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by Existing Institutions*

In the absence of first-best climate policy, we demonstrate that existing government 

institutions and policy established for reasons unrelated to climate change may induce 

climate adaptation. We examine the impact of temperature on ambient ozone concentration 

in the United States from 1980-2013, and the role of institution-induced adaptation. 

Ozone is formed under warm temperatures, and regulated by the Clean Air Act institution. 

Adaptation in counties out of attainment with air quality standards is 107 percent larger 

than under attainment, implying substantial institution-induced adaptation. Furthermore, 

local beliefs about climate change appear to reinforce adaptive behavior, suggesting a 

nontrivial role in second-best climate policy.
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I. Introduction

Many government institutions and policy have been established to address the underpro-

vision of public goods and externalities. A few examples are public health and welfare

programs, transportation infrastructure, and environmental standards. Several of these in-

stitutions allow individuals and firms to smooth out the effects of shocks – such as access to

medical care when sick, job training when unemployed, and roads when evacuating from a

disaster area. Because negative shocks will become more frequent and/or more severe with

climate change, existing institutions may incidentally attenuate the adverse impacts of those

shocks by enabling adaptive behavior. Thus, institutions created for reasons unrelated to

climatic changes may help society cope with such changes by inducing adaptation. This

study conceptualizes and provides credible and emblematic evidence of what we refer to as

institution-induced adaptation. The context is the impact of temperature changes on ambi-

ent “bad” ozone in the United States from 1980-2013. Ozone is formed by a Leontief-like

production function of nitrogen oxides (NOx) and volatile organic compounds (VOCs) under

sunlight and warm temperatures; hence, affected by climate change. Furthermore, ambient

ozone is a pollution externality regulated by the existing institution of the Clean Air Act.1

To understand the mechanism behind institution-induced adaptation in our setting, con-

sider a location where emissions of ozone precursors are under control in the baseline. If

a rise in temperature leads to more intense ozone formation and the violation of the Na-

tional Ambient Air Quality Standards (NAAQS), economic agents will be pressured by the

U.S. Environmental Protection Agency (EPA) to adopt pollution abatement strategies to

reduce emissions of NOx and VOCs, and ultimately ambient ozone concentration. Since

those actions would have to be taken not because of higher ozone precursor emissions but

rather higher temperatures, we refer to the resulting decline in ozone levels as adaptation

to climate change induced by the ozone NAAQS regulations. At the end of the day, the

pollution shocks triggered by climate change may be attenuated by adjustments induced by

1North (1991)’s classic definition of institutions includes “constitutions, laws, property rights” (p.97).
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the existing institution of the Clean Air Act.2

The insight that existing institutions established for reasons unrelated to climate change

may mimic key incentives of comprehensive climate policy goes to the heart of the second-

best theory (Lipsey and Lancaster, 1956; Harberger, 1964, 1971, 1974; Hines, 1999; Goulder

and Williams, 2003). When the outcome of interest arises from market failures, climate

change may exacerbate those failures (e.g., Goulder and Parry, 2008; Bento et al., 2014),

but existing institutions will be there to smooth out the climate impacts.3 Indeed, when the

outcome of interest is affected by climate change, those government programs might generate

an added co-benefit by enabling beneficiaries to cope with climatic changes.4 Ultimately,

existing institutions may serve as a de facto “surrogate carbon tax” for currently inexistent or

incomplete climate policy, providing incentives for producers and consumers to internalize at

least part of the social costs of carbon emissions. In fact, although economic theory provides

clear guidance on addressing externalities, it has proven difficult to create new institutions to

combat climate change, the most significant of all environmental externalities (Aldy, Barrett

and Stavins, 2003; Stavins, 2011, 2019; Nordhaus, 2019; Aldy and Zeckhauser, 2020; Goulder,

2020). Thus, until first-best climate policy is enacted, it may be relatively easier for existing

government institutions to be modestly adjusted to maximize adaptation co-benefits.5

2This is not a new use of the term climate adaptation. In the context of responses to natural disasters,
Kousky (2012) explains that “[t]he negative impacts of disasters can be blunted by the adoption of risk
reduction activities. (...) [T]he hazards literature (...) refers to these actions as mitigation, whereas in
the climate literature, mitigation refers to reductions in greenhouse gas emissions. The already established
mitigation measures for natural disasters can be seen as adaptation tools for adjusting to changes in the
frequency, magnitude, timing, or duration of extreme events with climate change.” (p.37, our highlights).

3In contrast, and absent market failures, if government institutions and policy distort private behavior,
then individuals and firms might abstain from adaptive behavior. Annan and Schlenker (2015), for example,
show that insured farmers may not engage in the optimal protection against extreme heat because crop
losses are covered by the federal crop insurance program. Similarly, Deryugina (2017) provides evidence
suggesting that non-disaster government transfers to disaster-prone areas – such as unemployment benefits
– “may counteract the natural tendencies for out-migration from those areas” (Dell, Jones and Olken, 2014).

4This is on top of the direct effects of the provision of public goods and other government programs
facilitating adaptation to climate change. Dell, Jones and Olken (2014) note that snowfalls that once in a
while disrupts Southern U.S. states have negligible effects in the Northeast, in part because of policy-induced
investments in snow removal. Similarly, around the world, governments have incentivized the development
of crop varieties that are better suited for a changing climate (e.g., Olmstead and Rhode, 2008, 2011a,b).

5At the same time, economic agents may continue to rely on market forces to adjust to climate change.
Hornbeck (2012) and Hornbeck and Naidu (2014), for example, highlight migration out of affected areas;
and Barreca et al. (2016) call attention to the diffusion of existing technologies, such as air conditioning.
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Examining the degree of adaptation to climate change induced by existing air quality

standards regarding ambient ozone is an ideal setting to study institution-induced adapta-

tion. Ambient “bad” ozone is not emitted directly into the air, but rather formed rapidly

by Leontief-like chemical reactions between NOx and VOCs in the presence of sunlight and

warm temperatures. Therefore, climate change will increase ozone concentration in the near

future (e.g., Jacob and Winner, 2009). Moreover, ambient ozone is regulated by the Clean

Air Act due to its effects on human health and the environment (e.g., Neidell, 2009; Moretti

and Neidell, 2011; Graff Zivin and Neidell, 2012; McGrath et al., 2015; Deschenes, Green-

stone and Shapiro, 2017), and such regulations may be effective in reducing ambient ozone

concentrations (e.g., Henderson, 1996; Auffhammer and Kellogg, 2011; Deschenes, Green-

stone and Shapiro, 2017). Because ambient ozone concentration is the result of pollution

externalities generated by economic agents, these corrective policies address a market failure,

and indirectly also serve as a “surrogate carbon tax” inducing climate adaptation.

We leverage a unifying approach to estimate climate impacts, and infer the empirical

importance of adaptation induced by existing institutions. We build on Bento et al. (2020),

and use variation in both weather and climate to uncover the effects of both short- and

long-run variation in the same estimating equation. Inspired by Dell, Jones and Olken

(2009, 2012, 2014), adaptation is derived directly from the difference between the responses

to weather shocks and climatic changes; hence, unlike previous approaches, assessing its

statistical significance is straightforward. In addition, because those are responses by the

same economic agents, our unifying approach does not require extrapolation of weather

responses over time and space to infer adaptation. Indeed, analogous to the Lucas Critique

(Lucas, 1976), preferences may not be constant across time and space. In the end, our

measure of institution-induced adaptation is the difference between adaptation in counties

in and out of attainment with the ozone NAAQS.6 This strategy is only possible because

6Counties violating the air quality standards are required to take costly action to reduce emissions of
ozone precursors to bring ozone levels below the standards, even when the violation may have been caused
by rising average temperatures. Thus, there may be more climate adaptation in counties out of attainment.
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once we recover a measure of adaptation from responses to weather shocks and longer-term

climatic changes by the same economic agents, then we can compare the degree of adaptation

across counties with different attainment status.

Our main results demonstrate that existing government institutions and policy unrelated

to climate change can indeed facilitate adaptation. The estimate of adaptation in nonat-

tainment counties is about 107 percent larger than in attainment counties.7 This finding is

robust to a wide variety of specification tests, such as accounting for alternative climate mea-

surement, different periods of adjustment, and competing regulations for ozone precursors,

among others. We also find suggestive evidence that institution-induced adaptation may be

driven by adjustments in counties where residents generally believe in the existence of climate

change. Thus, climate change beliefs could be leveraged to maximize adaptation co-benefits

arising from existing institutions. These latter findings are of particular relevance given how

institutional inertia, politics, and heterogeneity in local beliefs/preferences continue to delay

the introduction of direct climate policy, especially at higher levels of government (Stavins,

2011, 2019; Goulder, 2020).

This study makes three main contributions to the literature. First, it provides the first

credible evidence that existing government institutions and policy can be used as a buffer to

climate shocks and still induce climate adaptation. Previous work has shown that although

government programs may smooth out negative shocks associated with climate change, they

might inadvertently inhibit adaptive behavior (e.g., Deryugina, 2017). Second, it demon-

strates that existing government institutions may provide an alternative catalyst for adap-

tation to climate change beyond market forces and private responses. Prior literature has

highlighted, for example, migration out of affected areas (e.g., Hornbeck, 2012; Hornbeck

and Naidu, 2014; Deryugina and Molitor, 2020) and diffusion of existing technology (e.g.,

Barreca et al., 2016). Third, it suggests that given the urgency to address climate change,

7The magnitude of the institution-induced adaptation associated with a 1◦C increase in temperature is
roughly 0.33 parts per billion (ppb). Because the impact of a 1◦C temperature shock on ambient ozone
concentration is approximately 2ppb in nonattainment counties, institution-induced adaptation reduces that
impact by about 17 percent.
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existing institutions can be used as a means to reach that goal. Previous studies have exam-

ined the design and implementation of new institutions and policy, but have recognized their

economic and political feasibility challenges (e.g., Aldy, Barrett and Stavins, 2003; Stavins,

2011; Nordhaus, 2019; Stavins, 2019; Aldy and Zeckhauser, 2020; Goulder, 2020).

The paper proceeds as follows. Section II presents a conceptual framework to understand

how existing government institutions and policy may affect adaptation to climate change.

Section III provides a background on the NAAQS for ambient ozone, ozone formation, and

the data used in our analysis. Section IV introduces the empirical strategy; Section V reports

and discusses the results; and Section VI concludes.

II. Conceptual Framework

A. Existing Institutions vs. New Institutions

The creation of new institutions can often prove politically or technologically infeasible,

but existing institutions may mimic key incentives of a new institution. In the context

of climate change, several global climate policy architectures – basically new institutions

– have been proposed over the years (e.g., Aldy, Barrett and Stavins, 2003; Stavins, 2011,

2019; Nordhaus, 2019; Aldy and Zeckhauser, 2020). Nevertheless, because of free-riding

and political polarization, it has been proven difficult to induce countries to join in an

international agreement with significant emission reductions, or to enact federal legislation

addressing climate change.

Recognizing the difficulty in implementing first-best climate policy, and the urgency

in tackling the challenges of climate change, Goulder (2020) advocates for considerations

of political feasibility and costs of delayed implementation in the choice of climate policy.

Second-best policies may be socially inefficient, but if they are politically feasible for near-

term implementation, they might move up in the ordering of the policies considered by the
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federal government (Goulder, 2020).8 In this study, we demonstrate that existing government

institutions are already providing incentives for producers and consumers to adapt to climate

change – much like a second-best policy – and argue that policymakers should take these

co-benefits into consideration when enforcing or revising them.

Our study focuses on the existing institution of the Clean Air Act (CAA) – specifically

the National Ambient Air Quality Standard (NAAQS). With the CAA Amendments of 1970,

the EPA was authorized to set up and enforce a NAAQS for ambient ozone.9 Since then, a

nationwide network of air pollution monitors has allowed EPA to track ozone concentrations,

and a threshold is used to determine whether pollution levels are sufficiently dangerous to

warrant regulatory action.10 Counties with ozone levels exceeding the NAAQS threshold are

designated as in “nonattainment” and the corresponding state is required to submit a state

implementation plan (SIP) outlining its strategy for the nonattainment county to reduce

air pollution levels in order to reach compliance.11 In cases of persistent nonattainment the

CAA mostly mandates command-and-control regulations, requiring that plants use the best

available emission control technology (BACT) in their production processes. Furthermore, if

pollution levels continue to exceed the standards or if a county fails to abide by the approved

plan, sanctions may be imposed on the county in violation, such as retention of funding for

transportation infrastructure.

B. The Nature of Existing Institutions Inducing Adaptation

To understand how existing institutions such as the Clean Air Act’s NAAQS may induce

climate adaptation, let us consider a simple formalization using the sufficient statistic ap-

8Many other second-best policies have been implemented around the world. The economic rationale has
been laid out many decades ago (Lipsey and Lancaster, 1956). In the context of climate change, a prominent
example in the United States is the corporate average fuel economy (CAFE) standards. A first-best policy
would be taxing tailpipe emissions directly.

9For further details of the ozone NAAQS see Appendix A.1.
10Exposure to ambient ozone has been causally linked to increases in asthma hospitalization, medication

expenditures, and mortality, and decreases in labor productivity (e.g., Neidell, 2009; Moretti and Neidell,
2011; Graff Zivin and Neidell, 2012; Deschenes, Greenstone and Shapiro, 2017).

11Appendix Table A1 details the current and historical thresholds used to determine “nonattainment”
status under the prevailing NAAQS.
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proach (Harberger, 1964; Chetty, 2009; Kleven, forthcoming). Assume that firms produce

X units of a consumption good. They use G(X) units of the numeraire Z, and generate P

units of pollution, assumed for simplicity to be proportional to X. Since we are focusing

on ozone pollution, and ozone formation depends on climate (C) as well, then we define

P ≡ F (X,C) = δ(C)X, with δ(.) > 0 and δC(.) ≡ δ′(.) > 0.12 Also, suppose that there is a

continuum of consumers with wealth Y and quasilinear utility U(X) + Z − rδ(C)X, where

r is the marginal damage of ozone pollution.

Under profit and utility maximization, it can be shown (see Appendix C) that welfare

(W ) can be improved by reducing production.13 This might be the case when the NAAQS for

ambient ozone are binding. Because dW ≡ dW (C) = −rδ(C)dX > 0, marginal reductions

in X, e.g., to keep ozone concentrations below the NAAQS, would be welfare improving

even in the case of a constant climate. In the case of climate change, however, the welfare

gains from such reductions would be even greater, as the amount of pollution avoided by

decreasing X would be proportionally larger. We refer to these further welfare gains as

“institution-induced adaptation,” which can be interpreted as a co-benefit of the NAAQS

for ambient ozone:

dW

dC
= −rδCdX > 0. (1)

Therefore, absent direct first-best climate policy, when climate is an input in the produc-

tion of economic outcomes that arise from market failures such as ozone pollution, corrective

policies targeting those outcomes may also lead to climate adaptation. In fact, in this

second-best setting, policies correcting pre-existing market distortions may also address the

externality of climate change (e.g., Goulder and Parry, 2008; Bento et al., 2014; Jacobsen

et al., 2020). In the case of the NAAQS for ambient ozone, the standards not only deal with

the externality of local air pollution, but also generate institution-induced adaptation.14

12See Appendix A.2 for more details on ozone formation, and the role of climate.
13Indeed, the private optimum is not Pareto efficient because of the negative externality ozone pollution

imposes on consumers. Hence, this is clearly a second-best setting (Lipsey and Lancaster, 1956).
14In contrast, when climate is an input in production but the output is a marketable good or service,
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To make the concept of institution-induced adaptation as clear as possible in the context

we are studying, we use the schematic representation depicted in Figure 1. In this figure,

the y-axis represents the output – ozone formation – and the x-axis represents a composite

index I(.) of two inputs – NOx and VOCs – whose levels move along the production function

F (I(NOx,VOCs), Climate) represented by the upward-sloping black line. F (I(NOx,VOCs),

Climate) is equivalent to the F (X,C) in the formalization above. The blue horizontal line

represents the maximum ambient ozone concentration a county may reach while still com-

plying with the NAAQS for ozone. Above that threshold, a county would be deemed out of

compliance with the standards, or in nonattainment.

Assume that an ozone monitor is sited in a county that is initially complying with the

standards, as in point A. Moreover, suppose for simplicity that emissions of ozone precursors

are initially under control, but then temperature rises. Because this is a bidimensional

diagram representing ozone as a function of I(NOx,VOCs) – taking climate as given – an

increase in temperature shifts the production function upward and to the left. This new

production function under climate change is represented by the red upward-sloping line.

Because we assumed emissions of ozone precursors were initially under control, an increase in

average temperature raises ozone concentration for the same level of the index I(NOx,VOCs),

reaching point B. Since the ozone concentration is now above the NAAQS threshold, the

county is designated as out of attainment, and firms are pressured to make adjustments in

their production process to comply with the air quality standards in the near future, usually

three years after a county receives the nonattainment designation.

Notice that firms need to respond to the regulation not because they were careless in

controlling emissions in the baseline, but rather because climate has changed. As they take

policies considering output and/or input levels may not only distort economic agents’ behavior and generate
deadweight loss, but also potentially affect adaptive behavior. Annan and Schlenker (2015) illustrate the case
of policies precluding adaptation: farmers may not engage in the optimal protection against harmful extreme
heat because the resulting crop losses are covered by the federal crop insurance program. On the other hand,
policies such as the federal air conditioning subsidies for low-income families would also generate deadweight
loss, but could induce adaptation to climate change (Barreca et al., 2016). In this case, policymakers could
weigh these costs and benefits in their decision process, in addition to equity considerations.
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steps to reduce emissions to reach attainment, moving along the new production function

until point C, those economic agents are in fact adjusting to a changing climate. Thus, they

are adapting to climate change because of the ozone NAAQS regulation, that is, they are

engaging in institution-induced adaptation.15

III. Data and Data Descriptions

Ambient ozone is one of the six criteria pollutants regulated under the existing Clean Air Act

institution. However, unlike other pollutants, it is not emitted directly into the air. Rather,

it is formed by Leontief-like chemical reactions between nitrogen oxides (NOx) and volatile

organic compounds (VOCs), under sunlight and warm temperatures. Because ambient ozone

is affected by both climate and regulations, and high-frequency data are available since 1980,

this is an ideal setting to study institution-induced adaptation. In Appendix A, we provide

further details regarding the ozone standards, ozone formation and the data.

A. NAAQS, Ozone Pollution, and Climate: Background and Data

NAAQS Data. For data on the Clean Air Act nonattainment designations associated with

exceeding the NAAQS for ambient ozone, we use the EPA Green Book of Nonattainment

Areas for Criteria Pollutants. We generate an indicator for nonattainment status for each

county-year in our sample. In our empirical analysis, we use the nonattainment status lagged

by three years because EPA gives counties with heavy-emitters at least three years to comply

with NAAQS for ambient ozone (USEPA, 2004, p.23954).16

15Ambient ozone concentration is a negative externality. For completeness, public policy can also induce
adaptation to climate change in addressing positive externalities. Besides the social desirability of increasing
the level of those outcomes, such policies can create a co-benefit of adjusting to a changing climate. One
example is the Medicaid-covered influenza vaccination. Severe influenza seasons are likely to emerge with
global warming (Towers et al., 2013), but publicly-funded annual vaccination allows Medicaid beneficiaries
to cope with climatic changes. This is in addition to the herd-immunity impact of influenza vaccination
(White, forthcoming). Thus, the concept of policy-induced adaptation is quite broad, and incentives affecting
adaptive behavior are already in place in a variety of policies implemented around the world.

16EPA allows nonattainment counties with polluting firms between 3 to 20 years to adjust their production
processes. Nonattainment counties are “classified as marginal, moderate, serious, severe or extreme (...) at
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Specifically, with regards to nonattainment status, if any monitor within a county exceeds

the NAAQS, EPA designates the county to be out of attainment (USEPA, 1979, 1997, 2004,

2008, 2015a). While the structure of enforcement is dictated by the CAA and the EPA, much

of the actual enforcement activity is carried out by regional- and state-level environmental

protection agencies, with local agencies having discretion over enforcement as long as they are

within attainment for the NAAQS. Regional EPA offices do, however, conduct inspections

to confirm attainment status and/or issue sanctions when a state’s enforcement is below

required levels, and assist states with major cases. Thus, while there may be heterogeneity

in local enforcement for nonattainment counties, we would expect that those counties achieve

at least the minimum level of increased regulation mandated by the EPA.

Ozone Data. For ambient ozone concentrations, we use daily readings from the nationwide

network of the EPA’s air quality monitoring stations. Following Auffhammer and Kellogg

(2011), in our preferred specification we use an unbalanced panel of ozone monitors, and

make only two restrictions to construct our analysis sample. First, we include only monitors

with valid daily information. According to EPA, daily measurements are valid for regulation

purposes only if (i) 8-hour averages are available for at least 75 percent of the possible hours

of the day, or (ii) daily maximum concentration is higher than the standard. Second, as

a minimum data completeness requirement, for each ozone monitor we include only years

for which at least 75 percent of the days in the typical ozone monitoring season (April-

September) are valid; years having concentrations above the standard are included even if

they have incomplete data.17 Our final sample consists of valid ozone measurements for a

total of 5,139,129 monitor-days.18

the time of designation” (USEPA, 2004, p.23954). They must reach attainment in: “Marginal – 3 years,
Moderate – 6 years, Serious – 9 years, Severe – 15 or 17 years, Extreme – 20 years” (USEPA, 2004, p.23954).

