (1 + cτ i(t+ 1))] ,

which can written, denoting mi(t) = (1 + ciτ i(t)) , as:

mi(t) = β [ρi + αEtmi(t+ 1)] . (25)

For t = T, condition (24) writes more simply as:

∂WT

∂Hi(T )
=

κ

Hi(T )
,

so that condition (25) at time T − 1 becomes:

mi(T − 1) = βρiκ.

We can solve forward equation (25):

mi(t) = βρi

T−t−1∑
j=1

(αβ)j +
(αβ)T−t

α
ρiκ
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so that:

(1 + ciτ i(t)) = ρiat (26)

with

at =
(αβ)T−t

α
κ+ β

1− (αβ)T−t−1

1− αβ
and therefore:

τ i(t) =
1

ci
{ρiat − 1} ∀t < T (27)

Moreover, the stock of human capital in period t depends on previous investment choices. Using

lower case letters to denote log variables (ie: hi(t) = logHi(t)):

hi(t+ 1) = αt−shi(s) + ρi

t∑
l=s

αt−lτ i(l)−
t∑
l=s

αt−lλi(l) for t > s.

= αt−shi(s) + ρi

t∑
l=s

αt−l
[

1

ci

(
ρi{

(αβ)T−l

α
κ+ β

1− (αβ)T−l−1

1− αβ } − 1

)
λi(l)

]

= αt−shi(s)−
t∑
l=s

αt−lλi(l) +
ρ2
i

ci

t∑
l=s

αt−l
[

(αβ)T−l

α
κ+ β

1− (αβ)T−l−1

1− αβ )

]
− ρi
ci

(
αs−t−1 − 1

α− 1

)
αt+1−s

Since log yi(t) = δ(t) + hi(t) we have

log yi(t) = δt −
t∑
l=s

αt−lλi(l) + αt−shi(s) +
ρi
ci

(
αs−t−1 − 1

α− 1

)
αt+1−s

+
ρ2
i

ci

t∑
l=s

αt−l
[

(αβ)T−l

α
κ+ β

1− (αβ)T−l−1

1− αβ )

]
which is a model with several geometric factors.

8 Conclusion

In this paper, we proposed a structural model of human capital investments that leads to a three

linear factor model describing unobserved heterogeneity components of the earnings equation.

Using a long panel on a single cohort of wage earners in France from 1977 to 2007, we estimated

the reduced form parameters by random effect maximum likelihood methods that deliver the

covariance matrix of the random effects. We constructed fixed effect estimates of factor loadings

and assess their bias and degree of accuracy. This procedure enables us to evaluate the relevance
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of structural restrictions and construct constrained estimators. We then derive estimates of some

structural components in the original model in terms of returns and terminal capitalized returns

to investments. This allows us to compute richer counterfactuals than the ones that are directly

available using random effect procedures.

Random effect estimation delivers empirical results which are close to what has been ob-

tained in the literature and are easily interpretable in a human capital framework. Fixed effect

estimation evinces that structural restrictions are not rejected for most of our sample observa-

tions. It remains to be seen if this is because of the low power of our testing procedure as in

Baker (1997) in which heterogenous growth and random walk models are hard to discriminate.

Furthermore, a simple counterfactual analysis shows that increasing life expectancy has quite a

large effect on earnings inequality even if this result is obtained in a partial analysis in which

initial human capital investments are held constant. It seems dubious to us that making those

initial investments vary as well in the counterfactual scenario would overturn this conclusion if

individual specific rates of returns to schooling and post-schooling are strongly correlated.

There are many extensions worth exploring that we are leaving for future research. First,

human capital investment profiles vary across different education groups. In particular, a pending

conjecture would be that investments by the low skill group stop much earlier than those by

the high skill group. Second, goodness-of-fit measures seem to point out that the missing at

random assumption might be invalid. Analyzing this condition using complete and incomplete

samples might lead to a better correction of selection and small sample biases although this is

a project on its own. Another theoretical issue in econometric modelling is the analysis of a

mixture of the heterogenous growth and random walk specifications of the earnings equation

and specifically identification issues. Finally, regarding theoretical issues, we are developing in

a companion paper the case of linear investment technologies in human capital which allows to

analyze financial and human capital investments simultaneously.
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APPENDICES

A Proofs of Propositions

A.1 Proof of Proposition 1

The first order condition of the maximization problem for t < T + 1 is

− (1 + ciτ i(t)) + βρiHi(t+ 1)Et

[
∂Wt+1

∂Hi(t+ 1)

]
= 0. (A.1)

The marginal value of human capital is the derivative of the Bellman equation so that by the

envelope theorem:
∂Wt

∂Hi(t)
=

1

Hi(t)
+ βEt

[
∂Wt+1

∂Hi(t+ 1)

]
Hi(t+ 1)

Hi(t)
(A.2)

For t = T + 1, condition (A.2) writes more simply as:

∂WT+1

∂Hi(T + 1)
=

κi
Hi(T + 1)

=⇒ Hi(T + 1)
∂WT+1

∂Hi(T + 1)
= κi,

so that, by backward induction, we obtain:

Hi(T )
∂WT

∂Hi(T )
= 1 + βκi, Hi(T − 1)

∂WT−1

∂Hi(T − 1)
= 1 + β(1 + βκi)

and so on. This yields:

Hi(t+ 1)
∂Wt+1

∂Hi(t+ 1)
=

1− βT−t

1− β + βT−tκi.

Replacing in equation (A.1) yields:

(1 + ciτ i(t)) = βρi

[
1

1− β + βT−t(κi −
1

1− β )

]
= ρi

[
β

1− β + βT+1−t(κi −
1

1− β )

]
,

and equation (7) follows. Furthermore, as the second term in (A.1) is constant, the second order

condition is satisfied if and only if γici > 0.

Furthermore and given that ci > 0, the condition that investments are always positive yields:

ρi

[
β

1− β + βT+1−t(κi −
1

1− β )

]
− 1 ≥ 0. ∀t < T + 1

As κi− 1
1−β < 0 and β < 1, τ i(t) is decreasing in t because of the term β−t and the RHS attains

its minimum at t = T . This yields condition (6) since:

ρi

[
β

1− β + β(κi −
1

1− β )

]
− 1 ≥ 0⇐⇒ ρi ≥

1

βκi
.
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A.2 Proof of Proposition 2

First, condition (8) is consistent since κit = 1 + βκi,t+1 > κi,t+1 ⇔ κi,t+1 <
1

1−β ⇔ κi,t+2 <
1

1−β
and by repetition κi,T+1−1 = κi <

1
1−β .

We proceed by backward induction. By Proposition 1, we know that

τ i(T ) > 0⇐⇒ 1

κi,T+1−1

< βρi ≤
1

κi,T+1

,

and under this latter condition, that equation (7) is satisfied for all t+ 1 ≤ T .

Assume that for some t+ 1 ≤ T :

∀t′ ≥ t+ 2, t′ < T + 1, τ i(t
′) = 0, and τ i(t+ 1) > 0⇐⇒ 1

κi,t+1

< βρi ≤
1

κi,t+2

(A.3)

and under this latter condition, that equation (7) is satisfied for all t′ ≤ t + 1. In a proof of

Proposition 2 by backward induction, we thus shall prove that condition (A.3) is true at period

t.

We analyze separately the condition τ i(t′) = 0,∀t′ ≥ t+ 1 and the condition τ i(t) > 0.

Assume first that τ i(t′) = 0,∀t′ ≥ t + 1 so that the condition τ i(t′) > 0 is violated for any

t′ ≥ t + 1 and therefore by equation (A.3), βρi ≤ 1/κi,t+1. Conversely, if βρi ≤ 1/κi,t+1 then

τ i(t
′) = 0,∀t′ ≥ t + 1 because equation (A.3) is satisfied for t′ ≥ t + 1 Furthermore, conditions

τ i(t
′) = 0 implies simple forms for the Bellman equation (3):

Wt(Hi(t
′)) = δi(t

′) + logHi(t
′) + βEt′Wt′+1(Hi(t

′ + 1)),

and the accumulation equation (1):

logHi(t
′ + 1) = logHi(t

′)− λi(t′).

