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ABSTRACT 
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Experimental Evidence* 

 
We design an experiment to test the hypothesis that, in violation of Bayes Rule, some people 
respond more forcefully to the strength of information than to its weight. We provide 
incentives to motivate effort, use naturally occurring information, and control for risk attitude. 
We find that the strength-weight bias affects expectations, but that its magnitude is 
significantly lower than originally reported. Controls for non-linear utility further reduce the 
bias. Our results suggest that incentive compatibility and controls for risk attitude 
considerably affect inferences on errors in expectations. 
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I. Introduction  

Behavioral finance explains market anomalies by drawing on evidence from psychology that 

some people respond to information in a systematically biased manner. However, several studies 

show that behavioral biases are not always robust when tested in tasks that reward subjects for 

being accurate. We design an experiment to test a psychological hypothesis related to errors in 

expectations, and widely cited in finance, first proposed by Griffin and Tversky (1992) (GT). 

According to the GT hypothesis information can be broadly characterized along two 

dimensions: strength and weight. Strength is how saliently the information supports a specific 

outcome, and weight refers to its predictive validity. GT suggest that, in violation of Bayes Rule, 

some decision makers pay too much attention to strength and too little attention to weight, thus 

overreact to high strength, low weight signals, and underreact to low strength and high weight 

ones. The magnitude of the bias reported by GT is significant, as in some cases probabilities that 

should be equal under Bayes Rule diverged by 28%.1 

Because the reported strength-weight can parsimoniously explain both underreaction and 

overreaction, it received several applications in finance. Barberis, Shleifer, and Vishny (1998) 

use the GT findings as a basis of a theory that explains several asset pricing anomalies. Liang 

(2003) and Sorescu and Subrahmanyam (2006) similarly use the GT findings to explain the 

pricing of earnings surprises and analyst recommendations, respectively. Other finance studies 

which cite GT to behaviorally explain their findings include Daniel and Titman (2006), 

                                                            
1 In Table 1 (p.415) GT report that the elicited probability after a high-strength/low weight signal with Bayesian 

posterior equal to 88% is 92.5% (5th row), whereas the elicited probability after a low strength/high weight signal 

with the same posterior is 64.5% (11th row), for a difference of  28%.   
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Hackbarth (2009), De Dreu and Bikker (2012), Puetz and Ruenzi (2011) and Gupta-Mukherjee 

(2013). 

However, there is tension in the literature whether such behavioral biases are as 

significant as initially reported in tasks with an incentive compatible reward system. For 

example, Grether (1980) and Charness, Karni, and Levin (2008) report that violations of Bayes 

Rule reduce substantially among financially motivated subjects.2  

We test the strength/weight hypothesis using an incentive compatible design to encourage 

effort in the experimental tasks.3 In addition, to avoid confusion that may arise from subjects 

being asked to imagine signals from a hypothetical process, as GT asked their subjects to, we 

generate all the relevant information in front of our subjects during the experiment using physical 

urns and dice.4 Finally, in our experiment we elicit subjective beliefs using revealed preference, 

as opposed to the stated preference methods used by GT, which avoids the need for 

introspection.5  

                                                            
2 Several other authors have reported smaller biases in experimental economics conditions: Conlisk (1989), Plott and 

Zeiler (2005), Laury, McInnes, and Swarthout (2009), Cason and Plott (2014) and Andersen, Harrison, Lau, and 

Rutstrӧm  (2013).  

3 GT paid $20 to the respondent whose judgments “most closely” matched the correct values. This is not an 

incentive-compatible elicitation method. 

4 An important advantage of this physical procedure is that it allows subjects to truly experience random draws from 

the latent process they are asked to estimate. In contrast, the hypothetical methods used by GT require that the 

experimenter artificially selects the outcomes, and, as shown by Asparouhova et al (2009), such selective sampling 

can significantly affect inferences about behavioral biases. 