17The typical ozone monitoring season around the country is April-September, but in fact it varies across
states. Appendix Table A2 reports the season for each state.

18Appendix Figure A1 depicts the evolution of ambient ozone monitors over the three decades in our
data, and illustrates the expansion of the network over time. Appendix Table A3 provides annual summary
statistics on the ozone monitoring network. The number of monitors increased from 1,361 in the 1980s to over
1,851 in the 2000s. The number of monitored counties also grew from roughly 585 in the 1980s to over 840
in the 2000s. While Muller and Ruud (2018) find that compliance with the NAAQS for ambient ozone is not
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Weather Data. For climatological data, we use daily measurements of maximum temper-

ature as well as total precipitation from the National Oceanic and Atmospheric Administra-

tions’s Global Historical Climatology Network databse (NOAA, 2014). This dataset provides

detailed weather measurements at over 20,000 weather stations across the country. We use

information from 1950-2013, because we need 30 years of data prior to the period of analysis

to construct a moving average series of climate.19 The weather stations are typically not

located adjacent to the ozone monitors. Hence, we match ozone monitors to nearby weather

stations using a straightforward procedure.20

B. Basic Trends in Pollution, Attainment Status, and Weather: Implications for the
Importance of Institutions

To give a sense of the data, Figure 2 illustrates the evolution of ozone concentrations and

the proportion of counties in nonattainment over our sample period, while Figure 3 does the

same for two components of temperature – moving averages and deviations from them.

Ozone Concentrations and Nonattainment Designations. Figure 2, Panel A, depicts the

annual average of the highest daily maximum ambient ozone concentration recorded at each

monitor from 1980-2013 in the United States. The sample is split according to whether

counties were in or out of attainment with the NAAQS for ambient ozone, established in

1979. Counties out of compliance with the NAAQS experienced, on average, a steeper

reduction in the daily maximum ozone levels than counties in compliance. We will argue

that part of that reduction is associated with institution-induced adaptation.21

consistently associated with network composition, Grainger, Schreiber and Chang (2019) provide evidence
that local regulators do avoid pollution hotspots when siting new ozone monitors. Later, as a robustness
check, we show qualitatively similar results for a semi-balanced panel of ozone monitors.

19Appendix Figure A2 presents the yearly temperature fluctuations and overall trend in climate for the
contiguous US as measured by these monitors, relative to a 1950-1979 baseline average temperature.

20Using information on the geographical location of ozone monitors and weather stations, we calculate the
distance between each pair of ozone monitor and weather station using the Haversine formula. Then, for
every ozone monitor we exclude weather stations that lie beyond a 30-km radius. Moreover, for every ozone
monitor we use weather information from only the closest two weather stations within the 30-km radius.
Appendix Figure A3 illustrates the proximity of our final sample of ozone monitors to these matched weather
stations. Once we apply this procedure, we exclude ozone monitors that do not have any weather stations
within 30km. As will be discussed later, our results do not seem sensitive to these choices.

21Appendix Figure A4 further compares similar trends in ozone levels with the updated 1997, 2008, and
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Figure 2, Panel B, shows that as ambient ozone concentrations fell, the number of coun-

ties out of attainment also declined. Notice that when the 1997 NAAQS revisions were

implemented in 2004 after litigation, the share of our sample counties out of attainment

increased more than 50 percent. Such a jump is not observed in the implementation of

the 2008 revision, however. In this case, the share of counties in nonattainment remained

stable around 0.3. Appendix Figure A5 shows that most counties out of attainment were

first designated in nonattainment in the 1980’s. The map displays concentrations of those

counties in California, the Midwest, and in the Northeast. Nevertheless, a nontrivial number

of counties went out of attainment for the first time in the 1990’s and 2000’s.

Decomposing Temperature into long-run climate norms and short-run weather shocks. In

order to disentangle variation in weather versus climate, we decompose average temperature

into a climate norm – a 30-year monthly moving average (MA) following (WMO, 2017), and

a weather shock – the daily deviation from the norm. Figure 3, Panel A, plots the annual

average of the 30-year MA in the dotted line, as well as a smoothed version of it in the

solid line; note that due to the nature of the MA, this takes into account information since

1950. Panel B plots the annual average of the shocks. Notice that the average deviations

from the 30-year MA are bounded around zero, with bounds relatively stable over time,

suggesting little changes in the variance of the climate distribution.22 Using our final sample,

not surprisingly Appendix Figure A7 shows that ambient ozone is closely related to both

components of temperature, which we examine more formally in the empirical analysis.

2015 NAAQS levels which, while much lower, are based instead on the observed 4th highest 8-hour average
ambient ozone concentration.

22Appendix Figure A6 presents a similar illustration to Figure 3 using our final sample of weather monitors
once matched to ozone monitors. Appendix Table A4 reports the summary statistics for daily temperature
and our decomposed variables, for each year in our sample from 1980-2013.
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IV. Empirical Framework

In the empirical analysis, we focus on estimating the extent to which ozone concentration is

affected by climate change under the NAAQS regulation, relative to a benchmark without

(or lower levels of) regulation. The goal is to recover δCdX in Equation (1), the up-to-scale

measure of institution-induced adaptation. Thus, with an estimate of r from the literature

(e.g., Deschenes, Greenstone and Shapiro, 2017), we are able to provide some back-of-the-

envelope calculations regarding welfare changes.

We build upon a unifying approach to estimating climate impacts (Bento et al., 2020)

which bridges the two leading approaches of the climate-economy literature – the cross-

sectional approach to estimate the impact of climate change on economic outcomes (e.g.,

Mendelsohn, Nordhaus and Shaw, 1994; Schlenker, Hanemann and Fisher, 2005), and the

panel fixed-effects approach to estimate the impact of weather shocks (e.g., Deschenes and

Greenstone, 2007; Schlenker and Roberts, 2009) – identifying both weather and climate

impacts in the same equation. Inspired by Dell, Jones and Olken (2009, 2012, 2014), our

direct measure of adaptation is the difference between short-run weather responses, which are

approximately exclusive of adaptation, and long-run climate responses, which are potentially

inclusive of adaptation. Since they are estimated in the same equation, our method allows

for a straightforward test of the statistical significance of our measure of adaptation.

Moreover, because our approach critically identifies adaptation by comparing how the

same economic agents respond to both weather and climate variation, we are able to recover

our measure of institution-induced adaptation by comparing heterogeneous adaptation from

counties in and out of attainment with the NAAQS for ozone without needing to make as-

sumptions over preferences. In contrast, previous studies have inferred adaptation indirectly,

by flexibly estimating economic damages due to weather shocks – sometimes for different

time periods and locations – then assessing climate damages by using shifts in the future

weather distribution predicted by climate models (e.g., Deschenes and Greenstone, 2011;

Barreca et al., 2016; Auffhammer, 2018; Carleton et al., 2019; Heutel, Miller and Molitor,
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forthcoming). That implies an extrapolation of weather responses over time and space,

which requires preferences to be constant across those dimensions, an assumption that can

be challenging for reasons similar to the Lucas Critique (Lucas, 1976).

Our approach has two key elements. The first is the decomposition of meteorological

variables into two components: long-run climate norms and transitory weather shocks, the

latter defined as deviations from those norms. This decomposition is meant to have eco-

nomic content. It is likely that individuals and firms respond to information on climatic

variation they have observed and processed over the years. In contrast, economic agents

may be constrained to respond to weather shocks, by definition. As mentioned above, our

measure of adaptation is the difference between those two responses by the same economic

agents. In practice, we decompose temperature into a monthly moving average incorporating

information from the past three decades, often referred to as climate normal, and a deviation

from that 30-year average. This moving average is purposely lagged in the empirical analysis

to reflect all the information available to individuals and firms up to the year prior to the

measurement of the outcome variables.23

The second key element of our approach is identifying responses to weather shocks and

longer-term climatic changes in the same estimating equation. We are able to leverage

both sources of variation in the same estimating equation because of the properties of the

Frisch-Waugh-Lovell theorem (Frisch and Waugh, 1933; Lovell, 1963). The deseasonalization

embedded in the standard fixed-effects approach is approximately equivalent to the construc-

tion of weather shocks as deviations from long-run norms as a first step. Furthermore, there

is no need to deseasonalize the outcome variable to identify the impact of those shocks

(Lovell, 1963, Theorem 4.1, p.1001). As a result, we do not need to saturate the econometric

model with highly disaggregated time fixed effects; thus, we are able to also exploit variation

that evolves slowly over time to identify the impacts of longer-term climatic changes.

23A graphical representation of our decomposition has been illustrated for Los Angeles county in 2013 in
Appendix A.3 Figure A8, and over the entire sample period of 1980-2013 in Figure A9.
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Estimating Climate Impacts. As a first step, we decompose the observed daily maximum

temperature into a norm and a shock. The norm is operationalized by the 30-year monthly

moving average (MA).24 The shock is merely the deviation of the observed temperature from

that norm. Because ozone formation is directly tied to temperature, as discussed in Section

A, the impact of temperature on ambient ozone is the focus of our analysis. Given that

decomposition, we estimate the following equation:

Ozoneit = βW
N (TempWit ×Nonattainc,y−3) + βC

N(TempCit ×Nonattainc,y−3)

+ βW
A (TempWit × Attainc,y−3) + βC

A (TempCit × Attainc,y−3)

+Xitγ + ηis + φrsy + ǫit, (2)

where i represents an ozone monitor located in county c of NOAA climate region r, observed

on day t, season s (Spring or Summer), and calendar year y. Our analysis focuses on

the most common ozone season in the U.S. – April to September, as mentioned in the

background section – over the period 1980-2013. Ozone represents daily maximum ambient

ozone concentration, TempW represents the weather shock, and TempC the climate norm.

Hence, the response of ambient ozone to the temperature shock βW represents the short-run

effect of weather, and the response to the climate norm βC reflects the long-run impact of

climate. Nonattaincy denotes nonattainment designation, which is a binary variable equals

to one if a county c is not complying with the NAAQS for ambient ozone in year y. This

variable is lagged by three calendar years because EPA allows counties with heavy polluters

at least three years to comply with the ozone NAAQS, as discussed in the background

section. X represents time-varying control variables such as precipitation, which is similarly

24To make this variable part of the information set held by economic agents at the time ambient ozone
is measured, we lag it by one year. For example, the 30-year MA associated with May 1982 is the average
of May temperatures for all years in the period 1952-1981. Therefore, economic agents should have had at
least one year to respond to unexpected changes in climate normals at the time ozone is measured. Later, we
discuss almost identical results for longer lags. Also, we use monthly MAs because it is likely that individuals
recall climate patterns by month, not by day of the year. Indeed, broadcast meteorologists often talk about
how a month has been the coldest or warmest in the past 10, 20, or 30 years, but not how a particular day
of the year has deviated from the norm for that specific day. Later, we discuss qualitatively similar results
when we use daily instead of monthly moving averages.

15



decomposed into a norm and shock. Although less important than temperature, Jacob and

Winner (2009) point out that higher water vapor in the future climate may decrease ambient

ozone concentration.25 η represents monitor-by-season fixed effects, φ climate-region-by-

season-by-year fixed effects, and ǫ an idiosyncratic term.26

We exploit plausibly random, daily variation in weather, and monthly variation in climate

normals to identify the impact of climate change on ambient ozone concentration. Identifica-

tion of the weather effect is similar to the standard fixed effect approach (e.g., Deschenes and

Greenstone, 2007; Schlenker and Roberts, 2009), with the exception that because we isolate

the temperature shock as a first step, we do not need to include highly disaggregated time

fixed effects (Frisch and Waugh, 1933; Lovell, 1963). Identification of the climate effect relies

on plausibly random, within-season monitor-level monthly variation in lagged 30-year MAs

of temperature after controlling non-parametrically for regional shocks at the season-by-year

level.

To better understand the identification of climate impacts, consider the following thought

experiment that we observe in our data many thousands of times: take two months in

the same location and season (Spring or Summer). Now, suppose that one of the months

experiences a hotter climate norm than the other, after accounting for any time-varying

fluctuations in, e.g., atmospheric or economic conditions that affected the overarching climate

region at the season-by-year level. Our estimation strategy quantifies the extent to which

this difference in the climate norm affected the ozone concentrations observed on that month.

Therefore, this approach controls for a number of potential time-invariant and time-varying

confounding factors that one may be concerned with, such as the composition of the local

and regional atmosphere and technological progress.

25Although temperature is the primary meteorological factor affecting tropospheric ozone concentrations,
other factors such as wind and sunlight have also been noted as potential contributors. Later, we discuss
qualitatively similar results for a subsample with information on wind speed and sunlight.

26In unreported analyses we examine specifications with alternative fixed effects structures, such as in-
cluding latitude and longitude interacted with season-by-year, or replacing region-by-season-by-year with
state-by-season-by-year. Estimates from our preferred, more parsimonious specification are similar in mag-
nitude and significance to each of these alternatives.
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Our ultimate goal, however, is not just to identify adaptation via estimates of climate im-

pacts vis-à-vis weather shocks, but to identify whether there is a different level of adaptation

in nonattainment versus attainment counties. As the EPA was given substantial enforce-

ment powers to ensure that the goals of the Clean Air Act were met, policy variation itself

is plausibly exogenous conditional on observables and the unobserved heterogeneity embed-

ded in the fixed effects structure considered in our analysis (see, e.g., Greenstone, 2002;

Chay and Greenstone, 2005). In order to reach compliance, some states initiated their own

inspection programs and frequently fined non-compliers. However, for states that failed to

adequately enforce the standards, EPA was required to impose its own procedures for attain-

ing compliance. The inclusion of monitor-by-season fixed effects allows us to control for the

strong positive association observed in cross-sections among location of polluting activity,

high concentration readings, and nonattainment designations while preserving interannual

variation in attainment status for each individual monitor. Thus, the variation used in our

analysis comes from changes in status, as previously shown in Figure 2: from attainment to

nonattainment, or vice versa.

Measuring institution-induced Adaptation. Once we credibly estimate the impact of the

two components of temperature interacted with county attainment status, we recover a mea-

sure of institution-induced adaptation. The average adaptation in nonattainment counties

is the difference between the coefficients βW
N and βC

N in Equation (2). If economic agents

engaged in full adaptive behavior, βC
N would be zero, and the magnitude of the average

adaptation in those counties would be equal to the size of the weather effect on ambient

ozone concentration (for a review of the concept of climate adaptation, see Dell, Jones and

Olken, 2014). Indeed, under full adaptive behavior, the unexpected increase in climate norm

would lead economic agents to pursue reductions in ozone precursor emissions to avoid an

increase in ambient ozone concentration of identical magnitude of the weather effect in the

same month of the following year.27 In other words, agents would respond to “permanent”

27Again, later we consider cases where economic agents can take a decade or two to adjust. Because EPA
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changes in temperature by adjusting their production processes to offset that increase in the

climate norm. Unlike weather shocks, which influence ozone formation by triggering chemi-

cal reactions conditional on a level of ozone precursor emissions, changes in the 30-year MA

should affect the level of emissions.

We can measure adaptation in attainment counties in the same way: (βW
A − βC

A ). This

adaptation could arise from technological innovations, market forces, or regulations other

than the NAAQS for ambient ozone. Sources of this type of adaptation would be, for

example, the adoption of solar electricity generation, which reaches maximum potential by

mid-day, when ozone formation is also at high speed, and other Clean Air Act regulations

related to ozone – for example, restrictions on the chemical composition of gasoline, intended

to reduce VOC emissions from mobile sources (Auffhammer and Kellogg, 2011), and the NOx

Budget Trading Program (Deschenes, Greenstone and Shapiro, 2017).

Once we have measured adaptation in both attainment and nonattainment counties, we

can express adaptation induced by the NAAQS for ambient ozone matching Equation (1) as

IIA ≡ (βW
− βC)

︸ ︷︷ ︸

δC

× (✶N − ✶A)
︸ ︷︷ ︸

dX

= (βW
N − βC

N)− (βW
A − βC

A ). (3)

An important advantage of this approach is to have all those coefficients estimated in

the same equation. Hence, we can straightforwardly run a test of this linear combination

to obtain a coefficient and standard error for the measure of institution-induced adaptation

(IIA), and proceed with statistical inference.

V. Results

We begin by presenting our main findings on the impacts of temperature on ambient ozone

concentration, average adaptation, and adaptation induced by the existing institution of

the Clean Air Act – which we termed institution-induced adaptation. We then discuss the

may give counties with heavy emitters up to two decades to comply with ozone NAAQS, as discussed in the
background section, adaptive responses many years after agents observe changes in climate norms may be
plausible. Interestingly, we will find almost identical results.
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robustness of our results to the consideration of the distance of ozone concentrations from

the NAAQS threshold, and accounting for competing input regulations on ozone precursors

in the analysis. Following this, we examine the role of local beliefs in altering the level of

induced adaptation ultimately achieved. We report the heterogeneity of our results by local

beliefs regarding the existence of climate change.28 As we present our main findings, we

also discuss a number of additional robustness checks regarding measurement of climate,

alternative timing for economic agents to process changes in climate and engage in adaptive

behavior, and further specification checks and sample restrictions, among others.

A. The Role of Institutions for Inducing Adaptation to Climate Change

Table 1 reports our main findings on the role of existing government institutions and policy

in inducing climate adaptation. Before discussing the ozone NAAQS institution-induced

adaptation, we present the average climate impacts and adaptation across all counties in our

sample. For this purpose, we run a simplified version of Equation (2), where the temperature

shock and norm are not interacted with attainment status. Column (1) shows that a 1◦C

temperature shock increases average daily maximum ozone concentration by about 1.65ppb.

This can be seen as a benchmark for the ozone response to temperature because of the

limited opportunities to adapt in the short run.29 A 1◦C-increase in the 30-year MA, lagged

by one year and thus revealed in the year before ozone levels are observed, increases daily

maximum ozone concentration by about 1.16ppb, an impact that is significantly lower than

the response to a 1◦C temperature shock, indicating adaptive behavior by economic agents.

Indeed, column (3) presents the measure of adaptation – 0.49ppb – which is economically

and statistically significant. If adaptation was not taken into consideration, the impact of

28In our robustness checks we contrast these results with those associated with unrelated beliefs, conducting
a placebo exercise considering the local views on single parenthood

29We see it as a benchmark because we assume that economic agents are not be able to respond to weather
shocks. In reality, there might be some opportunities to make short-run adjustments in the context of ambient
ozone. Although developed countries have usually not taken drastic measures to attenuate unhealthy levels
of ambient ozone because concentrations are generally low, developing countries have often constrained
operation of industrial plants and driving in days of extremely high levels of ozone.
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temperature on ambient ozone would be overestimated by roughly 42 percent.

The estimates above represent average treatment effects. Because we are interested in

the role of institutions in potentially affecting adaptive behavior, we estimate heterogeneous

treatment effects by attainment status, as specified in Equation (2). Table 1, column (2),

reports the estimates disaggregated by whether the ozone monitors are located in attainment

or nonattainment counties. Given that attainment counties have cleaner air by definition,

on average their ozone responses to temperature changes are significantly lower. Column

(4) shows that adaptation in nonattainment counties is over 107 percent larger than in

attainment counties. As defined in Equation (3), the difference between those two adaptation

estimates – 0.33ppb – is our measure of institution-induced adaptation, shown at the bottom

of column (4). Therefore, a regulation put in place to correct an externality – the NAAQS

for ambient ozone – generates a co-benefit in terms of adaptation to climate change, on top

of the documented impact on ambient ozone concentrations (Henderson, 1996).30

Although it is not the focus of our study, it is imperative to discuss the degree of adap-

tation in attainment counties. The second estimate in column (4) – 0.31 ppb – indicates

that adaptive behavior is also present in those jurisdictions. The underlying reasons might

be technological innovation and market forces, as highlighted in previous studies (e.g., Olm-

stead and Rhode, 2011a,b; Hornbeck, 2012; Hornbeck and Naidu, 2014; Barreca et al., 2016),

other regulations affecting both attainment and nonattainment counties (e.g., Auffhammer

and Kellogg, 2011; Deschenes, Greenstone and Shapiro, 2017), or even preventive responses

30We examine the sensitivity of our results to a host of robustness checks in the Appendix. Table B1
varies our moving average measure of climate, Table B2 includes alternative timing for economic agents to
engage in adaptive behavior, and Table B3 explores further specification checks and sample restrictions.
Furthermore, we provide results using a variety of alternative matching rules between ozone monitors and
weather stations in Table B4: varying the distance cut-off, the number of monitors in the matching, and the
averaging procedure. Estimates in all of the above are relatively stable across these alternative approaches.
Additionally, although it has been shown that, e.g., manufacturing plants have relocated in response to ozone
nonattainment designations (Henderson, 1996; Becker and Henderson, 2000), results in Table B5 suggest that
firms are not responding differentially based on climatic variables. Lastly, observe that our standard errors
are clustered at the county level. Since the 30-year MAs and temperature shocks could be considered
generated regressors, we also provide standard errors block bootstrapped at the county level for our main
estimates in Appendix Table B6. Bootstrapped standard errors are all within 6% of those estimated via
clustering at the county level. Because the changes were usually relatively minor, for simplicity we used
clustered standard errors at the county level in the remainder of the analysis.
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in counties with ozone readings near the threshold of the NAAQS for ambient ozone, as ex-

plained below. In that sense, our measure of institution-induced adaptation might represent

a lower bound of how ozone NAAQS encourage adaptive behavior.

