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ABSTRACT 
  

Nonparametric Tests for Treatment Effect Heterogeneity* 
 
A large part of the recent literature on program evaluation has focused on estimation of the 
average effect of the treatment under assumptions of unconfoundedness or ignorability 
following the seminal work by Rubin (1974) and Rosenbaum and Rubin (1983). In many 
cases however, researchers are interested in the effects of programs beyond estimates of 
the overall average or the average for the subpopulation of treated individuals. It may be of 
substantive interest to investigate whether there is any subpopulation for which a program or 
treatment has a nonzero average effect, or whether there is heterogeneity in the effect of the 
treatment. The hypothesis that the average effect of the treatment is zero for all 
subpopulations is also important for researchers interested in assessing assumptions 
concerning the selection mechanism. In this paper we develop two nonparametric tests. The 
first test is for the null hypothesis that the treatment has a zero average effect for any 
subpopulation defined by covariates. The second test is for the null hypothesis that the 
average effect conditional on the covariates is identical for all subpopulations, in other words, 
that there is no heterogeneity in average treatment effects by covariates. Sacrificing some 
generality by focusing on these two specific null hypotheses we derive tests that are 
straightforward to implement.  
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1 Introduction

A large part of the recent literature on program evaluation focuses on estimation of the av-
erage effect of the treatment under assumptions of unconfoundedness or ignorability following
the seminal work by Rubin (1974) and Rosenbaum and Rubin (1983).1 This literature has
typically allowed for general heterogeneity in the effect of the treatment. The literature on
testing for the presence of treatment effects in this context is much smaller. An exception is
the paper by Abadie (2002) in the context of instrumental variables models.2 In many cases
however, researchers are interested in the effects of programs beyond point estimates of the
overall average or the average for the subpopulation of treated individuals. For example, it
may be of substantive interest to investigate whether there is any subpopulation for which a
program or treatment has a nonzero average effect, or whether there is heterogeneity in the
effect of the treatment. Such questions are particularly relevant for policy makers interested in
extending the program or treatment to other populations. Some of this interest in treatment
effect heterogeneity has motivated the development of estimators for quantile treatment effects
in various settings.3

The hypothesis that the average effect of the treatment is zero for all subpopulations is also
important for researchers interested in assessing assumptions concerning selection mechanisms.
In their discussion of specification tests as a tool to obtain better estimators for average treat-
ment effects, Heckman and Hotz (1989) introduced an important class of specification tests.
These tests can be interpreted as tests of the null hypothesis of zero causal effects on lagged
outcomes. Heckman and Hotz focused on methods that specifically test the hypothesis of a zero
effect under the maintained assumption that the effect is constant. However, the motivation for
these tests suggests that the fundamental null hypotheses of interest are ones of zero average
effects for all subpopulations. Similarly, Rosenbaum (1997) discusses the use of multiple control
groups to investigate the plausibility of unconfoundedness. He shows that if both control groups
satisfy an unconfoundedness or exogeneity assumption, differences in average outcomes between
the control groups, adjusted for differences in covariates, should be zero in expectation. Again
the hypothesis of interest can be formulated as one of zero causal effects for all subpopulations,
not just a zero average effect.

In this paper we develop two nonparametric tests. The first test is for the null hypothesis
that the treatment has a zero average effect for any subpopulation defined by covariates. The
second test is for the null hypothesis that the average effect conditional on the covariates
is identical for all subpopulations, in other words, that there is no heterogeneity in average
treatment effects by covariates. Sacrificing some generality by focusing on these two specific
null hypotheses, we derive tests that are straightforward to implement. They are based on a
series or sieve approach to nonparametric estimation for average treatment effects (e.g., Hahn,

1See Angrist and Krueger (2000), Heckman and Robb (1984), Heckman, Lalonde and Smith (2000), Rosen-
baum (2001), Wooldridge (2002), Imbens (2004), Lechner (2002) and Lee (2005) for surveys of this literature.

2There is also a large literature on testing in the context of randomized experiments using the randomization
distribution. See Rosenbaum (2001).

3See, for example, Lehmann (1974) Doksum (1974), Firpo (2004), Abadie, Angrist and Imbens (2002), Cher-
nozhukov and Hansen (2005), Bitler, Gelbach and Hoynes (2002).
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1998; Imbens, Newey and Ridder, 2006; Chen, Hong, and Tarozzi, 2004; Chen 2005). Given
the particular choice of the sieve, the null hypotheses of interest can be formulated as equality
restrictions on subsets of the (expanding set of) parameters. The tests can then be implemented
using standard parametric methods. In particular, the test statistics are quadratic forms in the
differences in the parameter estimates with critical values from a chi-squared distribution. We
provide conditions on the sieves that guarantee that in large samples the tests are valid without
the parametric assumptions.

There is a large literature on the related problem of testing parametric restrictions on
regression functions against nonparametric alternatives. Eubank and Spiegelman (1990), Härdle
and Mammen (1993), Bierens (1982, 1990), Hong and White (1995), and Horowitz and Spokoiny
(2001), among others, focus on tests of parametric models for regression functions against
nonparametric alternatives. However, the focus in this paper is on two specific tests, zero and
constant conditional average treatment effects, rather than on general parametric restrictions.
As a result, the proposed tests are particularly easy to implement compared to the Härdle-
Mammen and Horowitz-Spokoiny tests. For example, p-values for our proposed tests can be
obtained from chi-squared or normal tables, whereas Härdle and Mammen (1993) require the
use of a variation of the bootstrap they call the wild bootstrap, and Horowitz and Spokoiny
(2001) require simulation to calculate the p-value. Our proposed tests are closer in spirit to
those suggested by Eubank and Spiegelman (1990) and Hong and White (1995), who also use
series estimation for the unknown regression function, and who obtain a test statistic with a
standard normal distribution. In particular, Eubank and Spiegelman (1990) also base their test
statistic on the estimated coefficients in the series regression. The general approach behind our
testing procedure is also related to the strategy of testing conditional moment restrictions by
using an expanding set of marginal moment conditions. See, for example, Bierens (1990), De
Jong and Bierens (1994). In those papers, as in the Eubank and Spiegelman (1990) paper, the
testing procedures are standard given the number of moment conditions or terms in the series,
but remain valid as the moment conditions or number of terms in the series increase with the
sample size. In contrast, the validity of our tests require that the number of terms of the series
increases with the sample size.

The closest papers in terms of focus to the current paper are those by Härdle and Marron
(1990), Neumeyer and Dette (2003) and Pinkse and Robinson (1995). Härdle and Marron
study tests of parametric restrictions on comparisons of two regression functions. Their formal
analysis is restricted to the case with a single regressor, although it is likely that their kernel
methods can be adapted (in particular by using higher order kernels) to extend to the case
with multivariate covariates. Their proposed testing procedure leads to a test statistic with
a bias term involving the form of the kernel. In contrast, the tests proposed here have a
standard asymptotic distribution. Neumeyer and Dette (2003) use empirical process methods
to test equality of two regression functions, again in the context of a single regressor. Pinske
and Robinson focus on efficient estimation of the nonparametric functions and investigate the
efficiency gains from pooling the two data sets in settings where the two regression functions
differ by a transformation indexed by a finite number of parameters.

We apply these tests to two sets of experimental evaluations of the effects of welfare-to-work
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programs. In both cases the new tests lead to substantively different conclusions regarding the
effect of the programs than has been found in previous analyses of these data that focused solely
on average treatment effects. We first analyze data from the MDRC experimental evaluation
of California’s Greater Avenues for INdependence (GAIN) program that was conducted during
the 1990s. These welfare-to-work programs were designed to assist welfare recipients in finding
employment and improving their labor market earnings. The programs were implemented at
the county level and counties had a great deal of discretion in the designs of their programs.
We analyze data for four of these counties. We find that the tests we develop in this paper
suggest a very different picture of the efficacy of the programs in these counties compared to
conclusions drawn from standard tests of zero average treatment effects. In particular, tests
that the average effect of the program on labor market earnings is equal to zero are rejected
in only one of the four counties. However, using the tests developed in this paper, we find
that for three out of the four counties we can decisively reject the hypothesis of a zero average
effect on earnings for all subpopulations of program participants, where subpopulations are
defined by covariates. We also reject the hypothesis of a constant average treatment effect
across these subpopulations. Taken together, the results using these new tests strongly suggest
that, in general, these programs were effective in changing the earnings of participants in these
programs, even though it may have not improved or even lowered the earnings of some in
the programs. Second, we analyze data from the MDRC experimental evaluations of Work
INcentive (WIN) programs in Arkansas, Baltimore, Virginia and San Diego. Again, we find
that we cannot reject the null hypothesis of a zero average effect for two out of the four locations.
At the same time, we can clearly reject the null hypothesis of a zero average effect for all values
of the covariates.

The remainder of the paper is organized as follows. In Section 2, we lay out the framework
for analyzing treatment effects and characterize the alternative sets of hypotheses we consider
in this paper. We also provide a detailed motivation for conducting tests of average treatment
effects being zero and for constant treatment effects. In Section 3, we characterize the latter
tests in parametric and nonparametric regression settings. We then lay out the conditions
required for the validity of both the zero conditional and the constant treatment effect tests in
the nonparametric setting. In Section 4, we apply these tests to the GAIN and WIN data and
report on our findings, contrasting the results of our nonparametric tests of zero and constant
conditional average treatment effects for these programs on labor market earnings. Finally, we
offer some concluding remarks.

2 Framework and Motivation

2.1 Set Up

Our basic framework uses the motivating example of testing zero conditional average treatment
effects in a program evaluation setting. We note, however, that our tests can be used more
generally to test the hypotheses of constant or zero differences between regression functions
estimated on separate samples. The set up we use is standard in the program evaluation
literature and based on the potential outcome notation popularized by Rubin (1974). See
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Angrist and Krueger (2000), Heckman, Lalonde and Smith (2000), Blundell and Costa-Dias
(2002), and Imbens (2004) for general surveys of this literature. We have a random sample
of size N from a large population. For each unit i in the sample, let Wi indicate whether the
active treatment was received, with Wi = 1 if unit i receives the active treatment, and Wi = 0 if
unit i receives the control treatment. Let Yi(0) denote the outcome for unit i under control and
Yi(1) the outcome under treatment. We observe Wi and Yi, where Yi is the realized outcome:

Yi = Yi(Wi) = Wi · Yi(1) + (1 − Wi) · Yi(0).

