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Smooth Income Tax Schedules: 
Derivation and Consequences

Existing tax schedules are often overly complex and characterized by discontinuities in the 

marginal tax burden. In this paper we propose a class of progressive smooth functions to 

replace personal income tax schedules. These functions depend only on three meaningful 

parameters, and avoid the drawbacks of defining tax schedules through various tax 

brackets. Based on representative micro data, we derive revenue-neutral parameters for 

four different types of tax regimes (Austria, Germany, Hungary and Spain). We then analyze 

possible implications from a hypothetical switch to smoother income tax tariffs. We find 

that smooth tax functions eliminate the most extreme cases of bracket creep, while the 

impact on income inequality is mostly negligible, but uniformly reducing. 
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1 Introduction
Personal income taxation constitutes one of the main tools for income redistribution
in developed economies (Joumard et al., 2012). Tax schedules are usually defined in a
piecewisemanner, consisting of polynomials of order less or equal to two in different tax
brackets. This implies non-differentiable and often non-continuous marginal tax rate
functions that complicates the computation of an individual’s tax liability. Even flat tax
regimes with a non-taxed threshold feature a discrete jump at this threshold. This is
considered undesirable, as jumps inmarginal tax rates (kinks) alter individual behavior
compared to a hypothetical situation with smooth functions (Saez, 2010). In addition,
the tax liability disproportionally increases particularly at these discontinuities if gross
wages increase.

In this contribution, we derive a new class of smooth income tax tariffs and discuss
their advantages vis-à-vis current approaches. They are easy to define and could be
used instead of the piecewise defined polynomial functions. Defining tax schedules in
terms of the marginal tax rate is attractive for policy-makers by making distributional
objectives explicit. Particular attention has been devoted to the the top marginal tax
rate, both in the policy debate and in the optimal taxation literature (Diamond and Saez,
2011). Our approach, while not being generally defined inmarginal tax rates, maintains
the top marginal tax rate, along with the general exemption, as a key policy parame-
ter. With smooth tax tariffs, however, it becomes harder to alter the top marginal tax
rate without changing the tax function for lower incomes at the same time. This poten-
tially hinders policy-makers from targeting specific income groupswhen implementing
tax reforms. Finally, we apply a microsimulation model to demonstrate distributional
effects for four countries (Austria, Germany, Hungary, Spain), each representing a dif-
ferent type of tax schedule. As a general lesson, the theoretical merits of smooth tax
functions can be achieved by both maintaining tax revenue and the level of income in-
equality.

The paper is organized as follows. After classifying existing tax schedules (Sec-
tion 2), we derive a new class of tax functions in Section 3. In Section 4, we present
how to determine the parameters for these tax functions. Section 5 discusses the distri-
butional effects of introducing smooth tax functions in four countries, before Section 6
concludes.

2 Typology of Existing Tax Tariffs
Notation In what follows, we will consider the annual taxable income x > 0, i.e. net
of exemptions and allowances. For this variable, we consider the income tax liability
T (x) and the effective (average) income tax rate E(x), i.e.

T (x) := E(x) · x, or E(x) :=
T (x)

x
.

The derivative of T , corresponding to the marginal tax rate, is therefore defined by

M(x) := T ′(x) = E ′(x) · x+ E(x).

Existent tax schedules in the EU can be broadly classified into three categories, as shown
in Table 1.1

1 Throughout the paper, we refer to the general shape of the nationwide personal income tax schedule.
We do not consider further taxes imposed on personal income, such as social security contributions,

1



Table 1: Different types of definitions for the functions E(x), T (x),M(x)

Type Prescribed
function

Resulting functions Examples

Flat M(x) T (x) := M · x E := M Hungary, Latvia, Czech
Republic

C-Prog M(x) T (x) :=
∫ x
0 M(ξ) dξ, E(x) := T (x)/x Austria, France, Italy, UK,

U.S.

G-Prog T (x) E(x) := T (x)/x, M(x) := T ′(x) Germany

N-Prog E(x) T (x) := E(x) · x, M(x) := T ′(x)

Source: (OECD, 2017).

Flat : (Flat rate tax) The same constant tax rateM applies to every taxpayer regardless
of income x. Consequently, T (x) =M · x is linear and E =M .

C-Prog : (Common progressive tax) For almost all countries with progressive tariff,M(x)
is defined by piecewise constant functionsMi(x) = Mi for i = 0, 1, . . . , n. Conse-
quently, T (x) is a polygonal line defined piecewise by functions of the type

Ti(x) =Mix+ ri

and E(x) consists of piecewise defined functions with a rational summand, i.e.

Ei(x) =Mi +
ri
x
.

G-Prog : (German progressive tax) German tax law defines a continuous T (x) by piece-
wise considered polynomials of degree up to 2, i.e.