An example of adaptation triggered by innovation, market forces, and other regulations

in the context of ambient ozone arises from the adoption of solar panels for electricity gen-

eration. Higher temperatures lead to more ozone formation, but they also constrain the

operations of coal-fired power plants. Regulations under the Clean Water Act restrict the

use of river waters to cool the boilers when water temperature rises (e.g., McCall, Mack-

nick and Hillman, 2016). Because coal plants are important contributors of VOC and NOx

emissions, those constraints lead to a reduction in the concentration of ozone precursors. At

the same time, solar panels are more suitable for electricity generation in hotter areas, with

higher incidence of sunlight; thus, more extensively used in those places. Now, higher tem-

peratures combined with lower levels of ozone precursors – enabled by the adoption of solar

panels – may lead to lower levels of ambient ozone. Hence, adaptation driven by innovation,

market forces, and regulations other than the ozone NAAQS.

Estimates by Distance of Ozone Concentrations to NAAQS threshold. One may ponder

that the ideal setting to identify institution-induced adaptation would be to randomly assign

regulation, and compare the impact of climatic changes in regulated versus unregulated

jurisdictions. Nevertheless, this would work only if the regulation was unanticipated and

imposed only once. If regulations are anticipated, and can be assigned multiple times, in

multiple rounds, such as the Clean Air Act nonattainment designations, economic agents

may respond more similarly to the threat of regulation, even when it is randomly assigned.

They might be indifferent between making adjustments before or after being affected by the

regulation if more rounds of regulatory action are on the horizon. The intuition for these

results is similar to the outcomes of finitely versus infinitely repeated games (or games that

are being repeated an unknown number of times). Consider the prisoner’s dilemma game.

If played a finite number of times, defection in every game is the unique dominant-strategy
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Nash equilibrium, following familiar backward-induction arguments. But if played an infinite

(or an unknown) number of times, now the preferred strategy is not to play a Nash strategy

of the stage game, but to cooperate and play a socially optimum strategy.

In the case of the Clean Air Act, EPA designates counties out of compliance with NAAQS

if their pollution concentrations are above a known threshold. Such designations may change

over time depending on the adjustments made by economic agents in those jurisdictions. For

counties whose pollution concentration is around the threshold, economic agents may have

incentives to make efforts to comply with NAAQS no matter whether those counties are just

above or just below the threshold. If counties are even a little above the standards, EPA

mandates them to adopt emissions control technologies and practices to reduce pollution,

which is costly. If counties are a little under the standards, they may want to keep it that

way to avoid regulatory oversight. As a result, they may end up making efforts to maintain

the area under attainment. This somewhat similar adaptive behavior around the ozone

standards may reduce the estimates for institution-induced adaptation near the NAAQS

threshold.31

Table 2 reports estimates for subsamples of ozone monitor readings with concentrations

falling within 20 percent, above or below, the NAAQS threshold in Panel A, within 20-

40 percent of the threshold in Panel B, and over 40 percent away from the threshold in

Panel C. The subsample for the within 20 percent readings consists of about 13 percent

of the overall sample. As expected, the empirical evidence we provide for this subsample

indicates limited differential adaptation across attainment and nonattainment counties, but

still of nontrivial magnitude. The estimate for institution-induced adaptation, which is the

difference between the adaptation estimates in columns (2) and (4), is still economically and

statistically significant.

31It is important to mention that before the 1990 CAA amendments, EPA used a “too close to call”
nonattainment category with minimal requirements for areas just violating the NAAQS. Areas in this cat-
egory (with ozone levels up to 138ppb, hence above the threshold of 120ppb) were not subject to full SIP
requirements, but rather watched closely to see if their air quality was getting worse (Krupnick and Farrell,
1996). This malleability in enforcement may also reduce the estimate for institution-induced adaptation near
the NAAQS threshold.
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For the subsamples with observations of ambient ozone concentration within 20-40 per-

cent of the NAAQS threshold (25 percent of the overall sample), and over 40 percent away

from the threshold (62 percent of the overall sample), we cannot rule out that the estimates

of institution-induced adaptation reported in column (5) are similar to our main estimate.

Given that these two subsamples make up 87 percent of the overall sample, it is fair to say

that most of the institution-induced adaptation arises from monitors with ozone readings

relatively far from the NAAQS threshold.

Estimates considering input regulation for ozone precursors. During our period of anal-

ysis (1980-2013), three other policies aiming at reducing ambient ozone concentrations were

implemented in the United States: (i) regulations restricting the chemical composition of

gasoline, intended to reduce VOC emissions from mobile sources (Auffhammer and Kellogg,

2011), (ii) the NOx Budget Trading Program (Deschenes, Greenstone and Shapiro, 2017),

and (iii) the Regional Clean Air Incentives Market (RECLAIM) NOx and SOx emissions

trading program (Fowlie, Holland and Mansur, 2012). Because our focus in this study is to

estimate climate adaptation induced by the NAAQS for ambient ozone, it is imperative to

examine the sensitivity of our estimates of institution-induced adaptation when taking into

account these input regulations targeted at ozone precursors.

Auffhammer and Kellogg (2011) demonstrate that the 1980s and 1990s federal regula-

tions restricting the chemical composition of gasoline, intended to curb VOC emissions, were

ineffective in reducing ambient ozone concentration. Since there was flexibility regarding

which VOC component to reduce, to meet federal standards refiners chose to remove com-

pounds that were cheapest, yet not so reactive in ozone formation. Beginning in March

1996, California Air Resources Board (CARB) approved gasoline was required throughout

the entire state of California. CARB gasoline targeted VOC emissions more stringently

than the federal regulations. These precisely targeted, inflexible regulations requiring the

removal of particularly harmful compounds from gasoline significantly improved air quality

in California (Auffhammer and Kellogg, 2011). Therefore, we re-estimate our analysis re-
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moving the state of California from 1996 onwards. The results reported in Table 3 reveal

that the estimate for institution-induced adaptation in column (2), derived from column (1)

estimates of the impact of temperature shocks and norms on ambient ozone concentration, is

remarkably close to our overall estimate of institution-induced adaptation. Hence, it appears

that VOC regulations in California do not drive our estimate of climate adaptation induced

by the NAAQS for ozone. This is not surprising because the regulation was extended to all

counties in California – attainment and nonattainment counties.

Deschenes, Greenstone and Shapiro (2017) and Fowlie, Holland and Mansur (2012) both

find a substantial decline in air pollution emissions and ambient ozone concentrations from

the introduction of an emissions market for nitrogen oxides (NOx), another ozone precur-

sor. The NOx Budget Trading Program (NBP) examined by Deschenes, Greenstone and

Shapiro (2017) operated a cap-and-trade system for over 2,500 electricity generating units

and industrial boilers in the eastern and midwestern United States between 2003 and 2008.

Thus, we re-estimate our analysis excluding the states participating in the NBP, from 2003

onwards.32 The RECLAIM NOx and SOx trading program examined by Fowlie, Holland

and Mansur (2012) similarly operated a cap-and-trade system at 350 stationary sources of

NOx for the four California counties within the South Coast Air Quality Management Dis-

trict (SCAQMD) starting in 1994. Thus, we again re-estimate our analysis, excluding the

SCAQMD counties from 1994 onwards.33 Table 3 reports the results excluding NBP states

in columns (3) and (4), and excluding RECLAIM counties in columns (5) and (6). The

estimate for institution-induced adaptation in columns (4) and (6) are quite similar to our

overall estimate of institution-induced adaptation. Despite being effective in reducing NOx

and ozone concentrations, the NBP and RECLAIM programs do not seem to affect climate

adaptation induced by the NAAQS for ozone. Again, this is not surprising because it affected

32NBP participating states include: Alabama, Connecticut, Delaware, Illinois, Indiana, Kentucky, Mary-
land, Massachusetts, Michigan, Missouri, New Jersey, New York, North Carolina, Ohio, Pennsylvania, Rhode
Island, South Carolina, Tennessee, Virginia, and West Virginia, and Washington, DC. The NBP operated
only in northeastern states on May 1 of 2003, and expanded to the other states on May 31 of 2004 (Deschenes,
Greenstone and Shapiro, 2017).

33Participating counties include: Los Angeles, Riverside, San Bernardino, and Orange.
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both attainment and nonattainment counties.

B. Climate Beliefs May Reinforce Co-Benefits from Institution-Induced Adaptation

So far we have demonstrated that existing government institutions and policy can be effective

in inducing climate adaptation. Now, we examine whether climate change beliefs may alter

the effectiveness of such policies. In the absence of direct climate policy at the national and

international stage, action driven by local culture may help address the challenge of climate

change (Stavins et al., 2014). On the one hand, the enormous heterogeneity in economic and

environmental preferences/beliefs across local jurisdictions (e.g., Howe et al., 2015) makes the

enactment of comprehensive climate policy difficult (Goulder, 2020). On the other hand, the

same heterogeneity in local beliefs can be leveraged to push forward local actions supporting

climate adaptation.34 Using the results of a relatively recent county-level survey regarding

residents’ beliefs in climate change (Howe et al., 2015), we split the set of counties in our

sample into terciles of high, median, and low belief, and interact indicators for high- and low-

belief counties with our temperature and control variables.35 Appendix Table B7 shows that

low-belief counties are, on average, less populous, poorer, and more politically conservative

than mid-belief counties, while high-belief counties skew more towards the political left, are

richer and more populous.

Table 4 reports the results. The main temperature effects represent the mid-belief tercile,

whose interactions are omitted, and the coefficients of the interactions with low- and high-

belief terciles are relative to the omitted category. In column (1) we can see that the ozone

response to temperature is consistently larger in high-belief counties relative to the middle

tercile, while for low-belief counties the evidence is mixed. This pattern is consistent with

more economic activity in the more urban and richer high-belief counties.

34Following North (1991), one may consider these preferences/beliefs local institutions. According to him,
“institutions (...) consist of both informal constraints (sanctions, taboos, customs, traditions, and codes of
conduct), and formal rules (constitutions, laws, property rights)” (p.97).

35Appendix Figure A10 depicts the evolution of ozone concentration for these three sets of counties from
1980-2013. While the pattern for low- and median-belief counties track quite similarly, high-belief counties
began with higher ozone concentrations, on average, but have now mostly converged with the other counties.
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In column (2), the adaptation estimates for the mid-belief tercile are qualitatively similar

to our main estimates for nonattainment and attainment counties, although the implied

level of adaptation is somewhat muted for nonattainment counties and somewhat larger

for attainment counties. Comparatively, adaptation in low-belief counties is statistically

indistinguishable from the middle-tercile when in nonattainment, but 44 percent lower when

in attainment. This pattern is reversed for high-belief counties, with statistically indifferent

adaptation relative to the middle-tercile when in attainment, but 45 percent higher when

out of attainment. These results translate into positive measures of institution-induced

adaptation across all three sets of counties, as seen in column (3) – although critically arising

from different channels. Low-belief counties, bound by the NAAQS when in nonattainment,

are constrained to meet at least the minimum level of ozone reduction, inducing adaptation

levels similar to the middle-tercile. When in attainment, however, low-belief counties make

much less effort than other counties to adapt – this is reasonable because they do not face

stringent regulation, are generally poorer, and do not believe in climate change. In this

case, the NAAQS induces adaptation by enforcing a required level of action. Conversely,

high-belief counties engage in normal levels of adaptation when in attainment, but increase

their adaptive behavior when in nonattainment. This, too, seems reasonable, as this set

of counties is probably the most affected by the NAAQS, are generally richer – thus more

able to afford the adjustments implied by the NAAQS – and are more believing in climate

change – thus more willing to adjust behaviors or make investments in response to a changing

climate.

Placebo estimates considering local preferences unrelated to environmental amenities. Be-

cause local beliefs in climate change are closely related to income, education, and political

affiliation, one may wonder whether the heterogeneity in the response to environmental pol-

icy is not driven by other local unobserved factors. To provide evidence corroborating the

role of environmentally-related local preferences, we investigate whether local views on sin-

gle parenthood, as proxied by the county fraction of children growing up in single-parent
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families in 2012-16 (Chetty et al., 2018), affect climate adaptation induced by the NAAQS

for ambient ozone. For ease of comparison, we once again split counties into low- median-

and high-“belief” counties based on this measure and interact the indicators for low- and

high-belief with our other variables, taking the median as the baseline. Table B8 reports the

results in the same format as Table 4. In column (1), the interactions of temperature shocks

and norms in nonattainment and attainment counties are by and large not statistically sig-

nificant. The implied adaptation estimates presented in column (2) show no meaningful

changes for counties in the low- or high-belief terciles. More importantly, the estimates

for institution-induced adaptation displayed in column (3) are statistically indistinguishable

across all terciles of local preferences for single parenthood. Thus, the local unobserved fac-

tors that may shape responses to environmental policy seem to be the ones related to local

preferences for environmental amenities, as we have hypothesized.

Ozone formation in VOC- and NOx-limited areas: implications for local adaptation. As

shown above, local climate change beliefs may play an important role in the level of adap-

tation induced by the CAA. At the same time, the underlying composition of precursor

emissions in the local atmosphere may also play an important role. Due to the Leontief-like

production function of ozone, counties may find themselves with a baseline atmospheric com-

position that is “limited” in one precursor component – VOC or NOx. Urban areas are more

prone to being VOC-limited, due to high levels of NOx pollution from production facilities

and transportation, while rural areas are more prone to being NOx-limited due to the lack

of such facilities and proximity to more VOC-rich undeveloped land. Counties with such a

“limited” atmosphere may find it easier to adapt to climate change because even a small

reduction in the limiting precursor’s emissions could lead to meaningful reductions in ozone.

Nonattainment counties in particular may exploit this option in an attempt to bring them-

selves back into attainment, amplifying institution-induced adaptation in precursor-limited

areas. We explore this important feature of the production function of ozone in Appendix

Table B9 by interacting our main specification with indicators for whether a county is, in
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general, VOC- or NOx- limited – taking counties with non-limited atmosphere as the base-

line. Unfortunately, data on VOC and NOx emissions are less available than for ozone,36

and thus our estimating sample is restricted to approximately 20 percent of our main sam-

ple. For reference, we thus first estimate our main specification on this reduced sample,

finding results strikingly similar to Table 1, reported here in column (1), and in column (2)

for the implied measures of adaptation. Columns (3) and (4) report estimated impacts and

implied adaptation, respectively, once interacting our measures of VOC- and NOx-limited

atmosphere. Our results suggest that while counties without a precursor-limited atmosphere

still observe institution-induced adaptation, the effect is almost quadrupled in VOC-limited

counties. NOx-limited counties similarly see a large increase, approximately doubling the

effect in non-limited counties, but the estimate is statistically imprecise – likely due to the

smaller number counties that fall into this sub-group.37

While the above analyses examine heterogeneity in adaptive response across inherently

spatial dimensions, areas with different beliefs, or underlying atmospheric conditions, one

may wonder how adaptation varies across other dimensions, such as time or the temperature

distribution itself. When we examine the estimates by decade, as reported in Appendix Table

B10, the magnitude of institution-induced adaptation in the 1980’s is marginally larger,

declining somewhat in the 1990’s, and further still in the 2000’s – for all three decades,

however, estimates of institution-induced adaptation are not statistically different from our

central result. Examining the estimates across the temperature distribution, in Tables B11a

and B11b, we see an almost doubling of institution-induced adaptation above 30◦C, and

almost tripling above 35◦C, relative to days where temperature was below 30◦C – in line

with the idea that nonattainment counties may be especially focusing adaptive efforts on

those hottest days where they would be most likely to exceed the NAAQS threshold.

36See Appendix A.3 for further details of this data and our construction of the “limited” indicator variables.
37Specifically, observations in non-limited counties account for just under 60 percent of the estimating

sample, while just over 36 percent are VOC-limited observations and the remainder, approximately 4 percent,
are NOx-limited.
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C. Climate Adaptation Co-Benefits from Existing Institutions: Some Calculations

Having presented our main findings, we now provide some back-of-the-envelope calculations

on the co-benefits of the existing Clean Air Act institution associated with climate adapta-

tion induced by the NAAQS for ambient ozone. Following the sufficient statistic approach

(Harberger, 1964; Chetty, 2009; Kleven, forthcoming) as outlined in Section II, these cal-

culations combine our main estimates from Table 1 with climate projections from the U.S.

Fourth National Climate Assessment (Vose et al., 2017), and the social benefits of ozone

reductions from Deschenes, Greenstone and Shapiro (2017). As detailed in Equation (3), all

of these elements can be mapped directly into the components of Equation (1), allowing us

to interpret the resulting values as welfare changes. Additionally, we also discuss how these

co-benefits are affected by the projected changes in climate over the 21st century.

Formally, we map the components of Equation (1) to each of these three “sufficient statis-

tics,” summing across every county n in the set of counties ever designated as nonattainment

(NA) within our sample period:

∆W ≈ −

∑

n∈NA
r

︸︷︷︸

DGS

δC∆Xn
︸ ︷︷ ︸

Table1

∆Cn
︸︷︷︸

V ose

, (4)

where r is treated as a fixed value, approximately equal to $1.75 million (2015 US) per

county per year, following Deschenes, Greenstone and Shapiro (2017). The value of ∆C

varies depending on the chosen climate projection from Vose et al. (2017), while δC∆X

varies depending on whether, and which type, of adaptation is being calculated, following

directly from our central results in columns (2) and (4) of Table 1.38

Table 5 presents the costs of climate change, the savings from overall adaptation, and

particularly the savings from institution-induced adaptation – the co-benefit of the CAA

which is the focus of this study. We focus on the 509 counties most affected by the NAAQS

for ambient ozone (nonattainment counties), representing about two thirds of the U.S. popu-

38As defined in Equation (1), emissions are taken as proportional to X; thus, although Equation (4) focuses
on changes in ozone concentration, for simplicity and consistency we represent it here as ∆X.
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lation. The row labeled costs “without adaptation” uses the estimated effects of temperature

shocks on ambient ozone – βW
N – and the one labeled “with adaptation” uses the estimated

impacts of changes in climate norms (lagged 30-year MAs) – βC
N . These are the main results

reported in Table 1 – the estimated coefficients for nonattainment counties from column (2).

In addition, the row labeled savings “from adaptation” report the difference between the

costs with and without adaptation – βW
N − βC

N – and the row labeled “institution-induced

adaptation” displays the portion of the adaptation due to the NAAQS for ambient ozone –

IIA as in Equation (3).

Column (1) reports the costs associated with increased ambient ozone, and potential

savings from adaptation, from a 1◦C increase in temperature – ∆C = 1. The costs arising

from additional ambient ozone amount to approximately $1.77 billion (2015 USD) per year

when we use the benchmark effect of temperature shocks that do not take into account

adaptation. They reduce to approximately $1.2 billion using the impact of changes in climate

norms, which does incorporate adaptive behavior. The difference of $567 million per year is

the total potential savings from adaptation, 52 percent of which is induced by the NAAQS

for ambient ozone. The portion induced by the NAAQS represents the co-benefits of the

Clean Air Act in terms of climate adaptation, and can be interpreted as additional societal

welfare gains from that existing institution, as informed by Equation (1). In the next four

columns, all estimates are scaled up with the temperature projections from Vose et al. (2017)

– e.g., ∆C = 1.4 in column (2). Institution-induced adaptation, in particular, reaches the

range of $412-471 million per year by mid-century, and $824-1,412 million by the end of

the century. These are nontrivial additional welfare gains brought about by the air quality

standards regarding ambient ozone.

VI. Concluding Remarks

This study conceptualized and presented the first credible estimates of institution-induced

adaptation. In the absence of new international agreements or new federal legislation to
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tackle climate change directly, we have demonstrated conceptually and empirically that ex-

isting government institutions and policy established for reasons unrelated to climate change

may be already inducing adaptation to climate change. We examined the impact of tem-

perature changes on ambient ozone concentration in the United States from 1980-2013, and

measured the role of institution-induced adaptation. Our main finding was that adapta-

tion in counties out of attainment with air quality standards was 107 percent larger than in

counties under attainment, implying substantial institution-induced adaptation. But we also

provided evidence that local beliefs about climate change appear to matter in those adaptive

responses, suggesting an important role for local factors in second-best climate policy.