Using equation (4) where we set κiT+1−1 = κi and the linearity of the previous two equations

lead to the condition derived by induction again:

Wt′(Hi(t
′)) = δ∗(t′) + κi,t′−1 logHi(t

′). (A.4)

for any t′ ≥ t+ 1 and where κit = 1 + βκi,t+1.

Second, assume that τ i(t) > 0. Proposition 1 can be recast in a set-up where the last period

becomes Si = t+ 1 instead of T + 1 since there are no further human capital investments after

this date and since the value function can be written as in equation (A.4) evaluated at t′ = t+1.

We rewrite equation (7) and obtain:

τ i(t) =
1

ci

{
ρi

[
β

1− β + β(κit −
1

1− β )

]
− 1

}
> 0,

which is equivalent to βρi >
1
κit
.

Therefore the equivalence stated in the Proposition is true at period t. Furthermore equation

(7) applies for any t′ ≤ t. The statement under induction is therefore true at any date t ∈
{0, ., T}. By convention we set 1

κi0
= 0 in order to cover all cases since ρi > 0.�
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A.3 Proof of Proposition 5

The two equations (16) and (17) simplify to: ηi2 = ρi
ci

(
ρi

β
1−β − 1

)
,

ηi3 = ρi
ci
βT+1(κi − 1

1−β )
(
ρi

β
1−β − 1

)
.

(A.5)

Taking the ratio of the second and the first equation yields:

ηi3
ηi2

= βT+1(κi −
1

1− β )

we derive the restriction from κi ∈ [0, 1
1−β ] that:

ηi3
ηi2
∈ [− β

T+1

1− β , 0]. (A.6)

Conversely, if this restriction is valid, then κi is given by:

κi =
1

1− β + β−(T+1)ηi3
ηi2
∈ (0,

1

1− β ).

Furthermore, Proposition 1 proved that investments remain positive until period T (inclusively)

if and only if βρiκi > 1. This yields that :

ρi > ρLi =
1

βκi
=

1
1

1−β + βT+1 ηi3
ηi2

> 0,

by the above. The first equation of (A.5):

ηi2 =
ρi
ci

(
ρi

β

1− β − 1

)
=

ρi
ciκi

(
ρiβκi
1− β − κi

)
,

also implies that, given that all parameters are positive that

ηi2 >
ρi
ciκi

(
1

1− β − κi
)
> 0.

Conversely, assume that ηi2 > 0 and ρi > ρLi . By construction, the condition βρiκi > 1 is

satisfied and investments are positive until T. Second, define

ci =
ρi
η2i

(
ρi

β

1− β − 1

)
,

and write
∂ci
∂ρi

=
1

η2i

(
2ρi

β

1− β − 1

)
which is positive since ρi

β
1−β > 1 because βρiκi > 1 and κi ≤ 1

1−β . Both expressions prove that

c(ρi, η2i) =
ρi
η2i

(
ρi

β

1− β − 1

)
is positive and increasing in ρi. Therefore ci ≥ cL = c(ρL, η2i).�
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B Model Specification and Likelihood function

The main difference with standard specifications lies in the introduction of three individual

heterogeneity factors that interact in a specific way with factors depending on time. Equation

(21) writes

u
[1,T ]
i = M (β)[1,T ] ηci + v

[1,T ]
i

where u[1,T ]
i = (ui1, ..., uiT )′, v[1,T ]

i = (vi1, ..., viT )′ , ηci = (ηci1, η
c
i2, η

c
i3) are the centered versions of

the ηs and:

M (β)[1,T ] =

 1 1 1/β
...
...

...
1 T 1/βT

 ,
is a [T, 3] matrix. The system is further completed by some initial conditions, the number of

which depends on the order of the autoregressive process. Denote p this order and write the

initial conditions as:

u
[1−p,0]
i = v

[1−p,0]
i

since unrestricted dependence between v[1,T ]
i , ηci and those initial conditions will be allowed for.

We can rewrite the whole system as:

u
[1−p,T ]
i = M (β)[1−p,T ] ηci + v

[1−p,T ]
i

in which the matrix M (β)[1−p,T ] is completed by p rows equal to zero, M (β)[1−p,0] = 0.

We now go further and specify the correlation structure. A comment is in order. Usually,

the autoregressive structure directly applies to earnings residuals uit and in the absence of

covariates, this is equivalent to specifying it through the residual part vit because there is a

single individual effect. This equivalence still holds when another heterogeneity factor interacted

with a linear trend is present. Nevertheless, our specification includes a third factor interacted

with a geometric term and this breaks the equivalence. To circumvent this problem, we posit

that vit is a (time heteroskedastic) ARMA process whose innovations are independent of the

individual heterogeneity terms, ηci . As a consequence, our variable of interest, uit, is the sum of

two processes, the first one being related to fixed individual heterogeneity and the second one

to the pure dynamic process. These processes are supposed to be independent between them

although they are both correlated with initial conditions, u[1−p,0]
i .

We are now going to derive the covariance matrix of u[1−p,T ]
i as a function of the parameters of

these processes in two steps . We first study the ARMA process and then include the individual

heterogeneity factors.

B.1 Time heteroskedastic ARMA specification

Following Alvarez and Arellano (2004) or Guvenen (2009), we specify

vit = α1vi(t−1) + ...+ αpvi(t−p) + σtwit
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where wit is MA(q):

wit = ζ it − ψ1ζ it−1 − ...− ψqζ it−q.

Let α = (α1, ., αp) and MT (α) a matrix of size [T, T + p] where p = dim(α):

MT (α) =


−αp ... −α1 1 0 ... 0

0 −αp ... −α1 1
. . .

...
...

. . . . . .
...

. . . . . . 0
0 ... 0 −αp ... −α1 1

 .

As v[1−p,T ]
i =

(
vi(1−p), ..., viT

)
, we have:( (

Ip 0
)

MT (α)

)
v

[1−p,T ]
i =

(
v

[1−p,0]
i

σtw
[1,T ]
i

)

Since wit is MA (q), we have

w
[1,T ]
i = MT (ψ).ζ

[1−q,T ]
i

where ζ [1−q,T ]
i = (ζ i1−q, ..., ζ iT ).

Denote Λ a diagonal matrix whose diagonal is (σ1, ., σT ) to get the following description of

the stochastic process as a function of initial conditions and idiosyncratic errors:(
Ip 0
MT (α)

)
.v

[1−p,T ]
i =

(
Ip 0p,T+q

0T,p Λ.MT (ψ)

)(
v

[1−p,0]
i

ζ
[1−q,T ]
i

)
. (B.7)

To compute the covariance of v[1−p,T ]
i , we derive the covariance matrix of

(
v

[1−p,0]
i ζ

[1−q,T ]
i

)
.

Since ζ [1−q,T ]
i are i.i.d and are of variance 1, the South-East corner of the matrix is the identity

matrix of size (1 + q + T ). The North West corner is assumed to be an unrestricted covariance

matrix V y[1−p,0]
i = Γ00. Assuming as usual that E(yiτζ it) = 0 for any τ < t, we have that

E(v
[1−p,0]
i .(ζ

[1,T ]
i )′) = 0. Only E(y

[1−p,0]
i .(ζ

[1−q,0]
i )′) remains to be defined:

E(v
[1−p,0]
i .(ζ

[1−q,0]
i )′) = Ω = [ωrs]

where r ∈ [1− p, 0] and s ∈ [1− q, 0] and where:

r < s : ωrs = 0
r ≥ s : ωrs is not constrained

because the innovation ζsi is drawn after r and is supposed to be not correlated with y
r
i .