Ti(x) = aix
2 + bix+ ci, i = 0, 1, . . . , n.

Consequently,M(x) consist of piecewise defined polynomial of degree up to 1

Mi(x) = 2aix+ bi,

and E(x) is piecewise defined by

Ei(x) = aix+ bi +
ci
x
,

i.e. also in this case we obtain a rational summand.

N-Prog : (New type of progressive tax) For our purposes, we introduce tax functions
defining smooth functions for E(x), such that T (x) and M(x) result accordingly
to Table 1 and no piecewise definition is necessary.

regional tax schedules (as in Spain), separate taxation of capital gains (e. g., Austria, Germany) or other
top-up taxes. Beyond, we take differences in the extent of tax deductions as given. Interactions of the
counterfactual tax schedule with other elements of the tax-benefit system will be however accounted for
in the distributional analysis.
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3 Derivation of Smooth Tax Tariffs

3.1 Parameters
The main common idea of the functions that will be discussed is to assume that E(x)
is a strictly increasing nonlinear saturation function. Consequently, T (x) andM(x) re-
sult straight forward. Moreover, all functions will depend only on three parameters
(Emax, x0, xh). First, we denote the upper bound for both effective and marginal tax
rates with Emax, such that

0 ≤ E(x) ≤ Emax, lim
x→∞

E(x) = Emax, (1)

0 ≤M(x) ≤ Emax, lim
x→∞

M(x) = Emax. (2)

Second, all existing tax tariffs feature a basic threshold which leaves income below
this threshold untaxed. We denote this with x0, i. e.

lim
x→x0

E(x) = 0, for x > x0.

Tax tariffs usually kick in with a positivemarginal tax rateM(x), thus creating a first
kink in the tax schedule. We will also discuss the special case for a tariff starting with
a zero marginal tax rate, i.e.

lim
x→x0

M(x) = 0, for x > x0.

The third parameter xh > x0 denotes the taxable income for which the effective tax rate
equals half the maximal rate:

E(xh) =
Emax
2

. (3)

Technical and scientific applications offer a variety of saturation functions that could
be used in our context which satisfy the general requirements of tax schedules (non-
decreasing, positive) and are continuous. Some examples are given in Table 2.

Table 2: Examples for strictly increasing saturation functions

E(x | Emax, x0, xh)

Rational function Emax · x−x0
x−2x0+xh

Exponential function Emax ·
(
1− 0.5

x−x0
xh−x0

)
Arcus tangens Emax · 2π · arctan

(
tan(0.5) x−x0

xh−x0

)
Tangens hyperbolicus Emax · tanh

(
arctanh (0.5) x−x0

xh−x0

)
Composed function Emax · 0.5

xh−x0
x−x0

For the sake of clarity, we will discuss only the two most straightforward functions
E(x | Emax, x0, xh) from Table 2 in detail, i. e. the rational and the composed function.
The corresponding T (x),M(x) result from the definition, see Section 2.
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3.2 Definition with a rational function: Er(x)

As emphasized in Section 2, E(x) involves a rational expression for progressive tariffs.
For this first approach, we therefore consider a simple rational function such that both
the numerator and the denominator are polynomials of degree one and (1)-(3) are ful-
filled. Therefore, we define

Er(x) :=

{
0, for 0 < x ≤ x0,

Emax · x−x0
x−2x0+xh

, for x > x0,

leading to

Tr(x) =

{
0, for 0 < x ≤ x0,

Emax · x−x0
x−2x0+xh

· x, for x > x0,

Mr(x) =

{
0, for 0 < x ≤ x0,

Emax · x
2−4xx0+2xh x+2x02−xh x0

(x−2x0+xh)2
, for x > x0,

and consequently
Mr(x0) = Emax ·

x0
xh − x0

.

This means that for positive tax exemptions x0 > 0 the functionMr(x) is not continuous
at x0 and Tr(x) is not smooth at x0, keeping a kink at the exemption.2 In fact, from the
functions listed in Table 2, only the last one permits a definition of smooth functions
E(x) and T (x) at x0. Therefore, this will be the second function we discuss in detail.

3.3 Definition with a composed function: Es(x)

In Estévez Schwarz (2017), a smooth function Es is introduced deducing a composed
function (an exponential function with rational exponent) as solution of the linear dif-
ferential equation

E ′(x) =
k

(x− x0)2
E(x), k > 0, x > x0

in order to approximate the German income tax function. The resulting function reads

Es(x) :=

{
0, for 0 < x ≤ x0,

Emax · 0.5
xh−x0
x−x0 , for x > x0,

leading to

Ts(x) =

{
0, for 0 < x ≤ x0,

Emax · 0.5
xh−x0
x−x0 · x, for x > x0,

Ms(x) =

{
0, for 0 < x ≤ x0,

Emax · 0.5
xh−x0
x−x0

(
1− ln(0.5)·(xh−x0)x

(x−x0)2

)
for x > x0,

and consequently
lim
x→x0

Ms(x) = 0.