In addition, we observe a vector of pre-treatment variables, or covariates, denoted by Xi.
Define the two conditional means, µw(x) = E[Y (w)|X = x], the two conditional variances,
σ2

w(x) = Var(Y (w)|X = x), the conditional average treatment effect τ(x) = E[Y (1)−Y (0)|X =
x] = µ1(x)−µ0(x), the propensity score, the conditional probability of receiving the treatment
e(x) = Pr(W = 1|X = x) = E[W |X = x], and the marginal treatment probability c = Pr(W =
1) = E[e(X)].

Assumption 2.1 (Independent Random Sample)

(Yi,Wi,Xi), i = 1, 2, . . . , N is an independent random sample.

To solve the identification problem, we maintain throughout the paper the unconfoundedness
assumption (Rosenbaum and Rubin, 1983), which asserts that conditional on the pre-treatment
variables, the treatment indicator is independent of the potential outcomes. Formally:

Assumption 2.2 (Unconfoundedness)

W ⊥ (Y (0), Y (1))
∣∣∣∣ X. (2.1)

In addition we assume there is overlap in the covariate distributions:

Assumption 2.3 (Overlap)

For some η > 0,

η ≤ e(x) ≤ 1 − η.

Later we also impose smoothness conditions on the two regression functions µw(x) and the
conditional variances σ2

w(x).
Various estimators have been proposed for the average treatment effect in this setting, e.g.,

Hahn (1998), Heckman, Ichimura and Todd (1998), Hirano, Imbens and Ridder (2003), Chen,
Hong, and Tarozzi (2004), and Abadie and Imbens (2006).
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2.2 Hypotheses

In this paper we focus on two null hypotheses concerning the conditional average treatment
effect τ(x). The first pair of hypotheses we consider

H0 : ∀ x ∈ X, τ(x) = 0, Ha : ∃ x ∈ X, s.t. τ(x) 6= 0. (2.2)

Under the null hypothesis the average effect of the treatment is zero for all values of the
covariates, whereas under the alternative there are some values of the covariates for which the
effect of the treatment differs from zero.

The second pair of hypotheses is

H′
0 : ∃ τ s.t. ∀ x ∈ X, τ(x) = τ, H′

a : ∀τ,∃ x ∈ X, s.t. τ(x) 6= τ. (2.3)

We refer to this pair as the null hypothesis of no treatment effect heterogeneity. Strictly speaking
this is not correct, as we only require the average effect of the treatment to be equal to τ for
all values of the covariates, allowing for distributional effects that average out to zero.

We want to contrast these hypotheses with the pair of hypotheses corresponding to zero
average effect,

H′′
0 : E[τ(X)] = 0, H′′

a : E[τ(X)] 6= 0. (2.4)

Tests of the null hypothesis of a zero average effect are more commonly carried out, either
explicitly, or implicitly through estimating the average treatment effect and its standard error.
It is obviously much less restrictive than the null hypothesis of a zero conditional average effect.

To clarify the relation between these hypotheses and the hypotheses typically considered in
the nonparametric testing literature it is useful to write the former in terms of restrictions on
the conditional mean of Y given X and W . Because W is binary we can write this conditional
expectation as

E[Y |X = x,W = w] = h0(x) + w · h1(x),

where h0(x) = µ0(x) and h1(x) = µ1(x) − µ0(x). The nonparametric testing literature has
largely focused on hypotheses that restrict both h0(x) and h1(x) to parametric forms (e.g.,
Eubank and Spiegelman, 1990; Härdle and Marron, 1990; Hong and White, 1995; Horowitz
and Spokoiny, 2001). In contrast, the first null hypothesis we are interested in is h1(x) = 0
for all x, with no restriction on h0(x). The second null hypothesis is in this representation
h1(x) = τ for some τ and all x, and again no restriction on h0(x). This illustrates that the
hypotheses in (2.2) and (2.3) generalize the setting considered in the nonparametric testing
literature to a setting where we allow for nuisance functions in the regression function under
the null hypothesis.

2.3 Motivation

The motivation for considering the two pairs of hypotheses beyond the hypothesis of a zero
average effect consists of three parts. The first is substantive. In many cases the primary
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interest of the researcher may be in establishing whether the average effect of the program
differs from zero. However, even if it is zero on average, there may well be subpopulations for
which the effect is substantively and statistically significant. As a first step towards establishing
such a conclusion, it would be useful to test whether there is any statistical evidence against
the hypothesis that the effect of the program is zero on average for all subpopulations (the pair
of hypotheses H0 and Ha). If one finds that there is compelling evidence that the program has
nonzero effect for some subpopulations, one may then further investigate which subpopulations
these are, and whether the effects for these subpopulations are substantively important. As
an alternative strategy one could directly estimate average effects for substantively interesting
subpopulations. However, there may be many such subpopulations and it can be difficult to
control size when testing many null hypotheses. Our proposed strategy of an initial single test
for zero conditional average treatment effects avoids such problems.

Second, irrespective of whether one finds evidence in favor or against a zero average treat-
ment effect, one may be concerned with the question of whether there is heterogeneity in the
average effect conditional on the observed covariates. If there is strong evidence in favor of
heterogeneous effects, one may be more reluctant to recommend extending the program to
populations with different distributions of the covariates.

The third motivation is very different. In much of the economic literature on program eval-
uation, there is concern about the validity of the unconfoundedness assumption. If individuals
choose whether or not to participate in the program based on information that is not all ob-
served by the researcher, it may well be that conditional on observed covariates there is some
remaining correlation between potential outcomes and the treatment indicator. Such correla-
tion is ruled out by the unconfoundedness assumption. The unconfoundedness assumption is
not directly testable. Nevertheless, there are two specific sets of tests available that are sug-
gestive of the plausibility of this assumption. Both are based on testing the effect of a pseudo
treatment which is known to have no effect. The first set of tests was originally suggested by
Heckman and Hotz (1989). See also the discussion in Imbens (2004). Let us partition the vector
of covariates X into two parts, a scalar V and the remainder Z, so that X = (V,Z ′)′. The idea
is to take the data (V,W,Z) and analyze them as if V is the outcome, W is the treatment
indicator, and as if unconfoundedness holds conditional on Z. Since V is a pretreatment vari-
able or covariate, we are certain that the effect of the treatment on V is zero for all units. If
we find statistical evidence in favor of an effect of the treatment on V it must therefore be the
case that the assumption of unconfoundedness conditional on Z is incorrect. Of course, this
is not direct evidence against unconfoundedness conditional on X = (V,Z ′)′. But, at the very
least, it suggests that unconfoundedness is a delicate assumption in this case with the presence
of V essential. Moreover, such tests can be particularly effective if the researcher has data on
a number of lagged values of the outcome. In that case one can choose V to be the one-period
lagged value of the outcome. If conditional on further lags and individual characteristics one
finds differences in lagged outcome distributions for those who will be treated in the future and
those who will not be, it calls into question whether conditioning on all lagged outcome val-
ues will be sufficient to eliminate differences between control and treatment groups. Heckman
and Hotz (1989) implement these tests by testing whether the average effect of the treatment
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is equal to zero, testing the pair of hypotheses in (2.4). Clearly, in this setting it would be
stronger evidence in support of the unconfoundedness assumption to find that the effect of the
treatment on the lagged outcome is zero for all values of Z. This corresponds to implementing
tests of the pairs of hypotheses (2.2).

A similar set of issues comes up in Rosenbaum’s (1997) discussion of the use of multiple
controls groups. Rosenbaum considers a setting with two distinct potential control groups. He
suggests that if biases one may be concerned with would likely be different for both groups, then
evidence that the two control groups lead to similar estimates is suggestive that unconfounded-
ness may be appropriate. One can implement this idea by comparing the two control groups.
Let Wi = 1 if unit i is from the treatment group, Wi = 0 if unit i is from the first control group
and Wi = −1 if unit i is from the second control group. Suppose unconfoundedness holds for
both control groups. Formally, (Yi(0), Yi(1)) ⊥ Wi|Xi,Wi ∈ {0, 1} (unconfoundedness relative
to first control group) and (Yi(0), Yi(1)) ⊥ Wi|Xi,Wi ∈ {−1, 1} (unconfoundedness relative
to second control group). Then it is likely that in fact (Yi(0), Yi(1)) ⊥ Wi|Xi. This implies
that Yi(0) ⊥ Wi|Xi,Wi ∈ {−1, 0} and thus Yi ⊥ Wi|Xi,Wi ∈ {−1, 0}. This last conditional
independence relation is directly testable. To carry out the test, one can analyze the subsample
with Wi ∈ {−1, 0} as if Di = 1{Wi = 0} is a treatment indicator. If we find evidence that this
pseudo treatment has a systematic effect on the outcome, it must be that for at least one of the
two control groups unconfoundedness is violated. As in the Heckman-Hotz setting, the pair of
hypotheses to test is that of a zero conditional average treatment effect, (2.2).

In the next section we discuss implementing the two tests in a parametric framework. In
Section 3.2, we then provide conditions under which these tests can be interpreted as nonpara-
metric tests.