By establishing that government institutions and policy unrelated to climate change are

enhancing climate adaptation, our study points to an alternative set of incentives encouraging

adaptive behavior besides innovation and market forces, which have been highlighted in

previous research.39 At the same time, our findings reveal a different role for public policy

relative to a few other studies which caution that government actions intended to protect

the public may reduce the incentive to engage in private self-protection.40 Our results differ

from these studies because, in our case, the institution we examined corrects a market

failure – an air pollution externality – whereas the government programs examined in prior

work may have distorted private behavior. Again, the insight here goes to the heart of the

second-best theory. When the outcome of interest is the result of market failures, climate

change can exacerbate the magnitude of the local unpriced externality. Nevertheless, existing

institutions created for reasons unrelated to climate change can then serve as a “surrogate

tax” for the nonexistent or incomplete climate policy, and induce climate adaptation.41 It

39Olmstead and Rhode (2008, 2011a,b) highlighted crop choice and biological innovation in agriculture;
Hornbeck (2012), Hornbeck and Naidu (2014), and Deryugina and Molitor (2020) pointed to migration; and
Barreca et al. (2016) called attention to changes in the use of existing technologies, such as air conditioning.

40Annan and Schlenker (2015) found that the federal crop insurance program deterred farmers from en-
gaging in optimal protection against extreme heat. Similarly, Deryugina (2017) showed that social safety
nets not specifically targeting areas affected by extreme weather events may have discouraged out-migration.

41Another example of institution-induced adaptation may arise in the context of the Clean Water Act
(Keiser and Shapiro, 2019a,b). The cleaning of the rivers might allow drought-prone locations to have
alternative sources of drinking water. Think of the western region of the United States, where droughts may
become more frequent with climate change. Water shortages may be addressed by the rivers cleaned up by
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is imperative to reiterate, however, that our findings do not imply that efforts to enact

comprehensive climate policy should be undermined. Rather, they should be recognized as

a stepping stone towards reducing the cost of inaction (Stavins, 2019; Goulder, 2020).

To the best of our knowledge, we provided the first direct estimates of incidental benefits

of current public policy in terms of climate adaptation. Because we are studying climate

change, the first-best policy fostering adaptation should be carbon pricing. When that option

is politically infeasible, however, a second-best solution can be implementing or strengthening

policies correcting market failures associated with outcomes that depend on climate. The

NAAQS for ambient ozone – the focus of our study – not only address an externality but

also stimulate adaptation because climate is an input in ozone formation.

Our findings may contribute to the design of pollution control policy as well. The EPA

has recently reviewed the NAAQS for ambient ozone, and decided to maintain the current

threshold of 70ppb (USEPA, 2020b). Almost concomitantly, EPA finalized a rule rebuking

the use of co-benefits – or incidental benefits not directly related to a targeted pollutant – to

justify regulation for that pollutant (USEPA, 2020a).42 This might affect future reviews of

the ozone standards because the last revision in 2015 relied heavily on the co-benefits arising

from reductions in particulate matter (USEPA, 2015a,b).

To understand how our results may be useful in the design of ambient ozone regulation, let

us discuss some back-of-the-envelope calculations incorporating climate projections. Accord-

ing to the 2015 EPA’s Final Ozone NAAQS Regulatory Impact Analysis (USEPA, 2015b),

the annual nationwide costs to reduce the ambient ozone standards by 1ppb were approx-

imately $296 million (2015 USD), and the ozone-only benefits from that reduction ranged

from $376-632 million.43 On the other hand, the annual nationwide PM2.5 co-benefits of

NOx reductions associated with the 1ppb reduction in the ambient ozone standards ranged

the establishment of the Clean Water Act.
42This change formalizes the view that cross-pollutant co-benefits should not carry the same weight as

direct benefits, which has implications for future rulemakings, including the standards for ambient ozone.
43For reference, the 1997 NAAQS for ambient ozone (implemented in 2004 due to lawsuits) was 80ppb.

That was revised downward to 75ppb in 2008, and 70ppb in 2015. Also, ozone-only benefits reflect short-term
exposure impacts, and as such are assumed to occur in the same year as ambient ozone reductions.

32



from $478-1,058 million, assuming a 7% discount rate, which was what EPA adopted in the

main analysis. Now, under the RCP 4.5 climate change scenario for mid-century United

States, institution-induced adaptation from the projected 1.4◦C increase in average tem-

perature would be 0.46ppb. As reported in Table 5, this represents $412 million in indirect

adaptation-related benefits for the 509 counties that had been ever out of attainment with the

ozone NAAQS in the period of our analysis, representing about two thirds of the U.S. popu-

lation. Scaling that up to make it comparable to the measures above associated with 1ppb,

institution-induced adaptation of 1ppb – which is what would happen approximately by the

end of the century under the RCP 8.5 scenario – would imply annual indirect adaptation-

related benefits for those 509 counties in the order of $1,412 million. Hence, only the indirect

benefits in terms of institution-induced adaptation for about a third of the U.S. population

would more than offset the annual nationwide costs of reducing the ambient ozone stan-

dards by 1ppb by mid-century.44 Therefore, it is urgent that EPA takes climate change into

account in regulatory impact analyses of ambient ozone standards.

44These back-of-the-envelope calculations should be interpreted with caution. These indirect benefits may
be considered co-benefits as well; they are just not arising from pollutants other than ozone. Thus, from the
legal point of view, it is unclear how EPA may consider them. Notwithstanding, it is important to recognize
in the current and future revisions of the standards that the NAAQS for ambient ozone are already enabling
adaptation to climate change.
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Figure 1: Conceptual Framework on Institution-Induced Adaptation

Notes: This figure provides a schematic representation of the conceptual framework used in our analysis.
The the y-axis represents the output – ozone formation – and the x-axis represents a composite index I(.)
of two inputs – NOx and VOCs – whose levels move along the linear production function F (I(NOx,VOCs),
Climate) represented by the upward-sloping black curve. The blue horizontal line represents the maximum
ambient ozone concentration a county may reach while still complying with the NAAQS for ambient ozone.
In point A, a county is complying with the standards. When average temperature rises, the production
function shifts upward and to the left, and is now represented by the red upward-sloping curve. For the same
level of the index I(NOx,VOCs), ozone concentration increases to point B. Because the county is now out of
compliance with the the NAAQS, counties are required to make adjustments in their production processes to
comply with the standards. As they take steps to reduce emissions of ozone precursors to reach attainment,
moving along the new production function curve until point C, those economic agents are in fact adjusting to
a changing climate. IIA stands for institution-induced adaptation, and represents the adaptation to climate
change triggered by the existing institution of the Clean Air Act’s NAAQS.
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Figure 2: Evolution of Maximum Ozone Concentration and Counties in Nonattainment
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Notes: This figure displays the evolution of maximum ambient ozone concentrations in the United States
over the period 1980-2013 and the evolution of the proportion of counties violating the ambient ozone
standards among the counties with ozone monitors. Panel (A) depicts daily maximum 1-hour ambient ozone
concentrations over time (annual average), split by counties designated as in- or out- of attainment under the
National Ambient Air Quality Standards (NAAQS). The 1979 NAAQS for designating a county’s attainment
status was based on an observed 1-hour maximum ambient ozone concentration of 120 parts per billion (ppb)
or higher. Here we contrast this attainment status cutoff with the maximum yearly ozone concentrations of
attainment and nonattainment counties. Appendix Figure A4 further compares these heterogeneous trends
in ozone levels with the updated 1997 (implemented in 2004 due to lawsuits), 2008, and 2015 NAAQS levels.
Panel (B) depicts the share of monitored counties that were out of attainment with the NAAQS for ozone
during each year of our sample period. As can be clearly seen, this proportion has declined over time as the
NAAQS regulations took effect. Also, observe that the policy change in 2004 resulted in many additional
counties falling out of attainment, indicating that there was a nontrivial number of counties with average
ozone levels at the margin of nonattainment.
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Figure 3: Climate Norms and Shocks Over the Period of Analysis (1980-2013)
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Notes: This figure depicts US temperature over the years in our sample (1980-2013), decomposed into their
climate norm and temperature shock components. The climate norm (Panel A) and temperature shocks
(Panel B) are constructed from a complete, unbalanced panel of weather stations across the US from 1950
to 2013, restricting the months over which measurements were gathered to specifically match the ozone
season of April–September, the typical ozone season in the US (see Appendix Table A2 for a complete list of
ozone seasons by state). Recall that the climate norm represents the 30-year monthly moving average of the
maximum temperature, lagged by one year, while the temperature shock represents the difference between
daily observed maximum temperature and the climate norm. The solid line in Panel (A) smooths out the
annual averages of the 30-year moving averages, and the horizontal dashed lines in Panel (B) highlights that
temperature shocks are bounded in our period of analysis.
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Table 1: Climate Impacts on Ambient Ozone and Adaptation

Daily Max Ozone Levels (ppb) Implied Adaptation

(1) (2) (3) (4)

Temperature Shock 1.648***
(0.058)

Climate Norm 1.161*** 0.487***
(0.049) (0.036)

Nonattainment x Shock 1.990***
(0.079)

Nonattainment x Norm 1.351*** 0.639***
(0.067) (0.054)

Attainment x Shock 1.263***
(0.027)

Attainment x Norm 0.956*** 0.308***
(0.035) (0.029)

Institution Induced 0.332***
(0.056)

Nonattainment Control Yes Yes
Precipitation Controls Yes Yes
Fixed Effects:

Monitor-by-Season Yes Yes
Region-by-Season-by-Year Yes Yes

Observations 5,139,529 5,139,529
R2 0.428 0.434

Notes: This table reports our main findings regarding the climate impacts on ambient ozone concentrations
(in parts per billion – ppb) over the period 1980-2013, as well as the implied estimates of adaptation, in
particular institution-induced adaptation. Column (1) reports climate impact estimates (national average),
with daily temperature decomposed into climate norms and temperature shocks. Recall that the climate
norm represents a 30-year monthly moving average of temperature, lagged by 1 year, while the temperature
shock reflects the daily difference between observed temperature and this norm. In column (2) we interact
the climate norm and temperature shock with indicators for whether counties have been designated as in-
or out- of attainment under the National Ambient Air Quality Standards (NAAQS) for ambient ozone, to
estimate heterogeneous effects across attainment and nonattainment counties, as specified in Equation (2).
The attainment status is lagged by 3 years, because EPA allows at least this time period for counties to return
to attainment levels. The last two columns report our adaptation estimates. By comparing the impacts of
climate norm and temperature shock from column (1), we obtain our estimate of overall adaptation in column
(3). Similarly, in column (4) we report the adaptation in attainment and nonattainment counties separately,
which we obtain by comparing the impacts of climate norm and temperature shock reported in column (2).
As defined in Equation (3), the difference between adaptation in nonattainment and attainment counties is
our measure of institution-induced adaptation. Standard errors are clustered at the county level. ***, **,
and * represent significance at 1%, 5% and 10%, respectively.
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Table 2: Results by Distance of Ozone Concentrations to NAAQS Threshold

Panel A. Ozone (ppb) Within 20% of NAAQS Threshold

Nonattainment Attainment Induced

Ozone (ppb) Adaptation Ozone (ppb) Adaptation Adaptation

(1) (2) (3) (4) (5)

Temperature Shock 0.610*** 0.382***
(0.024) (0.014)

Climate Norm 0.539*** 0.071** 0.395*** −0.013 0.084***
(0.033) (0.034) (0.017) (0.014) (0.029)

Observations 676,068 676,068
R2 0.825 0.825

Panel B. Ozone (ppb) Within 20% - 40% of NAAQS Threshold

Temperature Shock 0.758*** 0.300***
(0.077) (0.011)

Climate Norm 0.484*** 0.274*** 0.264*** 0.036** 0.238***
(0.061) (0.036) (0.025) (0.018) (0.043)

Observations 1,300,386 1,300,386
R2 0.727 0.727

Panel C. Ozone (ppb) Over 40% away from NAAQS Threshold

Temperature Shock 1.225*** 0.772***
(0.123) (0.024)

Climate Norm 0.673*** 0.552*** 0.479*** 0.293*** 0.259***
(0.063) (0.076) (0.038) (0.028) (0.089)

All Controls Yes Yes
Observations 3,162,755 3,162,755
R2 0.429 0.429

Notes: This table reports results from our main specification in Equation (2) for subsamples of ozone monitor
readings over the period 1980-2013 with concentrations falling within 20 percent of the NAAQS threshold
in Panel (A), between 20-40 percent away from the threshold in Panel (B), and over 40 percent away from
the threshold in Panel (C). Note that, within each panel, the estimates for nonattainment and attainment
counties reported in columns (1) and (3) come from a single estimating equation. Columns (2) and (4)
represent the implied measures of adaptation, while column (5) reports the resulting measure of institution-
induced adaptation as the difference of column (4) from column (2). Recall that the climate norm represents
a 30-year monthly moving average of temperature, lagged by 1 year, while the temperature shock reflects
the daily difference between observed temperature and this norm. The full list of controls are the same as
in the main model, depicted in column (2) of Table 1 for each panel in this table. For reference, the 1979
NAAQS was based on an observed 1-hour maximum ambient ozone concentration of 120ppb or higher, while
the 1997 amendment (implemented in 2004 due to lawsuits) changed this to an observed maximum 8-hour
average ambient ozone concentration of 80ppb or higher, and the 2008 update further reduced this to 75ppb.
Standard errors are clustered at the county level. ***, **, and * represent significance at 1%, 5% and 10%,
respectively. 44



Table 3: Accounting for Competing Input Regulations Aiming at Ambient Ozone Reductions

VOC Regulations NOx Regulations
(Excluding California) (Excluding NBP States) (Excluding RECLAIM Counties)

Ozone (ppb) Adaptation Ozone (ppb) Adaptation Ozone (ppb) Adaptation

(1) (2) (3) (4) (5) (6)

Nonattainment x Shock 2.032*** 2.050*** 1.987***
(0.092) (0.090) (0.082)

Nonattainment x Norm 1.370*** 0.662*** 1.430*** 0.620*** 1.320*** 0.667***
(0.061) (0.064) (0.080) (0.062) (0.055) (0.061)

Attainment x Shock 1.275*** 1.267*** 1.263***
(0.028) (0.031) (0.027)

Attainment x Norm 0.970*** 0.305*** 0.978*** 0.290*** 0.946*** 0.317***
(0.034) (0.028) (0.041) (0.034) (0.033) (0.029)

Institution Induced 0.358*** 0.331*** 0.349***
(0.065) (0.063) (0.062)

All Controls Yes Yes Yes
Observations 4,631,413 4,338,183 5,008,323
R2 0.432 0.443 0.439

Notes: This table reports results from our main specification in Equation (2) but excluding locations with competing regulations – input regulations
aimed at reducing ambient ozone concentrations via reductions in ozone precursors (VOCs and NOx). Three of these regulations were implemented in
the United States over our sample period 1980-2013: (i) regulations restricting the chemical composition of gasoline, intended to reduce VOC emissions
from mobile sources (Auffhammer and Kellogg, 2011), (ii) the NOx Budget Trading Program (Deschenes, Greenstone and Shapiro, 2017), and (iii) the
Regional Clean Air Incentives Market (RECLAIM) NOx and SOx emissions trading program (Fowlie, Holland and Mansur, 2012). Because our goal
is to estimate climate adaptation induced by the NAAQS for ambient ozone, here we examine the sensitivity of our estimates of institution-induced
adaptation when accounting for these input regulations. Column (1) excludes California from 1996 onwards, when stringent VOC regulations were in
place. Column (3) excludes the states participating in the NBP from 2003 onwards, when the program was in effect. Column (5) excludes the four
California counties within the South Coast Air Quality Management District from 1994 onwards, when the RECLAIM was in operation. The implied
adaptation estimates presented in columns (2), (4), and (6), are derived from the estimates reported in columns (1), (3), and (5), respectively. Recall
that the climate norm represents a 30-year monthly moving average of temperature, lagged by 1 year, while the temperature shock reflects the daily
difference between observed temperature and this norm. The full list of controls are the same as in the main model, depicted in column (2) of Table
1. Standard errors are clustered at the county level. ***, **, and * represent significance at 1%, 5% and 10%, respectively.
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Table 4: Adaptation by Local Beliefs in Climate Change

Max Ozone (ppb) Implied Adaptation Induced Adaptation

(1) (2) (3)

Nonattainment x Shock 1.698***
(0.060)

x Low Belief 0.020
(0.087)

x High Belief 0.388***
(0.108)

Nonattainment x Norm 1.171*** 0.527***
(0.085) (0.087)

x Low Belief −0.040 0.060
(0.086) (0.094)

x High Belief 0.152 0.236**
(0.103) (0.107)

Attainment x Shock 1.268***
(0.033)

x Low Belief −0.093*
(0.049)

x High Belief 0.057
(0.069)

Attainment x Norm 0.874*** 0.394*** 0.133*
(0.043) (0.037) (0.074)

x Low Belief 0.081 −0.173*** 0.234**
(0.062) (0.051) (0.107)

x High Belief 0.139* −0.082 0.318**
(0.081) (0.071) (0.144)

All Controls Yes
Observations 5,139,529
R2 0.435

Notes: This table reports differential climate and adaptation estimates according to local beliefs on the
existence of climate change. All counties in the sample were split into terciles based on the results of a
survey conducted on climate change beliefs (Howe et al., 2015), and those terciles were then interacted with
the main variables in Equation (2). In column (1), the main impacts of the climate norm and temperature
shock represent the effects in counties having beliefs in the middle tercile (for which the interactions have been
omitted). The coefficients on the interaction terms reveal the incremental effects of the climate norm and
temperature shock in low- and high-belief terciles. Column (2) reports our implied measures of adaptation.
By comparing the main estimates of the climate norm and shock in column (1), we obtain adaptation in
mid-belief counties. Using the coefficients on the interaction terms, we obtain the incremental adaptation
in low- and high-belief counties in comparison to the mid-belief counties. Column (3) displays the measure
of institution-induced adaptation for the mid-belief tercile, followed by the incremental induced adaptation
in low- and high-belief terciles. Each estimate represents the difference of adaptation in nonattainment and
attainment counties reported in column (2). The full list of controls are the same as in the main model,
depicted in column (2) of Table 1. Standard errors are clustered at the county level. ***, **, and * represent
significance at 1%, 5% and 10%, respectively.
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Table 5: Implied Impacts of Ambient Ozone Climate Penalty

Nonattainment Counties

1◦C Increase RCP 4.5 Scenario RCP 8.5 Scenario

2050 2100 2050 2100

(1) (2) (3) (4) (5)

Costs (Millions 2015 USD/year)
Without Adaptation 1,766 2,473 4,946 2,826 8,479

With Adaptation 1,199 1,679 3,357 1,918 5,755

Savings (Millions 2015 USD/year)
From Adaptation 567 794 1,589 908 2,723

Institution-Induced Adaptation 294 412 824 471 1,412

Notes: This table reports some back-of-the-envelope calculations on a class of co-benefits of the existing
Clean Air Act institution – climate adaptation induced by the NAAQS for ambient ozone. The calculations
are derived from the main estimates in Table 1 and the costs associated with those climate penalties on
ambient ozone in the United States, for all 509 counties ever in nonattainment in our sample, under a variety
of climate scenarios. The social costs of ozone increases are inferred from the estimated willingness to pay
(WTP) for a 1 ppb decrease in the mean 8-hour summer ozone concentration in the states participating in
the U.S. NOx Budget Program – about $1.7 million (2015 USD) per county per year (Deschenes, Greenstone
and Shapiro, 2017, p.2985, Table 6, Panel D, Column 5). Column (1) reports the impacts of a 1◦ Celsius
increase in temperature as a baseline effect, while columns (2) and (3) extend these effects to match the
expected temperature increases under the Representative Concentration Pathway (RCP) 4.5 climate scenario
at mid- and late- century. Similarly, columns (4) and (5) extend the effects out to mid- and late- century
under the more damaging RCP 8.5 climate scenario. Temperature projections are based on global models
and downscaled products from CMIP5 (Coupled Model Intercomparison Project Phase 5) using a suite of
RCPs. The annual average temperature of the contiguous United States is projected to rise throughout the
century. Increases for the period 2021-2050 relative to 1976-2005 are projected to be about 1.4◦C (2.5◦F)
for a lower scenario (RCP4.5) and 1.6◦C (2.9◦F) for the higher scenario (RCP8.5). In other words, recent
record-breaking years may be “common” in the next few decades. By late-century (2071-2100), the RCPs
diverge significantly, leading to different rates of warming: approximately 2.8◦C (5.0◦F) for RCP4.5, and
4.8◦C (8.7◦F) for RCP8.5 (Vose et al., 2017, p.195). In this table, the first row reports the expected effect
of the relevant temperature increase by using the estimate of temperature shock from column (2) of Table 1.
The second row then reports what these impacts would be after including adaptation by instead using the
estimate of climate norm from the same column of Table 1. Row three displays the implied savings, simply
reflecting the difference between the first two rows. Further, by taking the difference between the measures
of adaptation in nonattainment and attainment counties from Table 1, column (4), row four reports the
component of these savings that can be attributed to adaptation induced by the NAAQS for ambient ozone,
which we termed institution-induced adaptation.
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Appendix A. The National Air Quality Standards, Ozone Formation, and

Additional Data Discussion

This appendix section provides background information on the National Ambient Air Quality

Standards in Section A.1 as well as background information on ozone pollution in Section

A.2. Section A.3 then provides further details on the data sets discussed in Section III, as

well as auxiliary data sets used in alternative specifications. It then includes relevant Figures

and Tables as outlined below.