Hence the covariance matrix of zi =

(
v

[1−p,0]
i

ζ
[1−q,T ]
i

)
writes :

Ωz = V

(
v

[1−p,0]
i

ζ
[1−q,T ]
i

)
= V

 v
[1−p,0]
i

ζ
[1−q,0]
i

ζ
[1,T ]
i

 =

 Γ00 Ω 0
Ω′ Iq 0
0 0 IT

 .
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B.2 Individual heterogeneity

The covariance matrix of the individual heterogeneity factors is denoted Ση. as said above, we

assume that the fixed heterogeneity terms are independent from the whole innovation process

ζ
[1−q,T ]
i . As for the covariance structure between initial conditions and those factors, we assume

that:

E
(
v

[1−p,0]
i (ηci)

′
)

= Γ0η

Consider the covariance matrix of initial conditions Σ :

Σ = V

 v
[1−p,0]
i

ηci
ζ

[1−q,0]
i

 =

 Γ00 Γ0η Ω
Γ′0η Ση 0
Ω 0 Iq

 .

and define,

RT (α) =

( (
Ip 0

)
MT (α)

)−1

ST,p(ψ,Λ) =

(
Ip 0p,T+q

0T,p Λ.MT (ψ)

)
Write the covariance matrix of vector y[1−p,T ]

i :

Ωy = V
(
u

[1−p,T ]
i

)
= V

(
v

[1−p,T ]
i +M (β)[1−p,T ] ηci

)
= V

[M (β)[1−p,T ] , RT (α).ST,p(ψ,Λ)
] ηci

v
[1−p,0]
i

ζ
[1−q,T ]
i



Since v[1−p,T ]
i = RT (α).ST,p(ψ,Λ)

(
v

[1−p,0]
i

ζ
[1−q,T ]
i

)
, the matrix

V
(
v

[1−p,T ]
i

)
= RT (α).ST,p(ψ,Λ).Ωz.ST,p(ψ,Λ)′RT (α)′

and

E
(
v

[1−p,T ]
i η′i

)
M (β)[1−p,T ]′ = RT (α).ST,p(ψ,Λ)E

(
v

[1−p,0]
i (ηci)

′

ζ
[1−q,T ]
i (ηci)

′

)
M (β)[1−p,T ]′

= RT (α).ST,p(ψ,Λ)

(
Γ0η

0T+q,3

)
M (β)[1−p,T ]′

= RT (α).

(
Ip 0p,T+q

0T,p Λ.MT (ψ)

)(
Γ0η

0T+q,3

)(
03,p,M (β)[1,T ]′

)
= RT (α).

(
Ip 0p,T+q

0T,p Λ.MT (ψ)

)(
0p,p Γ0ηM (β)[1,T ]′

0T+q,p 0T+q,T

)
= RT (α).

(
0p,p Γ0ηM (β)[1,T ]′

0T,p 0T,T

)
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Hence,

Ωy = RT (α).ST,p(ψ,Λ).Ωz.ST,p(ψ,Λ)′RT (α)′ +M (β)[1−p,T ] ΣηM (β)[1−p,T ]′

+RT (α).

(
0p,p Γ0ηM (β)[1,T ]′

0T,p 0T,T

)
+

(
0p,p 0p,T

M (β)[1,T ] Γ′0η 0T,T

)
RT (α)′

The two first terms correspond to variances of the dynamic process and the individual heterogen-

eity factors, the other terms correspond to the correlation between the two processes induced by

initial conditions. Note that the parameters of the MA process does not appear in the correla-

tion between the two processes since innovations are supposed to be independent with individual

heterogeneity factors. Initial conditions are given by ζ [1−q,0]
i , ηc and v[1−p,0]

i .

The Choleski decomposition of matrix Σ can be parametrized expressing the following matrix

into a polar coordinate basis.

1 0 ... ... 0

0
. . .

. . .
. . .

.

.

.

.

.

. 0 1 0
. . .

... 0 1 0 0
. . .

ω12η 1 0

0 ω13η ω23η 1 0

.

.

. θ
(1)
1−q,1−p θη1,1−p θη2,1−p θη3,1−p 1

0

.

.

.
.
.
.

.

.

. θ2−p,2−p
. . . 1

θ
(1)
0,0 θη1,0 θη21,0 θη3,0 ...

. . . θ0,0 1



where θ(1)
1−q,1−p = 0 if p > q and, more generally, θ(1)

l,m = 0 if l > m.

C Fixed Effects, Constrained Effects and Counterfactu-
als

C.1 Estimates of individual factors given observed wages

The main equation is:

u
[1−p,T ]
i = M(β)[1−p,T ]ηci + v

[1−p,T ]
i ,

where ηci and v
[1−p,T ]
i are centered by construction and where a row of M(β) is defined as

M(β)[t] = (1, t, 1/βt) as in Appendix B.

Later on, we shall reintroduce the estimated averages, ηg, of the individual effects that we

estimate by OLS using the sub-groups defined by age of entry and skill level (21 groups). Define

the average in each group as ȳ[1−p,T ]
g and define:

η̄g = (M(β)[1−p,T ]′M(β)[1−p,T ])−1M(β)[1−p,T ]′ȳ[1−p,T ]
g .

We now present the fixed effect estimation of ηci . We consider first the case with no missing

values and extend it to the case with missing values. We finally analyze how to deal in the

simulations with constraints on ηi.
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C.2 Estimating individual effects

Assume first that there are no missing values. To deal with the correlation between ηci and vi,

we can always write:

v
[1−p,T ]
i = Cηi + w

[1−p,T ]
i ,

where E((ηci)
′w

[1−p,T ]
i ) = 0 so that we get:

C = E(v
[1−p,T ]
i (ηci)

′)(E(ηci(η
c
i)
′))−1,

and:

Ωw = E(v
[1−p,T ]
i v

[1−p,T ]′
i )− E(v

[1−p,T ]
i (ηci)

′)(E(ηci(η
c
i)
′))−1E(ηciv

[1−p,T ]′
i ).

This yields the estimating equation for ηci :

u
[1−p,T ]
i = Dηci + w

[1−p,T ]
i where D = M(β)[1−p,T ] + C,

that might be estimated by GLS methods.

It is nevertheless useful to write likelihood functions that will help later to define constrained

estimates. Define the conditional (pseudo) likelihood function as:

L(u
[1−p,T ]
i | ηci) =

1

(2π)T/2 det Ω
1/2
v

exp

(
−1

2
(u

[1−p,T ]
i −Dηci)′Ω−1

w (u
[1−p,T ]
i −Dηci)

)
,

in which Ωw = V (w
[1−p,T ]
i ).

We are seeking the conditional distribution of ηci conditional on the observed u
[1−p,T ]
i which

can be expressed by Bayes law, using a prior for ηci , L0(ηci) as:

L(ηci | u
[1−p,T ]
i ) =

L(u
[1−p,T ]
i | ηci)L0(ηci)∫

L(u
[1−p,T ]
i | ηci)L0(ηci)dη

c
i

.

Consequently, the distribution function L(ηci | u
[1−p,T ]
i ) can be written as:

H(u
[1−p,T ]
i ). exp

(
−1

2
(ηci −Bu

[1−p,T ]
i )′Ω−1

η (ηci −Bu
[1−p,T ]
i )

)
L0(ηci)

where the constant of integration is derived by setting to one the integral over ηci . In the case

of a diffuse prior i.e. L0(ηci) = 1, the constant of integration is no longer dependent on u[1−p,T ]
i

and is equal to the usual reciprocal of (2π)3/2 det Ω
1/2
η . When there are constraints on ηci , these

constraints can be included in the prior (see below).