3 Testing

3.1 Tests in Parametric Models

Here we discuss parametric versions of the tests in (2.2) and (2.3). For notational convenience we
assume here that N0 = N1 = N . This can be relaxed easily, as we will do in the nonparametric
case. Suppose the regression functions are specified as

µw(x) = αw + β′
wh(x),

for some vector of functions of the covariates h(x), with dimension K − 1. The simplest case
is h(x) = x where we just estimate a linear model. We can estimate αw and βw using least
squares:

(α̂w, β̂w) = arg min
∑

i|Wi=w

(
Yi − αw − β′

wh(Xi)
)2

. (3.5)

Under general heteroskedasticity, with V (Y (w)|X) = σ2
w(X), the normalized covariance matrix

of (α̂w, β̂′
w)′ is

Ωw = N ·

(
N∑

i=1

h(Xi)h(Xi)′
)−1 N∑

i=1

σ2
w(Xi)h(Xi)h(Xi)′

(
N∑

i=1

h(Xi)h(Xi)′
)−1

. (3.6)
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In large samples,

√
N




α̂0 − α0

β̂0 − β0

α̂1 − α1

β̂1 − β1




d−→ N
(

0,
(

Ω0 0
0 Ω1

))
(3.7)

Let Ω̂0 and Ω̂1 be consistent estimators for Ω0 and Ω1. In this parametric setting the first pair
of null and alternative hypotheses is

H0 : (α0, β
′
0) = (α1, β

′
1), and Ha : (α0, β

′
0) 6= (α1, β

′
1).

This can be tested using the quadratic form

T = N ·
(

α̂0 − α̂1

β̂0 − β̂1

)′
(Ω̂0 + Ω̂1)−1

(
α̂0 − α̂1

β̂0 − β̂1

)
. (3.8)

Under the null hypothesis this test statistic has in large samples a chi-squared distribution with
K degrees of freedom:

T
d−→ X 2(K). (3.9)

The second test is similar. The original null and alternative hypothesis in (2.3) translate
into

H ′
0 : β0 = β1, and H ′

a : β0 6= β1.

Partition Ωw into the part corresponding to the variance for α̂w and the part corresponding to
the variance for β̂w:

Ωw =
(

Ωw,00 Ωw,01

Ωw,10 Ωw,11

)
,

and partition Ω̂0 and Ω̂1 similarly. The test statistic is now

T ′ = N ·
(

β̂0 − β̂1

)′
(Ω̂0,11 + Ω̂1,11)−1

(
β̂0 − β̂1

)
. (3.10)

Under the null hypothesis this test statistic has in large samples a chi-squared distribution with
K − 1 degrees of freedom:

T ′ d−→ X 2(K − 1). (3.11)

Both these tests are standard in this parametric setting. The next section shows how these
testing procedures can be used to do nonparametric tests.
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3.2 Nonparametric Estimation of Regression Functions

In order to develop nonparametric extensions of the tests developed in Section 3.1, we need
nonparametric estimators for the two regression functions. We use the particular series estima-
tor for the regression function µw(x) developed by Imbens, Newey and Ridder (2006) and Chen,
Hong and Tarozzi (2004). See Chen (2005) for a general discussion of sieve methods. Let K

denote the number of terms in the series. As the basis we use power series. Let λ = (λ1, ..., λd)
be a multi-index of dimension d, that is, a d-dimensional vector of non-negative integers, with
norm |λ| =

∑d
k=1 λk, and let xλ = xλ1

1 . . . xλd
d . Consider a series {λ(r)}∞r=1 containing all distinct

vectors such that |λ(r)| is nondecreasing. Let pr(x) = xλ(r), where Pr(x) = (p1(x), ..., pr(x))′.
Given Assumption 3.1 the expectation ΩK = E[PK(X)PK(X)′|W = 1] is nonsingular for all K.
Hence we can construct a sequence RK(x) = Ω−1/2

K PK(x) with E[RK(X)RK(X)′|W = 1] = IK .
Let RkK(x) be the kth element of the vector RK(x). It will be convenient to work with this
sequence of basis function RK(x). The nonparametric series estimator of the regression function
µw(x), given K terms in the series, is given by:

µ̂w,K(x) = RK(x)′


 ∑

i|Wi=w

RK(Xi)RK(Xi)′




−
∑

i|Wi=w

RK(Xi)Yi = RK(x)′γ̂w,K,

where A− denotes a generalized inverse of A, and

γ̂w,K =


 ∑

i|Wi=w

RK(Xi)RK(Xi)′




−
∑

i|Wi=w

RK(Xi)Yi.

Define the Nw×K matrix Rw,K with rows equal to RK(Xi)′ for units with Wi = w, and Yw to be
the Nw vector with elements equal to Yi for the same units, so that γ̂w,K = (R′

w,KRw,K)−(R′
w,KYw).

Given the estimator µ̂w,K(x) we estimate the error variance σ2
w as

σ̂2
w,K =

1
Nw

∑

i|Wi=w

(Yi − µ̂w,K(Xi))2.

Let

Ωw,K ≡ E
[
RK(X)RK(X)′|W = w

]

so that the limiting variance of
√

Nγ̂w,K is σ2
w,K · Ω−1

w,K as the sample size increases for fixed
K. We estimate this variance as

σ̂2
w,K · (R′

w,KRw,K/N)−1.

In addition to Assumptions 2.2 and 2.3 we make the following assumptions.

Assumption 3.1 (Distribution of Covariates)

X ∈ X ⊂ Rd, where X is the Cartesian product of intervals [xjL, xjU ], j = 1, . . . , d, with
xjL < xjU . The density of X is bounded away from zero on X.
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Assumption 3.2 (Conditional Outcome Distributions)

(i) The two regression functions µw(x) are s times continuously differentiable, with s
d > 25/4.

(ii) for εw,i = Yi(w) − µw(xi)
(a) E [εw,i|X = x] = 0

(b) E
[
ε2
w,i|X = x

]
= σ2

w where σ2
w ∈ (0,∞)

(c) E[|εw,i|3] < ∞.

Assumption 3.3 (Rates for Series Estimators)

K = Nν, with d/(2s + 3d) < ν < 2/19.

We assume homoskedasticity, although this assumption is not essential and can be relaxed to
allow the conditional variance to depend on x, as long as it is bounded from above and below.

3.3 Nonparametric Tests: Zero Conditional Average Treatment Effect

In this section, we show how the tests discussed in Section 3.1 based on parametric regression
functions can be used to test the null hypothesis against the alternative hypothesis given in (2.2)
without the parametric model. Essentially, we are going to provide conditions under which we
can apply a sequence of parametric tests identical to those discussed in Section 3.1 and obtain
a test that is valid without the parametric specification.

First, we focus on tests of the null hypothesis that the conditional average treatment effect
τ(x) is zero for all values of the covariates, (2.2). To test this hypothesis, we compare estimators
for µ1(x) and µ0(x). Given our use of series estimators, we can compare the estimated param-
eters γ̂0,K and γ̂1,K . Specifically, we use as the test statistic for the test of the null hypothesis
H0 the normalized quadratic form

T =
(
N · (γ̂1,K − γ̂0,K)′ V̂ −1 (γ̂1,K − γ̂0,K) − K

)
/
√

2K (3.12)

where

V̂ =
σ̂2

0,K

1 − ĉ
· Ω̂−1

0,K +
σ̂2

1,K

ĉ
· Ω̂−1

1,K (3.13)

with

ĉ =
N1

N
1 − ĉ =

N0

N
. (3.14)

Theorem 3.1 Suppose Assumptions 2.1-2.3 and 3.1-3.3 hold. Then if τ(x) = 0 for all x ∈ X,

T
d−→ N (0, 1).

Proof: See Appendix.
To gain some intuition for this result, it is useful to decompose the difference γ̂1,K − γ̂0,K

into three parts. Define the pseudo-true values γ∗
w,K, for w = 0, 1, K = 1, 2, . . . , as

γ∗
w,K = arg min

γ
E
[(

µ(X) − RK(X)′γ
)2 |W = w

]

[10]



=
(
E
[
RK(X)RK(X)′|W = w

])−1 E [RK(X)Y |W = w] , (3.15)

so that for fixed K, as N → ∞, γ̂w,K → γ∗
w,K. Then

γ̂1,K − γ̂0,K =
(
γ∗
1,K − γ∗

0,K

)
+
(
γ̂1,K − γ∗

1,K

)
−
(
γ̂0,K − γ∗

0,K

)
.

For fixed K, in large samples, the last two terms are normally distributed, and centered around
zero. The asymptotic distribution of T is based on this approximate normality. This approxi-
mation ignores the first term, the difference

(
γ∗
1,K − γ∗

0,K

)
. For fixed K this difference is not

equal to zero even if µ0(x) = µ1(x) because the covariate distributions differ in the two treat-
ment groups. In large samples, however, with large K, we can ignore this difference. Recall that
under the null hypothesis µ0(x) = µ1(x) for all x. For large enough K, it must be that µw(x)
is close to RK(x)′γ∗

w,K for all x. Hence, it follows that, for large enough K, it must be that for
all x, RK(x)′(γ∗

1,K − γ∗
0,K) is close to zero, implying γ∗

0,K and γ∗
1,K are close. The formal result

then shows that we can increase K fast enough to make this difference small, while at the same
time increasing K slowly enough to maintain the close approximation of the distribution of
γ̂w,K − γ∗

w,K by a normal one. A key result here is Theorem 1.1 in Bentkus (2005) that ensures
that convergence to multivariate normality is fast enough to hold even with the dimension of
the vector increasing.

In large samples, the test statistic has a standard normal distribution if the null hypothesis
is correct. However, we would only reject the null hypothesis if the two regression functions are
far apart, which corresponds to large positive values of the test statistic. Hence, we recommend
using critical values for the test based on one-sided tests, like De Jong and Bierens (1994).

In practice, we may wish to modify the testing procedure slightly. Instead of calculating T

we can calculate the quadratic form

Q = N · (γ̂1,K − γ̂0,K)′ V̂ −1 (γ̂1,K − γ̂0,K) =
√

2K · T + K,

and compare this to the critical values of a chi-squared distribution with K degrees of freedom.
In large samples this would lead to approximately the same decision rule since (Q − K)/

√
2K

is approximately standard normal if Q has a chi-squared distribution with degrees of freedom
equal to K for large K. This modification would make the testing procedure identical to the
one discussed in Section 3.1, which is what one would do if the parametric model

µw(x) = RK(x)′γw,K,

is correctly specified. This makes the tests particularly simple to apply. However, in large
samples the tests do not rely on the correct specification, instead relying on the increasingly
flexible specification as K increases with the sample size.