In fact, Es(x), Ts(x) andMs(x) result to be endlessly continuous differentiable in R.
Therefore, we will denote Ts as the fully smooth tariff in the following.

2 Arguably, the exemption threshold represents a social norm. Maintaining this kink could hence be
socially desirable (Kleven, 2016).
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4 Country-wise determination of parameters
In order to derive a smooth tax schedule for a specific country, the three parameters
described above need to be determined. As the top marginal tax rate Emax embodies a
redistributional objective, we fix it at today’s level. Alternatively, one could determine
this parameter on the basis of sufficient statistics (Piketty and Saez, 2013). We obtain
the remaining parameters (x0, xh) such that a specific tax revenue is collected. To this
end, we estimate the tax revenue obtained with a tax function by the scalar product

〈P, T (X)〉 =
k∑
i=1

piT (xi).

X = (x1, x2, . . . , xk)denotes taxable incomes in steps of 250e. T (X) = (T (x1), T (x2), . . . ,
T (xk)) represents the tax liability and P = (p1, p2, . . . , pk) the number of tax cases for a
given value of xi.

P andT (X) stem fromEUROMOD, the only tax-benefitmicrosimulationmodel cov-
ering all EU countries (Sutherland and Figari, 2013). EUROMOD enables us to conduct
a comparative analysis of different tax tariffs consistently in a common framework. It
is based on nationally representative micro-data from the EU-SILC, collected by Euro-
stat. They provide information on household characteristics, market income from vari-
ous sources and a comprehensive set of tax-benefit rules, e. g. unemployment benefits,
social assistance, social security contributions and personal income taxation. Based on
these data, along with a replication of the core elements of the tax-benefit rules, house-
hold disposable income can be calculated. We rely on themost recent available EU-SILC
survey from 2015, to which the tax-benefit rules from 2017 are applied. The accuracy of
the survey data is inferior to administrative data due their lower sample size and due
to income misreporting. On the other hand, survey data provide detailed information
on e. g., family composition and labor market behavior. This allows us to assess the
consequences of counterfactual tax tariffs, also taking into account interactions with
other elements of the tax-benefit system. Examples include the tax treatment of social
security contributions or eligibility to public transfers. Another reason for relying on
survey data is their representativeness for the population as a whole. In order to scale
the survey households to the full population, we make use of sample weights. P hence
denotes the sum of sample weights across bins of taxable income. The associated dis-
tributions of taxpayers are presented in Figure 1.

To take into account the basic exemption, we suppose that Emin < Emax

2
is the mini-

mal effective tax-rate that will in practice be charged and that xmin with x0 < xmin < xh
is the value that satisfies

E(xmin) = Emin.

For all countries, we use the actual values for xmin and set Emin = 0.001%, with the
goal of determining x0, c. f. Appendix. Put differently, x0 will be determined such that
the tax liability becomes relevant at xmin. In order to avoid distributional discussions,
we consider a revenue-neutral reform, i. e. 〈P, T (X)〉 corresponds to the current value
Revenue, as simulated in EUROMOD for 2017.

Summarizing, for each country we determine x0 and xh numerically for both tax
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Figure 1: Distribution of taxpayers

(a) Austria (b) Germany

(c) Hungary (d) Spain

Note: Own presentation for the 2017 tax regimes, based on EU-SILC data from 2015 (Germany: 2014). In
Germany, married partners enter twice with half the couple’s taxable income. The vertical line indicates
the statutory exemption in Germany and Austria.

functions such that
k∑
i=1

piT (xi) = Revenue, (4)

E(xmin) = Emin, (5)

is fulfilled. The solvability of (4)-(5) is verified in the Appendix.

4.1 Germany
As of 2017, the German Personal Income Tax Tariff is defined as follows:

TDE(x) =



T0(x) = 0, for 1 ≤ x ≤ 8820,
T1(x) =

(
1007.27 · x−8820

10000 + 1400
)
· x−8820

10000 , for 8821 ≤ x ≤ 13769,
T2(x) =

(
223.76 · x−13769

10000 + 2397
)
· x−13769

10000
+939.57, for 13770 ≤ x ≤ 54057,

T3(x) = 0.42 · x− 8475.44, for 54058 ≤ x ≤ 256303,
T4(x) = 0.45 · x− 16164.53, for x ≥ 256304.