As all terms in ηci and u
[1−p,T ]
i are quadratic, we can derive the unknown matrices B and Ωη

by solving:

(u
[1−p,T ]
i −Dηci)′Ω−1

w (u
[1−p,T ]
i −Dηci) = (ηci −Bu

[1−p,T ]
i )′Ω−1

η (ηci −Bu
[1−p,T ]
i ) + u

[1−p,T ]′
i Au

[1−p,T ]
i .
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By identifying quadratic terms in (ηci , η
c
i), (u

[1−p,T ]
i , ηci) and (u

[1−p,T ]
i , u

[1−p,T ]
i ), we obtain three

equations: 
D′Ω−1

w D = Ω−1
η ,

−D′Ω−1
w = −Ω−1

η B,
Ω−1
w = B′Ω−1

η B + A,

so that, as D′Ω−1
w D is invertible:

Ωη = (D′Ω−1
w D)−1,

B = (D′Ω−1
w D)−1D′Ω−1

w ,
A = Ω−1

w − Ω−1
w D(D′Ω−1

w D)−1D′Ω−1
w .

If those matrices are known, the (unfeasible) estimator for the individual fixed effects, by rein-

clusion of the estimated averages, are:

η̃ci = Bu
[1−p,T ]
i = B(Dηci + w

[1−p,T ]
i ) = ηci +Bw

[1−p,T ]
i .

They are such that:

V (η̃ci) = EV (η̃ci | ηci) + V E(η̃ci | ηci)
=⇒ V (η̃ci) = BΩwB

′ + V ηci = Ωη + V ηci .

The term Ωη goes to zero at least at the rate 1/T since matrix D is determined by different

factors. Some are going to zero faster than T but they are dominated by the simple factors.

The feasible estimator is now given by:

η̂ci = B̂u
[1−p,T ]
i ,

and by reinclusion of the estimated averages for each group, η̄g3i = η̄g, we have:

η̂i = η̄g + η̂ci = η̄g + B̂u
[1−p,T ]
i ,

We now analyse the case with missing values. Suppose that u[1−p,T ]
i is not observable, only

Siu
[1−p,T ]
i is where Si is the matrix of dimension (Ti, T + p + 1) selecting non missing values

and where Ti is the number of such non missing values. Consequently, the distribution function

L(ηci | Siu
[1−p,T ]
i ) becomes:

Hi(Siu
[1−p,T ]
i ). exp

(
−1

2
(ηci −BiSiu

[1−p,T ]
i )′Ω−1

ηi (ηci −BiSiu
[1−p,T ]
i )

)
L0(ηci),

where by simple analogy to the results of the previous section:{
Ωηi = (D′S ′i(SiΩwS

′
i)
−1SiD)−1,

Bi = (D′S ′i(SiΩwS
′
i)
−1SiD)−1D′S ′i(SiΩwS

′
i)
−1.
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C.3 Constrained estimator

We reconsider the uncentered version of the individual effects ηi in this section since the con-

straints apply more naturally to those. Nevertheless, we freely borrow the likelihood expressions

derived in the previous section in which we considered the centered version ηci .

Using that the likelihood function L(ηi | y
[1−p,T ]
i ) is proportional to:

exp

(
−1

2
(ηi − η̂i)′Ω−1

η (ηi − η̂i)
)
L0(ηi)

where η̂i is the unconstrained estimator, we solve the following program to compute the con-

strained estimator of ηi
min
ηi

(ηi − η̂i)′Ω−1
η (ηi − η̂i)

under the constraints:

ηi2 > 0, ηi3 < 0, ηi3 > −πTηi2.

Denote µ1, µ2 and µ3 the Lagrange multipliers associated to each constraint and write the Lag-

rangian as:

L(ηi) = (ηi − η̂i)′Ω−1
η (ηi − η̂i)− µ1ηi2 + µ2ηi3 − µ3(ηi3 + πTηi2).

Taking derivatives yields:

2Ω−1
η (η̃i − η̂i)−

 0
µ1 + πTµ3

µ3 − µ2

 = 0.

We immediately have that:

1. If µ2 > 0, µ1 = 0 then η̃i3 = 0 and η̃i2 > 0, and this implies that πT η̃i2+ η̃i3 > 0 so that

µ3 = 0. Therefore: η̃i1 − η̂i1
η̃i2 − η̂i2
−η̂i3

+
Ωη

2

 0
0
µ2

 = 0 =⇒ µ2e
′
3

Ωη

2
e3 = η̂i3,

where e3 = (0, 0, 1)′. This is compatible if µ2 = η̂i3

e′
Ωη
2
e
> 0 and therefore if η̂i3 > 0 since Ωη

is definite positive. Denoting e2 = (0, 1, 0)′, we also have:

η̃i2 − η̂i2 = −µ2.e
′
2

Ωη

2
e3.

This satisfies the condition µ1 = 0 iff η̃i2 > 0.

2. If µ3 > 0, µ1 = 0 then η̃i3 = −πT η̃i2 and η̃i2 > 0, and this implies that η̃i3 < 0 so that

µ2 = 0. We have:

2Ω−1
η (η̃i − η̂i)−

 0
πT
1

µ3 = 0 =⇒ (η̃i − η̂i) = µ3

Ωη

2
vπT
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denoting vπ = (0, πT , 1)′. Given that v′πη̃i = η̃i3 + πT η̃i2 = 0, this implies that :

µ3 = − v′πη̂i

v′π
Ωη
2
vπ

> 0,

if v′πη̂i = η̂i3 + πT η̂i2 < 0 This yields the constrained estimators, η̃i2 and η̃i3:

(η̃i − η̂i) = µ3

Ωη

2
v′π

which satisfy the constraint µ1 = 0 iff η̃i2 > 0.

3. If µ1 > 0 then η̃i2 = 0 and thus the constraints πT η̃i2+ η̃i3 ≥ 0 and η̃i3 ≤ 0 imply that

η̃i3 = 0, that µ2µ3 = 0 and that one of them is positive.

Summarizing:

• If η̂i3 < 0, η̂i2 > 0, and η̂i3+πT η̂i2 > 0, constrained estimates, η̃i, are equal to unconstrained

estimates, η̂i.

• If η̂i3 > 0, η̂i3 + πT η̂i2 > 0 case 1 applies if η̃i2 > 0.

• If η̂i3 + πT η̂i2 < 0, η̂i3 < 0 case 2 applies if η̃i2 > 0.

• In all other cases, η̃i2 = η̃i3 = 0. In this case:

η̃i − η̂i =

 η̃i1 − η̂i1
−η̂i2
−η̂i3

 =
Ωη

2

(
e2 e3

)( v1

v2

)

where vj are unknown. They are obtained using:

(
e′2
e′3

)
(η̃i − η̂i) =

(
e′2
e′3

) 0
−η̂i2
−η̂i3

 =

(
e′2
e′3

)
Ωη

2

(
e2 e3

)( v1

v2

)

Denoting I>c =

(
e′2
e′3

)
so that:

(
v1

v2

)
=

[
I ′c

Ωη

2
Ic

]−1

I ′c

 0
−η̂i2
−η̂i3


so that we get the vector:

η̃i − η̂i = ΩηIc [I ′cΩηIc]
−1
I ′c

 0
−η̂i2
−η̂i3

 .
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C.4 Imposing constraints on simulations

Assume that we want to impose the constraints that ηi2 > 0 and that ηi3 < 0 and ηi3 > −πTηi2.
Drawing in a multivariate normal distribution with multiple constraints is not as easy as with

a single constraint. We use effi cient Gibbs sampling as proposed by Rodriguez-Yam, Davis and

Scharf (2004).

First, denote Cη the Choleski decomposition of the permutation of matrix Ωη (or Ωηi in the

case of missing values) such that:

CηC
′
η = Ωη.

Furthermore, it is convenient to slightly change the order of ηs without loss of generality. As-

suming that the generic element of the lower diagonal matrix Cη is cij, we can write, assuming

that the expectation of ηi is (α1, α2, α3):
η2 = α2 + c11ξ1,
η3 = α3 + c21ξ1 + c22ξ2,
η1 = α1 + c31ξ1 + c32ξ2 + c33ξ3.