Next, we analyze the properties of the test when the null hypothesis is false. We consider
local alternatives. For the test of the null hypothesis of a zero conditional average treatment
effect, the alternative is

µ1(x) − µ0(x) = ρN · ∆(x),

for some sequence of ρN → 0, and any function ∆(x), such that |∆(x0)| > 0 for some x0.

[11]



Theorem 3.2 (Consistency of Test)

Suppose Assumptions 2.1-2.3, 3.1–3.3 hold. Suppose also that under the alternative hypothesis
µ1(x)−µ0(x) = ρN ·∆(x) with ∆(x) s times continuously differentiable, and |∆(x0)| = C0 > 0
for some x0, and ρ−1

N = O(N1/2−3ν/2−ε) for some ε > 0. Then Pr(T ≥ M) → 1 for all M .

Proof: See Appendix.
The theorem implies that we cannot necessarily detect alternatives to the null hypothesis

that are N−1/2 from the null hypothesis. We can, however, detect alternatives whose distance
to the null hypothesis is arbitrarily close to N−1/2 given sufficient smoothness relative to the
dimension of the covariates (so that ν can be close to zero).

3.4 Nonparametric Tests: Constant Conditional Average Treatment Effect

Next, we consider tests of the null hypothesis against the alternative hypothesis given in (2.3).
Suppose without loss of generality that R1K(x) = 1 for all K. For this test we partition γ̂w,K

as

γ̂w,K =
(

γ̂w0,K

γ̂w1,K

)
,

with γ̂w0,K a scalar and γ̂w1,K a K − 1-dimensional vector, and the matrix V̂ as

V̂ =
(

V̂00 V̂01

V̂10 V̂11

)

where V̂00 is scalar, V̂01 is a 1 × (K − 1) vector, V̂10 is a (K − 1) × 1 vector and V̂11 is a
(K − 1) × (K − 1) matrix. The test statistic is then:

T ′ =
(
N · (γ̂11,K − γ̂01,K)′ V̂ −1

11 (γ̂11,K − γ̂01,K) − (K − 1)
)

/
√

2(K − 1). (3.16)

Theorem 3.3 Suppose Assumptions 2.1-2.3 and 3.1-3.3 hold. Then if τ(x) = τ for some τ

and for all x ∈ X,

T ′ d−→ N (0, 1).

Proof: See supplementary materials on website.
In practice we may again wish to use the chi-squared approximation. Now we calculate the

quadratic form

Q = N · (γ̂11,K − γ̂01,K)′ V̂ −1
11 (γ̂11,K − γ̂01,K) =

√
2(K − 1) · T ′ + K − 1,

and compare this to the critical values of a chi-squared distribution with K − 1 degrees of
freedom.

Again, we analyze the properties of the test when the null hypothesis is false.

Theorem 3.4 (Consistency of Test)

Suppose Assumptions 2.1-2.3, 3.1–3.3 hold. Suppose also that under the alternative hypothesis
µ1(x)−µ0(x) = τ+ρN ·∆(x) with ∆(x) s times continuously differentiable, and |∆(x0)| = C0 > 0
for some x0, and ρ−1

N = O(N1/2−3ν/2−ε) for some ε > 0. Then Pr(T ′ ≥ M) → 1 for all M .

Proof: See supplementary materials on website.
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4 Application

In this section we apply the tests developed in this paper to data from two sets of experi-
mental evaluations of welfare-to-work training programs. We first re-analyze data from the
MDRC evaluations of California’s Greater Avenues to INdependence (GAIN) programs. These
experimental evaluations of job training and job search assistance programs took place in the
1990’s in several different counties in California.4 The second set consists of four experimental
Work INcentive (WIN) demonstration programs implemented in the mid-eighties in different
locations of the U.S. The WIN programs also were welfare-to-work programs that examined
different strategies for improving the employment and earnings of welfare recipients.5 The de-
sign of both evaluations entailed random assignment of welfare recipients to a treatment group
that received training and job assistance services and a control group that did not. Thus, es-
timating the average effect from these data is straightforward. While the effects of treatments
were analyzed for a number of different outcomes, we focus here on the labor market earnings
of participants in the first year after random assignment for both sets of evaluations.

4.1 Treatment Effect Tests for the GAIN Data

In this section, we present the results of tests concerning the effects of the GAIN programs in four
of California’s counties, namely Los Angeles (LA), Riverside (RI), Alameda (AL) and San Diego
(SD) counties, on participants’ labor market earnings in the first year after random assignment.
The sample sizes for the treatment and control groups in each of these counties are provided at
the top of Table 1. For each county, we conducted tests for zero and constant conditional average
treatment effects, where we condition on measures of participants’ background characteristics
– including gender, age, ethnicity (Hispanic, black, or other), an indicator for high school
graduation, an indicator for the presence of exactly one child (all individuals have at least one
child), and an indicator for the presence of children under the age of 6 – as well as on the
quarterly earnings of participants in the ten quarters prior to random assignment. Descriptive
statistics (means and standard deviations) for these conditioning covariates, as well as for the
earnings outcome variable, are found in Table 1, separately by county. All the conditioning
data on earnings are in thousands of dollars per quarter. For all of the tests, we controlled for
all seven individual characteristics linearly, plus a quadratic term for age, plus all ten quarterly
earnings variables and ten indicators for zero earnings in each quarter. This leads to a total of
28 covariates (listed in Table 1) in the regressions, plus an intercept.

The results for the various tests we consider are reported in Table 2. (The degrees of
freedom for the chi-squared version of the tests are recorded in this table under the ”dof”
heading.) We first consider the test of the null hypothesis that τ(x) = 0 against the alternative
that τ(x) 6= 0 for some x (”Zero Cond. Ave. TE”). For this test, we get a clear rejection of the
zero conditional average treatment effect at the 5% level for three out of the four of the GAIN

4For a description of these evaluations and their 3-year findings, see Riccio, Friedlander and Freedman (1994).
Also see Hotz, Imbens and Klerman (2006) for a re-analysis of the longer term effects of the GAIN programs.

5For a description of these evaluations, see Gueron and Pauly (1991). Also see Hotz, Imbens and Mortimer
(2005) for a re-analysis of these data.
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counties, with the test statistic for only Los Angeles County being smaller than conventional
critical values. (For all of the tests, we also include the normal distribution based version of the
tests.) Results for the second test of the null hypothesis that τ(x) = τ against the alternative
that τ(x) 6= τ for some x (”Constant Cond. Ave. TE”) also are presented in Table 2. Again,
we reject this null hypothesis at conventional levels for three out of the four counties. Finally,
for comparison purposes, we include the simple test for the null hypothesis that the average
effect of the treatment is equal to zero (”Zero Ave. TE”). This is the traditional test that
is typically reported when testing treatment effects in the program evaluation literature. It is
based on the statistic calculated as the difference in average outcomes for the treatment and
control groups divided by the standard error of this difference. Based on this traditional test,
we cannot reject the null hypothesis of no treatment effect in three out of the four counties.
In particular, only for the Riverside data is there a clear rejection of a zero average treatment
effect on earnings.

This latter finding, namely that only Riverside County’s GAIN program showed significant
effects on earnings (and other outcomes) in the initial periods after random assignment, is what
was reported in the MDRC analysis on this evaluation6. It has been widely cited as evidence
that the program strategies used in Riverside county GAIN program, namely emphasis on job
search assistance and little or no basic skills training used by the other GAIN county programs,
was the preferred strategy for moving welfare recipients from welfare to work.7 However, as the
results for the other two tests presented in Table 2 make clear, these conclusions are not robust.
The findings from the two tests developed in this paper applied to these data clearly suggest
that some subgroups in counties other than Riverside benefited from the GAIN treatments
in those counties. Moreover, there is clear evidence of treatment effect heterogeneity across
subgroups in all but Los Angeles County.

4.2 Treatment Effect Tests for the WIN Data

In this section, we present results for the same set of tests using data from the Work INcentive
(WIN) experiments in Baltimore, Maryland (MD), Arkansas (AK), San Diego County (SD)
and Virginia (VA). Here we have data on four binary indicators for individual characteristics,
an indicator for one child, an indicator for a high school diploma, for never being married, and
for being non white. In addition, we have four quarters of earnings data. Table 3 presents
summary statistics for the 12 covariates and the outcome variable, annual earnings in the first
year after random assignment, for the four locations.

Results of the tests for the four WIN evaluation locations are presented in Table 4, which
has the same format as Table 2. With respect to the test of zero conditional average treatment
effects, we find that we can reject this null hypothesis in three out of the four locations of
the WIN experiments at the 5% level. For two out of those three locations, we also reject
the hypothesis of constant treatment effects. In contrast, testing the null hypothesis of a zero
average treatment effect results in the rejection of the null hypothesis for only one out of the four

6See Riccio, Friedlander and Freedman (1994).
7Also see Hotz, Imbens and Klerman (2006) for an explicit analysis of the relative effectiveness of alternative

treatment strategies based on this same GAIN data.
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locations. Overall, the conclusion is again that a researcher who relied only on the traditional
tests of a zero average effect would have missed the presence of treatment effects for two out of
the four locations analyzed in this set of evaluations.

5 Conclusion

In this paper, we develop and apply tools for testing the presence of and heterogeneity in
treatment effects in settings with selection on observables (unconfoundedness). In these settings,
researchers have largely focused on inference for the average effect or the average effect for the
treated. Although researchers have typically allowed for general treatment effect heterogeneity,
there has been little formal investigation of the presence of such heterogeneity and the presence
of more complex patterns of treatment effects that could not be detected with traditional
tests concerning average treatment effects. At best, researchers have estimated average effects
for subpopulations defined by categorical individual characteristics. Here, we develop simple-
to-apply tools for testing both the presence of non-zero treatment effects and of treatment
effect heterogeneity. Analyzing data from eight experimental evaluations of welfare-to-work
training programs, we find considerable evidence of treatment effect heterogeneity and of non-
zero treatment effects that were missed by testing strategies that focused solely on inferences
concerning average treatment effects.