5 Methods of introspection have been treated with skepticism by economists (Ramsey (1931), Smith (1982), Gilboa, 

Postlewaite, and Schmeidler (2003)), perhaps because it is common for subjects to state a particular belief, but act in 

a way that contradicts this statement (Costa-Gomes and Weizsäsker (2008), Rutström and Wilcox (2009)).  
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Our elicitation methods are based on the principles of subjective probability elicitation 

initially outlined by Ramsey (1931) and Savage (1954, 1971).  Our respondents observed 

information signals generated by random draws from urns, and chose between bets that varied 

the payoff they offered if different states of the world were true. From these bets we inferred the 

underlying subjective probabilities for the different states of nature, and examined whether they 

are influenced by the strength-weight heuristic.  

Because subjects’ choices will depend on both subjective beliefs and preferences, in our 

estimations we use data from a separate experimental task to control for the distorting effect of 

the utility function on inferences about subjective beliefs, estimating the relevant parameters 

using a structural model. We start our analysis assuming risk neutrality, moving on to a 

Subjective Expected Utility (SEU) specification that allows for non-linear utility. This approach 

allows us to examine whether inferences on decision heuristics are affected when one relaxes the 

assumption of risk neutrality, commonly employed in experiments (e.g., Grether (1980)). 

 We find that, in violation of Bayes Rule, the magnitude of the probability update is 

higher after high strength/low weight signals than lower strength/higher weight signals, with an 

average strength-weight bias of 6.06%. This result confirms the findings of GT, and suggests that 

the strength-weight bias is a plausible theory of errors in expectations. However, in our analysis 

the strength-weight bias is less than a third than the bias reported by GT, which suggests that its 

effect on economic behavior is weaker than suggested by the original estimates. 

We also examine whether the strength-weight bias differs among subjects with different 

demographic characteristics. We find that female subjects deviate more strongly from the 

Bayesian benchmark, consistent with the findings of Charness and Levin (2005). We also find 

that the behavior of subjects who study in a quantitative field is more in line with Bayes Rule, 
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consistent with the findings in Halevy (2007). However, knowledge of statistics does not 

completely offset the strength-weight bias.  

Contrary to the findings of GT, we do not find any evidence of overreaction to 

information. Rather, our results reveal a general tendency of underreaction or “conservatism” in 

the spirit of Edwards (1968). The degree of underreaction is higher when signal weight is higher. 

For example, for signals that imply a posterior of 0.88, underreaction is 25% when the signal is 

of high weight and 18% when it is of low weight. This finding can explain underreaction-type 

phenomena in stock markets, whereby prices respond slowly to high-weight information, such as 

earnings surprises (Bernard and Thomas (1989) or changes to dividend policy (Michaely, Thaler, 

and Womack (1995)).  

We find that assumptions about attitude toward risk significantly affect inferences about 

the strength-weight bias. Specifically, when we assume risk neutrality we find that the average 

bias is 12.3%, whereas when we allow for non-linear utility, the bias halves to 6.06%. This 

implies that studies that investigate decision heuristics assuming risk neutrality could 

substantially mischaracterize any bias.  Moreover, controls for risk attitude highlight behavioral 

patterns that would be difficult to identify otherwise. For example, we find that females are more 

risk averse and less Bayesian than males. Without controls for risk attitudes, it would be 

impossible to understand such differences. Overall, these results highlight the methodological 

point that risk attitude exerts a non-trivial effect on subjects’ behavior in the laboratory, and 

should be accounted for to accurately describe behavior.6  

                                                            
6 Antoniou, Harrison, Lau, and Read (2015) also document that inferences regarding Bayesian updating change 

considerably when one controls for the utility function. However, they do not investigate the strength-weight bias. 
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Due to the complexities of real world markets experimental methods are well placed to 

make contributions to the debate on systematic errors in expectations. Bondarenko and Bossaerts 

(2000) examine whether expectations in experimental markets are formed in accordance with 

Bayes Rule. Bloomfield and Hales (2002) and Asparouhova, Hertzel, and Lemmon (2009) test 

whether people make forecasts using historical information in a biased manner. Kuhnen and 

Knutson (2011) and Kuhnen (2015) analyze whether biases in beliefs are affected by emotions, 

and whether they depend on whether the decision is taken in the domain of losses or gains, 

respectively. Our study contributes to this literature by testing whether the strength-weight effect 

is a plausible theory of errors in expectations in financial decisions. 