Figure A1. Ozone Monitor Location by Decade of First Appearance

Figure A2. Temperature Relative to Baseline (1950-1979)

Figure A3. Ozone Monitors and Matched Weather Monitors

Figure A4. Evolution of 4th Highest Ozone Concentration

Figure A5. Evolution of Nonattainment Designation in Monitored Counties

Figure A6. Decomposition of Climate Norms and Shocks - Estimating Sample

Figure A7. Relationship between Ambient Ozone and Temperature

Figure A8. Decomposition of Temperature Norms and Shocks (Los Angeles, 2013)

Figure A9. Decomposition of Temperature Norms and Shocks (Los Angeles, All Years)

Figure A10.Evolution of Ozone Concentration by Belief in Climate Change

Table A1. History of Ambient Ozone NAAQS

Table A2. Ozone Monitoring Season by State

Table A3. Yearly Summary Statistics for Ozone Monitoring Network

Table A4. Yearly Summary Statistics for Temperature and Decomposition
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A.1. Background Details on the National Ambient Air Quality Standards

Ambient ozone is an important component of smog that is capable of damaging living cells,

such as those present in the linings of the human lungs. With the Clean Air Act Amend-

ments of 1970, EPA was authorized to set up and enforce a National Ambient Air Quality

Standard (NAAQS) for ambient ozone. Since then, a nationwide network of air pollution

monitors has allowed EPA to track ozone concentration, and a threshold is used to determine

whether pollution levels are sufficiently dangerous to warrant regulatory action. Exposure

to ambient ozone has been causally linked to increases in asthma hospitalization, medication

expenditures, and mortality, and decreases in labor productivity (e.g., Neidell, 2009; Moretti

and Neidell, 2011; Graff Zivin and Neidell, 2012; Deschenes, Greenstone and Shapiro, 2017).

If any monitor within a county exceeds the NAAQS, EPA designates the county to be

out of compliance or in “nonattainment” (USEPA, 1979, 1997, 2004, 2008, 2015). The corre-

sponding state is required to submit a state implementation plan (SIP) outlining its strategy

for the nonattainment county to reduce air pollution levels in order to comply with NAAQS.1

Figure A5 depicts all counties monitored under the NAAQS for ozone during the period 1980-

2013, noting the decade in which they were first designated as in “nonattainment,” if ever.

While the structure of enforcement is dictated by the CAA and the EPA, much of the ac-

tual enforcement activity is carried out by regional- and state-level environmental protection

agencies. In particular, EPA divides the country into 10 geographic regions, and significant

portions of the EPA’s operations are conducted through these regional offices. For instance,

regional EPA offices conduct inspections and/or issue sanctions when a state’s enforcement

1In more details, the Clean Air Act defines air quality control regions (AQCRs) so that air quality is
managed in a more localized manner (Section 107 of the CAA as codified in 40 CFR Part 81, Subpart B).
Boundaries of AQCRs are usually based upon county lines or other political divisions, but it is important to
highlight that each AQCR is a contiguous area where air quality is relatively uniform; where topography is
a factor in air movement, AQCRs often correspond with airsheds. AQCRs may consist of two or more cities,
counties or other governmental entities, and each region is required to adopt consistent pollution control
measures across the political jurisdictions involved. Each AQCR is treated as a unit for the purposes of
pollution reduction and achieving the NAAQS. They are designated on a pollutant-by-pollutant basis. For
example, for nitrogen dioxide and sulfur dioxide, the AQCR for Nebraska is the entire state. For particulate
matter, the state is divided into several AQCRs.
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is below required levels, and assist states with major cases.

EPA allows counties with polluting firms from 3 to 20 years to adjust their production

processes.2 Specifically, the CAA mostly mandates command-and-control regulations, re-

quiring that plants use the best available control technology (BACT) in their production

processes. BACT requires that plants’ pollution be at or below thresholds that could be

achieved with best practices. However, if pollution levels continue to exceed the standards

or if a county fails to abide by the approved plan, sanctions may be imposed on the county

in violation. These sanctions may include the withholding of federal highway funds and

the imposition of technological “emission offset requirements” on new or modified sources of

emissions within the county (USCFR, 2005).

The first NAAQS for ambient ozone was established in 1979, when 120 parts per billion

(ppb) was defined as the maximum 1-hour concentration that could not be violated more

than once a year for a county to be designated as in attainment (USEPA, 1979).3 The

CAA requires periodic review and, if appropriate, revision of existing air quality criteria to

reflect advances in scientific knowledge on the effects of the pollutant on public health and

welfare. So, in 1997, the standards were strengthened to 80ppb, but with a different form

for the threshold: annual fourth-highest daily maximum 8-hour concentration averaged over

3 years (USEPA, 1997).4 The 1997 NAAQS were challenged in court, and not enforced until

2004 (USEPA, 2004). In 2008, the standards were revised downward to 75ppb (USEPA,

2008). The latest revision happened in 2015, and the current 8-hour threshold is 70ppb

(USEPA, 2015). The EPA is currently conducting a review of the air quality criteria and the

2“Nonattainment” counties are “classified as marginal, moderate, serious, severe or extreme (...) at the
time of designation” (USEPA, 2004, p.23954). The maximum period to reach attainment is: “Marginal – 3
years, Moderate – 6 years, Serious – 9 years, Severe – 15 or 17 years, Extreme – 20 years” (USEPA, 2004,
p.23954).

3As Appendix Table A1 shows, the standard put in place in 1971 was not focusing on ambient ozone, but
rather all photochemical oxidants.

4EPA justified the new form as equivalent to the empirical 1-hour maximum to not be exceeded more
than once a year. “The 1-expected-exceedance form essentially requires the fourth-highest air quality value
in 3 years, based on adjustments for missing data, to be less than or equal to the level of the standard for
the standard to be met at an air quality monitoring site” (USEPA, 1997, p.38868).

3



NAAQS for photochemical oxidants including ozone (USEPA, 2019).5 In accordance with

the prevailing regulatory standard for the majority of our sample period – 1980-2004 – we

use the 1-hour maximum ozone concentration level (ppb) for our empirical analysis.

A.2. Background Details on Ozone

Background on Ozone — The ozone the U.S. EPA regulates as an air pollutant is mainly pro-

duced close to the ground (tropospheric ozone).6 It results from complex chemical reactions

between pollutants directly emitted from vehicles, factories and other industrial sources,

fossil fuel combustion, consumer products, evaporation of paints, and many other sources.

These highly nonlinear Leontief-like reactions involve volatile organic compounds (VOCs)

and oxides of nitrogen (NOx) in the presence of sunlight. In “VOC-limited” locations, the

VOC/NOx ratio in the ambient air is low (NOx is plentiful relative to VOC), and NOx

tends to inhibit ozone accumulation. In “NOx-limited” locations, the VOC/NOx ratio is

high (VOC is plentiful relative to NOx), and NOx tends to generate ozone.

As a photochemical pollutant, ozone is formed only during daylight hours, but is de-

stroyed throughout the day and night. It is formed in greater quantities on hot, sunny, calm

days. Indeed, major episodes of high ozone concentrations are associated with slow moving,

high pressure systems, which are associated with the sinking of air, and result in warm,

generally cloudless skies, with light winds. Light winds minimize the dispersal of pollutants

emitted in urban areas, allowing their concentrations to build up. Photochemical activity

involving these precursors is enhanced because of higher temperatures and the availability

5A summary of the changes in the form and levels of the NAAQS for ambient ozone is provided in
Appendix Table A1. Additionally, during our period of analysis (1980-2013), nitrogen dioxide (NO2) also
had its own NAAQS, but there were no changes from 1971 to 2010. Furthermore, from 2003 to 2008, there
was a cap-and-trade program created to reduce the regional transport of NOx emissions from power plants
and other large combustion sources in the eastern United States – the NOx Budget Trading Program (NBP),
which was shown to be effective in reducing ozone concentrations (Deschenes, Greenstone and Shapiro, 2017).
There were also regulations targeting VOCs: restrictions on the chemical composition of gasoline that are
primarily intended to reduce VOC emissions from mobile sources. Apart from the more stringent regulations
in California, these regulations have been shown to be ineffective in reducing ambient ozone concentrations
(Auffhammer and Kellogg, 2011).

6It is not the stratospheric ozone of the ozone layer, which is high up in the atmosphere, and reduces the
amount of ultraviolet light entering the earth’s atmosphere.
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of sunlight. Modeling studies point to temperature as the most important weather variable

affecting ozone concentrations.7

Ambient ozone concentrations increase during the day when formation rates exceed de-

struction rates, and decline at night when formation processes are inactive.8 Ozone concen-

trations also vary seasonally. They tend to be highest during the late spring, summer and

early fall months.9 The EPA has established “ozone seasons” for the required monitoring

of ambient ozone concentrations for different locations within the U.S.10 Recently, there is

growing concern that the ozone season may prolong with climate change (e.g., Zhang and

Wang, 2016).

A.3. Further Details on the Construction of the Data

Weather Data — Meteorological data was obtained from the National Oceanic and Atmo-

spheric Administration’s Global Historical Climatology Network database (NOAA, 2014).

This dataset provides detailed weather measurements at over 20,000 weather stations across

the country, for which we use the period April-September, 1950-2013, for the contiguous 48

states. In constructing our complete, unbalanced panel of weather stations we make only one

restriction: for each weather station in each year, we include only those stations for which

valid measurements of maximum and minimum temperature, as well as precipitation, exist

for at least 75 percent of the days in the ozone monitoring season (April-September). Fig-

ure A2 plots annual deviations of temperature from the 1950-1979 baseline average. These

7Dawson, Adams and Pandisa (2007), for instance, examine how concentrations of ozone respond to
changes in climate over the eastern U.S. The sensitivities of average ozone concentrations to temperature,
wind speed, absolute humidity, mixing height, cloud liquid water content and optical depth, cloudy area,
precipitation rate, and precipitating area extent were investigated individually. The meteorological factor
that had the largest impact on ozone metrics was temperature. Absolute humidity had a smaller but
appreciable effect. Responses to changes in wind speed, mixing height, cloud liquid water content, and
optical depth were rather small.

8In urban areas, peak ozone concentrations typically occur in the early afternoon, shortly after solar noon
when the sun’s rays are most intense, but persist into the later afternoon.

9In areas where the coastal marine layer (cool, moist air) is prevalent during summer, the peak ozone
season tends to be in the early fall.

10Appendix Table A2 shows the ozone season for each state during which continuous, hourly averaged
ozone concentrations must be monitored.
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are the thin solid, dotted, and dashed lines, representing average, maximum, and minimum

temperature, respectively. The baseline represents both the pre-ozone regulation era as well

as, generally speaking, the pre-climate change awareness era. The climate trend relative to

this baseline – the smoothed thick solid line in the figure – has been slowly but steadily

increasing since the early- to mid-1970s, with an increase in the average temperature of

approximately 0.5 degrees Celsius by 2010. This is consistent with findings from the U.S.

Fourth National Climate Assessment, which indicate an increase in average temperature of

0.7 degrees Celsius for the period 1986-2016 relative to 1901-1960 (Vose et al., 2017).

We decompose average temperature into a climate norm (30 year monthly moving av-

erage, lagged by 1 year) and a temperature shock (deviation of daily temperature from the

climate norm). Figure A6 depicts similar variation in both the climate norm and tempera-

ture shock as Figure 3, but using only the temperature assigned to each ozone monitor in our

final sample. Notice that there seems to be more variation in the 30-year MA in the latter

figure because it includes cross-sectional variation as well. Also, the 30-year MA trends down

towards the end of the period of our study due to changes in ozone monitor location over

time, as shown in Figure ??. Table A4 reports summary statistics for maximum temperature

and our decomposed measures of climate norm and temperature shock, averaged across our

entire sample for each year 1980-2013. Figures A8 and A9 provide illustrative examples of

this decomposition for Los Angeles county for a single year – 2013 – and for the entire period

1980-2013, respectively.

Ozone Data — Ambient ozone concentration data was obtained from the Environmental

Protection Agency’s Air Quality System (AQS) AirData database, which provides daily

readings from the nationwide network of the EPA’s air quality monitoring stations. The

data was made available by a Freedom of Information Act (FOIA) request. In our preferred

specification we use an unbalanced panel of ozone monitors. We make only two restrictions

to construct our final sample. First, we include only monitors with valid daily information.

According to EPA, daily measurements are valid for regulation purposes only if (i) 8-hour

6



averages are available for at least 75 percent of the possible hours of the day, or (ii) daily

maximum 8-hour average concentration is higher than the standard. Second, as a minimum

data completeness requirement, for each ozone monitor we include only years for which least

75 percent of the days in the ozone monitoring season (April-September) are valid; years

having concentrations above the standard are included even if they have incomplete data.

We have valid ozone measurements for a total of 5,638,273 monitor-days.11 The number

of total valid monitors increased from 1,361 in the 1980s to 1,851 in the 2000s, indicating

a growth of 16.6 percent of the ozone monitoring network per decade.12 The number of

monitored counties in our main estimating sample also grew from 585 in the 1980s to 840 in

the 2000s. Figure A1 depicts the evolution of our sample monitors over the three decades

in our data, and illustrates the expansion of the network over time. Table ?? provides some

summary statistics regarding the increase in the number of monitors over time.13

Figure A4 depicts the daily maximum 1-hour ambient ozone concentrations from 1980-

2013, split by counties in and out of attainment of the ozone NAAQS. In this figure we

compare the trends in ozone concentrations with the updated 1997, 2008 and 2015 NAAQS.

These standards were based on the observed 4th Highest 8-hour average ambient ozone

concentration of 80, 75 or 70 ppb respectively. Figure A4 contrasts these attainment cut-offs

with the maximum yearly ozone concentrations in attainment and nonattainment counties.

Table A1 clearly illustrates the evolution of the National Ambient Air Quality Standards for

ozone over the years. Alternatively, Figure A10 compares the trends in ozone concentrations

from 1980-2013 for counties with low- median- and high-belief in climate change. Notably,

the concentrations appear to be converging over time – high-belief counties started out with

11Note that this value refers to all valid ozone measurements, the final samples used in estimation will

be smaller due to, e.g., instances where an ozone monitor is not paired with any weather stations under

our matching algorithm. For instance, our main estimating sample contains 5,139,529 valid monitor-day

observations.
12For our main estimating sample, these are 1,285 and 1,701, respectively.
13Note that not all monitored counties were monitored in every year, and not all monitoring stations were

active in every year. Some monitors were phased in to replace others, while others were simply added to the

network over time as needed – thus individual years will generally have less unique monitors and monitored

counties than existed across an entire decade or the sample period.
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higher baseline ozone levels, but over time reduced them to almost be in-line with low- and

median-belief counties.

Matching Ozone and Weather Data — These weather stations are typically not located adja-

cent to the ozone monitors. Hence, we develop an algorithm to obtain a weather observation

at each ozone monitor in our sample. Using information on the geographical location of

ozone monitors and weather stations, we calculate the distance between each pair of ozone

monitor and weather station using the Haversine formula. Then, for every ozone monitor we

exclude weather stations that lie beyond a 30 km radius of that monitor. Moreover, for every

ozone monitor we use weather information from only the closest two weather stations within

the 30 km radius. Once we apply this algorithm, we exclude ozone monitors that do not have

any weather stations within 30km. We calculate weather at each ozone monitor location as

the weighted average of these two weather stations using the inverse of the squared distance

between them. Figure A3 illustrates the proximity of our final sample of ozone monitors

to these matched weather stations. We additionally assess the robustness of our results to

changes in this algorithm by increasing the radius to 80 km and using the 5 closest weather

stations, and by varying the weights used – unweighted arithmetic mean and simple inverse

distance weighting – in calculating the approximate daily weather at each ozone monitoring

location. The results of our model under these alternative specifications is discussed further

in Appendix B.1.

After matching ozone monitors with weather stations, we have valid ozone and temper-

ature measurements for a total of 5,139,529 monitor-days. Figure A7 illustrates the close

association between ambient ozone concentrations and both components of temperature.

Notice that the relationship between ozone and the climate norm, depicted in Panel A of

Figure A7 appears to be weaker than that with the temperature shock, in Panel B. This sug-

gests that economic agents undertake adaptive behavior, after having observed the historical

climate norm.

8



Auxiliary Data — In some of our robustness checks and examination of heterogeneity we

incorporate additional data sets. Sources and any necessary data construction steps are

described below.

In column (3) of Table B2 we include a monitor-day level interaction term for whether

the local air quality authority had issued an ozone “action day” alert for the respective

county. These “action day” alerts are often made day-of, or a few days in advance of, days

in which the relevant air quality authority observes, or expects to observe, unhealthy levels

of pollution on the Air Quality Index and releases a public service announcement to this

effect. Individuals and firms are urged to take voluntary action to reduce the emissions of

pollutants that are conducive to ozone formation. Note that although action day policies

first began in the 1990’s, EPA only provided data beginning in 2004, leading to a restricted

overall sample (approximately 36% of our full sample).

In Table B3 we include average daily windspeed and total daily sunlight as additional

regressors within our main specification. These data, although recorded less frequently, are

collected at the same weather monitoring stations as our main temperature and precipi-

tation variables. Due to the sparseness of these data we do not decompose them into a

long-run climate component and transitory weather shock as we do with temperature and

precipitation.

Additionally, it has been shown that, e.g., manufacturing plants have relocated in re-

sponse to ozone nonattainment designations (Henderson, 1996; Becker and Henderson, 2000).

In Table B5 we replace our daily ozone dependent variable with measures of (logged) monthly

employment or quarterly wages at the county level obtained from the Quarterly Census of

Employment and Wages.

In Table 4 we examine heterogeneity in our results when separating counties into low-

median- and high-levels of belief regarding the existence of climate change. These measures

were constructed using county level survey data collected by Howe et al. (2015) in 2013

which estimate the percentage of each county’s respective population that hold such beliefs.
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Notably, we do not rely on the explicitly stated aggregate level of belief, but rather the

relative level of belief compared to the rest of our sample. Specifically, we separate counties

into low- median- or high-belief terciles based on their stated level of belief in the existence

of climate change. In this way we arrive at three equally sized groups for which we are able

examine heterogeneity in climate impacts and adaptive response. For reference, Table B7

provides summary statistics of basic demographic characteristics across these three county

groupings using data from the 2006-2010 5-year American Community Survey.

As a placebo check we also examine the heterogeneity in our results when separating

counties into low- median- and high-belief regarding “preferences” for single-parenthood in

Table B8. Similar to our construction of “climate beliefs,” we begin with a measure of the

fraction of single-parent households at the county level from the Opportunity Atlas (Chetty

et al., 2018). We then again separate counties into low- median- or high-belief terciles based

on their relative level of “preference” for single-parenthood. In this way we arrive at three

equally sized groups for which we are able examine heterogeneity in climate impacts and

adaptive response.

In Table B9 we use measures of whether a county is “VOC-limited” or “NOx-limited.”