We note that there is a related issue with respect to the presence of heterogeneity when
estimating average treatment effects. In particular, allowing for general forms of heterogeneity
can lead to imprecise estimates of such effects. To address this issue, Crump, Hotz, Imbens
and Mitnik (2006) explore the potential gains of focusing on the estimation of average effects
for subpopulations which have more overlap in the covariate distributions. They provide a
systematic treatment of the choice of these subpopulations and develop estimators of treatment
effects that have optimal asymptotic properties with respect to their precision.
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6 Appendix

Before proving Theorem 3.1 we present a couple of preliminary results.

Lemma A.1 Suppose Assumptions 2.1-2.3 and 3.1 hold. Then (i)
∥∥∥Ω̂w,K − Ωw,K

∥∥∥ = Op

(
ζ(K)K

1
2 N− 1

2

)
,

and (ii) The eigenvalues of Ωw,K are bounded and bounded away from zero and (iii) The eigenvalues of

Ω̂w,K are bounded and bounded away from zero in probability if Op

(
ζ(K)K

1
2 N− 1

2

)
= op(1).

Proof: See supplementary materials on website.

Lemma A.2 Suppose Assumptions 2.1-2.3 and 3.1 hold. Then (i) The eigenvalues of V are bounded
and bounded away from zero and (ii) The eigenvalues of V̂ are bounded and bounded away from zero in
probability if Op

(
ζ(K)K

1
2 N− 1

2

)
= op(1).

Proof: See supplementary materials on website.
Newey (1994) showed that ζ(K) is O(K), so Lemma A.1 implies that if K3/N → 0 (as implied by
Assumption 3.3), ‖Ω̂w,K − Ωw,K‖ = op(1).

Next, recall from equation (3.15) the pseudo true value γ∗
w,K is

γ∗
w,K ≡ (E[RK(X)RK(X)′|W = w])−1 E[RK(X)Y |W = w] = Ω−1

w,KE[RK(X)Y |W = w].

and define

γ̃w,K ≡ γ∗
w,K + Ω−1

w,KR′
w,Kεw/Nw (A.1)

where

εw ≡ Yw − µw(X).

Then we can write
√

Nw(γ̃w,K − γ∗
w,K) as

Ω−1
w,K

1√
Nw

R′
w,Kεw =

1√
Nw

N∑

i|Wi=w

Ω−1
w,KRK(Xi)εw,i (A.2)

with

E[Ω−1
w,KRK(Xi)εw,i] = Ω−1

w,KE [RK(Xi)E [εw,i|Xi]] = 0

and

V
[
Ω−1

w,KRK(Xi)εw,i

]
= σ2

w · Ω−1
w,K

Therefore,

Sw,K ≡ 1√
Nw

N∑

i|Wi=w

[
σ2

w · Ωw,K

]− 1
2 RK(Xi)εw,i ≡

1√
Nw

N∑

i|Wi=w

Zi (A.3)

is a normalized summation of Nw independent random vectors distributed with expectation 0 and
variance-covariance matrix IK .
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Denote the distribution of Sw,K by QNw and define β3 ≡
∑

i|Wi=w E
∥∥∥ Zi√

Nw

∥∥∥
3

. Then, by Theorem 1.1,
Bentkus (2005),

supA∈AK |QNw(A) − Φ(A)| ≤ Cβ3K
1/4

where AK is the class of all measurable convex sets in K-dimensional Euclidean space, C is an absolute
constant, and Φ is a multivariate standard Gaussian distribution.

Lemma A.3 Suppose Assumptions 2.1-2.3 and 3.1−3.3. In particular let K(N) = Nν where ν < 2
19 .

Then,

sup
A∈AK

|QNw(A) − Φ(A)| → 0

Proof First we will show that β3 is O(K
9
2 N− 1

2 )

β3 ≡
∑

i|Wi=w

E
∥∥∥∥

Zi√
Nw

∥∥∥∥
3

= N
− 3

2
w

∑

i|Wi=w

E
∥∥∥
[
σ2

w · Ωw,K

]− 1
2 RK(Xi)εw,i

∥∥∥
3

=
(
Nw · σ2

w

)− 3
2

N∑

i|Wi=w

E
∥∥∥Ω− 1

2
w,KRK(Xi)εw,i

∥∥∥
3

≤
(
Nw · σ2

w

)− 3
2

N∑

i|Wi=w

E
[
‖Ω− 1

2
w,K‖3 ‖RK(Xi)εw,i‖3

]

First, consider

‖Ω− 1
2

w,K‖3 =
[
tr(Ω−1

w,K)
] 3

2 ≤
[
K · λmax(Ω−1

w,K)
] 3

2 ≤ C · K 3
2

which is O(K
3
2 ) because λmin(Ωw,K) is bounded away from zero by Lemma A.1. Next, consider

E ‖RK(Xi)εw,i‖3 ≤ sup
x

‖RK(x)‖3 · E |εw,i|3 ≤ C · K3

where the third moment of εw,i is bounded by Assumption 3.2 and so the factor is O(K3). Since σ2
w is

also bounded by Assumption 3.2, β3 is O(K
9
2 N− 1

2 ). Thus,

Cβ3K
1/4 = C ·

N∑

i|Wi=w

E
∥∥∥∥

Zi√
Nw

∥∥∥∥
3

K1/4 ≤ C1 · K
9
2 N

− 1
2

w · K1/4 = C1 · K
19
4 N−1/2

w

and the result follows.

We may proceed further to detail conditions under which the quadratic form, S′
w,KSw,K , properly

normalized, converges to a univariate standard Gaussian distribution. The quadratic form S′
w,KSw,K

can be written as

S′
w,KSw,K =

K∑

j=1

( 1√
Nw

N∑

i|Wi=w

Zij

)2

where Zij is the jth element of the vector Zi. Thus, S′
w,KSw,K is a sum of K uncorrelated, squared

random variables with each random variable converging to a standard Gaussian distribution by the
previous result. Intuitively, this sum should converge to a chi-squared random variable with K degrees
of freedom.
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Lemma A.4 Under Assumptions 2.1-2.3 and 3.1-3.3,

sup
c

∣∣Pr(S′
w,KSw,K ≤ c) − χ2

K(c)
∣∣→ 0.

Proof Define the set A(c) ≡
{
S ∈ RK |S′S ≤ c

}
. Note that A(c) is a measurable convex set in RK .

Also note that for ZK ∼ N (0, IK), we have that χ2
K(c) = P(Z ′

KZK ≤ c). Then,

sup
c

∣∣Pr[S′
w,KSw,K ≤ c] − χ2

K(c)
∣∣ = sup

c

∣∣Pr(S′
w,KSw,K ≤ c) − Pr(Z ′

KZK ≤ c)
∣∣

= sup
c

|Pr(Sw,K ∈ A(c)) − Pr(ZK ∈ A(c))|

≤ sup
A∈AK

|QNw(A) − Φ(A)|

≤ Cβ3K
1/4

= O(K
19
4 N−1/2

w )

which is o(1) for ν < 2
19 by Lemma A.3.

The proper normalization of the quadratic form yields the studentized version, (S′
w,KSw,K − K)/

√
2K.

This converges to a standard Gaussian distribution by the following lemma.

Lemma A.5 Under Assumptions 2.1-2.3 and 3.1-3.3,

sup
c

∣∣∣∣Pr
(

S′
w,KSw,K − K

√
2K

≤ c

)
− Φ(c)

∣∣∣∣→ 0.

Proof

sup
c

∣∣∣∣Pr
(

S′
w,KSw,K − K

√
2K

≤ c

)
− Φ(c)

∣∣∣∣

= sup
c

∣∣∣Pr
(
S′

w,KSw,K ≤ K + c
√

2K
)
− Φ(c)

∣∣∣

≤ sup
c

∣∣∣Pr
(
S′

w,KSw,K ≤ K + c
√

2K
)
− χ2(K + c

√
2K)

∣∣∣+ sup
c

∣∣∣χ2(K + c
√

2K) − Φ(c)
∣∣∣

The first term goes to zero by Lemma A.4. For the second term we may apply the Berry-Esséen Theorem
which yields,

sup
c

∣∣∣Pr
(

Z ′
KZK − K√

2K
≤ c

)
− Φ(c)

∣∣∣ ≤ C · K− 1
2 .

Thus for ν > 0 the right-hand side converges to zero as well and the result is established.

In order to proceed we need the following selected results from Imbens, Newey and Ridder (2006).
These results establish convergence rates for the estimators of the regression function.

Lemma A.6 (Imbens, Newey and Ridder): Suppose Assumptions 3.1 - 3.3 hold. Then,

(i) there is a sequence γ0
w,K such that

sup
x

∣∣µw(x) − RK(x)′γ0
w,K

∣∣ ≡ sup
x

∣∣µw(x) − µ0
w,K

∣∣ = O
(
K− s

d

)

(ii)

sup
x

∣∣RK(x)′γ∗
w,K − RK(x)′γ0

w,K

∣∣ ≡ sup
x

∣∣µ∗
w,K − µ0

w,K

∣∣ = O
(
ζ(K)K

1
2 K− s

d

)
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(iii)

∥∥γ∗
w,K − γ0

w,k

∥∥ = O
(
K

1
2 K− s

d

)

(iv)

∥∥γ̂w,K − γ0
w,k

∥∥ = Op

(
K

1
2 N− 1

2 + K− s
d

)

The following lemma describes the limiting distribution of the infeasible test statistic.

Lemma A.7 Under Assumptions 2.1-2.3 and 3.1−3.3,
(

Nw ·
(
γ̂w,K − γ∗

w,K

)′ (
σ̂2

w,K · Ω̂−1
w,K

)−1 (
γ̂w,K − γ∗

w,K

)
− K

)
/
√

2K
d→ N (0, 1)

Proof We need only show that,
∥∥∥∥
[
σ̂2

w,K · Ω̂−1
w,K

]− 1
2 √

Nw

(
γ̂w,K − γ∗

w,K

)
− Sw,K

∥∥∥∥ = op(1).

then the result follows by Lemmas (A.3), (A.4), and (A.5).