We start from the remark that it is easy to draw in univariate truncated normal distributions

conditional to the other variates, for instance, f(ηu1 | ηu2 , ηu3 , ηu2 ≤ 0, ηu3 ∈ [−πTηu2 , 0]). Second,

drawing repetitively in the conditional univariate distributions to construct a Markov chain yields

drawings that are distributed according to the joint distribution we are looking for. Furthermore,

Rodriguez-Yam, Davis and Scharf (2004) recommends drawing the independent errors ξ1, ξ2 and

ξ3 instead of the original variables. For this, we have to rewrite the constraints as (using c11, c22

and c33 are positive, see Section C.2):

ξ1 > − α2

c11
,

ξ2 + c21

c22
ξ1 < − α3

c22
,

ξ2 + c21+πT c11

c22
ξ1 > −α3+πTα2

c22
.

(C.8)

The algorithm proceeds by considering initial values (η0
2, η

0
3) whose construction we detail below.

Then from (ηk2, η
k
3), we construct (ηk+1

2 , ηk+1
3 ) using:

1. Draw ξk+1
2 in a truncated normal variable, truncated by the bounds [−α3+πTα2

c22
− c21+πT c11

c22
ξk1,

− α3

c22
− c21

c22
ξk1] (a non empty interval because of the constraint ξ1 > − α2

c11
).

2. Draw ξk+1
1 in a truncated normal variable, truncated by the bounds [L1, L2]. There are five

cases:

• If c21 > 0: L1 = max(− α2

c11
,− c22

c21+πT c11
(α3+πTα2

c22
+ ξk+1

2 ));U1 = − c22

c21
( α3

c22
+ ξk+1

2 )

• If c21 = 0 : L1 = max(− α2

c11
,− c22

c21+πT c11
(α3+πTα2

c22
+ ξk+1

2 )), U1 = +∞

• If c21 ∈ (−πT c11, 0) : L1 = max(− α2

c11
,− c22

c21
( α3

c22
+ ξk+1

2 ),− c22

c21+πT c11
(α3+πTα2

c22
+ ξk+1

2 )),

U1 = +∞
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• If c21 = −πT c11 : L1 = max(− α2

c11
,− c22

c21
( α3

c22
+ ξk+1

2 )), U1 = +∞

• If c21 < −πT c11 : L1 = max(− α2

c11
,− c22

c21
( α3

c22
+ξk+1

2 )), U1 = − c22

c21+πT c11
(α3+πTα2

c22
+ξk+1

2 )).

Then construct .

When the algorithm is said to have converged to (ξ∞1 , ξ
∞
2 ) then finish by drawing ξ3 in a N(0,1)

variate since no constraints are binding on η1. Construct the final values η
k+1
2 = α2 + c11ξ

∞
1 ,

ηk+1
3 = α3 + c21ξ

∞
1 + c22ξ

∞
2 , η

k+1
1 = α1 + c31ξ

∞
1 + c32ξ

∞
2 + c33ξ3.

The initial conditions are constructed by neglecting the multivariate aspects of constraints:

• Draw ξ0
1 in a truncated normal distribution, truncated by the bound ξ

0
1 > − α2

c11
. Construct

η0
2 = α2 + c11ξ

0
1.

• Draw ξ0
2 in a truncated normal distribution, truncated by the bound [−α3+πTα2

c22
− c21+πT c11

c22
ξ0

1,− α3

c22
−

c21

c22
ξ0

1]. Construct η0
3 = α3 + c21ξ

0
1 + c22ξ

0
2.

• Draw ξ0
3 in a normal distribution and construct η

0
1 = α1 + c31ξ

0
1 + c32ξ

0
2 + c33ξ

0
3.

These draws satisfy the constraints but they are not truncated normally distributed.
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Table 1: Sample size

Age of Entry
Below 20 Between 20 and 23 Above 23 All

1977 4460 2112 874 7446
1978 4460 2112 874 7446
1979 3855 1923 787 6565
1980 3748 1930 785 6463
1982 4460 2112 874 7446
1984 4460 2112 874 7446
1985 3792 1808 724 6324
1986 3683 1800 726 6209
1987 3569 1741 678 5988
1988 3402 1654 637 5693
1989 3486 1657 644 5787
1991 3319 1598 613 5530
1992 3299 1581 603 5483
1993 3330 1620 627 5577
1994 2508 1316 503 4327
1995 3256 1566 578 5400
1996 3236 1557 579 5372
1997 3202 1529 556 5287
1998 3208 1521 543 5272
1999 3218 1503 547 5268
2000 3180 1506 536 5222
2001 3117 1480 517 5114
2002 3018 1463 511 4992
2003 2800 1323 467 4590
2004 2844 1387 463 4694
2005 2851 1399 467 4717
2006 2896 1382 442 4720
2007 2864 1377 429 4670
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Table 2: Missing Values
1977 1979 1980 1985 1986 1987 1988 1989 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006

1977 1
1978 1
1979 .882 .882
1980 .868 .786 .868
1982 1 .882 .868
1984 1 .882 .868
1985 .849 .751 .743 .849
1986 .834 .739 .731 .75 .834
1987 .804 .714 .704 .718 .737 .804
1988 .765 .675 .668 .694 .690 .691 .765
1989 .777 .689 .677 .701 .694 .691 .689 .777
1991 .743 .658 .65 .67 .663 .655 .649 .678 .743
1992 .736 .653 .647 .663 .655 .649 .642 .662 .679 .736
1993 .749 .665 .653 .657 .666 .654 .631 .652 .659 .673 .749
1994 .581 .515 .506 .508 .518 .511 .492 .506 .513 .517 .544 .581
1995 .725 .643 .634 .636 .644 .632 .609 .628 .63 .635 .661 .535 .725
1996 .721 .641 .631 .631 .638 .627 .603 .622 .622 .627 .652 .521 .671 .721
1997 .71 .629 .621 .622 .63 .619 .596 .613 .612 .618 .642 .511 .649 .661 .71
1998 .708 .628 .619 .618 .625 .615 .591 .61 .609 .614 .636 .506 .642 .649 .667 .708
1999 .708 .628 .617 .617 .623 .614 .59 .61 .605 .609 .63 .502 .635 .639 .652 .665 .708
2000 .701 .622 .611 .612 .62 .61 .583 .6 .595 .601 .623 .497 .625 .629 .637 .649 .662 .701
2001 .687 .61 .598 .599 .605 .595 .573 .589 .584 .587 .605 .479 .608 .612 .62 .629 .639 .65 .687
2002 .67 .595 .586 .588 .591 .581 .559 .575 .568 .573 .592 .471 .59 .594 .597 .606 .613 .617 .621 .67
2003 .616 .547 .539 .544 .542 .532 .516 .533 .526 .53 .539 .425 .538 .541 .546 .553 .561 .564 .563 .577 .616
2004 .63 .559 .551 .552 .556 .545 .523 .541 .534 .539 .555 .441 .555 .557 .559 .567 .573 .574 .574 .584 .565 .63
2005 .634 .560 .552 .554 .558 .548 .526 .544 .536 .541 .558 .446 .557 .558 .559 .566 .570 .574 .571 .574 .543 .574 .634
2006 .634 .561 .553 .556 .557 .549 .525 .544 .535 .541 .556 .444 .553 .556 .557 .563 .568 .570 .567 .574 .538 .566 .586 .634
2007 .627 .557 .547 .55 .552 .542 .521 .538 .531 .535 .548 .436 .547 .549 .551 .556 .560 .562 .557 .561 .525 .552 .570 .591
Notes: Frequencies of observations present in the sample at years described by row and column, relative to the full sample



Table 3: Autocorrelation matrix of earnings residuals
1978 1979 1980 1982 1984 1985 1986 1987 1988 1989 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007