II. Experimental Methods 

We recruited 111 respondents from the University of Durham, UK. All received a £5 show up 

fee. Payments for the experiment totaled £2,692, for an average payment of £24.26 per subject. 

Section A of the online Appendix shows demographic information about the subjects.7 

 Our experiment included two tasks: the belief task, in which choices were made that 

allowed us to infer subjective probabilities, and the risk task, where subjects made choices over 

lotteries with known probabilities that allowed us to estimate their utility function. The full 

instructions used for these tasks are reproduced in sections B and C of the online Appendix.   

In the belief task there were two equally likely mutually exclusive states of the world.  

Respondents were provided with relevant sample information using urns and dice, after which 

they chose between pairs of acts (or “bets”) that offered different payoffs depending on which 

state of the world actually obtained.  Subjective probabilities were inferred from the pattern of 

acts chosen. Specifically in the belief task, we first made a random choice between a Blue and a 

                                                            
7 The online appendix is available to download as supplementary material from the JFQA website. 
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White cup, which was concealed from the subjects. Both these cups contained N 10-sided dice, 

where N varied from trial to trial (3, 5, 9 and 17). The N dice in the White cup had six white and 

four blue sides, while the N dice in the Blue cup had six blue and four white sides. We then 

rolled all the dice in the chosen cup and announced the outcome.8 Thus, the prior of each cup 

without information is 50%, and after subjects observe the sample information they must revise 

their expectations accordingly. 

In each session respondents saw 30 samples, 4 samples of three dice (i.e., N = 3), 14 of 

five dice, 6 of nine dice and 6 of seventeen dice. The distribution of sample sizes was chosen to 

roughly equalize the frequency of the least likely sample distributions. Signal weight is the size 

of each sample of dice rolls (N), and signal strength is the difference between the number of dice 

showing a white face (w) and the dice showing a blue face (b) as a proportion of N, abs(b-w)/N.  

A sample of 3 w and 0 b, for example, has weight = 3 and strength = 1, while a sample of 10 w 

and 7 b has weight = 17 and strength = 3/17.  Both samples, however, have equal diagnosticity, 

with Bayes’ rule giving a posterior of 0.77.  Nonetheless, GT report that stated probabilities for 

the high strength/low weight samples were higher than those for the Bayesian-equivalent low 

strength/high weight samples.   

After the sample information was announced, respondents placed “bets” on White and 

Blue, using a decision sheet adapted from Fiore, Harrison, Hughes, and Rutstrӧm (2009), shown 

in Table 1. Respondents were asked to conceptualize the task as one of making 19 separate bets 

with a different “bookies”, each offering different odds. Effectively the subject must use her 

                                                            
8 To keep experimenters honest in the minds of the respondents a subject from each session was randomly chosen to 

act as a “monitor,” who supervised the rolling and counting of dice and announced the outcomes. The monitor 

received a flat payment of £10 for the belief task.  
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subjective probability to compute how much a bet on White or Blue for each bookie is worth, 

and choose the most favorable option. For example, assume that the subject believes that the 

probability of Blue is 73%. Assuming risk neutrality, for the first bookie this probability implies 

that the value of a bet on White is 0.27 x 60 = 16.2, which is greater than the value of a bet on 

Blue (0.73 x 3.15 = 2.3). This subject would therefore prefer to bet on White for bookies 1-5, and 

then to bet on blue for the remaining bookies 6-19.9 From observing her betting choices we can 

back-out her latent subjective probability.10 

If subjects are not risk neutral, however, the valuation of each bet will not use expected 

value, which can significantly affect inferences on inferred subjective probabilities (Kadane and 

Winkler (1988)). Returning to our example above, assume now that the agent who placed a bet 

on blue for bookies 1-5 is risk averse, with preferences described by Expected Utility Theory 

(EUT) and Constant Relative Risk Aversion (CRRA):  

(1)                                                          u(x) = y1-r/(1-r) 

Assuming r = 0.5, this betting behavior would imply that her subjective probability of blue 

ranges between 60% and 65%.  Therefore, the specification of the utility function will affect 

inferences about subjective probabilities, and can therefore alter conclusions about the magnitude 

of the strength-weight effect.  