First, notice that we can rewrite γ̂w,K as

γ̂w,K = γ∗
w,K + Ω̂−1

w,KR′
w,Kε∗w,K/Nw

where

ε∗w,K ≡ Yw − Rw,Kγ∗
w,K .

Then,
∥∥∥∥
[
σ̂2

w,K · Ω̂−1
w,K

]− 1
2 √

Nw

(
γ̂w,K − γ∗

w,K

)
− Sw,K

∥∥∥∥

=
∥∥∥∥
[
σ̂2

w,K · Ω̂−1
w,K

]− 1
2 √

Nw · Ω̂−1
w,K · R′

w,Kε∗w,K/Nw −
[
σ2

w · Ωw,K

]− 1
2
√

Nw · R′
w,Kεw/Nw

∥∥∥∥

=
∥∥∥σ̂−1

w,KΩ̂− 1
2

w,K · R′
w,Kε∗w,K/

√
Nw − σ−1

w Ω− 1
2

w,K · R′
w,Kεw/

√
Nw

∥∥∥

=
∥∥∥σ̂−1

w,KΩ̂− 1
2

w,K · R′
w,Kε∗w,K/

√
Nw − σ̂−1

w,KΩ̂− 1
2

w,K · R′
w,Kεw/

√
Nw

+ σ̂−1
w,KΩ̂− 1

2
w,K · R′

w,Kεw/
√

Nw − σ−1
w Ω̂− 1

2
w,K · R′

w,Kεw/
√

Nw

+ σ−1
w Ω̂− 1

2
w,K · R′

w,Kεw/
√

Nw − σ−1
w Ω− 1

2
w,K · R′

w,Kεw/
√

Nw

∥∥∥

≤
∥∥∥σ̂−1

w,KΩ̂− 1
2

w,K · R′
w,Kε∗w,K/

√
Nw − σ̂−1

w,KΩ̂− 1
2

w,K · R′
w,Kεw/

√
Nw

∥∥∥

+
∥∥∥σ̂−1

w,KΩ̂− 1
2

w,K · R′
w,Kεw/

√
Nw − σ−1

w Ω̂− 1
2

w,K · R′
w,Kεw/

√
Nw

∥∥∥

+
∥∥∥σ−1

w Ω̂− 1
2

w,K · R′
w,Kεw/

√
Nw − σ−1

w Ω− 1
2

w,K · R′
w,Kεw/

√
Nw

∥∥∥

=
∣∣∣σ̂−1

w,K

∣∣∣
∥∥∥Ω̂− 1

2
w,KR′

w,K

(
ε∗w,K − εw

)
/
√

Nw

∥∥∥ (A.4)

+
∣∣∣σ̂−1

w,K − σ−1
w

∣∣∣
∥∥∥Ω̂− 1

2
w,K · R′

w,Kεw/
√

Nw

∥∥∥ (A.5)

+
∣∣σ−1

w

∣∣
∥∥∥
(
Ω̂− 1

2
w,K − Ω− 1

2
w,K

)
R′

w,Kεw/
√

Nw

∥∥∥ (A.6)
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First, consider equation (A.4),
∣∣∣σ̂−1

w,K

∣∣∣
∥∥∥Ω̂− 1

2
w,KR′

w,K

(
ε∗w,K − εw

)
/
√

Nw

∥∥∥

=
(
σ−1

w + op (1)
)
·
∥∥∥Ω̂− 1

2
w,KR′

w,K

(
ε∗w,K − εw

)
/
√

Nw

∥∥∥

= (O (1) + op (1)) ·
∥∥∥Ω̂− 1

2
w,KR′

w,K

(
ε∗w,K − εw

)
/
√

Nw

∥∥∥

where the consistency of the sample variance follows by Lemma B.2 in the supplementary materials on
the website.

E
∥∥∥Ω̂− 1

2
w,KR′

w,K

(
ε∗w,K − εw

)
/
√

Nw

∥∥∥
2

= E
[

1
Nw

tr
((

ε∗w,K − εw

)′
Rw,KΩ̂−1

w,KR′
w,K

(
ε∗w,K − εw

))]

= E
[((

ε∗w,K − εw

)′
Rw,K

(
R′

w,KRw,K

)−1
R′

w,K

(
ε∗w,K − εw

))]

≤ E
[(

ε∗w,K − εw

)′ (
ε∗w,K − εw

)]
(A.7)

= E
[(

µw(X) − Rw,Kγ∗
w,K

)′ (
µw(X) − Rw,Kγ∗

w,K

)]

≤ Nw · sup
x

∣∣µw(x) − RK(x)′γ∗
w,K

∣∣2

≤ Nw · sup
x

(∣∣µw(x) − RK(x)′γ0
w,K

∣∣+
∣∣RK(x)′γ0

w,K − RK(x)′γ∗
w,K

∣∣)2

= Nw

(
O
(
K− s

d

)
+ O

(
ζ(K)K

1
2 K− s

d

))2

(A.8)

= O (N) ·
(
O
(
ζ(K)K

1
2 K− s

d

))2

so that equation (A.4) is Op

(
ζ(K)K

1
2 K− s

d N
1
2

)
by Markov’s inequality. (A.7) follows by the fact that

(INw −Rw,K(R′
w,KRw,K)−1R′

w,K) is a projection matrix and is thus positive semi-definite. (A.8) follows
from Lemma A.6 (i) and (ii).

Next consider equation (A.5). We will work first with the second factor,

E
∥∥∥Ω̂− 1

2
w,K · R′

w,Kεw/
√

Nw

∥∥∥
2

= E
[

1
Nw

tr
(
ε′wRw,KΩ̂−1

w,KR′
w,Kεw

)]

= E
[
tr
(
ε′wRw,K

(
R′

w,KRw,K

)−1
R′

w,Kεw

)]

= E
[
tr
(
Rw,K

(
R′

w,KRw,K

)−1
R′

w,Kεwε′w

)]

= tr
(
E
[
Rw,K

(
R′

w,KRw,K

)−1
R′

w,KE [εwε′w|X]
])

= σ2
w · tr

(
E
[
Rw,K

(
R′

w,KRw,K

)−1
R′

w,K

])

= σ2
w · E

[
tr
(
Rw,K

(
R′

w,KRw,K

)−1
R′

w,K

)]

= σ2
w · E

[
tr
((

R′
w,KRw,K

)−1
R′

w,KRw,K

)]

= σ2
w · tr (IK)

= σ2
w · K
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so that the second factor is O
(
K

1
2

)
by Markov’s inequality. Then by Lemma B.2, equation (A.5) is op(1).

Finally, consider equation (A.6),

∣∣σ−1
w

∣∣
∥∥∥
(
Ω̂− 1

2
w,K − Ω− 1

2
w,K

)
R′

w,Kεw/
√

Nw

∥∥∥

≤ C ·
∥∥∥Ω̂− 1

2
w,K − Ω− 1

2
w,K

∥∥∥
∥∥∥R′

w,Kεw/
√

Nw

∥∥∥

The first factor is Op

(
ζ(K)K

1
2 N− 1

2

)
by Lemma A.1 and the continuous mapping theorem, and

E
∥∥∥R′

w,Kεw/
√

Nw

∥∥∥
2

= E
[

1
Nw

tr
(
ε′wRw,KR′

w,Kεw

)]

= E
[

1
Nw

tr
(
R′

w,Kεwε′wRw,K

)]

= tr
(

1
Nw

E
[
R′

w,KE [εwε′w|X] Rw,K

])

= σ2
w · tr

(
E
[
R′

w,KRw,K/Nw

])

= σ2
w · tr (Ωw,K)

≤ σ2
w · K · λmax (Ωw,K)

≤ C · K

so that the second factor is O
(
K

1
2

)
by Assumption 3.2, Lemma A.1 (ii) and Markov’s inequality. Thus,

equation (A.6) is Op

(
ζ(K)KN− 1

2

)
.

Combining these results yields:
∥∥∥∥
[
σ̂2

w,K · Ω̂−1
w,K

]− 1
2 √

Nw

(
γ̂w,K − γ∗

w,K

)
− Sw,K

∥∥∥∥

= Op

(
ζ(K)K

1
2 K− s

d N
1
2

)
+ op (1) + Op

(
ζ(K)KN− 1

2

)

which is op(1) under Assumptions 3.2 and 3.3.

Proof of Theorem 3.1: First, note that by Lemma A.7 we have that

√
Nw

(
γ̂w,K − γ∗

w,K

) d→ N
(
0, σ2

w,K · Ω−1
w,K

)
. (A.9)

We can rewrite this result as
√

Nw√
N

·
√

N
(
γ̂w,K − γ∗

w,K

)
. Then we have that,

√
N
(
γ̂0,K − γ∗

0,K

) d→ N

(
0,

σ2
0,K

1 − c
· Ω−1

0,K

)
(A.10)

and

√
N
(
γ̂1,K − γ∗

1,K

) d→ N

(
0,

σ2
1,K

c
· Ω−1

1,K

)
. (A.11)
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We may follow the logic of Lemmas (A.3), (A.4), and (A.5) to conclude that

T ∗ ≡
(
N ·

(
(γ̂1,K − γ̂0,K) − (γ∗

1,K − γ∗
0,K)

)′ · V̂ −1 ·
(
(γ̂1,K − γ̂0,K) − (γ∗

1,K − γ∗
0,K)

)
− K

)
/
√

2K

converges in distribution to a N (0, 1) random variable. To complete the proof we must show that
|T ∗ − T | = op(1).