The other component of the personal income tax is the solidarity surcharge (Soli-
daritätszuschlag), which amounts to 5.5% of the income tax due. We disregard this tax
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for simplicity and instead regard Emax = 0.45 as fixed. For married taxpayers A and B
with income xA and xB filing jointly, the tax is twice the amount of applying the for-
mula to half of the married couple’s joint taxable income. The resulting benefit is called
splitting effect S:

S(xA, xB) := TDE(xA) + TDE(xB)− 2 · TDE
(
xA + xB

2

)
. (6)

In Germany, no income tax is charged on incomes below the basic allowance of
8820e for unmarried persons. Consequently, to determine x0 and xh for a function
that is continuous up to rounding effects, we assume xmin = 8821. Moreover, we set
E(x) = 0, T (x) = 0, M(x) = 0 for x < xmin. Solving equations (4)-(5) leads to the
following respective tariff functions:

Tr(x) =

{
0, for 0 < x ≤ 8820,

0.45 · x−8820
x+22433

· x, for x ≥ 8821.

Ts(x) =

{
0, for 0 < x ≤ 8820,

0.45 · 0.5
30293

x−6861 · x, for x ≥ 8821.

It becomes apparent that with these functions, individuals can compute their tax
liability more easily than with the current schedule.

4.2 Flat Tax: Hungary
We choose Hungary as an example for a Flat Tax Regime as implemented in a num-
ber of New EUMember States (Table 1). Flat Tax regimes obviously do not suffer from
complexity. For the sake of completeness, we demonstrate the implications of our ap-
proach also for such regimes. Hungary taxes all income at a 16% rate. There is no
general exemption; families are granted a tax allowance that increases with the number
of children.

THU(x) = 0.16 · x for x > 0.

For singles, this already constitutes a smooth tax tariff.
Sticking to Emax = 0.16 would not deliver a solution for a progressive tariff, as tax

revenue would be strictly lower than in the status quo. We instead set the new top
marginal tax rate to 20%. The resulting functions for xmin = 0 are

Tr(x) = 0.2 · x

x+ 2086
· x, Ts(x) = 0.2 · 0.5

2586
x · x for x > 0.

4.3 Common Progressive Tax: Austria
The Austrian tax schedule is a typical example for tariff that is determined in brackets
of constant marginal tax rates:

M(x) :=



M0 = 0, for 0 ≤ x ≤ 11000,
M1 = 0.25, for 11000 < x ≤ 18000,
M2 = 0.35, for 18000 < x ≤ 31000,
M3 = 0.42, for 31000 < x ≤ 60000,
M4 = 0.48, for 60000 < x ≤ 90000,
M5 = 0.50, for 90000 < x ≤ 1000000,
M6 = 0.55, for x > 1000000.
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Piecewise integration according to the definition from C-Prog in Table 1 leads to

TAT (x) =



T0(x) = 0, for 0 ≤ x ≤ 11000,
T1(x) = 0.25 · (x− 11000), for 11000 < x ≤ 18000,
T2(x) = 1750 + 0.35 · (x− 18000), for 18000 < x ≤ 31000,
T3(x) = 6300 + 0.42 · (x− 31000), for 31000 < x ≤ 60000,
T4(x) = 18480 + 0.48 · (x− 60000), for 60000 < x ≤ 90000,
T5(x) = 32880 + 0.50 · (x− 90000), for 90000 < x ≤ 1000000,
T6(x) = 487880 + 0.55 · (x− 1000000), for x ≥ 1000000.

Our micro data do not contain taxpayers above 1 millione. We hence set Emax = 0.5
for the derivation of the smooth functions. For xmin = 11001, we obtain

Tr(x) =

{
0, for 0 < x ≤ 11000,

0.5 · x−11000
x+17432

· x, for x ≥ 106.

Ts(x) =

{
0, for 0 < x ≤ 11000,

0.5 · 0.5
27414

x−9245 · x, for x ≥ 106.

Accounting for incomes above 1 millione would require the application of admin-
istrative (tax return) data. Alternatively, one could ignore this ‘tax for millionaires’, as
a smooth increase towards Emax = 0.55 would lead to higher marginal tax rates for a
substantial share of the population below 1 millione.

4.4 Modified Common Progressive Tax: Spain
We take a closer look to the Spanish tax system in order to illustrate the difficulties that
may arise if the introduced approach is applied to a tax system that does not completely
fit into the types discussed in Section 2 and Table 1.

4.4.1 Income Taxation in Spain
We disregard differences between the autonomous regions and consider, in a first step,
the nationwide schedule

M(x) =


M1 = 0.19, for 0 ≤ x ≤ 12450,
M2 = 0.24, for 12450 < x ≤ 20200,
M3 = 0.30, for 20200 < x ≤ 35200,
M4 = 0.37, for 35200 < x ≤ 60000,
M5 = 0.45, for x > 60000.