Following Andersen, Fountain, Harrison, and Rutstrӧm (2014), we controlled for the 

distorting effect of the utility function on subjective probabilities using data from the risk task, 

                                                            
9 Some subjects switched more than once, which of course violates SEU. Such multiple switching could reflect 

confusion, and was relatively infrequent in our data (less than 5% of the responses).  

10 In our design we can only identify the interval in which the probability lies, which has a width of 5%. One could 

make this more precise by including more bookies, thus allowing for more granularity. 
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which implemented the classic experimental design of Hey and Orme (1994). In this task all 

respondents made a series of 20 choices between two lotteries with known probabilities.11  

To incentivize subjects to exert effort in the experiment we use the random lottery 

procedure, whereby one choice made by the subjects in both the risk and the belief tasks is 

selected randomly and played out for real money.  

To control for order effects, which are common in experiments (Harrison, Johnson, 

McInnes, and Rutstrӧm (2005)), in half of the sessions the risk task preceded the belief task, and 

in the remaining half the order was reversed. In addition, in the belief task, in half of the sessions 

the samples were presented in ascending sequence (i.e., N = 3 then N = 5, etc) and in the other 

half in descending order (N = 17, then N = 9, etc.) So overall we have a 2 x 2 experimental 

design. 

In Figure 1 we plot the distribution of mid-points for the intervals that contain our 

subjects’ risk neutral subjective probabilities. Each panel plots the distribution of average mid-

points after signals that differ in weight (N) and which are associated with a specific posterior. 

We have 6 posterior groups in total, 0.88, 0.77 and 0.6 when w>b, and by symmetry 0.12, 0.23 

and 0.4 when b>w. The vertical line in each panel shows the correct Bayesian probability. The 

distributions shown in Figure 1 appear to be systematically related to the strength-weight 

characteristics of the signals observed. In each posterior group the distributions related to larger 

dice samples appear to have a lower mean, which implies that, holding the posterior constant, 

higher weight signals elicit weaker responses, as predicted by GT. 

                                                            
11 Section C of the online Appendix displays a typical lottery pair.  
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In the next section we formally test the strength/weight hypothesis using a structural EUT 

model which assumes that the bets with the different bookies are evaluated according to (1). 

Using maximum likelihood we estimate the subjective probabilities and risk attitudes that best 

describe subjects’ choices in both the risk and the belief task, and test whether the 

strength/weight hypothesis is supported. To examine how assumptions about risk preferences 

affect inferences on the bias we firstly estimate subjective probabilities assuming risk neutrality  

(RN), and then by controlling for non-linear utility (SEU). The econometric details of the model 

are provided in section D of the online Appendix.  

III. Results 

A. Experimental Results 

The top panel of Table 2 contains estimates for the coefficient of risk attitude, r, and the 

behavioral error term, μ. 12  In the columns on the right side we have elicited subjective 

probabilities for different models of choice (RN vs. SEU), along with their associated standard 

errors. Subjective probabilities are grouped according to Bayesian posterior: 0.88, 0.77 and 0.6. 

To ease exposition we pool subjective probabilities for symmetric patterns, i.e., (5,0) and (0,5).13  

The second column of Table 2 shows the composition of the signal, and the third and fourth 

                                                            
12The behavioral parameter μ is a structural “noise parameter” and is used to allow for some errors from the 

perspective of the deterministic EUT model. Specifically μ>0 captures cases where the option with the lower 

expected utility might be chosen by accident. 