Note that under the null hypothesis µ1(x) = µ0(x) so we may choose the same approximating sequence
γ0
1,K = γ0

0,K for µ0
1,K(x) = µ0

0,K(x). Then,
∥∥γ∗

1,K − γ∗
0,K

∥∥ =
∥∥γ∗

1,K − γ0
1,K + γ0

0,K − γ∗
0,K

∥∥
≤

∥∥γ∗
1,K − γ0

1,K

∥∥+
∥∥γ0

0,K − γ∗
0,K

∥∥

= O(K
1
2 K− s

d ) (A.12)

by Lemma A.6 (iii), and

‖γ̂1,K − γ̂0,K‖ =
∥∥γ̂1,K − γ0

1,K + γ0
0,K − γ̂0,K

∥∥
≤

∥∥γ̂1,K − γ0
1,K

∥∥+
∥∥γ0

0,K − γ̂0,K

∥∥

= Op(K
1
2 N− 1

2 + K− s
d ) (A.13)

by Lemma A.6 (iv). So then,

|T ∗ − T | =
∣∣∣
(
N ·

(
(γ̂1,K − γ̂0,K) − (γ∗

1,K − γ∗
0,K)

)′
V̂ −1

(
(γ̂1,K − γ̂0,K) − (γ∗

1,K − γ∗
0,K)

)
− K

)
/
√

2K

−
(
N · (γ̂1,K − γ̂0,K)′V̂ −1(γ̂1,K − γ̂0,K) − K

)
/
√

2K
∣∣∣ (A.14)

=
N√
2K

·
∣∣∣
(
(γ̂1,K − γ̂0,K) − (γ∗

1,K − γ∗
0,K)

)′
V̂ −1

(
(γ̂1,K − γ̂0,K) − (γ∗

1,K − γ∗
0,K)

)

−(γ̂1,K − γ̂0,K)′V̂ −1(γ̂1,K − γ̂0,K)
∣∣∣ (A.15)

=
N√
2K

·
∣∣∣−2 · (γ̂1,K − γ̂0,K)′ V̂ −1

(
γ∗
1,K − γ∗

0,K

)
+
(
γ∗
1,K − γ∗

0,K

)′
V̂ −1

(
γ∗
1,K − γ∗

0,K

)∣∣∣(A.16)

≤ N√
2K

· 2 ·
∣∣∣(γ̂1,K − γ̂0,K)′ V̂ −1

(
γ∗
1,K − γ∗

0,K

)∣∣∣ (A.17)

+
N√
2K

·
∣∣∣
(
γ∗
1,K − γ∗

0,K

)′
V̂ −1

(
γ∗
1,K − γ∗

0,K

)∣∣∣ (A.18)

Consider (A.17),

2 ·
∣∣∣(γ̂1,K − γ̂0,K)′V̂ −1(γ∗

1,K − γ∗
0,K)

∣∣∣ = 2 ·
∣∣∣tr
(
(γ̂1,K − γ̂0,K)′V̂ −1(γ∗

1,K − γ∗
0,K)

)∣∣∣ (A.19)

≤ 2 · ‖γ̂1,K − γ̂0,K‖ ·
∥∥γ∗

1,K − γ∗
0,K

∥∥ · λmax(V̂ −1) (A.20)

=
(
Op(K

1
2 N− 1

2 + K− s
d ) · O(K

1
2 K− s

d )
)

(A.21)

Where (A.21) follows from Lemma A.2, (A.12), (A.13) and Assumption 3.3.

Now, consider (A.18),
∣∣∣(γ∗

1,K − γ∗
0,K)′V̂ −1(γ∗

1,K − γ∗
0,K)

∣∣∣ =
∣∣∣tr
(
(γ∗

1,K − γ∗
0,K)′V̂ −1(γ∗

1,K − γ∗
0,K)

)∣∣∣ (A.22)

≤
∥∥γ∗

1,K − γ∗
0,K

∥∥2 · λmax(V̂ −1) (A.23)

= O(KK− 2s
d ) (A.24)
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Where (A.24) follows from Lemma A.2, (A.12) and Assumption 3.3.

So then,

|T ∗ − T | =
N√
2K

·
(
Op(K

1
2 N− 1

2 + K− s
d ) · O(K

1
2 K− s

d ) + O(KK− 2s
d )
)

= Op

(
N

1
2 K

1
2 K− s

d

)
+ Op

(
NK− 2s

d

)
+ O

(
NK

1
2 K− 2s

d

)

All three terms are op(1) under Assumptions 3.2 and 3.3 and the result follows. �

Proof of Theorem 3.2 First, note that ζ(K) = supx ‖RK(x)‖ satisfies C ·K < ζ(K) < C ·K for some
0 < C, C < ∞. Second,

ρN · sup
x∈X

|∆(x)| = sup
x

|µ1(x) − µ0(x)|

≤ sup
x∈X

∣∣RK(x)′γ0
1,K − µ1(x)

∣∣+ sup
x∈X

∣∣RK(x)′γ0
0,K − µ0(x)

∣∣

+ sup
x∈X

∣∣RK(x)′γ0
1,K − RK(x)′γ0

0,K

∣∣

≤ sup
x∈X

∣∣RK(x)′γ0
1,K − µ1(x)

∣∣+ sup
x∈X

∣∣RK(x)′γ0
0,K − µ0(x)

∣∣

+ sup
x∈X

∣∣RK(x)′γ̂0,K − RK(x)′γ0
0,K

∣∣+ sup
x∈X

∣∣RK(x)′γ̂1,K − RK(x)′γ0
1,K

∣∣

+ sup
x∈X

|RK(x)′γ̂1,K − RK(x)′γ̂0,K |

≤ sup
x∈X

∣∣RK(x)′γ0
0,K − µ0(x)

∣∣+ sup
x∈X

∣∣RK(x)′γ0
1,K − µ1(x)

∣∣

+ sup
x∈X

‖RK(x)‖ ·
∥∥γ̂0,K − γ0

0,K

∥∥+ sup
x∈X

‖RK(x)‖ ·
∥∥γ̂1,K − γ0

1,K

∥∥

+ sup
x∈X

‖RK(x)‖ · ‖γ̂1,K − γ̂0,K‖

= sup
x∈X

∣∣RK(x)′γ0
0,K − µ0(x)

∣∣+ sup
x∈X

∣∣RK(x)′γ0
1,K − µ1(x)

∣∣

+ζ(K) ·
∥∥γ̂0,K − γ0

0,K

∥∥+ ζ(K) ·
∥∥γ̂1,K − γ0

1,K

∥∥+ ζ(K) · ‖γ̂1,K − γ̂0,K‖

Thus

‖γ̂1,K − γ̂0,K‖ ≥ ζ−1(K) · ρN · sup
x∈X

|∆(x)| − ζ−1(K) · sup
x∈X

∣∣RK(x)′γ0
0,K − µ0(x)

∣∣

−ζ−1(K) · sup
x∈X

∣∣RK(x)′γ0
1,K − µ1(x)

∣∣ −
∥∥γ̂0,K − γ0

0,K

∥∥−
∥∥γ̂1,K − γ0

1,K

∥∥

≥ ζ−1(K) · ρN · C0 ·

(
1 −

supx∈X
∣∣RK(x)′γ0

0,K − µ0(x)
∣∣

ρN · C0

−
supx∈X

∣∣RK(x)′γ0
1,K − µ1(x)

∣∣
ρN · C0

− ζ(K)

∥∥γ̂0,K − γ0
0,K

∥∥
ρN · C0

− ζ(K)

∥∥γ̂1,K − γ0
1,K

∥∥
ρN · C0

)
.

Because s/d > 25/4 by Assumption 3.2 and 1/(2s/d + 3) < ν < 2/19 by Assumption 3.3,

supx∈X
∣∣RK(x)′γ0

0,K − µ0(x)
∣∣

ρN · C0
= O

(
K−s/d

)
· O
(
N1/2−3ν/2−ε

)
= o(1),
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supx∈X
∣∣RK(x)′γ0

1,K − µ1(x)
∣∣

ρN · C0
= O

(
K−s/d

)
· O
(
N1/2−3ν/2−ε

)
= o(1),

ζ(K)

∥∥γ̂0,K − γ0
0,K

∥∥
ρN · C0

= O (K) · Op

(
K1/2N−1/2

)
· O
(
N1/2−3ν/2−ε

)
= op(1),

and

ζ(K)

∥∥γ̂1,K − γ0
1,K

∥∥
ρN · C0

= O (K) · Op

(
K1/2N−1/2

)
· O
(
N1/2−3ν/2−ε

)
= op(1),

it follows that

‖γ̂1,K − γ̂0,K‖ ≥ ζ−1(K) · ρN · C0

with probability going to one as N → ∞. Thus

N1/2K−1/2 ‖γ̂1,K − γ̂0,K‖ ≥ N1/2K−1/2ζ−1(K) · ρN · C0

with probability going to one as N → ∞. Since

N1/2K−1/2ζ−1(K) · ρN · C0 ≥ CN1/2K−1/2ζ−1(K)N−1/2+3ν/2+ε ≥ CNε

which goes to infinity with the sample size, it follows that for any M ′,

Pr
(
N1/2K−1/2 ‖γ̂1,K − γ̂0,K‖ > M ′

)
−→ 1. (A.25)

Next, we show that this implies that

Pr
(

N (γ̂1,K − γ̂0,K)′ V −1 (γ̂1,K − γ̂0,K) − K√
2K

> 2M

)
−→ 1.

Let λmin(A) be the minimum eigenvalue of a matrix A. Denote λmin(V −1) by λ and note that by Lemma
A.2 it follows that λ is bounded away from zero.

Pr
(

N (γ̂1,K − γ̂0,K)′ V −1 (γ̂1,K − γ̂0,K) − K√
2K

> 2M

)

= Pr
(
N (γ̂1,K − γ̂0,K)′ V −1 (γ̂1,K − γ̂0,K) > M

√
8K1/2 + K

)

≥ Pr
(
Nλ (γ̂1,K − γ̂0,K)′ (γ̂1,K − γ̂0,K) > M

√
8K1/2 + K

)

= Pr
(
NK−1 (γ̂1,K − γ̂0,K)′ (γ̂1,K − γ̂0,K) > λ−1

(
1 + M

√
8K−1/2

))

= Pr
(

N1/2K−1/2 ‖γ̂1,K − γ̂0,K‖ > λ−1/2
(
1 + M

√
8K−1/2

)1/2
)

.