IntegratingM(x) piecewise yields

RES(x) =


R1(x) = 0.19 · x, for 0 ≤ x ≤ 12450,
R2(x) = 2365.50 + 0.24 · (x− 12450), for 12450 ≤ x ≤ 20200,
R3(x) = 4225.50 + 0.30 · (x− 20200), for 20200 ≤ x ≤ 35200,
R4(x) = 8725.50 + 0.37 · (x− 35200), for 35200 ≤ x ≤ 60000,
R5(x) = 17901.50 + 0.45 · (x− 60000), for x ≥ 60000.

There are substantial allowances for recipients of earnings and self-employment in-
come that is subtracted before applying the tax schedule.3

3 As an example, every individual receiving less than e 11250 of earnings and less than e 6500 of
self-employment income can claim an allowance (Reducciones por rendimientos del trabajo) of up to e 5700.
Beyond, pension expenditures can be partly deducted and additional allowances are granted for families.
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The consideration of the family situation involves two aspects (Agencia Tributaria,
2017). On the one hand, incomes below certain thresholds xt, depending on the house-
hold context, are tax-exempt. These thresholds xt are also taken into account in the
limitation that guarantees the effective tax rate does not exceed 43%. For simplicity, we
neglect this fact and assume xt = 0. On the other hand, in contrast to German and
Austrian tax functions, that are shifted along the axis of abscissae in order to guarantee
that the exemption is untaxed (T (x0) = 0 for a continuous function T ), the Spanish tax
function is lifted along the axis of ordinates by means of

TES(x, xf ) =

{
T0(x, xf ) = 0, for x ≤ xf ,
T1−5(x) = RES(x)−RES(xf ), for x > xf

whereas xf for singles is fixed by xf = 5550. xf increases if elderly parents or children
are present in the household (mínimo personal y familiar).

Formally, this means that in fact for x > xf , the tax liability equals the area beneath
the functionM between xf and x, i. e.

TES(x, xf ) :=

∫ x

xf

M(ξ) dξ, EES(x, xf ) :=
1

x

∫ x

xf

M(ξ) dξ,

is considered instead of the definition from C-Prog in Table 1, cf. Figure 2.

Figure 2: Spanish Tax Schedule: Comparison of the shift along the axis of abscissae vs.
shift along the axis of ordinates for RES .

4.4.2 Deriving smooth tax functions for Spain

The above described shift along the axis of ordinates makes it more complicated to
apply the approach introduced in Section 3. If for a new tax function R∗ with R∗(x) <
RES(x) for small incomes, this would lower the deduction from the tax credit R(xf ).
We therefore decide to consider tax tariff and tax deductions apart from each other and
assume, for simplicity, that the treatment of the deductions from tax credit remains
unchanged, i.e. we aim at computing Rr, Rs such that we may define

Tr/s(x, xf ) =

{
0, for Rr/s(x) ≤ RES(xf ),
Rr/s(x)−RES(xf ), else .

In order to obtain revenue-neutral parameters for the smooth tax tariffs, we have
to take into account both the distributions of x and xf . As before, X = (x1, x2, . . . , xk)
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denotes taxable incomes x in steps of 500e. X̂ = (x̂1, x̂2, . . . , x̂k̂) in turn, denotes the
sum of granted tax credits xf . Then

Tr/s(xi, x̂j) = max
(
0, Rr/s(xi)−RES(x̂j)

)
represents the tax liability for an income xi and a tax credit x̂j . Accordingly, we consider
a matrix P ∈ Rk×k̂, with pi,j representing the number of tax cases with taxable income
xi and tax credits x̂j .

In order to obtain Rr/s for Spain, instead of Equations (4)–(5) we solve

k∑
i=1

k̂∑
j=1

pi,j · Tr/s(xi, x̂j) =
k∑
i=1

k̂∑
j=1

pi,j · TES(xi, x̂j), (7)

Er/s(xmin) = Emin, (8)

for xmin = 0.
Solving Equations (7)–(8) yields the self financing alternative tax functions

Tr(x, xf ) := max(0, 0.45 · x

x+ 23897
· x−RES(xf )),

Ts(x, xf ) := max(0, 0.45 · 0.5
24228

x · x−RES(xf )).

It isworth emphasizing thatTr/s andEr/s result to be positive only for xwithRr/s(x) >
RES(xf ), such that Tr/s(x) = 0 and Er/s(x) = 0 becomes possible for some x > xf , see
Figure 3. Moreover, the smoothness advantages of Es(x)would be nullified for xf > 0,
since a kink is introduced by the shift along the ordinate.