13 For example, if the subjective probability for the White estimated after a pattern of 5 white and 0 blue is π1 with 

standard error σ(π1), and the probability for White elicited after a pattern of 0 white and 5 blue is π2 with standard 

error σ(π2), we report the average of π1 and 1-π2, using the delta method to derive its standard error.  
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columns show its strength and weight characteristics. In each panel the signals are arranged so 

that as one goes further down the table weight increases and strength decreases.14  

We start the discussion with the RN model. For the high strength/low weight signal (5,0) 

we find overreaction, with elicited probability higher than the Bayesian posterior probability by 

about 5%. The elicited probability then drops for the (7,2) signal to 90.6%, and drops even 

further for the (11,6) signal to 79.7%. The hypothesis that these subjective probabilities are equal 

is safely rejected (p-value <0.001). This pattern supports the original GT findings since 

subjective probabilities increase with signal strength, in violation of Bayes Rule. To get a sense 

of the magnitude of the bias we can subtract subjective probabilities associated with the (5,0) and 

(11,6) signals, which yields 92.5% - 79.5% = 13%. We find similar patterns of the remaining 

groups of 0.77 and 0.6, with biases of 16.5% and 6.9% respectively, which are all statistically 

significant. 15 The column Relative Bias shows the corresponding bias associated with each 

probability as a proportion of the required update from the prior of 0.5, and shows overreaction 

for low weight signals and underreaction for high weight signals.  

In the second model (SEU) the coefficient of risk attitude is equal to 0.562 and is highly 

statistically significant, indicating risk aversion. The magnitude of risk aversion obtained is 

similar to other experiments with similar stakes, reviewed in Harrison and Rutström (2008). As 

in the RN case, subjective probabilities in all the Bayesian posterior groups increase with signal 

                                                            
14 We did not include in Table 2 dice combinations that emerged and that did not have equivalents in the original GT 

(1992) design.   

15 Kraemer and Weber (2004) also tested the GT effect, using stated preference methods of elicitation, using 

hypothetical information signals. Their results were in line with the original GT findings, but did not allow a 

comparison of the general magnitude of the bias since Kraemer and Weber (2004) restricted their analysis to 

hypothetical signals that always yielded a posterior of 0.6.  
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strength, and the differences between the high strength/low weight and low strength/high weight 

probabilities are statistically significant. However, the striking result from this analysis is that 

once we allow for risk aversion the magnitude of the bias halves. Specifically, for the 0.88 group 

the bias is 7% instead of 13.0%, for the 0.77 group it is 7.7% instead of 16.5%, and for the 0.6 

group it is 3.5% instead of 6.9%. This highlights that inferences about the strength-weight effect 

under the assumption of risk neutrality are likely to overstate the bias.16 

How do our results compare to the original findings of GT? Across all three patterns the 

average bias reported by GT is 20.6%.17 The corresponding average bias in our analysis is only 

6.1% (p-value <0.001) when we allow for non-linear utility. The hypothesis that the average bias 

in the two studies is equal is safely rejected (p-value <0.001). This comparison suggests that the 

bias is significantly reduced when tested under experimental designs that incentivize responses, 

which has important implications for inferences about the relevance of the strength-weight bias 

to stock market anomalies.   

GT report that their subjects overreact to high strength/low weight information, stating 

probabilities that are higher than those implied by Bayes Rule. In our estimations we find 

evidence of overreaction toward high strength/low weight signals only when we constrain r to 

risk neutrality. When we allow for non-linear utility we find a general tendency of 

underreaction, or conservatism (Edwards (1968)) toward sample information, as subjective 

                                                            
16 In unreported results we have derived results using a Rank Dependent Utility model, which accounts for both non-

linear utility and probability weighting via non-additive decision weights. The results show that our subjects do not 

engage in probability weighting, therefore inferences regarding the strength-weight bias from this model are 

identical to those drawn from the SEU model. These results are available from the authors upon request.  