1977 .438
1978 .280 .424
1979 .241 .367 .563
1980 .211 .343 .478 .539
1982 .223 .326 .439 .499 .733
1984 .221 .306 .401 .411 .665 .814
1985 .216 .301 .368 .430 .643 .785 .807
1986 .161 .266 .386 .441 .634 .767 .772 .853
1987 .156 .260 .401 .459 .634 .756 .744 .809 .871
1988 .134 .254 .368 .421 .617 .733 .730 .776 .830 .874
1989 .135 .239 .321 .383 .557 .682 .681 .726 .790 .824 .857
1991 .145 .221 .334 .370 .577 .685 .679 .721 .765 .798 .821 .887
1992 .134 .193 .306 .333 .515 .619 .619 .667 .724 .738 .762 .831 .854
1993 .111 .179 .274 .314 .482 .607 .606 .644 .695 .709 .723 .810 .803 .823
1994 .102 .183 .280 .330 .480 .590 .580 .632 .696 .711 .735 .809 .815 .810 .792
1995 .109 .197 .289 .319 .491 .589 .582 .624 .686 .711 .746 .802 .815 .804 .795 .836
1996 .128 .192 .305 .315 .497 .623 .623 .653 .720 .741 .764 .826 .839 .827 .816 .854 .878
1997 .129 .198 .308 .336 .507 .625 .614 .656 .716 .737 .761 .828 .842 .833 .816 .862 .883 .932
1998 .108 .194 .294 .316 .496 .618 .610 .651 .707 .735 .756 .819 .835 .813 .797 .838 .859 .904 .939
1999 .117 .160 .294 .291 .478 .600 .594 .638 .689 .714 .730 .791 .815 .799 .784 .812 .837 .881 .908 .904
2000 .124 .179 .293 .310 .501 .619 .613 .635 .696 .715 .741 .808 .822 .802 .795 .820 .830 .885 .919 .913 .908
2001 .122 .180 .294 .296 .463 .588 .591 .616 .656 .685 .707 .776 .787 .767 .751 .779 .798 .855 .884 .880 .874 .912
2002 .122 .179 .257 .261 .415 .543 .558 .568 .577 .605 .622 .695 .720 .694 .697 .716 .720 .785 .810 .811 .811 .844 .875
2003 .128 .168 .291 .299 .469 .589 .585 .616 .669 .697 .715 .780 .794 .770 .763 .787 .799 .858 .887 .883 .877 .916 .914 .862
2004 .108 .170 .289 .296 .462 .593 .584 .610 .666 .691 .707 .773 .784 .763 .757 .781 .792 .849 .876 .877 .873 .905 .903 .854 .950
2005 .103 .155 .291 .287 .470 .595 .587 .619 .671 .698 .709 .776 .794 .771 .770 .790 .800 .853 .878 .878 .875 .903 .901 .857 .942 .957
2006 .106 .157 .286 .279 .449 .572 .558 .591 .638 .670 .677 .738 .754 .745 .732 .757 .770 .819 .840 .845 .841 .872 .874 .828 .909 .931 .952



Table 4: Autocorrelation matrix of earnings residuals in differences
1978 1979 1980 1985 1986 1987 1988 1989 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006

1979 -.400
1980 -.009 -.277
1985 -.018 -.016 -.084
1986 .003 -.031 .090 -.434
1987 .043 .093 -.013 -.058 -.345
1988 .004 .035 .011 -.055 -.046 -.299
1989 .041 -.036 -.008 .028 -.054 -.020 -.323
1992 -.053 .060 -.055 -.014 -.006 -.074 -.003 -.039
1993 -.021 .015 -.019 .007 .013 .048 -.072 .000 -.351
1994 .018 -.013 .024 .000 -.021 -.013 .003 -.037 -.108 -.385
1995 .021 -.001 .017 -.027 .029 .038 .001 .032 .043 -.070 -.519
1996 .012 -.013 -.034 .008 -.020 .000 .036 .046 .029 -.021 .026 -.440
1997 -.052 .032 -.047 .026 -.046 .006 -.022 -.058 -.007 -.005 -.004 -.019 -.520
1998 .010 -.010 .052 -.047 .049 -.040 .004 .000 .009 .015 -.031 .036 -.015 -.391
1999 .056 -.017 -.017 .013 .006 -.013 .040 -.004 .014 -.067 .004 -.020 .003 -.010 -.244
2000 -.087 .085 -.059 .008 .016 -.014 -.006 -.023 .041 .023 .005 -.042 .022 -.003 -.047 -.420
2001 .024 -.051 .051 .009 -.082 .044 -.028 .052 -.046 -.018 .032 -.009 -.062 .051 .044 -.013 -.539
2002 .008 .001 -.037 .027 .010 -.090 .046 -.025 -.019 -.002 -.043 .013 .031 .024 -.028 .005 -.010 -.298
2003 .005 -.050 .001 .041 -.040 -.108 .001 -.015 .061 -.028 .062 -.025 -.049 .052 -.006 .025 .027 -.010 -.247
2004 -.036 .068 .008 -.061 .057 .144 -.005 .004 -.047 .013 -.031 .012 .025 -.043 .005 -.024 -.025 .014 -.157 -.705
2005 .073 -.011 .001 -.021 -.017 .026 -.011 -.010 -.019 .020 .005 .004 -.001 -.009 -.013 .056 .014 -.043 .002 .012 -.227
2006 -.031 .063 -.042 .009 .035 -.025 .021 -.031 .055 -.014 .034 -.023 -.002 -.031 -.013 -.015 .013 -.028 -.002 .039 -.069 -.375
2007 -.002 -.022 -.010 -.042 -.003 -.026 .026 -.036 -.016 .079 -.070 .022 .015 -.015 -.035 .035 -.015 .020 .030 -.028 -.006 .053 -.254



Table 5: AIC criterion

ARMA(p,q) q=1 q=2 q=3
p=1 -344885 -344899 -344906

(43) (45) (47)

p=2 -345301 -345447 -345733
(47) (50) (53)

p=3 -345839 -346133 -346293
(51) (54) (58)

AIC criterion computed as -2log(L)+2K, with L the like-
lihood and K the number of parameters. Number of pa-
rameters in brackets.
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Table 6: Estimated parameters

1-1 1-2 1-3 2-1 2-2 2-3 3-1 3-2 3-3
α1 .702 .729 .711 .263 .186 .220 .200 .203 .194

( .005) ( .006) ( .007) ( .011) ( .011) ( .011) (.012) ( .011) ( .011)
α2 .145 .324 .143 .191 .143 .161

( .004) ( .008) ( .009) ( .005) ( .009) (.009)
α3 .022 .087 .187

( .003) ( .004) ( .008)
ψ1 .369 .391 .373 - .091 - .172 - .135 - .164 - .166 - .189

( .005) ( .005) ( .007) ( .011) ( .011) ( .012) (.012) ( .011) ( .011)
ψ2 .020 .017 .170 - .028 - .046 - .046

( .003) ( .003) ( .006) ( .008) ( .008) (.008)
ψ3 - .012 - .080 .114

( .004) ( .004) ( .007)
ση1 .302 .302 .301 .310 .306 .304 .306 .300 .298

( .001) ( .003) ( .003) ( .003) ( .003) ( .003) (.003) ( .003) ( .004)
ση2 .038 .039 .039 .038 .039 .036 .038 .037 .037

( .005) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
ση3 .255 .259 .256 .263 .260 .248 .258 .247 .242

( .005) ( .006) ( .006) ( .004) ( .005) ( .005) (.005) ( .006) ( .007)
ρη1,η2 .473 .413 .454 .571 .486 .610 .505 .485 .365

( .016) ( .021) .021 ( .013) ( .017) ( .013) ( .017) ( .020) ( .030)
ρη1,η3 - .604 - .548 - .586 - .694 - .618 - .729 - .636 - .620 - .509

( .003) ( .020) .019 ( .011) ( .015) ( .012) ( .016) ( .019) ( .029)
ρη2,η3 - .946 - .948 - .947 - .945 - .946 - .941 - .946 - .943 - .944

( .023) ( .003) .003 ( .002) ( .002) ( .003) ( .002) ( .003) ( .004)
σy0 .491 .506 .496 .448 .479 .429 .442 .455 .494