Figure 3: Effect of RES(xf ) on EES , EES
r and EES

s (for xt = 0).

In summary, the introduction of a smooth tariff for Spain should go alongwith a new
concept for computing the tax credit deduction R(xf ) related to the family situation. A
shift along the axis of abscissae seems to be a reasonable possibility. However, this
would be a considerable modification.

For the comparisons from the next sections we will discuss only the special case
xf = 5550 for simplicity, as this is the minimum value every taxpayer can claim.

4.5 Visualization
In Figures 4 and 5, marginal and effective tax rates of the smoother tax schedules are
depicted along with current schedules. The rational function is closely aligned with
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the current schedules for Austria and Germany, while the fully smooth function always
deviates from the current one. In all countries,Ms < Mr for low incomes, but the fully
smooth function is comparably steep and reaches values close to Emax for moderate
income values. For Hungary, both counterfactual tariffs necessarily constitute a sub-
stantial deviation from the status quo, as it (re-)introduces progression into the system.
The remarkable similarity of the marginal tax rates induced by the rational function to
existing ones in Austria and Germany suggests that the rational function is suited to
reflect current redistributional preferences in these countries.

Figure 4: Marginal Tax Rates

Note: Own presentation. Graphs for Spain assume xf = 5550.

5 Implications of Smooth Tax Schedules
So far, we discussed only the theoretical virtues of the suggested class of tax functions.
These would need to be weighed against potential side-effects in the real world.

5.1 Bracket Creep Impact
Bracket creep describes a feature of any progressive tax schedule in which nominal in-
creases in taxable incomes may lead to disproportionate increases in the income tax
burden (Immervoll, 2005). If tax policies are fixed in nominal terms, wage growth alone
can lead to increasing overall tax ratios. This raises equity concerns if the effective tax
rate increases even if the relative income position remains unchanged, thus questioning
the proper application of the ability to pay principle.

Bracket creep can effectively be cushioned by indexing tax and benefit policy param-
eters to price changes. This is commonly done by the change in the consumption price
index. Alternatively, one could rely on changes in average earnings. Uprating practices
differ substantially across countries and policies (Sutherland et al., 2008). While some
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Figure 5: Effective Tax Rates

Note: Own presentation. Graphs for Spain assume xf = 5550.

countries have implemented legal requirements for automatic adjustment, other coun-
tries uprate parameters on a discretionary basis, if at all. Social benefits and old-age
pensions are frequently tied to the price level, while this is less often the case for tax
parameters. Among the countries considered here, Germany follows an intermediate
strategy. The tax exemption defines the subsistence income level and therefore moves
parallel with the social assistance level. Other thresholds of taxable income, in con-
trast, are adjusted on a discretionary basis. Tax tariff parameters in Spain and Austria
are adjusted fully discretionary and have experienced little change over the last couple
of years. The Hungarian pure flat tax regime with exemption is not prone to bracket
creep as of now.

Figure 6 compares the statutory impact of bracket creep by reform and country, in-
dicating the difference in effective tax rates due to an increase in the taxable incomes
by 2%. The solid line indicates the impact for the 2017 tax schedules. The bracketed
schedules in Austria and Spain cause particularly high tax increases for those taxpay-
ers jumping into the upper next bracket after due to the wage increase. Introducing a
smooth tax schedule as derived here could also be a measure to reduce, although not
eliminate, this undesired effect of progressive tax schedules. As can be seen, the coun-
terfactual tariffs smoothen the spikes. Themagnitude of the bracket creep impact of the
fully smooth tariff exceeds the current one for middle income groups. The magnitude
of bracket creep associated with the rational tariff, in contrast, is quantitatively compa-
rable to the status quo schedules, while eliminating the extreme cases. In Spain, the
new initial spike is due to the discussed kink caused by the shift along the axis of or-
dinates. Smoother tax tariffs would introduce inflation-induced tax raises in Hungary,
but with a maximum additional burden of 0.14%, which is low compared to the other
countries considered here.

The derivation of our class of tax tariffs could be modified to avoid bracket creep
altogether. To achieve this, one simply needs to adjust the parameters x0 and xh with
the inflation rate. We demonstrate this considering x̂0 = x0 · (1+ p%), x̂h = xh · (1+ p%)

12



Figure 6: Bracket Creep Effect on Statutory Tax Due

(a) Austria (b) Germany

(c) Hungary (d) Spain

Notes: Own calculations. The graphs show the difference in the effective tax rateE(x) from a 2% increase
in taxable income for the three scenarios, i. e. ∆E = E(1.02 · x)− E(x).

and x̂ = x · (1 + p%) to realize that the original Er/s and the adjusted Êr/s are identical:

Êr(x̂) = Emax · x̂−x̂0
x̂−2x̂0+x̂h

= Emax · (x−x0)·(1+p%)
(x−2x0+xh)·(1+p%)

= Er(x),

Ês(x̂) = Emax · 0.5
x̂h−x̂0
x̂−x̂0 = Emax · 0.5

(xh−x0)·(1+p%)

(x−x0)·(1+p%) = Es(x).