17 For the 0.88 case GT report a bias of 28% (92.5 - 64.5%), for the 0.77 a bias of 25.5% (85% - 59.5) and for the 0.6 

group a bias of 8.5% (63% - 54.5%) (Griffin and Tversky (1992), Table 1, p.415). 
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probabilities are lower than Bayesian posterior probabilities (Relative Bias is less than 1 in all 

cases). Moreover, in each posterior group underreaction is higher when the signal is of high 

weight. For example, in the SEU model, for signals that imply a posterior of 0.88, underreaction 

is 25% when the signal is of high weight (Relative Bias = 0.72) and 18% when it is of low 

weight (Relative Bias = 0.8). This finding can provide an explanation for prices adjusting slowly 

to important, high weight information such as earnings surprises (Bernard and Thomas (1989)) 

or changes to dividend policy (Michaely et al. (1995)).  

We continue to more formally test the strength/weight hypothesis by estimating the 

following model: 18 

(2)                                 log {log(π/(1-π)) / log(0.6/0.4) } = α log N + β log S                                 

Bayes Rule predicts that the coefficients on strength (β) and weight (α) should be both equal to 

one, whereas β>α under the strength/weight hypothesis. The results, which are shown in panel A 

of Table 3, show that the coefficient on weight, α, is 0.442 and on strength, β, is 0.736, which 

shows that signal strength affects probabilities more than signal weight, in line with our previous 

results in Table 2. The hypotheses that α = β is safely rejected (p-value <0.001). We can define 

the total bias as 1-α/β, equal to 40% in our data, again significantly smaller than the 

corresponding bias of 62% reported by GT (p-value<0.001).19 

We also use this model to test whether the strength-weight bias differs among subjects 

with different demographic characteristics. Previous research found that female subjects are less 

likely to behave as Bayesians in similar experimental tasks (Charness and Levin (2005)). We 
                                                            
18 This entails expressing the subjective probabilities within the structural model in terms of strength and weight, 

and then estimating α and β using maximum likelihood. Section D of the online Appendix explains this procedure, 

and section E derives (2) from Bayes Rule. 

19 GT report that in their experiment α is 0.31 and β is 0.81 (Griffin and Tversky (1992), p. 416). 



13 
 

therefore condition estimates of α and β on the dummy Female.  Moreover, subjects that have 

knowledge of statistics have been found to behave more rationally in such quantitative tasks 

(Halevy, 2007). To test for this effect we condition estimates of α and β on the dummy Math, 

which takes the value if 1 if the subject is studying in a quantitative field. Subjects with higher 

cognitive abilities have also been shown to act more rationally (Grinblatt, Keloharju, and 

Linnainmaa (2012)). As a proxy for quantitative ability we define the proxy FirstClass, which 

takes the value of 1 if the subject’s self-reported average marks to date are in the highest class.20 

Finally, experienced subjects have been shown to act more rationally, both in experiments 

(Loomes, Starmer, and Sugden (2003)) and in the field (Seru, Shumway, and Stoffman (2010)). 

Although our experiment did not provide any feedback it is possible that subjects learn about the 

latent process by observing which samples are more or less frequent. To test for such learning we 

define the dummy Experience, which takes the value of 1 for the last 15 rounds of the belief task, 

and 0 otherwise. We estimate the model in (10) conditioning α and β on these dummies. We also 

condition r on Female, Math and FirstClass as these variables may also affect risk attitudes. 

 The results are shown in Table 3 panel B. The entry next to each variable shows its 

marginal contribution and its associated standard error. We find that females are significantly 

more risk averse, consistent with prior studies. Females are found to be less sensitive to signal 

weight (coefficient -0.167 with standard error 0.08), which suggests that their beliefs are more 

biased.  Subjects who study in quantitative fields respond less strongly to signal strength 

(coefficient -0.195 with standard error 0.098), which suggests that their beliefs are less biased. 

These effects are statistically significant on the 5% level. Overall the analysis in panel B suggests 

that the strength-weight bias is likely to be stronger among females and subjects with no 

                                                            
20 In the U.K. this is 70% and above, and is achieved by roughly 15%-20% of students. 
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quantitative skills, but also that no group of subjects is completely immune to the strength-

weight effect. 

 Finally, we examine whether order effects influence our results by allowing estimates of 

α and β to differ depending on whether the risk task was conducted first (RA_then_B = 1), and 

depending on whether in the belief task the samples were presented in descending order 

(B_descen = 1). We find that our estimates of α and β are not affected by order effects. However, 

we find that subjects become more risk averse if the risk task is conducted first.  