( .000) ( .007) ( .007) ( .004) ( .005) ( .004) (.004) ( .005) ( .008)
σy−1

.381 .424 .359 .387 .386 .428
( .004) ( .005) ( .004) ( .004) ( .005) (.008)

σy−2
.264 .270 .299

( .004) ( .006) ( .008)
cov(η1, y0) - .227 - .257 - .237 - .156 - .214 - .149 -.186 - .201 - .282

( .019) ( .017) .017 ( .015) ( .016) ( .016) ( .016) ( .017) ( .019)
cov(η1, y−1) - .127 - .183 - .113 - .153 - .168 - .253

( .016) ( .017) ( .017) ( .017) ( .018) (.020)
cov(η1, y−2) - .169 - .185 - .267

( .018) ( .019) ( .022)
cov(η2, y0) .358 .402 .374 .232 .335 .155 .219 .253 .361

( .022) ( .020) .021 ( .017) ( .019) ( .021) ( .020) ( .022) ( .026)
cov(η2, y−1) .218 .331 .119 .242 .235 .352

( .019) ( .021) ( .024) ( .022) ( .025) (.029)
cov(η2, y−2) .239 .253 .351

( .024) ( .027) ( .032)
cov(η3, y0) - .290 - .333 - .305 - .179 - .270 - .107 - .163 - .195 - .291

( .018) ( .023) .023 ( .020) ( .022) ( .023) ( .023) ( .024) ( .029)
cov(η3, y−1) - .169 - .272 - .077 - .190 - .181 - .287

( .021) ( .023) ( .025) ( .023) ( .027) (.032)
cov(η3, y−2) - .181 - .194 - .282

( .026) ( .029) ( .035)
cov(y0, ζ0) .809 .036 - .024 - .823 .826 - .931 .841 - .795 .812

( .023) (8.525) 26.529 ( .269) ( .059) ( .207) (.061) ( .416) ( .096)
cov(y0, ζ−1) .779 - .012 .408 - .352 - .208 .361

( .438) 1.245 ( .102) (17.542) (152.666) (31.114)
cov(y−1, ζ−1) .798 .722 - .066 .830 .234

(.813) ( .062) ( .148) (41.955) (17.858)
cov(y0, ζ−2) - .805 - .719

(3.931) (76.705)
cov(y−1, ζ−2) - .382 - .202

(11.249) (44.061)
cov(y−2, ζ−2) .752

( .094)



Table 7: Yearly standard deviation of earnings

1-1 1-2 1-3 2-1 2-2 2-3 3-1 3-2 3-3
1978 .311 .312 .312

( .001) ( .002) ( .002)
1979 .254 .257 .255 .222 .232 .219

( .001) ( .001) ( .001) ( .001) ( .001) ( .001)
1980 .223 .223 .223 .222 .227 .221 .224 .224 .230

( .005) ( .001) ( .001) ( .001) ( .001) ( .001) (.002) ( .002) ( .002)
1981 .264 .260 .263 .000 .103 .002 .004 .006 .001

( .005) ( .005) ( .005) ( .096) ( .040) ( .066) (.082) ( .076) ( .060)
1982 .152 .150 .150 .194 .193 .197 .193 .195 .198

( .005) ( .005) ( .005) ( .002) ( .002) ( .002) (.002) ( .002) ( .002)
1983 .244 .243 .247 .040 .175 .096 .023 .039 .193

( .004) ( .005) ( .005) ( .063) ( .017) ( .037) (.048) ( .049) ( .021)
1984 .154 .149 .149 .189 .184 .187 .188 .188 .182

( .001) ( .004) ( .004) ( .002) ( .001) ( .002) (.001) ( .001) ( .002)
1985 .182 .182 .182 .181 .183 .183 .181 .183 .183

( .001) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
1986 .187 .187 .187 .189 .189 .190 .190 .190 .192

( .001) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
1987 .181 .182 .181 .176 .176 .177 .176 .177 .177

( .001) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
1988 .180 .180 .181 .181 .181 .181 .181 .182 .183

( .001) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
1989 .171 .172 .172 .168 .170 .169 .169 .170 .171

( .008) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
1990 .012 .021 .005 .358 .303 .375 .349 .395 .363

( .002) ( .007) ( .008) ( .012) ( .008) ( .015) (.012) ( .016) ( .013)
1991 .182 .184 .180 .153 .167 .156 .161 .157 .163

( .001) ( .002) ( .002) ( .002) ( .001) ( .002) (.001) ( .002) ( .001)
1992 .162 .162 .162 .159 .155 .159 .157 .160 .161

( .001) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
1993 .207 .207 .207 .209 .209 .209 .210 .209 .211

( .001) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
1994 .237 .236 .237 .250 .250 .251 .252 .253 .254

( .001) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
1995 .193 .195 .194 .177 .179 .177 .177 .178 .180

( .001) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
1996 .177 .177 .177 .176 .178 .177 .177 .177 .178

( .001) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
1997 .167 .167 .167 .162 .162 .162 .162 .162 .164

( .001) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
1998 .137 .138 .138 .134 .137 .135 .135 .136 .138

( .001) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
1999 .152 .152 .152 .155 .157 .157 .156 .157 .158

( .001) ( .001) ( .001) ( .000) ( .000) ( .000) (.000) ( .000) ( .001)
2000 .159 .159 .159 .159 .159 .159 .159 .159 .160

( .001) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
2001 .158 .158 .158 .159 .159 .160 .159 .160 .161

( .001) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
2002 .153 .153 .153 .146 .146 .146 .146 .147 .149

( .001) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
2003 .168 .167 .168 .178 .178 .179 .179 .180 .181

( .001) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
2004 .147 .148 .148 .133 .133 .134 .133 .134 .135

( .001) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
2005 .128 .128 .128 .130 .132 .130 .131 .131 .133

( .001) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
2006 .123 .124 .123 .124 .124 .124 .125 .125 .127

( .001) ( .001) ( .001) ( .000) ( .000) ( .000) (.000) ( .000) ( .000)
2007 .117 .117 .117 .115 .116 .116 .115 .117 .118

( .003) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)



Table 8: Short term inequalities and their decomposition

Short term Decomposition
Perm. (%) Trans. (%)

Full sample
1977 .167 .033 .966
1981 .095 .336 .663
2007 .151 .886 .113
Mean .129 .648 .351

Age of entry < 20
1977 .195 .008 .991
1981 .089 .225 .774
2007 .113 .872 .127
Mean .104 .574 .425

Age of entry ≥ 20 and < 24
1977 .121 .084 .915
1981 .091 .432 .567
2007 .187 .900 .099
Mean .154 .682 .317

Age of entry ≥ 24
1977 .134 .197 .802
1981 .125 .606 .393
2007 .276 .889 .110
Mean .233 .721 .278
Inequality is measured with the variance of logs.
Short term inequality: cross sectional inequality.
Perm. stands for the share of cross sectional inequal-
ity due to the permanent heterogeneity components.
Trans. stands for the share of cross-section inequal-
ity due to the transitory component.
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Individual Sample Quantiles
effects periods 0.05 0.2 0.35 0.5 0.65 0.8 0.95

(3,15] -2.97 0.483 1.74 2.43 3.04 4.31 8.14
(2.31) (0.603) (0.194) (0.0557) (0.132) (0.488) (1.97)

(15,22] 1.52 2.11 2.32 2.51 2.7 3 3.8
η1 (0.0708) (0.023) (0.0191) (0.0221) (0.0208) (0.031) (0.0522)

(22,26] 2 2.25 2.39 2.52 2.67 2.87 3.46
(0.0226) (0.0182) (0.0161) (0.0159) (0.0175) (0.021) (0.0345)

(26,28] 2.13 2.35 2.47 2.58 2.7 2.86 3.26
(0.024) (0.0159) (0.0147) (0.0136) (0.0138) (0.0151) (0.0318)

(3,15] -0.435 -0.162 -0.0538 0.0203 0.0937 0.205 0.539
(0.17) (0.0478) (0.0182) (0.00945) (0.013) (0.0412) (0.148)