Since for any M , for large enough N , we have λ−1/2
(
1 + M

√
8K−1/2

)1/2
< 2λ−1/2, it follows that this

probability is for large N bounded from below by the probability

= Pr
(
N1/2K−1/2 ‖γ̂1,K − γ̂0,K‖ > 2λ−1/2

)
,

which goes to one by (A.25).
Finally, we show that this implies that

Pr(T > M) = Pr

(
N (γ̂1,K − γ̂0,K)′ V̂ −1 (γ̂1,K − γ̂0,K) − K√

2K
> M

)
−→ 1.
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Let λ̂ = λmin(V̂ −1) be the minimum eigenvalue of the matrix V̂ −1. Lemmas A.1 and A.2, Assumption
3.3 and the consistency of σ̂2

0,K , σ̂2
1,K and ĉ imply that λ̂−λ = op(1). Since λ is bounded away from zero,

it follows that λ̂ is bounded away from zero with probability going to one. Let A denote the event that
λmin(V̂ −1) > λ/2 and N(γ̂1,K−γ̂0,K )′(γ̂1,K−γ̂0,K )−K√

2K
> 2M/λ. The probability of the event A converges to

one since,

Pr
(

N (γ̂1,K − γ̂0,K)′ V −1 (γ̂1,K − γ̂0,K) − K√
2K

> 2M

)
≥ Pr

(
N (γ̂1,K − γ̂0,K) (γ̂1,K − γ̂0,K) − K√

2K
> 2M/λ

)

Also, A implies that

N (γ̂1,K − γ̂0,K)′ V̂ −1 (γ̂1,K − γ̂0,K) − K√
2K

≥ Nλ̂ (γ̂1,K − γ̂0,K)′ (γ̂1,K − γ̂0,K) − K√
2K

>
Nλ/2 (γ̂1,K − γ̂0,K)′ (γ̂1,K − γ̂0,K) − K√

2K
> λ/2 · 2M/λ = M.

Hence Pr(T > M)) → 1. �
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Table 1: Summary Statistics Experimental GAIN Data

Los Angeles (LA) Riverside (RI) Alameda (AL) San Diego (SD)
N1 = 2995, N1 = 4405, N1 = 597, N1 = 6978,
N0 = 1400 N0 = 1040 N0 = 601 N0 = 1154

mean (s.d.) mean (s.d.) mean (s.d.) mean (s.d.)

Female 0.94 (0.24) 0.88 (0.33) 0.95 (0.22) 0.84 (0.37)
Age 38.52 (8.43) 33.64 (8.20) 34.72 (8.62) 33.80 (8.59)
Age-squared/100 15.55 (6.83) 11.99 (5.96) 12.79 (6.41) 12.16 (6.24)
Hispanic 0.32 (0.47) 0.27 (0.45) 0.08 (0.26) 0.25 (0.44)
Black 0.45 (0.50) 0.16 (0.36) 0.70 (0.46) 0.23 (0.42)
HS Diploma 0.35 (0.48) 0.52 (0.50) 0.59 (0.49) 0.57 (0.50)
1 Child 0.33 (0.47) 0.39 (0.49) 0.42 (0.49) 0.43 (0.50)
Children under 6 0.10 (0.30) 0.16 (0.37) 0.31 (0.46) 0.13 (0.34)
Earnings Q-1/1,000 0.22 (0.87) 0.45 (1.41) 0.21 (0.85) 0.59 (1.48)
Earnings Q-2/1,000 0.22 (0.88) 0.57 (1.55) 0.21 (0.87) 0.71 (1.68)
Earnings Q-3/1,000 0.23 (0.86) 0.60 (1.60) 0.20 (0.87) 0.76 (1.77)
Earnings Q-4/1,000 0.22 (0.87) 0.61 (1.60) 0.26 (1.02) 0.81 (1.88)
Earnings Q-5/1,000 0.20 (0.88) 0.67 (1.70) 0.25 (1.11) 0.83 (1.92)
Earnings Q-6/1,000 0.19 (0.81) 0.70 (1.76) 0.23 (0.89) 0.84 (1.90)
Earnings Q-7/1,000 0.19 (0.81) 0.71 (1.79) 0.26 (1.05) 0.84 (1.95)
Earnings Q-8/1,000 0.18 (0.80) 0.73 (1.84) 0.22 (1.01) 0.83 (1.96)
Earnings Q-9/1,000 0.18 (0.80) 0.72 (1.83) 0.23 (1.00) 0.83 (1.99)
Earnings Q-10/1,000 0.17 (0.74) 0.73 (1.82) 0.24 (1.09) 0.84 (2.01)
Zero Earn Q-1 0.88 (0.33) 0.78 (0.41) 0.86 (0.34) 0.73 (0.44)
Zero Earn Q-2 0.88 (0.33) 0.76 (0.42) 0.86 (0.34) 0.72 (0.45)
Zero Earn Q-3 0.87 (0.33) 0.76 (0.43) 0.86 (0.34) 0.71 (0.45)
Zero Earn Q-4 0.87 (0.33) 0.75 (0.43) 0.86 (0.34) 0.71 (0.45)
Zero Earn Q-5 0.88 (0.32) 0.74 (0.44) 0.86 (0.35) 0.71 (0.46)
Zero Earn Q-6 0.89 (0.31) 0.74 (0.44) 0.86 (0.35) 0.70 (0.46)
Zero Earn Q-7 0.88 (0.33) 0.74 (0.44) 0.87 (0.34) 0.71 (0.45)
Zero Earn Q-8 0.89 (0.32) 0.73 (0.44) 0.87 (0.33) 0.72 (0.45)
Zero Earn Q-9 0.89 (0.31) 0.74 (0.44) 0.87 (0.33) 0.73 (0.45)
Zero Earn Q-10 0.89 (0.31) 0.74 (0.44) 0.87 (0.34) 0.73 (0.44)

Earnings Yr 1/1,000 1.44 (4.08) 2.37 (4.94) 1.44 (4.15) 2.55 (5.31)
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Table 2: Tests for Zero and Constant Average Treatment Effects for GAIN
Data

Zero Cond. Ave TE Constant Cond. Ave. TE Zero Ave. TE
County chi-sq (dof) normal chi-sq (dof) normal chi-sq (dof) normal

LA 34.58 (29) 0.73 34.56 (28) 0.88 0.37 (1) -0.61
RI 248.09 (29) 28.77 171.22 (28) 19.14 72.46 (1) 8.51
AL 46.68 (29) 2.32 46.52 (28) 2.48 0.04 (1) 0.21
SD 97.51 (29) 9.00 88.14 (28) 8.04 3.64 (1) 1.91

For the zero and constant conditional average treatment effect test the chi-sq column is equal to
√

2K times the
normal column plus K, where K is the degrees of freedom. For the column with the zero average treatment
effect results the chi-squared colum is equal to the square of the normal column.
Critical values for Chi-squared distribution: X 2

0.95(1) = 3.84 X 2
0.99(1) = 6.63 X 2

0.95(28) = 41.34 X 2
0.99(28) = 48.28

X 2
0.95(29) = 42.56 X 2

0.99(29) = 49.59.

Table 3: Summary Statistics Experimental WIN Data

Maryland (MD) Arkansas (AK) San Diego (SD) Virginia (VA)
N1 = 524, N1 = 115, N1 = 658, N1 = 939,
N0 = 547 N0 = 128 N0 = 646 N0 = 428

mean (s.d.) mean (s.d.) mean (s.d.) mean (s.d.)

One Child 0.48 (0.50) 0.44 (0.50) 0.47 (0.50) 0.47 (0.50)
High School Dipl 0.40 (0.49) 0.48 (0.50) 0.54 (0.50) 0.44 (0.50)
Never Married 0.36 (0.48) 0.35 (0.48) 0.26 (0.44) 0.29 (0.45)
Non White 0.69 (0.46) 0.85 (0.36) 0.68 (0.47) 0.65 (0.48)
Earnings Q-1/1,000 0.43 (0.89) 0.19 (0.53) 0.41 (1.08) 0.28 (0.75)
Earnings Q-2/1,000 0.44 (0.97) 0.21 (0.58) 0.41 (1.03) 0.29 (0.76)
Earnings Q-3/1,000 0.43 (0.93) 0.18 (0.48) 0.43 (1.08) 0.32 (0.78)
Earnings Q-4/1,000 0.44 (0.98) 0.18 (0.45) 0.41 (1.01) 0.31 (0.75)
Zero Earn Q-1 0.69 (0.46) 0.82 (0.38) 0.75 (0.43) 0.80 (0.40)
Zero Earn Q-2 0.70 (0.46) 0.83 (0.38) 0.74 (0.44) 0.78 (0.42)
Zero Earn Q-3 0.71 (0.45) 0.80 (0.40) 0.73 (0.44) 0.76 (0.43)
Zero Earn Q-4 0.70 (0.46) 0.81 (0.39) 0.73 (0.44) 0.75 (0.43)

Earnings Year 1/1,000 1.65 (3.18) 0.89 (1.93) 2.06 (4.16) 1.50 (2.81)
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Table 4: Tests for Zero and Constant Average Treatment Effects for WIN Data

Zero Cond. Ave TE Constant Cond. Ave. TE Zero Ave. TE
County chi-sq (dof) normal chi-sq (dof) normal chi-sq (dof) normal

MD 18.71 (13) 1.12 17.46 (12) 1.11 0.03 (1) -0.18
AK 27.69 (13) 2.88 27.29 (12) 3.12 0.48 (1) 0.69
SD 25.47 (13) 2.44 19.98 (12) 1.63 4.37 (1) 2.09
VA 27.56 (13) 2.86 27.53 (12) 3.17 0.01 (1) -0.08

For the zero and constant conditional average treatment effect test the chi-sq column is equal to sqrt2K times
the normal column plus K, where K is the degrees of freedom. For the column with the zero average treatment
effect results the chi-squared colum is equal to the square of the normal column.
Critical values for Chi-squared distribution: X 2

0.95(1) = 3.84 X 2
0.99(1) = 6.64 X 2

0.95(12) = 21.03 X 2
0.99(12) = 26.22

X 2
0.95(13) = 22.36 X 2

0.99(13) = 27.69.
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