B. Asset Pricing Simulations 

Our findings suggest that the strength-weight bias is weaker than reported by GT, and that 

subjects are more likely to underreact rather than overreact. To examine the effect of these 

findings on asset pricing, we re-calibrate the model proposed by Barberis et al. (1998) (BSV) to 

parameters that imply such changes.  

In BSV earnings are generated by a random walk process, but the investor falsely 

believes in either a mean-reverting regime (underreaction) or a trending-regime (overreaction). 

There are some probabilities that govern the transition from one model to the other, which can be 

thought to relate to the strength-weight effect, i.e., the switch from underreaction to overreaction. 

The investor observes past earnings realizations to determine which model is generating 

earnings; after a short string of surprises of the same sign, which appear relatively 

‘unconvincing,’ he underreacts. As this string increases, and becomes more salient, he 

overreacts. BSV use this model to simulate the returns of portfolios of firms with n consecutive 

positive or negative shocks (where n ranges from 1 to 4), and show that the return differential 

between these portfolios, , decreases in n. Moreover, for short strings (n = 1, 2) it is 
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positive, indicating underreaction, turning negative for longer strings (n = 3, 4), indicating 

overreaction.  

Following this procedure we examine how changes in the transition probabilities, such 

that the investor always relies more on model 1, affect . 21  We find that   

decreases with n, but at a generally smaller rate. Moreover,  is larger for all n, and it 

requires a longer string of news to actually turn it negative. Overall, our experimental findings, 

as calibrated through the BSV model, imply more widespread underreaction in asset prices.  

IV. Conclusion 

Griffin and Tversky (1992) proposed the strength/weight hypothesis, which is that decision 

makers are more responsive to the extremity (strength) of the information than to its predictive 

validity (weight), even when both strength and weight are equally diagnostic. This hypothesis 

received many applications in finance.  

We tested whether the hypothesis holds by means of an experiment that allowed us to 

infer subjective probabilities through betting decisions with real monetary incentives. We 

provide respondents with imperfect information about the true state of the world, and ask them to 

reveal their subjective belief about the likelihood of the true state by making a series of bets 

according to the logic of Savage (1954, 1971) and Ramsey (1931).   

Our results broadly support the original findings of GT, as decision makers generally 

perceived events as more likely when the available evidence had high strength and low weight. 

However, the magnitude of the bias we found was less than a third compared to that reported by 

GT, which suggests that the impact of the strength-weight bias on stock market anomalies is 

likely to be smaller than what the original estimates suggest.   

 
                                                            
21 This analysis is available in section F of the online appendix. 
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Figure 1: The Distribution of Switch Points for Different Signals with the Same Posterior  

This figure present the distribution of risk-neutral probabilities, grouped according to Bayesian Posterior (6 cases) and signal weight (number 

of dice rolled, N). The vertical black line in each Panel depicts the Bayesian Probability. 
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Table 1: The Betting Sheet Used by the Subjects 

This table shows the betting sheet that subjects used to place their bets (a non-transferrable stake of £3 for each 

bookie) after each signal. The Table lists 19 hypothetical bookies which offer different odds on the white or blue 

box being chosen.  
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Table 2: Estimated Subjective Probabilities 

This table reports subjective probabilities and preference parameters estimated with maximum likelihood. Subjective probabilities are 

constrained to lie in the unit interval, using the transform π = 1/(1+exp(κ)), where κ is the parameter estimated and π is the inferred 

probability. We report the average probability elicited after symmetric signals (e.g., (5,0) and (0,5)), using the delta method to estimate the 

standard error for pooled π from estimates of κ. We employ “frequency weights” of 50 for every observed choice from the risk task to 

ensure that the estimated risk parameters are based primarily on the choices from the risk tasks. In the RN column, which stands for Risk 

Neutral, we estimate the model assuming risk neutrality (constraining r=0.0001). In the SEU column we remove this constraint and allow 

risk aversion, assuming a CRRA utility function of the type y1-r/(1-r). μ is a structural error parameter and π is the subjective probability. 