(15,22] -0.124 -0.032 0.00555 0.033 0.0601 0.0973 0.194
η2 (0.00983) (0.00439) (0.00321) (0.00313) (0.00322) (0.00415) (0.00951)

(22,26] -0.0471 -0.00103 0.0203 0.0388 0.0567 0.0834 0.141
(0.00396) (0.00264) (0.00246) (0.00216) (0.00245) (0.00267) (0.00554)

(26,28] -0.0218 0.00914 0.0254 0.0383 0.0526 0.073 0.114
(0.00333) (0.00221) (0.00214) (0.00207) (0.00216) (0.00252) (0.00415)

(3,15] -6.27 -2.14 -0.706 -0.00853 0.751 2.24 5.71
(2.11) (0.576) (0.147) (0.0858) (0.212) (0.712) (2.47)

(15,22] -1.44 -0.622 -0.324 -0.125 0.0874 0.395 1.29
η3 (0.0847) (0.033) (0.0254) (0.0221) (0.0287) (0.0315) (0.121)

(22,26] -0.907 -0.443 -0.275 -0.142 -0.024 0.131 0.445
(0.0469) (0.019) (0.0167) (0.0174) (0.0171) (0.0171) (0.0344)

(26,28] -0.632 -0.36 -0.242 -0.147 -0.0542 0.0559 0.269
(0.0232) (0.0165) (0.0138) (0.0136) (0.0147) (0.0163) (0.0267)

Notes: Sample period: Number of observed periods. Standard errors (sampling and parameter uncertainty, 1000 MC
simulations) in brackets.

Table 9: Quantiles of the distribution of individual effects: unconstrained estimates



Sample periods V ar(η1) Cov(η1, η2) Cov(η1, η3) V ar(η2) Cov(η2, η3) V ar(η3)
(3,15] 11 0.93 -12 0.093 -1.1 14

(15) (1.2) (16) (0.095) (1.3) (17)
(15,22] 0.5 0.057 -0.57 0.01 -0.09 0.83

(0.081) (0.011) (0.11) (0.0016) (0.015) (0.15)
(22,26] 0.14 0.011 -0.099 0.0038 -0.027 0.2

(0.0073) (0.0011) (0.0091) (0.00032) (0.0024) (0.018)
(26,28] 0.076 0.0043 -0.038 0.002 -0.013 0.09

(0.0039) (0.00058) (0.0041) (0.00015) (0.00097) (0.0066)
Complete sample 2.6 0.22 -2.8 0.024 -0.27 3.3

(3.2) (0.25) (3.4) (0.021) (0.28) (3.8)
Random effects 0.093 0.0059 -0.05 0.0015 -0.0093 0.066

(0.0034) (0.00049) (0.0038) (0.00011) (0.00077) (0.0058)

Notes: The first four lines are obtained using fixed effect estimates. Sample periods = number of observed
periods. Standard errors (sampling and parameter uncertainty, 1000 MC simulations) between brackets.

Table 10: Estimates of the covariance of individual effects

Sample periods V ar(η1) Cov(η1, η2) Cov(η1, η3) V ar(η2) Cov(η2, η3) V ar(η3)
(3,15] 2.5 0.2 -2.7 0.024 -0.25 3.1

(11) (0.89) (12) (0.077) (1) (13)
(15,22] 0.31 0.031 -0.31 0.005 -0.043 0.41

(0.13) (0.016) (0.16) (0.0023) (0.022) (0.22)
(22,26] 0.1 0.0076 -0.065 0.0018 -0.013 0.096

(0.014) (0.0021) (0.017) (0.00051) (0.0038) (0.029)
(26,28] 0.047 0.0021 -0.016 0.00029 -0.001 0.0043

(0.0072) (0.001) (0.0073) (0.00025) (0.0017) (0.012)
Complete sample 0.65 0.053 -0.67 0.0069 -0.068 0.78

(2.3) (0.19) (2.6) (0.017) (0.22) (2.8)
Random effects 0.093 0.0059 -0.05 0.0015 -0.0093 0.066

(0.0035) (0.00053) (0.0041) (1e-04) (0.00075) (0.0058)

Notes: See Table above

Table 11: Estimates of the covariance of individual effects: Bias-corrected
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Restrictions −→ η2 < 0 η3 < 0 η3 + πTη2 < 0
Sample periods

(3,15] 0.065 0.073 0.092
(0.014) (0.015) (0.013)

(15,22] 0.058 0.087 0.11
(0.0094) (0.013) (0.014)

(22,26] 0.023 0.037 0.079
(0.0049) (0.0066) (0.011)

(26,28] 0.0066 0.013 0.033
(0.0026) (0.0049) (0.0076)

Notes: Sample periods = number of observed periods. 5 per
cent level rejection frequency of single-dimensional tests of re-
strictions. Standard errors (sampling and parameter uncer-
tainty, 1000 MC simulations) between brackets.

Table 12: Frequencies of violations: single-dimensional restriction

Sample periods P-values <0.10 0.05 0.01
(3,15] 0.18 0.14 0.09

(0.01) (0.0093) (0.0093)
(15,22] 0.19 0.14 0.076

(0.01) (0.009) (0.0073)
(22,26] 0.13 0.093 0.06

(0.0077) (0.0068) (0.0054)
(26,28] 0.062 0.038 0.018

(0.006) (0.0047) (0.0029)
Complete sample 0.13 0.096 0.058

(0.0045) (0.0038) (0.003)

Notes: Sample periods = number of observed periods. Fre-
quency of p-values of the test of restrictions satisfying the con-
ditions. Standard errors (sampling and parameter uncertainty,
20 Monte Carlo simulations) between brackets. Statistic dis-
tribution obtained by 150 replications.

Table 13: Frequencies of violations: global restriction
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Quantiles Observed distance Simulated distance
0.175 0 0
0.225 0.0021 0.00180
0.275 0.0141 0.0132
0.325 0.0370 0.0391
0.375 0.0763 0.0761
0.425 0.126 0.125
0.475 0.194 0.194
0.525 0.276 0.282
0.575 0.401 0.395
0.625 0.568 0.531
0.675 0.763 0.714
0.725 1.04 0.945
0.775 1.48 1.21
0.825 2.14 1.57
0.875 3.17 2.10
0.925 5.32 2.93
0.975 12.7 4.74

Notes: Distances use as a metric the inverse covariance matrix
of ηs. Simulations are performed by adding to the constrained
estimates a normal noise and by reprojecting on the constrained
set.

Table 14: Distances between unconstrained and constrained estimates for observations and sim-
ulations

Summaries Mean Std error
Min. 0.0567 3.18e-05

1st Qu. 0.123 7.07e-05
Median 0.129 7.92e-05
Mean 0.14 0.000138

3rd Qu. 0.141 0.000154
Max 1.25 0.00662

Notes: 4292 observations for which the number of periods is over
22.

Table 15: Distribution of the returns to investment (lower bound)
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Figure 1: Mean log earnings by age at entry: 1977-2007
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(A) full sample (B) by age of entry

Figure 2: Cross-sectional variance of earnings: 1977-2007
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Figure 3: Autocorrelations with 1986 and 2007
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Figure 4: Autocorrelations of order 1 and of order 6
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Figure 5: Random, fixed effect and biased-corrected fixed effect predictions of earnings variances
using permanent components
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Figure 6: Scatter plot of η2 and η3 and the area describing the structural constraint
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Figure 7: Earnings variances (permanent components): Constrained estimates and simulated
constrained estimates
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Figure 8: The density of the terminal capitalized discount rate κ
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Note: Sample of 4292 observations for which observed periods>22. Standard errors are due to sampling and
parameter uncertainty (30 Monte Carlo replications)

Figure 9: Counterfactual: Additional Years of Life Expectancy (K=2), Mean (Top panel) and
Variance (Bottom Panel) Lower bound Impact75