Particularly for the current German tax tariff, an adjustment is considerably more
complicated.

5.2 Distributional Impact
In order to gauge the distributional impact of smooth tax functions, we implement the
revenue-neutral smooth tax schedules in EUROMOD and compare the resulting in-
come distributions against the current ones. Table 3 presents the changes for three stan-
dard measures in income inequality, i. e. the Gini coefficient of disposable incomes, the
P90P10 ratio, and the P90P50 ratio. In order to make changes comparable across coun-
tries, we present relative changes. As indicated by negative signs, both counterfactual
tax schedules exert a uniformly equivalizing impact on the income distribution in all
countries. In Austria, Germany and Spain, the rational tariff reduces inequality to a
lesser extent than the fully smooth tariff. In Hungary, the rational tariff decreases in-
come inequality slightly stronger. To put these figures into perspective, it has to be
noted that Austria, Germany and Hungary exhibit Gini values below 0.3, which clearly
qualifies as them as low-inequality countries (OECD, 2015). In absolute terms, the Gini
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coefficient is simulated to decrease by 0.007 and 0.001 points, respectively, for Austria.
At least for Austria and Germany, it is hence fair to conclude that the rational tax tariffs
are not only neutral to the government budget, but also to the overall income distribu-
tion.

Table 3: Effect on income inequality

Baseline relative change Baseline relative change

Rational Smooth Rational Smooth
Austria Germany

Gini 0.249 -0.20% -2.61% 0.278 -0.47% -2.95%
P90P10 3.026 -0.01% -2.02% 3.527 -0.28% -1.55%
P90P50 1.697 -0.05% -2.43% 1.835 -0.76% -3.86%

Hungary Spain

Gini 0.294 -2.22% -2.54% 0.335 -0.88% -1.61%
P90P10 3.952 -4.31% -5.35% 5.308 -0.96% -1.66%
P90P50 1.771 -2.22% -2.47% 2.053 -1.59% -2.66%
Note: Own calculations based on EUROMODvH1.0+. The table shows relative changes in the inequality
measures, based on equivalized disposable income using the modified OECD equivalence scale.

This finding notwithstanding, a switch to a smoother tax schedule induces winners
and losers across the income distribution, as depicted in Figure 7. The relative change
in disposable income for each income decile reveals a strictly progressive effect forHun-
gary, i. e. the lowest income groups benefit strongest while the top income decile loses
around 2 per cent. As the other countries exempt low incomes from taxation, the bot-
tom income groups are less affected. In Austria and Germany, the main beneficiaries
of the reform are rather found in the middle class, while the top deciles are worse off.
Income changes amount to around 2% maximum in these countries. The intuition for
the impact of both smooth tax functions becomes apparentwhen looking at Fig. 4 and 5.
For given Emax,Ms converges quicker to the top marginal tax rate thanMr, leading to
higher effective tax rates already for moderate incomes. In order to achieve a compara-
ble redistributional impact, the introduction of the fully smooth function would need
to be coupled with a reconsideration of Emax and Emin. Overall, the decile composi-
tion reveals more redistribution from top to bottom for both types of tariffs. Despite
differences in status quo tax schedules and income distributions, our reforms induce a
transfer to the bottom 60 per cent in all countries, financed through higher expenses by
the top 20 per cent.

The distributional effects presented here ignore behavioral reactions. As labor sup-
ply elasticities are typically estimated to be positive, (Bargain et al., 2014), one could
expect a net increase in labor supply and employment at least for the fully smooth func-
tion with non-negligible income changes.
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Figure 7: Income Changes by Deciles

(a) Austria (b) Germany

(c) Hungary (d) Spain

Notes: Own calculations based on EUROMOD H1.0+. Income deciles are based on equivalized dispos-
able income using the modified OECD equivalence scale.
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5.3 Splitting Advantage in Germany
One feature of the German tax system deserves special attention (Eq. 6). In Germany,
married couples file jointly for the income tax. This way, tax liabilities are lower com-
pared to single-filing. This ’splitting effect’ increases with the difference in earnings
between both spouses due to the progressive schedule. As becomes apparent in Fig. 8,
our counterfactual tax functions lower the maximum tax advantage from income split-
ting.