These measures were constructed using data collected by the EPA’s network of respective

monitoring stations. Note, however, that these are often separate pollution monitors from

our main sample of ozone monitors. Additionally, data – especially for VOCs – is relatively

sparse compared to ozone data. Due to these data constraints, we construct measures of

whether a county is, in general, VOC-limited or NOx-limited for each 5-year period in our

sample, e.g. 1980-1984, which we then match with our sample of ozone monitors at the

county level. To construct these measures we first combine the EPA’s VOC and NOx data

at the county-day level and generate a daily ratio of VOCs to NOx for each county. Following

the scientific literature, observations with a ratio less than or equal to 4 are coded as VOC-

limited, while those greater than 15 are coded NOx-limited, and the remainder are coded

as non-limited. We then sum these three measures by county across each 5-year interval
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and denote a county as VOC-limited, NOx-limited, or non-limited for that interval based

on whichever measure was the most prevalent. For example, a county with 50 VOC-limited

day, 20 NOx-limited days, and 30 non-limited days would be marked as VOC-limited for this

5-year window. Admittedly, this creates a somewhat coarse measure of whether a county is

VOC- or NOx-limited. Given the available data, however, this appears to be the furthest

this question can be investigated, and, if anything, should be expected to bias the observed

effect from this heterogeneity towards zero.
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Figure A1: Ozone Monitor Location by Decade of First Appearance

Notes: This figure depicts the evolution of ozone monitors in our sample over three decades and illustrates
the expansion of the monitoring network. We use an unbalanced panel of ozone monitors, after making the
following two restrictions. Firstly, we only include monitors if 8-hour averages are available for at least 75
percent of the possible hours of the day, or (ii) daily maximum concentration is higher than the standard.
Secondly, as a minimum data completeness requirement, for each ozone monitor we include only years for
which least 75 percent of the days in the typical ozone monitoring season (April-September) are valid; years
having concentrations above the standard are included even if they have incomplete data. We have valid
ozone measurements for a total of 5,139,529 monitor-days after matching monitors with weather stations.
The number of unique valid monitors increased from 1,285 in 1980 to over 1,850 in the 2000’s.
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Figure A2: Temperature Relative to Baseline (1950-1979)
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Notes: This figure depicts annual temperature fluctuations and the overall climatic trend for the ozone
season in the US relative to a 1950-1979 baseline average. The baseline and the yearly deviations from it are
constructed from the comprehensive sample of weather stations across the US from 1950 to 2013 following
the data construction steps detailed in Appendix A.3. The 1950-1979 baseline represents, generally speaking,
the pre-climate change awareness era. The average temperature, relative to this baseline, has been slowly
but steadily increasing since 1980, with an increase in the average temperature of approximately 0.5 degree
Celsius (◦C) by 2010. For clarity, the thin solid line, the short-dashed line, and long-dashed line refer to
annual averages for daily average, maximum, and minimum temperature, respectively, as coded in the legend.
The thick solid line smooths out the annual observations for average temperature over the period covered in
the graph.
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Figure A3: Ozone Monitors and their Matched Weather Monitors

Notes: This figure illustrates the proximity of our final sample of ambient ozone monitors to the matched

weather stations. Using information on the geographical location of pollution monitors and weather stations

we calculate the Haversine distance between each pair of ozone monitor and weather station. Then every

ozone monitor is matched to the closest two weather stations within a 30 km radius of the monitor. We

exclude ozone monitors that do not have any weather station within a 30 km radius. Once the monitors

are matched to weather stations, we generate the approximate weather realizations at the ozone monitor by

averaging the meteorological variables at the matched weather stations, weighted by their inverse squared

distance from the monitor.
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Figure A4: Evolution of the 4th Highest Ambient Ozone Concentration
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Notes: This figure depicts the national average of the annual 4th highest daily maximum 1-hour ambient
ozone concentration over time in the US, split by counties designated as in- or out- of attainment under
the National Ambient Air Quality Standards (NAAQS). The 1997, 2008, and 2015 NAAQS updates for
designating a county’s attainment status were based on the observed 4th highest 8-hour average ambient
ozone concentration of 80, 75, and 70 ppb or higher, respectively. Here we contrast these attainment status
cutoffs with the yearly ozone concentrations in Attainment and Nonattainment counties.
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Figure A5: Map of Monitored Counties - by First Decade Designated in Nonattainment

Notes: This figure illustrates all counties monitored under the NAAQS for ozone during the period 1980-2013,

noting the decade in which they were first designated as in “nonattainment,” if ever. While the structure

of enforcement is dictated by the CAA and the EPA, much of the actual enforcement activity is carried out

by regional- and state-level environmental protection agencies. Most counties out of attainment were first

designated in nonattainment in the 1980s. The map displays concentrations of those counties in California,

the Midwest, and in the Northeast. Nevertheless, a nontrivial number of counties went out of attainment

for the first time in the 1990s and 2000s.
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Figure A6: Climate Norms and Shocks (Final Sample)
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Panel B. Average Temperature Shock Over Time

Notes: This figure depicts US temperature over the years in our sample (1980-2013), decomposed into their
climate norm and temperature shock components. The climate norm (Panel A) and temperature shocks
(Panel B) are constructed from the panel of weather stations included in our main model sample across
the US from 1950 to 2013, restricting the months over which measurements were gathered to specifically
match the ozone season of April–September, the typical ozone season in the US (see Appendix Table A2 for
a complete list of ozone seasons by state). The unbalanced feature of our main sample, with ambient ozone
monitors moving north over time (see Figure A1), is the likely driving force behind the downward pattern
of the average climate norm at the end of our sample period in Panel (A). Recall that the climate norm
represents the 30-year monthly moving average of the maximum temperature, lagged by one year, while
the temperature shock represents the difference between this value and the contemporaneous maximum
temperature. The horizontal dashed lines in Panel (B) highlights that temperature shocks are bounded in
our period of analysis. 17



Figure A7: Relationship between Ambient Ozone and Temperature
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 Panel A. Relationship Between Ozone and Climate Norm
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 Panel B. Relationship Between Ozone and Temperature Shock

Notes: This figure depicts the general relationship between daily maximum ozone concentrations and tem-
perature over the years in our sample (1980-2013) after decomposing temperature into our measure of climate
norm and temperature shock and de-trending the data. Both the climate norm (Panel A) and the tempera-
ture shock (Panel B) appear to have a close correlation with ozone concentrations, although the relationship
in Panel (A) appears weaker than that in Panel (B), providing suggestive evidence of adaptative behavior.
Recall that the climate norm represents the 30-year monthly moving average of the maximum tempera-
ture, lagged by one year, while the temperature shock represents the difference between this value and the
contemporaneous maximum temperature.
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Figure A8: Decomposition of Temp. Norms & Shocks – Illustration (Los Angeles, 2013)
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Notes: This figure compares our preferred temperature decomposition method with a standard fixed-effects
approach using data from the 2013 Los Angeles ozone season, illustrating the benefit of this approach relative
to the standard fixed-effects model. Specifically, Panel (A) depicts the daily measure of temperature, as well
as its decomposition into climate norm and temperature shock. By contrast, Panel (B) depicts the same
daily measure of temperature, but instead decomposed into a typical fixed-effect average temperature and
the deviations from this constant value after additionally controlling for month-by-year fixed effects. The
dashed line at the top of each panel indicates observed daily maximum temperature while the black solid line
represents long-run norms. The gray solid line at the bottom of each panel indicates temperature shocks.
Notice that the temperature shocks in our preferred decomposition are nearly identical to the deviations in
the fixed-effects decomposition, as would be expected from the Frisch-Waugh-Lovell theorem, and illustrate
the source of variation used for identifying βW . Additionally, Panel (A) highlights the source of variation in
climate used to identify βC , while the fixed-effects decomposition lacks any such variation in the measure of
climate, as the LA fixed effect is collinear with average temperature. Recall that for our proposed approach
the climate norm represents the 30-year monthly moving average of the maximum temperature, lagged by
one year, while the temperature shock represents the difference between this value and the contemporaneous
maximum temperature.
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Figure A9: Decomposition of Temp. Norms & Shocks – Illustration (Los Angeles, All Years)
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Notes: This figure illustrates the same comparison as in Figure A8 for Los Angeles, but now using the
entire sample period, 1980-2013. Specifically, Panel (A) depicts the decomposition of daily temperature into
its climate norm and temperature shock. By contrast, Panel (B) depicts the same daily temperature, but
instead decomposed into a typical fixed-effect average temperature and the deviations from this constant
value after additionally controlling for month-by-year fixed-effects. The black solid line at the top of each
panel indicates long-run norms. The gray solid line at the bottom of each panel indicates temperature shocks.
Notice that the temperature shocks in our preferred decomposition are nearly identical to the deviations in
the fixed-effects decomposition, as would be expected from the Frisch-Waugh-Lovell theorem, and illustrate
the source of variation used for identifying βW . Additionally, Panel (A) highlights the source of variation in
climate used to identify βC , while the fixed-effects decomposition lacks any such variation in the measure of
climate, as the LA fixed effect is collinear with average temperature. Recall that for our proposed approach
the climate norm represents the 30-year monthly moving average of the maximum temperature, lagged by
one year, while the temperature shock represents the difference between this value and the contemporaneous
maximum temperature.
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Figure A10: Evolution of Ozone Concentration by Belief in Climate Change
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Notes: This figure depicts the national average of the highest daily maximum 1-hour ambient ozone concen-

tration over time in the US, split by counties with low- median- and high-belief in climate change. Notably,

the concentrations appear to be converging over time – high-belief counties started out with higher baseline

ozone levels, but over time reduced them to almost be in-line with low- and median-belief counties. Here we

contrast these concentrations with the 1980’s attainment status cutoff of 120ppb threshold.
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Table A1: History of Ambient Ozone NAAQS

Enacted Primary/ Indicator Averaging Level Form
Secondary Time

1971 Primary and Total photo- 1-hour 80 ppb Hourly concentration not to be
Secondary chemical oxidants exceeded more than one hour per year

1979 Primary and Ozone 1-hour 120 ppb Hourly concentration not to be
Secondary exceeded more than one day per year

1997† Primary and Ozone 8-hour 80 ppb Annual fourth-highest daily maximum 8-hr
Secondary concentration, averaged over 3 years

2008 Primary and Ozone 8-hour 75 ppb Annual fourth-highest daily maximum 8-hr
Secondary concentration, averaged over 3 years

2015 Primary and Ozone 8-hour 70 ppb Annual fourth-highest daily maximum 8-hr
Secondary concentration, averaged over 3 years

Notes: This table shows the history of ambient ozone regulations in the U.S. The first standard was put in place in 1971, but targeted all
photochemical oxidants. The first National Ambient Air Quality Standards (NAAQS) for ambient ozone was established in 1979, when 120ppb was
defined as the maximum 1-hour concentration that could not be violated more than once a year for a county to be designed as in attainment. In 1997,
the standards were strengthened to 80ppb, but with a different form for the threshold: annual fourth-highest daily maximum 8-hour concentration
averaged over 3 years. With the 2008 and 2015 revisions, the current 8-hour threshold is now 70ppb. EPA justified the new form in 1997 as equivalent
to the empirical 1-hour maximum to not be exceeded more than once a year. “The 1-expected-exceedance form essentially requires the fourth-highest

air quality value in 3 years, based on adjustments for missing data, to be less than or equal to the level of the standard for the standard to be met at

an air quality monitoring site” (USEPA, 1997, p.38868). Lastly, as the EPA (2005) states, “primary standards set limits to protect public health,

including the health of ‘sensitive’ populations such as asthmatics, children, and the elderly. Secondary standards set limits to protect public welfare,

including protection against decreased visibility, damage to animals, crops, vegetation, and buildings.”

Source: epa.gov/ozone-pollution/table-historical-ozone-national-ambient-air-quality-standards-naaqs.

† The 1997 NAAQS was challenged in courts, and not implemented until 2004.
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Table A2: Ozone Monitoring Season by State

State Start Month - End State Start Month - End

Alabama March - October Nevada January - December

Alaska April - October New Hampshire April - September

Arizona January - December New Jersey April - October

Arkansas March - November New Mexico January - December

California January - December New York April - October

Colorado March - September North Carolina April - October

Connecticut April - September North Dakota May - September

Delaware April - October Ohio April - October

D.C. April - October Oklahoma March - November

Florida March - October Oregon May - September

Georgia March - October Pennsylvania April - October

Hawaii January - December Puerto Rico January - December

Idaho April - October Rhode Island April - September

Illinois April - October South Carolina April - October

Indiana April - September South Dakota June - September

Iowa April - October Tennessee March - October

Kansas April - October Texas1 January - December

Kentucky March - October Texas1 March - October

Louisiana January - December Utah May - September

Maine April - September Vermont April - September

Maryland April - October Virginia April - October

Massachusetts April - September Washington May - September

Michigan April - September West Virginia April - October

Minnesota April - October Wisconsin April 15 - October 15

Mississippi March - October Wyoming April - October

Missouri April - October American Samoa January - December

Montana June - September Guam January - December

Nebraska April - October Virgin Islands January - December

Notes: This table shows, for each state, the season when ambient ozone concentration is required to
be measured and reported to the U.S. EPA. The ozone season is defined differently in different parts of Texas.

Source: USEPA (2006, p.AX3-3).
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Table A3: Yearly Summary Statistics for Ozone Monitoring Network

Year # Observations # Counties # Ozone Monitors

(1) (2) (3) (4)

1980 88426 361 609
1981 100459 399 659
1982 102111 402 661
1983 102429 408 653
1984 103828 390 649
1985 105457 388 648
1986 103820 375 634
1987 110366 392 668
1988 113232 409 686
1989 119938 425 725
1990 126535 443 757
1991 132046 466 792
1992 137754 482 821
1993 146023 511 863
1994 149400 520 876
1995 154230 528 902
1996 153019 530 894
1997 160024 550 931
1998 164491 568 960
1999 168901 585 982
2000 172686 592 999
2001 180872 616 1047
2002 186261 630 1071
2003 188462 641 1082
2004 189868 653 1087
2005 187709 649 1082
2006 188298 650 1075
2007 190824 661 1092
2008 190682 660 1099
2009 194184 678 1116
2010 196439 688 1130
2011 199948 716 1159
2012 199723 703 1148
2013 148306 658 1039

Notes: This table outlines the summary statistics of our main data sample. The construction of our main

sample follows EPA guidelines by including all monitor-days for which 8-hour averages were recorded for at

least 18 hours of the day and monitor-years for which valid monitor-days were recorded for at least 75% of

days between April 1st and September 30th.
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Table A4: Yearly Summary Statistics for Daily Maximum Temperature

Year Max Temp Climate Trend Temp Shock

(1) (2) (3) (4)

1980 27.0 26.5 0.5
1981 26.9 26.6 0.4
1982 26.1 26.7 -0.6
1983 26.8 26.8 0.0
1984 26.7 26.8 -0.1
1985 27.0 26.6 0.3
1986 26.7 26.4 0.3
1987 27.3 26.6 0.7
1988 27.4 26.6 0.7
1989 26.4 26.7 -0.3
1990 26.7 26.6 0.1
1991 27.1 26.6 0.5
1992 26.1 26.7 -0.5
1993 26.6 26.6 0.0
1994 26.9 26.6 0.2
1995 26.8 26.7 0.0
1996 26.5 26.7 -0.2
1997 26.4 26.8 -0.4
1998 27.3 27.0 0.4
1999 27.2 27.0 0.2
2000 27.1 27.1 0.0
2001 27.4 27.2 0.3
2002 27.8 27.2 0.6
2003 26.9 27.3 -0.4
2004 27.0 27.2 -0.2
2005 27.6 27.3 0.3
2006 27.7 27.3 0.4
2007 27.7 27.3 0.4
2008 27.3 27.3 0.0
2009 26.9 27.3 -0.3
2010 27.8 27.2 0.6
2011 27.4 27.1 0.3
2012 28.0 27.1 0.9
2013 26.4 26.6 -0.3

Notes: This table outlines the evolution of maximum temperature in our sample from the years 1980–2013
in column (2). Columns (3) and (4) decompose this into our respective measures of climate norm and
temperature shock. Recall that the climate norm represents the 30-year monthly moving average of the
maximum temperature, lagged by one year, while the temperature shock represents the difference between
this value and the contemporaneous maximum temperature.
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Appendix B. Further Robustness Checks and Heterogeneity

This appendix provides further elaboration of the alternative specifications used for robust-

ness checks and examinations of heterogeneity as discussed in Section V. It then includes

relevant Tables as outlined below.

Table B1. Alternative Lengths of Climate Norms

Table B2. Adaptation Responses

Table B3. Alternative Specifications and Sample Restrictions

Table B4. Alternative Criteria for Selection of Weather Stations

Table B5. Alternative Outcome Variables

Table B6. Bootstrapped Standard Errors

Table B7. Belief in Climate Change: Summary Stats

Table B8. Placebo: Preferences for Single Parenting

Table B9. Adaptation by VOC- or NOx-limited Atmosphere

Table B10. Results by Decade

Tables B11a & B11b. Non-Linear Effects of Temperature
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B.1. Further Robustness Checks

Alternative Lengths of Climate Norms — A potential concern with our primary estimates

reported in Table 1 might be the way in which we define our climate norm. Recall that

we define the climate norm as the 30-year monthly moving average of temperature, lagged

by one year. Although this is the usual definition of climate used in the literature by

climatologists, in Table B1, we address any possible concerns about measurement error

impacting our results. In this table, we vary the length of time that we use in constructing

the climate norms. In going from column (1) to (4), we report estimates using a 3-year, 5-

year, 10-year and 20-year moving average as our climate norm. If we observe the coefficients

of the climate norm, we see a slight increase in the magnitude as we move to longer-run

averages. However, if we compare effect of the climate norm in column (4) of Table B1

(20-year average) to column (2) of Table 1 (30-year average), we see a decline in magnitude.

This latter result suggests that the widely used climate normals are close to the “optimal”

long-run norms. The improvements from reducing measurement error might be offset by the

panel-driven attenuation bias between 20- and 30-year time windows.

Adaptation Responses — Given that in this paper, we speak at length about adaptation

to climate change, and in particular, institution-induced adaptation, another major concern

might be the time given to economic agents to adapt. Recall that in our preferred specifica-

tion, we define climate norm as the 30-year monthly moving average of temperature, lagged

by one year (e.g., the 30-year moving average associated with May 1982 is the average May

temperatures over the years 1952-1981). Thus, economic agents will have had at least one

year to respond and adapt to unexpected changes in the climate normal temperature. One

might wonder whether one year is enough time for agents to adapt and adjust their behav-

ior. To alleviate such concerns, we check the sensitivity of our results when agents have

10 or 20 years to adapt, instead of just one. In Table B1 column (1), we define climate

norm as a 20-year monthly moving average of temperature, lagged by 10 years such that
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economic agents have a decade to make adjustments in response to unexpected changes in

the climate norm (e.g., the climate norm associated with May 1982 would now instead be

the average of May temperatures over the years 1952-1971). Similarly, in column (2), we

report estimates using a 10-year moving average as our climate norm, lagged by 20 years,

giving even more time to economic agents to adapt. The estimated impacts are remarkably

similar to our main findings, suggesting that economic agents react as soon as information

becomes available to them and that those effects are persistent. In column (3) we turn to

possibility of agents responding rapidly to weather shocks. Were this to be the case, such

short-run adaptive behaviors would affect our benchmark impacts of temperature shocks

and hence bias our estimates of institution-induced adaptation downwards. To investigate

this possibility, we make use of a widespread policy of “Ozone Action Day” (OAD) alerts,

where a local air pollution authority would issue an alert, usually a day in advance, that me-

teorological conditions are expected to be more conducive to forming potentially hazardous

levels of ambient ozone in the following day. As a result, individuals and firms are urged

to voluntarily take actions that would reduce emissions of ozone precursors. Thus, if agents

are adapting to contemporaneous weather shocks, these “action days” would be the days we

would be most likely to observe an adaptive response. Interacting an indicator variable for

days in which OAD alerts were issued for a given county with our other covariates, we find

that such alerts have a negligible and statistically insignificant impact on the effect of a 1◦C

change in the contemporaneous temperature shock in both attainment and nonattainment

counties – signifying limited opportunities, or willingness, to adapt in the short term.14

Alternative Specifications and Sample Restrictions — In Table B3 we further explore the

sensitivity of our results to changes in the primary econometric specification and additional

sample restrictions. First, it may be a concern that our climate norm variable structures the

14Although the recovered coefficients of temperature shocks, climate norms, and implied adaptation levels
are quantitatively different for column (3) than columns (1) and (2), this is likely due to a difference in the
underlying sample. EPA data on “action day” alerts were only provided from 2004 onwards, leading to a
restricted overall sample (approximately 36% of our full sample).
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long-run climate normal temperature as the 30-year monthly moving average, despite the

fact that seasonal – or within-season – shifts in temperature are unlikely to exactly follow

the calendar at a monthly level. We examine the sensitivity of our results to this decision

by alternatively constructing this variable as a 30-year daily moving average, allowing it to

vary arbitrarily within each month. Results of our main specification, substituting daily

moving averages for the standard monthly ones, are presented in column (1). The impacts

of both components of temperature in attainment as well as nonattainment counties are

nearly identical to our original findings. Ultimately, we prefer the monthly moving average

because it is likely that individuals recall climate patterns by month, not by day of the

year, making the interpretation of adaptation more intuitive. Indeed, as mentioned before,

broadcast meteorologists often talk about how a month has been the coldest or warmest in

the past 10, 20, or 30 years, but not how a particular day of the year has deviated from the

norm.

Second, Muller and Ruud (2018) argue that the location of pollution monitors is not

necessarily random. The U.S. EPA maintains a dense network of pollution monitors in

the country for two major reasons: (i) to provide useful data for the analysis of important

questions linking pollution to its varied impacts, and (ii) to check and enforce regulations on

criteria pollutants. These are conflicting interests: while monitors should be placed in regions

having different levels of pollution to provide representative data, they might be placed in

areas where pollution levels are the highest to maintain oversight. Not surprisingly, the

authors find out that most of the monitors tend to be in areas where pollution levels have

been high, and compliance with the regulation is a question.

Following those authors’ results, we can expect that ozone monitors that have consistently

been in our sample across all years must be located in areas having very high pollution levels,

thus commanding constant monitoring and regulation by the EPA. To check if this claim is

accurate, we run our analysis using a balanced sample of ozone monitors. Starting from our

original sample, and using only monitors that have been in the data for every year from 1980-
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2013, we are left with 92 pollution monitors. The results are reported in column (2) of Table

B3. As expected, the temperature effects obtained from the balanced panel are larger than

those in our main results, although the level of adaptation remains largely unchanged. Our

preferred, unbalanced sample of monitors includes areas with different levels of air pollution,

and thus estimates should be more representative of the entire country.