Relative Bias is calculated as π/Bayesian Posterior. The last two columns indicate the standard errors of estimated parameters (r, μ and π) 

using the delta method. Standard errors are also clustered on the subject level. The econometric procedure employed is explained in detail 

in section D of the online Appendix. 

             RN     SEU  RN SEU 

        Standard Errors 

r   0.562     0.031

μ       0.106   0.204   0.011 0.028

Bayesian 
Posterior 

 Signal  Weight  Strength π 
Relative 

Bias 
π 

Relative 
Bias 

Standard Errors 

0.88 (5,0) 5 1 0.927 1.05 0.701 0.80 0.025 0.019
0.88 (7,2) 9 0.56 0.906 1.03 0.693 0.79 0.018 0.015
0.88 (11,6) 17 0.29 0.797 0.91 0.631 0.72 0.029 0.014

Bias (H-L) 13.00%   7.00%   
p-value <0.001   <0.001   

0.77 (3,0) 3 1 0.879 1.14 0.678 0.88 0.017 0.014
0.77 (4,1) 5 0.6 0.767 1.00 0.643 0.84 0.032 0.011
0.77 (6,3) 9 0.33 0.745 0.97 0.62 0.81 0.018 0.013
0.77 (10,7) 17 0.18 0.714 0.93 0.601 0.78 0.022 0.008

Bias (H-L) 16.50%   7.70%   
p-value <0.001   <0.001   

0.60 (2,1) 3 0.33 0.714 1.19 0.584 0.97 0.022 0.009
0.60 (3,2) 5 0.2 0.651 1.09 0.562 0.94 0.0125 0.006
0.60 (5,4) 9 0.11 0.59 0.98 0.541 0.90 0.017 0.007
0.60 (9,8) 17 0.06 0.645 1.08 0.549 0.92 0.021 0.008

Bias (H-L) 6.90%   3.50%   

p-value       0.022   <0.001       
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Table 3: The Effect of Strength and Weight on Subjective Probabilities 

This table reports estimates for the model in Equation 2 with maximum likelihood. In Panel A we assume an SEU 

representation with a CRRA utility function as in Table 2. In Panels B and C we use the same CRRA representation 

and examine the role of demographics and experimental procedures, respectively. Specifically we define the dummy 

variable Female, which takes the value of 1 if the subject is female, Math, which takes the value of 1 if the subject is 

majoring in Economics, Finance, Engineering, Physical or computer sciences, First_Class which takes the value of 

one if the subject’s marks to date are higher than 70%. The dummy Experience takes the value of 1 for the last 15 

samples in the belief task. Ra_then_B is equal to 1 if the risk task was conducted first and B_Descending is equal to 1 

if the samples in the belief task were presented in descending order. In Panel B (C) we condition α and β on the 

demographic (experimental design) dummies. μ is a structural error parameter. Standard errors are clustered on the 

subject level. The econometric procedure employed is explained in detail in section D of the online Appendix. 

    
A: SEU 

B: SEU and 
Demographics 

C: SEU and Order 
Effects     

Coeff. St. Error Coeff. St. Error Coeff. St. Error 
α 0.442 0.04 0.554 0.078 0.415 0.071 

Female   -0.167 0.08 
Math   -0.106 0.08 
FirstClass   0.068 0.091 
Experience   -0.023 0.036 
Ra_then_B     0.052 0.077 

  B_Descending       -0.02 0.071 

β 0.736 0.043 0.827 0.095 0.697 0.094 
Female   -0.042 0.097 
Math   -0.195 0.098 
FirstClass   0.088 0.117 
Experience   -0.014 0.064 
Ra_then_B     0.029 0.094 

  B_Descending       0.034 0.092 

r 0.567 0.029 0.515 0.051 0.616 0.031 
Female   0.125 0.047 
Math   -0.023 0.039 
FirstClass   0.011 0.041  
Ra_then_B     -0.099 0.042 

μ   0.208 0.028     0.205 0.027 
 