Figure 8: Income advantage from splitting for different combinations of joint taxable
incomes
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6 Conclusion
Existing tax-benefit systems impose plenty of discontinuities in budget constraints. These
are predominantly considered undesirable, as they induce behavioral reactions by in-
dividuals or firms that would not occur in absence of these discontinuities. Another
complaint against existing tax-benefit systems is their complexity, imposing significant
compliance costs on taxpayers (Shaw et al., 2010). This concerns both the opaque defi-
nition of the tax base with numerous exemptions as well as the shape of the tax sched-
ule itself. This is where our paper steps in by proposing a framework for ‘smooth’ tax
functions which are fully continuous and differentiable. Moreover, they facilitate indi-
viduals’ calculation of their tax liability for many existing tax regimes. We have shown
that, depending on the exact function, a revenue-neutral switch to a smooth tax sched-
ule can be achieved in distributionally-neutral manner. An obvious exception is the
replacement of a pure flat tax regime. Beyond, we have shown that smooth tax func-
tions do not aggravate the magnitude of the Bracket Creep problem, but eliminates the
undesired spikes. Finally, our tax functions can easily be made robust to bracket creep.

For the two functions considered here in detail, we showed that a rational saturation
function of the marginal tax rate results to be a good approximation of the current tariff
function for Germany and Austria, while a fully smooth function involves a modest
redistribution. For Hungary, we showed how progressive tariffs could be introduced
without avoiding the arbitrariness of defining completely new tax brackets. Finally, for
Spain we tested a simple possibility to realize a smoother tax functions, but realized
that there are other aspects that maybe need to be smoothened first.

Smooth tax functions bear also interesting implications from a polit-economic per-
spective. A smooth tax function, whatever its exact shape, fixes the redistributional
character of the income tax. In this article, the key policy parameters, exemption level
and top marginal tax rate, were maintained. The parameters are however interdepen-
dent, i. e. the top marginal tax rate cannot be altered without changing the tariff for
lower incomes. Thismakes it harder to target specific income groups via tax reform and
could hence serve as a corrective measure to preserve extreme forms of clientelism. In
any case, the reduction of the amount of parameters to be determined would generate
more transparency.

In a broad context, smooth tariffs represent only one, yet important element of tax-
benefit systems. The definition of the tax base and the interactionwith other elements of
the tax-benefit system may impose further discontinuities in the budget set. However,
we are confident that our approach could inspire analogous strategies to avoid them.
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Appendix
For completeness, in this appendix we verify in detail that the considered system of
equations (4)–(5) has a unique solution.

Let us first analyse (5) for the two functions we considered:

• Er: From
Er(xmin) = Emax ·

xmin − x0
xmin − 2x0 + xh

= Emin

it follows
xmin − x0

xmin − 2x0 + xh
=
Emin
Emax

=: C < 0.5,

i.e.
x0 =

(1− C)xmin − Cxh
1− 2C

.

If we now consider fixed C, xmin and xi > xmin and analyse Er as a function of xh,
we obtain

Er(xh) = Emax ·
xi − (1−C)xmin−Cxh

1−2C

xi − 2 (1−C)xmin−Cxh
1−2C + xh

= Emax ·
C xh + (1− 2C )xi + (C − 1)xmin
xh + (1− 2C )xi + 2 (C − 1)xmin

,

that results to be a strictly monotonic decreasing function of xh,

lim
xh→xmin

Er(xh) = Emax, lim
xh→∞

Er(xh) = Emin.

• Es: From
Es(xmin) = Emax · 0.5

xh−x0
xmin−x0 = Emin

it follows
xh − x0
xmin − x0

=
ln
(
Emin

Emax

)
ln 0.5

=: C > 1,

i.e.
x0 =

Cxmin − xh
C − 1

.

If again we consider fixed C, xmin and xi > xmin and analyse Es as a function of
xh, we obtain

Es(xh) = Emax0.5

xh−Cxmin−xh
C−1

xi−
Cxmin−xh

C−1 = Emax0.5
C (xh−xmin)

xh+(C−1) xi−C xmin

that also results to be a strictly monotonic decreasing function of xh,

lim
xh→xmin

Es(xh) = Emax, lim
xh→∞

Es(xh) = Emin.

Consequently, in both cases the revenue results for givenX and P are also continu-
ous strictly monotonic decreasing function of xh and

Revenuer(xh) :=
k∑
i=1

piTr(xi, xh), and Revenues(xh) :=
k∑
i=1

piTs(xi, xh).
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For our above considerations it follows thatRevenuer(xh) = Revenue andRevenues(xh) =
Revenue are uniquely solvable with respect to xh for any Revenue fulfilling

Emin

k∑
i=1

pi · xi < Revenue < Emax

k∑
i=1

pi · xi.

Figure 9: Change in Effective Tax Rates
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Figure 10: Tax Functions

Figure 11: Tax Due Differences
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