Lastly, although temperature is the primary meteorological factor affecting tropospheric

ozone concentrations, other factors such as wind speed and sunlight have also been noted

as potential contributors. High wind speed may prevent the build-up of ozone precursors

locally, and dilute ozone concentrations. Ultraviolet solar radiation should trigger chemical

reactions leading to the formation of ground-level ozone. To test whether our main estimates

are capturing part of the effects of wind speed and sunlight, we control for these variables

in an alternative specification using a smaller sample containing those variables. Column

(3) of Table B3 presents our main results from estimating Equation (2) plus controls for

average daily wind speed (meters/second) and total daily sunlight (minutes). As expected,

higher wind speeds lead to lower ozone concentrations, and more sunlight leads to higher

concentrations. We find that a 1 meter/second increase in average daily wind speed would

decrease ozone concentrations by 2.2 ppb, whereas a 1 minute increase in daily sunlight leads

to 0.01 ppb increase in ozone concentrations. Including these additional variables does not

significantly change our primary estimates of interest, however, which remain statistically

indistinguishable from our preferred model.

Alternative Criteria for Selection of Weather Stations — An additional concern arises from

the fact that weather stations are not necessarily sited next to ozone monitors. Because

of this, we do not have an exact measure of temperature at the same geographic point as

our measure of ozone. As discussed in our data section, we define temperature at an ozone

monitoring station as the mean of the reported daily maximum temperatures at the two clos-

est weather stations within 30 kilometers, weighted by the inverse squared distance to the

ozone monitor. In doing so, we are likely to approximate a good measure of the daily maxi-
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mum temperature for the local region as a whole, while also maintaining a close geographic

boundary around the ozone monitoring station so as not to influence this approximation

with temperature readings from a weather station further away that may be subject to a

different set of meteorological conditions. It’s possible, however, that a less strongly distance

weighted mean would provide a more accurate measure of temperature for the overall local

region – although likely less accurate at the ozone monitoring station itself – or that the

2-station and 30-kilometer cutoffs are too restrictive. We investigate the effects of lessening

the distance weighting in the calculation of expected temperature at the ozone monitoring

station, as well as relaxing the constraints on both the number of included weather stations

and distance from the ozone monitor in Table B4. Specifically, columns (1) and (2) report

results of our main specification when we maintain the 2-station/30-kilometer restriction,

but decrease the weighting scheme to either the simple arithmetic mean in column (1), or

a non-squared inverse distance weight in column (2). Columns (3) and (4) use the same

weighting schemes as in columns (1) and (2), but now include temperature readings from

the 5 closest weather monitoring stations within 80 kilometers. Results in all four columns

are relatively stable and consistent with our main specification.

B.2. Heterogeneity

Results by Decade — To examine temporal heterogeneity, Table B10 reports our results

by decade. We split our sample into three “decades” – 1980-90, 1991-2001, and 2002-2013

– so that we have roughly the same number of years in each. We find that the effects

of both the climate norm and temperature shock in attainment as well as nonattainment

counties, are decreasing over time, as shown in column (1). In column (2), we report the

implied measures of adaptation in nonattainment and attainment counties, for each of the

three decades. By comparing these differential magnitudes of adaptation in nonattainment

vs attainment counties, we can get our institution-induced adaptation measures in each
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decade. The estimates suggest that institution-induced adaptation was 0.39 ppb in the

1980’s, 0.28 ppb in the 1990’s, and 0.22 ppb in the 2000’s. While seeming to decrease

over time, potentially driven by technological innovation and market forces in attainment

counties, we cannot rule out that they are statistically indifferent from our primary estimates

in Table 1.

Nonlinear Effects of Temperature — Because ozone formation may be intensified with higher

temperatures, we also examine the heterogeneous nonlinear effects of daily maximum tem-

perature on ambient ozone concentrations. Similar to our previous investigations we start

by creating indicator variables denoting whether the contemporaneous daily maximum tem-

perature at a given ozone monitor falls within a certain 5◦C temperature bin. In this way,

the marginal effect of a 1◦C change in either component of temperature is allowed to vary

across each 5◦C temperature bin. As expected, we find that higher temperatures generally

lead to higher ozone concentrations. The lowest bin is below 20◦C (just over the 10th per-

centile of our temperature distribution), and the highest bin is above 35◦C (90th percentile

of our temperature distribution). Tables B11a and B11b present the results of our preferred

specification when interacting each of these temperature bin indicators with our other co-

variates in column (1). The implied measures of adaptation for both nonattainment and

attainment counties are presented in column (2). By comparing the adaptation estimates

for nonattainment vs attainment counties we arrive at our measure of institution-induced

adaptation for each temperature bin.

Below 20◦C, temperature impacts are much lower, as we would expect, although adap-

tation estimates are in line with our main specification. Between 20-25◦C and 25-30◦C,

temperature impacts steadily increase, while adaptation estimates are lower and statistically

distinguishable from our main specification. Once the temperature increases above 30◦C,

however, the impact of the climate norm begins to attenuate – especially in nonattainment

counties – and the estimate of institution-induced adaptation increases substantially. Be-

tween 30-35◦C, the magnitude of institution-induced adaptation is 50% larger than our main
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specification, and above 35◦C it is more than double, although we cannot rule out that they

are statistically indifferent from our main specification. Notably, in nonattainment counties,

adaptation reduces the effect of a 1◦C increase in temperature by over 60 percent when

temperatures are above 35◦C, which is all the more relevant given the prospects of ever

increasing temperatures in the coming decades.

This relatively high level of adaptation above 35◦C – especially in nonattainment counties

– can be plausibly explained by at least two reasons. First, regions having temperatures

above 35◦C might have higher incidence of sunlight which might lead to more extensive use

of solar panels to generate electricity. Higher temperatures might be creating an environment

that is more suited to shifts away from conventional and dirtier sources of power generation,

thus leading to higher levels of adaptation. Second, and more specific to institution-induced

adaptation, days that are exceptionally hot are more likely to cause exceptionally high levels

of ozone, which could trigger additional regulatory oversight. In order to avoid this, firms

would be most likely to concentrate adaptation efforts on days where the “climate normal”

temperature is itself the hottest.
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Table B1: Alternative Lengths of Climate Norm

Daily Max Ozone Levels (ppb)

3-yr MA 5-yr MA 10-yr MA 20-yr MA

(1) (2) (3) (4)

Nonattainment x Shock 1.992*** 1.991*** 1.986*** 1.987***
(0.082) (0.081) (0.080) (0.079)

Nonattainment x Norm 1.346*** 1.350*** 1.362*** 1.360***
(0.064) (0.065) (0.067) (0.067)

Attainment x Shock 1.266*** 1.262*** 1.260*** 1.261***
(0.027) (0.027) (0.027) (0.027)

Attainment x Norm 0.922*** 0.938*** 0.956*** 0.961***
(0.033) (0.033) (0.034) (0.035)

Implied Adaptation:

Nonattainment Counties 0.646*** 0.641*** 0.625*** 0.627***
(0.055) (0.056) (0.056) (0.055)

Attainment Counties 0.344*** 0.323*** 0.304*** 0.300***
(0.028) (0.028) (0.028) (0.029)

Institution Induced 0.302*** 0.317*** 0.321*** 0.328***
(0.056) (0.056) (0.056) (0.056)

All Controls Yes Yes Yes Yes
Observations 5,139,529 5,139,529 5,139,529 5,139,529
R

2 0.434 0.434 0.434 0.434

Notes: This table addresses the potential concerns with the measurement of the climate norm as a 30-year
monthly moving average of temperature, lagged by 1 year. To explore whether measurement error is a cause
of concern in our analysis, we estimate Equation (2) using alternative definitions for the climate norm. From
column (1) through column (4), we report the estimates using a 3-, 5-, 10- and 20-year moving average
of temperature as the climate norm. Recall that all moving averages are lagged by one year to allow for
the potential adaptation responses by individuals and firms. As argued seminally by Solon (1992), as we
increase the time window of a moving average, the permanent component of a variable that also includes a
transitory component will be less mismeasured. Our estimates remain remarkably stable over the different
lengths of the moving averages, but if anything, they get slightly larger until the 20-year moving average.
There is a slight decline in the coefficient of the climate norm as we move from the 20-year to 30-year moving
average (as reported in Table 1), which suggests that the widely used three-decade averages of meteorological
variables including temperature are close to the long-run norms. The full list of controls are the same as
in the main model, depicted in Table 1. Standard errors are clustered at the county level. ***, **, and *
represent significance at 1%, 5% and 10%, respectively.
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Table B2: Adaptation Responses

Daily Max Ozone Levels (ppb)

Long-Run Long-Run Short-Run
10-year Lag 20-year Lag 2004-2013 only

(1) (2) (3)

Nonattainment x Shock 1.987*** 1.987*** 1.406***
(0.078) (0.078) (0.047)

Nonattainment x Norm 1.353*** 1.351*** 0.715***
(0.067) (0.067) (0.056)

Shock x Action Day −0.147
(0.224)

Attainment x Shock 1.265*** 1.267*** 0.995***
(0.028) (0.028) (0.020)

Attainment x Norm 0.947*** 0.935*** 0.484***
(0.035) (0.034) (0.028)

Shock x Action Day −0.056
(0.150)

Implied Adaptation:

Nonattainment Counties 0.634*** 0.636*** 0.691***
(0.052) (0.050) (0.044)

Attainment Counties 0.318*** 0.333*** 0.511***
(0.029) (0.030) (0.029)

Institution Induced 0.316*** 0.303*** 0.179***
(0.054) (0.053) (0.041)

Induced x Action Day −0.091
(0.256)

All Controls Yes Yes Yes
Observations 5,131,949 5,127,892 1,879,044
R

2 0.434 0.434 0.422

Notes: This table reports estimates when allowing more or less time for economic agents to engage in
adaptive behavior. The estimates in columns (1) and (2) are obtained by Equation (2), but using 10- and
20-year lags between the moving average and contemporaneous temperature, rather than the usual 1-year
lag. By doing so, agents are provided with more time to potentially adjust to climate change. Even though
we would expect that the effects of the weather shocks to be similar, one might expect the effects of the
climate norm to be smaller than before, as agents might be more able to adapt when given more time.
Yet, our estimates are remarkably similar to our main results in Table 1. Column (3) continues using the
1-year lag of the main specification, but adds an interaction term for “ozone action day” announcements at
the county-level to estimate short-run adaptive behavior. These are days in which the relevant air quality
authority expects to observe unhealthy levels of pollution. Individuals and firms are urged to take voluntary
action to reduce precursor emissions. The estimate for the interaction between temperature shocks and
action days is economically and statistically insignificant, pointing to limited opportunities for economic
agents to adjust in the short run. Note that although action day policies first began in the 1990’s, EPA
only provided data beginning in 2004, leading to a restricted overall sample (approximately 36% of our full
sample). Additionally, recall that the Clean Air Act attainment/nonattainment county designation is lagged
by 3 years. The full list of controls are the same as in the main model, depicted in Table 1. Standard errors
are clustered at the county level. ***, **, and * represent significance at 1%, 5% and 10%, respectively.
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Table B3: Further Robustness Checks

Daily Max Ozone Levels (ppb)

Daily Semi-Balanced Meteorological
Moving Average Panel Controls

(1) (2) (3)

Nonattainment x Shock 1.997*** 2.177*** 2.056***
(0.080) (0.107) (0.082)

Nonattainment x Norm 1.419*** 1.582*** 1.351***
(0.068) (0.085) (0.065)

Attainment x Shock 1.265*** 1.562*** 1.228***
(0.028) (0.084) (0.083)

Attainment x Norm 0.973*** 1.286*** 0.775***
(0.032) (0.102) (0.089)

Average Wind Speed −2.204***
(0.284)

Total Daily Sunlight 0.015
(0.015)

Implied Adaptation:

Nonattainment Counties 0.578*** 0.595*** 0.705***
(0.053) (0.088) (0.086)

Attainment Counties 0.292*** 0.276*** 0.453***
(0.028) (0.076) (0.074)

Institution Induced 0.286*** 0.319*** 0.251**
(0.054) (0.093) (0.108)

All Controls Yes Yes Yes
Observations 5,139,460 520,670 453,859
R

2 0.433 0.408 0.441

Notes: This table checks the sensitivity of our main results in Table 1 to changes in the primary econometric
specification given by Equation (2) and sample restrictions. Column (1) replaces the monthly moving average
with a daily moving average of temperature as the climate norm. Although the results are almost identical
to our main estimates in Table 1, we prefer to use the monthly moving averages in our main specification
because it is likely that individuals recall climate patterns by the month and not the day of the year.
Column (2) reports estimates from a semi-balanced panel of 92 ozone monitors that form around 11% of
our complete sample. Muller and Ruud (2018) have argued that the location of pollution monitors is not
necessarily random and in most cases monitors are placed in areas where pollution is high and compliance
with the regulation is a question. As expected, the impacts of both components of temperature are elevated,
as compared to column (2) of Table 1, where we use our preferred unbalanced panel of monitors that is likely
more nationally representative, though notably the adaptation estimates are largely unchanged. Column (3)
provides estimates based on the reduced sample for which we have information on additional meteorological
variables- average wind speed and total daily sunlight. High wind speeds prevent the build-up of ozone
precursors and ultra-violet solar radiation triggers chemical reactions leading to the formation of ground-
level ozone. Having controlled for these additional parameters as well, which have statistically significant
impacts on ozone, our primary estimates remain indistinguishable from our results in Table 1. The full list
of controls are the same as in the main model, depicted in Table 1. Standard errors are clustered at the
county level. ***, **, and * represent significance at 1%, 5% and 10%, respectively.
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Table B4: Alternative Criteria for Selection of Weather Stations

Daily Max Ozone Levels (ppb)

(1) (2) (3) (4)

Nonattainment x Shock 2.043*** 2.019*** 2.149*** 2.135***
(0.080) (0.080) (0.094) (0.091)

Nonattainment x Norm 1.353*** 1.352*** 1.344*** 1.343***
(0.067) (0.067) (0.066) (0.065)

Attainment x Shock 1.298*** 1.281*** 1.345*** 1.334***
(0.027) (0.027) (0.028) (0.028)

Attainment x Norm 0.957*** 0.957*** 0.946*** 0.946***
(0.036) (0.035) (0.036) (0.035)

Implied Adaptation:

Nonattainment Counties 0.690*** 0.667*** 0.805*** 0.792***
(0.052) (0.053) (0.064) (0.063)

Attainment Counties 0.341*** 0.325*** 0.399*** 0.388***
(0.030) (0.029) (0.029) (0.029)

Institution Induced 0.348*** 0.342*** 0.406*** 0.404***
(0.055) (0.056) (0.066) (0.064)

Distance Cut-off 30 km 30 km 80 km 80 km
Stations Included 2 2 5 5
Weighting Scheme Simple Avg 1/Dist Simple Avg 1/Dist
All Controls Yes Yes Yes Yes
Observations 5,139,529 5,139,529 5,284,426 5,284,426
R

2 0.437 0.436 0.439 0.440

Notes: This table reports estimates from models using alternative criteria to match weather stations to
ozone monitors. These estimates are from Equation (2), but we have varied the distance cut-off, the number
of monitors in the matching as well as the averaging strategy to match the weather stations with the ozone
monitors. Recall that in our main estimates in Table 1, we arrive at our sample by matching each ozone
monitor to the closest two weather stations within a 30 km radius and we get the weather realization at
each ozone monitor by averaging our weather variables over these closest two weather stations, weighted by
their inverse squared distance from the monitor. In columns (1) and (2), we continue to use the closest two
weather stations whereas in columns (3) and (4) we use the closest 5 weather stations within a 80 km radius
of the ozone monitor. We also vary the weighting scheme: in columns (1) and (3), instead of a weighted
average we just use a simple average across all matched weather stations; whereas in columns (2) and (4)
we average the weather variables weighted by the inverse of the distance from the monitor. Our estimates
are stable across the four columns and very similar to our main results in Table 1. Recall that the 30-yr
MA is lagged by 1 year, and the Clean Air Act attainment/nonattainment county designation is lagged by
3 years. The full list of controls are the same as in the main model, depicted in Table 1. Standard errors are
clustered at the county level. ***, **, and * represent significance at 1%, 5% and 10%, respectively.
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Table B5: Alternative Outcomes: Employment and Wages

Log Employment Log Wages

(1) (2)

Nonattainment x Shock −0.002 0.004*
(0.001) (0.002)

Nonattainment x Norm 0.002*** −0.002
(0.000) (0.001)

Attainment x Shock 0.000 −0.001
(0.001) (0.001)

Attainment x Norm 0.001*** 0.000
(0.000) (0.001)

Nonattainment Adaptation 0.000 0.000
(0.001) (0.002)

Attainment Adaptation −0.001 −0.001
(0.001) (0.002)

Institution Induced Adaptation 0.001 0.001
(0.001) (0.001)

All Controls Yes Yes
Observations 84,423 28,390
R

2 0.996 0.972

Notes: This table reports the effects of temperature shocks and changes in the climate norm on monthly
log employment and quarterly log wages at the county level for all counties in our main estimating sample,
years 1990-2013. As shown by, e.g., Henderson (1996) and Becker and Henderson (2000), manufacturing
plants have relocated in response to ozone nonattainment designations. Critically, however, the lack of any
response in employment or wages to climate variables, in both attainment and nonattainment counties,
suggests that firms are not adapting to climatic changes when making such relocation decisions. This lack of
relocation response implies that the main channel for our central estimates of institution-induced adaptation,
and adaptation in general, from Table 1 is more likely stemming from “in-place” behavioral or production
adjustments, rather than permanent or transitory shifts in production location. Recall that the 30-yr MA is
lagged by 1 year, and the Clean Air Act attainment/nonattainment county designation is lagged by 3 years.
The full list of controls are the same as in the main model, depicted in Table 1. Standard errors are clustered
at the county level. ***, **, and * represent significance at 1%, 5% and 10%, respectively.
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Table B6: Alternative Clustering and Bootstrapped Standard Errors

Daily Max Ozone Levels (ppb) Implied Adaptation

(1) (2)

Nonattainment x Shock 1.990***
(County Cluster) (0.079)
(State Cluster) (0.126)
(Bootstrapped) (0.081)

Nonattainment x Norm 1.351*** 0.639***
(County Cluster) (0.067) (0.054)
(State Cluster) (0.103) (0.104)
(Bootstrapped) (0.065) (0.055)

Attainment x Shock 1.263***
(County Cluster) (0.027)
(State Cluster) (0.060)
(Bootstrapped) (0.028)

Attainment x Norm 0.956*** 0.308***
(County Cluster) (0.035) (0.029)
(State Cluster) (0.076) (0.058)
(Bootstrapped) (0.037) (0.029)

Institution Induced 0.332***
(County Cluster) (0.056)
(State Cluster) (0.078)
(Bootstrapped) (0.056)

All Controls Yes
Observations 5,139,529
R

2 0.434

Notes: This table compares the standard errors of our main estimates with ones obtained by clustering
at the state- rather than county-level, and by bootstrap (block method clustered at the county level, 250
iterations). The latter addresses the potential concern that because our temperature shocks and norm are
constructed, they could be seen as generated regressors. Bootstrapped standard errors are all within 6%
of those estimated via clustering at the county level, and across all three estimation methods recovered
coefficients remain statistically significant at the 1% level. Recall that the 30-yr MA is lagged by 1 year,
and the Clean Air Act attainment/nonattainment county designation is lagged by 3 years. The full list of
controls are the same as in the main model, depicted in Table 1. ***, **, and * represent significance at 1%,
5% and 10%, respectively.
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Table B7: County Summary Statistics by Belief in Climate Change

Panel A. Low Belief Counties

Count Mean Std. Dev. Minimum Maximum

Population (1000’s) 334 80.8 107.3 0.8 837.5
Average Education (Years) 334 12.7 0.6 11.0 14.3
Median Income ($1000/year) 334 48.5 10.4 21.9 83.3
Average Income ($1000/year) 334 61.5 11.3 36.9 111.9
Voted Democrat in 2008 (%) 334 37.2 10.4 6.6 64.8

Panel B. Median Belief Counties

Population (1000’s) 335 162.7 213.3 1.9 1,870.4
Average Education (Years) 335 13.2 0.6 11.8 15.1
Median Income ($1000/year) 335 53.9 12.4 26.3 109.8
Average Income ($1000/year) 335 68.3 14.6 39.2 142.2
Voted Democrat in 2008 (%) 335 45.6 10.7 17.0 74.9

Panel C. High Belief Counties

Population (1000’s) 336 478.5 803.3 1.3 9,758.3
Average Education (Years) 336 13.6 0.7 11.5 16.1
Median Income ($1000/year) 336 60.5 16.8 30.4 125.7
Average Income ($1000/year) 336 79.5 21.3 41.1 146.0
Voted Democrat in 2008 (%) 336 56.8 11.6 16.0 92.5

Notes: This table reports summary statistics of underlying demographics for each of the terciles of counties

used in Table 4. Demographic data were obtained from the 2006-2010 5-year American Community Survey,

with income reported in 2015 dollars, and average years of education based on a population weighted average

of educational attainment status for the county population over 25 years of age. Voting data is obtained

at the county level from the MIT Election Lab, and refers specifically to votes cast in the 2008 presidential

election.
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Table B8: Adaptation by Local ‘Preferences’ for Single Parenting

Max Ozone (ppb) Implied Adaptation Induced Adaptation

(1) (2) (3)

Nonattainment x Shock 2.147***
(0.167)

x Low Tercile −0.159
(0.170)

x High Tercile −0.216
(0.164)

Nonattainment x Norm 1.431*** 0.716***
(0.142) (0.100)

x Low Tercile 0.039 −0.198
(0.115) (0.127)

x High Tercile −0.068 −0.147
(0.117) (0.123)

Attainment x Shock 1.311***
(0.049)

x Low Tercile −0.123**
(0.062)

x High Tercile −0.021
(0.068)

Attainment x Norm 1.009*** 0.302*** 0.414***
(0.068) (0.044) (0.102)

x Low Tercile −0.096 −0.027 −0.170
(0.077) (0.062) (0.151)

x High Tercile −0.082 0.061 −0.209
(0.089) (0.069) (0.158)

All Controls Yes
Observations 5,139,529
R

2 0.435

Notes: This table reports differential climate and adaptation estimates according to local beliefs unrelated
to environmental amenities – the ‘preference’ for single parenting. All counties in the sample were split into
terciles based on the fraction of single-parent households from the Opportunity Atlas (Chetty et al., 2018),
and those terciles were then interacted with the main variables in Equation (2). In column (1), the main
impacts of the climate norm and temperature shock represent the effects in counties classified in the middle
tercile (for which the interactions have been omitted). The coefficients on the interaction terms reveal the
incremental effects of the climate norm and temperature shock in low- and high-fraction terciles. Column (2)
reports our implied measures of adaptation. By comparing the main estimates of the climate norm and shock
in column (1), we obtain adaptation in mid-fraction counties. Using the coefficients on the interaction terms,
we obtain the incremental adaptation in low- and high-fraction counties in comparison to the mid-fraction
counties. Column (3) displays the measure of institution-induced adaptation for the mid-fraction tercile,
followed by the incremental induced adaptation in low- and high-fraction terciles. Each estimate represents
the difference of adaptation in nonattainment and attainment counties reported in column (2). Recall that
the 30-yr MA is lagged by 1 year, and the Clean Air Act attainment/nonattainment county designation is
lagged by 3 years. The full list of controls are the same as in the main model, depicted in Table 1. Standard
errors are clustered at the county level. ***, **, and * represent significance at 1%, 5% and 10%, respectively.
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Table B9: Adaptation by VOC- or NOx-limited Atmosphere

Main Specification VOC/NOx-Limited

Ozone(ppb) Adaptation Ozone(ppb) Adaptation

(1) (2) (3) (4)

Nonattainment x Shock 2.097*** 2.139***
(0.136) (0.176)

x VOC-limited 0.439*
(0.225)

x NOx-limited −0.134
(0.273)

Nonattainment x Norm 1.398*** 0.699*** 1.406*** 0.733***
(0.149) (0.107) (0.159) (0.118)

x VOC-limited 0.126 0.313*
(0.142) (0.176)

x NOx-limited −0.235 0.101
(0.239) (0.328)

Attainment x Shock 1.707*** 1.872***
(0.182) (0.245)

x VOC-limited −0.513*
(0.262)

x NOx-limited −0.421
(0.342)

Attainment x Norm 1.326*** 0.381*** 1.385*** 0.487***
(0.133) (0.112) (0.159) (0.135)

x VOC-limited −0.106 −0.407**
(0.125) (0.182)

x NOx-limited −0.288** −0.133
(0.125) (0.307)

Institution Induced 0.318*** 0.246**
(0.104) (0.117)

x VOC-limited 0.720**
(0.346)

x NOx-limited 0.233
(0.592)

All Controls Yes Yes
Observations 1,007,563 1,007,563
R

2 0.459 0.460

Notes: This table reports estimates of temperature shock and climate norm interacted with an indicator
of whether the county was VOC-limited or NOx-limited. Using 5-year bins (1980-1984, 1985-1989, etc.) a
county is designated as VOC-limited, NOx-limited, or neither for each bin based on whichever of these three
categories the county observed the most days of. We restrict our sample to only those counties for which
data on these precursor pollutants is available (approximately 20% of our full sample), and depict the results
of our main specification under this restricted sample in columns (1) and (2) for comparison. In column (3),
the main effect reflects the result for non-limited counties, while the interaction term depicts the relative
difference in the effect of shocks and norms in precursor limited counties. Similarly, column (4) reports the
implied measure of adaptation in non-limited counties, and the differential effect in limited ones. Recall that
the 30-yr MA is lagged by 1 year, and the Clean Air Act attainment/nonattainment county designation is
lagged by 3 years. The full list of controls are the same as in the main model, depicted in Table 1. Standard
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Table B10: Results by Decade

Panel A. 1980’s

Max Ozone (ppb) Implied Adaptation Induced Adaptation

(1) (2) (3)

Nonattainment x Shock 2.496***
(0.165)

Nonattainment x Norm 1.746*** 0.750***
(0.115) (0.119)

Attainment x Shock 1.715***
(0.078)

Attainment x Norm 1.356*** 0.359*** 0.391***
(0.064) (0.052) (0.106)

Panel B. 1990’s

Nonattainment x Shock 2.042***
(0.068)

Nonattainment x Norm 1.470*** 0.571***
(0.057) (0.056)

Attainment x Shock 1.360***
(0.034)

Attainment x Norm 1.068*** 0.292*** 0.279***
(0.037) (0.039) (0.064)

Panel C. 2000’s

Nonattainment x Shock 1.506***
(0.042)

Nonattainment x Norm 0.959*** 0.547***
(0.061) (0.061)

Attainment x Shock 1.054***
(0.022)

Attainment x Norm 0.729*** 0.324*** 0.223***
(0.034) (0.033) (0.054)

All Controls Yes
Observations 5,139,529
R

2 0.441

Notes: This table reports our main estimates disaggregated by the three “decades” in our sample: 1980-1990;
1991-2001 and 2002-2013. Estimates in column (1) correspond to Equation (2), while estimates in column
(2) report the implied measure of adaptation. The effects of the climate norm and temperature shock are
decreasing over time in both attainment and nonattainment counties. Similarly, the measure of institution-
induced adaptation, column (3), appears to be somewhat decreasing across the three decades, although still
statistically indistinguishable from our full sample results in Table 1. Recall that the 30-yr MA is lagged by
1 year, and the Clean Air Act attainment/nonattainment county designation is lagged by 3 years. The full
list of controls are the same as in the main model, depicted in Table 1. Standard errors are clustered at the
county level. ***, **, and * represent significance at 1%, 5% and 10%, respectively.
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Table B11a: Nonlinear Effects of Temperature

Panel A. Below 20◦C

Max Ozone (ppb) Implied Adaptation Induced Adaptation

(1) (2) (3)

Nonattainment x Shock 0.795***
(0.023)

Nonattainment x Norm 0.124*** 0.670***
(0.039) (0.036)

Attainment x Shock 0.594***
(0.021)

Attainment x Norm 0.192*** 0.403*** 0.268***
(0.036) (0.032) (0.047)

Panel B. 20-25◦C

Nonattainment x Shock 1.900***
(0.120)

Nonattainment x Norm 1.438*** 0.462***
(0.114) (0.040)

Attainment x Shock 1.361***
(0.042)

Attainment x Norm 1.081*** 0.280*** 0.182***
(0.053) (0.031) (0.048)

All Controls Yes

Observations 5,139,529
R

2 0.447

Notes: This table explores the non-linear effects of the climate norm and temperature shock on ambient
ozone concentrations. Specifically, we consider five bins of daily temperature: below 20◦C, 20-25◦C, 25-30◦C,
30-35◦C and above 35◦C. Estimates in column (1) correspond to Equation (2) after interacting indicator
variables for each of these temperature bins, while estimates in column (2) report the implied measure of
adaptation. Although institution-induced adaptation on days between 20-25◦C and 25-30◦C appears to be
lower than in our full-sample model, above 35◦C the magnitude of institution-induced adaptation more than
doubles, which is encouraging, given the prospects of ever increasing temperatures over the next decades.
Recall that the 30-yr MA is lagged by 1 year, and the Clean Air Act attainment/nonattainment county
designation is lagged by 3 years. The full list of controls are the same as in the main model, depicted in
Table 1. Standard errors are clustered at the county level. ***, **, and * represent significance at 1%, 5%
and 10%, respectively.
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Table B11b: Nonlinear Effects of Temperature

Panel C. 25-30◦C

Max Ozone (ppb) Implied Adaptation Induced Adaptation

(1) (2) (3)

Nonattainment x Shock 2.488***
(0.118)

Nonattainment x Norm 2.241*** 0.246***
(0.131) (0.053)

Attainment x Shock 1.407***
(0.049)

Attainment x Norm 1.365*** 0.042 0.204***
(0.060) (0.033) (0.051)

Panel D. 30-35◦C

Nonattainment x Shock 2.509***
(0.132)

Nonattainment x Norm 1.678*** 0.831***
(0.193) (0.104)

Attainment x Shock 1.772***
(0.079)

Attainment x Norm 1.394*** 0.379*** 0.452***
(0.099) (0.055) (0.092)

Panel E. Above 35◦C

Nonattainment x Shock 2.134***
(0.148)

Nonattainment x Norm 0.809*** 1.325***
(0.206) (0.185)

Attainment x Shock 1.642***
(0.114)

Attainment x Norm 1.007*** 0.635*** 0.689***
(0.150) (0.153) (0.225)

All Controls Yes

Observations 5,139,529
R

2 0.447

Notes: This table continues the results from Table B11a for the temperature bins 25-30◦C, 30-35◦C and
above 35◦C in panels (C), (D), and (E), respectively. Recall that the 30-yr MA is lagged by 1 year, and the
Clean Air Act attainment/nonattainment county designation is lagged by 3 years. The full list of controls
are the same as in the main model, depicted in Table 1. Standard errors are clustered at the county level.
***, **, and * represent significance at 1%, 5% and 10%, respectively.
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Appendix C. Formalization of Conceptual Framework

This appendix provides further elaboration of the conceptual framework and formalization

of institution-induced adaptation as discussed in Section II.

C.1. New vs. Existing Institutions to Address Climate Change

Global warming is the most significant of all environmental externalities (Nordhaus, 2019).

Nevertheless, because of free-riding, it has been proven difficult to induce countries to join

in an international agreement with significant reductions in emissions. In fact, countries

have an incentive to rely on the emissions reductions of others without taking proportionate

domestic abatement. Moreover, even nationally, there may be temporal free-riding: present

generations may choose to enjoy the consumption benefits of high carbon emissions, while

future generations pay for those emissions in lower consumption or a degraded environment.

Since it has been politically infeasible to reach worldwide agreements to reduce car-

bon emissions, Nordhaus (2015) has proposed the establishment of “climate clubs” to over-

come free-riding in international climate policy. Because without sanctions against non-

participants there are no stable coalitions other than those with minimal abatement, he

argues that a regime with small trade penalties on non-participants can induce a large stable

coalition with high levels of abatement. An important question is how a top-down “climate

club” would get started, and how it would evolve from a small number of countries who

see the logic, and define a regime, to then invite other countries to join. Nordhaus (2015)

acknowledges that “[i]nternational organizations evolve in unpredictable ways. Sometimes,

it takes repeated failures before a successful model is developed. (...) The destination of a

Climate Club is clear, but there are many roads that will get there” (p.1352).

Recognizing the difficulty in establishing new institutions and policy such as “climate

clubs” in the international stage, and carbon pricing (the first-best climate policy) in the

domestic stage, and the urgency in tackling the challenges of climate change, Goulder (2020)
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advocates for considerations of political feasibility and costs of delayed implementation in

the choice of potential climate policy. Second-best policies are, by definition, socially ineffi-

cient, but if they are politically feasible for near-term implementation, they might move up

in the ordering of the policies considered by the federal government (Goulder, 2020). In this

study, we demonstrate that existing government institutions and policy are already inducing

adaptation to climate change, and argue that policymakers should take these co-benefits

into account when enforcing or revising them. Furthermore, we hypothesize that local insti-

tutions, rather than national or global, might be also effective in shaping the responses to

climate change.15

C.2. The Nature of Existing Institutions Inducing Adaptation

The potential for government institutions and policy to induce or inhibit adaptation to cli-

mate change relies on how the outcomes targeted by those policies interact with climate.

When climate is an input in production, and the output is a marketable good or service,

policies considering output and/or input levels may not only distort economic agents’ be-

havior and generate deadweight loss, but also potentially affect adaptive behavior. On the

one hand, Annan and Schlenker (2015) provide an illustration for the case of policies pre-

cluding adaptation by examining the impact of the federal crop insurance program on crop

production. Insured farmers may not engage in the optimal protection against harmful ex-

treme heat because the resulting crop losses are covered by the insurance program. On the

other hand, policies such as the federal air conditioning subsidies for low-income families

would also generate deadweight loss, but could induce adaptation to climate change (Bar-

15This hypothesis emerges from the well-known heterogeneity in climate beliefs across local jurisdictions,
and from previous findings highlighting the role of social norms in shaping responses to public policies. A
strand of the literature has documented that environmental ideology is an important determinant of producer
and consumer choices (e.g., Henderson, 1996; Kahn, 2007; Kotchen and Moore, 2008). Another strand of
the literature provides evidence that “nudges” based on social norms can substantially and cost-effectively
change consumer behavior towards environmentally-friendly outcomes (e.g., Allcott, 2011; Ferraro and Price,
2013). In this study, we explore how local beliefs about climate change strongly associate with adaptation
induced by existing government institutions and policy. Our prior is that local social norms/institutions may
play a key role in determining the success of policies addressing environmental externalities.
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reca et al., 2016). In this case, policymakers could weigh these costs and benefits in their

decision process, in addition to equity considerations. Notice that this last example refers

to consumption of goods and services, not production as above, pointing to the generality

of the concept.

In contrast, and absent direct climate policy, when climate is an input in the production

of economic outcomes that arise from market failures, corrective policies targeting those

outcomes may not only address market failures but might also lead to climate adaptation.

In fact, in this second-best setting, policies correcting pre-existing market distortions may

also address the externality of climate change (e.g., Goulder and Parry, 2008; Bento et al.,

2014; Jacobsen et al., 2020). This is the case we are examining in this study: the NAAQS

for ambient ozone not only deal with the externality of local air pollution, but also generate

institution-induced adaptation. As economic agents reoptimize the level of NOx and VOCs to

comply with NAAQS regulations, taking changes in climate as given, they are actually coping

not with uncontrolled emissions of those ozone precursors, but rather with climate change.16

However, if inputs other than climate are also the result of externalities, and corrective

policies target them instead, then there may be no incentives to adapt to climate change:

economic agents might be able to change the levels of those inputs regardless of climate

considerations. For the case of ambient ozone, two prominent corrective policies targeting

its precursors – regulations restricting the chemical composition of gasoline, intended to

reduce VOC emissions from mobile sources, and the NOx Budget Trading Program – did

reduce the undesirable output (Auffhammer and Kellogg, 2011; Deschenes, Greenstone and

Shapiro, 2017), but did not create incentives to cope with climatic changes.

To make the concept of institution-induced adaptation as clear as possible in the context

we are studying, we use the schematic representation depicted in Figure 1. In this figure,

16Ironically, another EPA regulation fostering adaptation to climate change in terms of ambient ozone
concentration relates to cooling water systems and thermal discharges under the Clean Water Act (e.g.,
McCall, Macknick and Hillman, 2016). Power plants cannot withdraw water from rivers to cool boilers if
the water temperature rises; the discharge of hot water would endanger aquatic wildlife. Thus, with global
warming, plants may be forced to curtail operations. This would decrease emissions of ozone precursors, and
ultimately reduce ambient ozone concentration. Hence, institution-induced adaptation.
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the y-axis represents the output – ozone formation – and the x-axis represents one of the

inputs – the ratio of NOx and VOCs, whose levels move along the linear production func-

tion F (I(VOC/NOx), Climate) represented by the upward-sloping black curve. The blue

horizontal line represents the maximum ambient ozone concentration a county may reach

while still complying with the NAAQS for ozone. Above that threshold, a county would

be deemed out of compliance with the standards, or in “nonattainment.” Assume that an

ozone monitor is sited in a county that is initially complying with the standards, as in point

A. Moreover, suppose for simplicity that emissions of ozone precursors are initially under

control, but then temperature rises. Because this is a bidimensional diagram representing

ozone as a function of VOC/NOx – taking climate as given – an increase in temperature

shifts the production function upward and to the left. This new production function un-

der climate change is represented by the red upward-sloping curve. Because we assumed

emissions of ozone precursors were initially under control, an increase in temperature raises

ozone concentration for the same level of the VOC/NOx ratio, reaching point B. Since the

ozone concentration is now above the NAAQS threshold, the county goes out of attainment,

and firms are mandated to make adjustments in their production process to comply with

the air quality standards in the near future, usually three years after a county receives the

nonattainment designation. Notice that firms need to respond to the regulation not because

they were not careful in controlling emissions in the baseline, but rather because climate has

changed. As they take steps to reduce emissions to reach attainment, moving along the new

production function curve until point C, those economic agents are in fact adjusting to a

changing climate. Thus, they are adapting to climate change because of the ozone NAAQS

regulation, that is, they are engaging in institution-induced adaptation.17

17Ambient ozone concentration is a negative externality. For completeness, public policy can also induce
adaptation to climate change in addressing positive externalities. Besides the social desirability of increasing
the equilibrium levels of those outcomes, such policies can create a co-benefit of adjusting to or coping with
a changing climate. One example is the Medicaid-covered influenza vaccination. Severe influenza seasons are
likely to emerge with global warming (Towers et al., 2013), but publicly-funded annual vaccination allows
Medicaid beneficiaries to cope with climatic changes. This is in addition to the herd-immunity impact of
influenza vaccination (White, forthcoming). Again, the concept of policy-induced adaptation is quite broad,
and incentives affecting adaptive behavior are already in place in a variety of policies implemented around
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Despite the contribution of current government institutions and policy in promoting

adaptation, we must recognize the second-best nature of these incentives. As discussed

above, it is well-known that the first-best policy to tackle climate change is carbon pricing.

Nevertheless, if the political economy of climate change policy is unfavorable to the first-best

policy, then second-best solutions could be implemented (Goulder, 2020). One possibility is

to impose or strengthen policies correcting market failures related to outcomes that depend

on climate. The NAAQS for ambient ozone, for instance, is a regulation correcting a market

failure – an air pollution externality – while fostering adaptation because ozone is formed in

the presence of sunlight and warm temperatures.18

C.3. A Simple Formalization

To fix ideas, assume that firms produceX units of a consumption good. They use G(X) units

of the numeraire Z, and generate P units of pollution, assumed to be proportional to X.

Since we are focusing on ozone pollution, and ozone formation depends on climate (C) as well,

then inspired by Phaneuf and Requate (2017, Chapter 5) we define P ≡ F (X,C) = δ(C)X,

with δC(.) > 0. Also, suppose that there is a continuum of consumers with wealth Y and

quasilinear utility

U(X) + Z − rδ(C)X, (C.1)

where r is the marginal damage of ozone pollution.

Let p denote the market price of the consumption good X. Firms maximize profits,

maxX pX −G(X), (C.2)

the world.
18Many other second-best policies have been implemented around the world. The economic rationale has

been laid out many decades ago (Lipsey and Lancaster, 1956). In the context of climate change, a prominent
example is the the corporate average fuel economy (CAFE) standards. A first-best policy would be taxing
tailpipe emissions directly. Another incentive-based policy would be raising the gas tax. Either way, it would
send a price signal to consumers, affecting which cars they purchase, and how much they drive. Besides
reducing driving, a higher gas tax would have other important benefits that improving fuel economy does
not, such as congestion relief and accident reduction.
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and consumers maximize utility, taking pollution and climate as fixed:

maxX U(X) + Y − pX. (C.3)

Demand (D) and supply (S) satisfy U ′(XD) = p = G′(XS). At the equilibrium price,

private marginal benefit equals private marginal cost U ′(X) = G′(X), but this is not Pareto

efficient because of the negative externality of ozone pollution imposed on consumers. It may

be possible to improve welfare (W ) by reducing production, perhaps through a regulation

such as the NAAQS for ambient ozone. Using the perturbation argument, consider a small

change in production dX < 0. By the envelope theorem,

dW = [p−G′(X)]dX + [U ′(X)− p]dX − rδdX = −rδdX > 0. (C.4)

Because dW ≡ dW (C) = −rδ(C)dX, marginal reductions in X, e.g., to keep ozone

concentrations below the NAAQS, would be welfare improving even in the case of a constant

climate. In the case of climate change, however, the welfare gains from such reductions would

be even greater, as the amount of pollution avoided by decreasing X would be proportionally

larger. We refer to these further welfare gains as “institution-induced adaptation,” which

can be interpreted as a co-benefit of the NAAQS for ambient ozone:

dW

dC
= −rδCdX > 0. (C.5)

In the empirical analysis, we focus on estimating the extent to which ozone concentration

is affected by climate change under the NAAQS regulation, relative to a benchmark without

(or lower levels of) regulation, aiming at recovering δC . Thus, with an estimate of r from

the literature (e.g., Deschenes, Greenstone and Shapiro, 2017), we should be able to provide

some back-of-the-envelope calculations regarding changes in welfare.
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