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ABSTRACT 
 

How Darwinian Should an Economy Be?* 
 
This paper studies aggregate dynamics in a cobweb model where learning takes place 
through a selection mechanism, by which more successful firms are replicated at a higher 
rate. The structure of the model allows to characterize analytically the aggregate dynamics, 
and to compute the effect on welfare of alternative levels of selectivity. A central aspect is 
that greater selectivity, while bringing the distribution of firm types closer to the optimal one at 
a given date, tends to make the economy less stable at the aggregate level. As in Nelson and 
Winter (1982), firms differ in their labor/capital ratio. They do not choose it optimally, rather it 
is a characteristic of a firm. The distribution of firms evolves over time in a way that favors the 
most profitable firm types. Selection may be inadequate because firms are being selected on 
the basis of incorrect market signals. Selection itself may reinforce such mispricing, thus 
generating instability. I compare economies that differ in the volatility and persistence of their 
productivity shocks, as well as the elasticity of labor supply. The key findings are as follows. 
First, a trade-off arises since greater selection allows to better track shocks and limits 
mutational drift in firm types; on the other hand, selection may strengthen cobweb oscillatory 
dynamics. Second, there seems to be a value in maintaining a diverse “ecology of firms”, in 
order to cope with future shocks. These observations explain the key results. Optimal 
selectivity is larger, the less “cobweb unstable” the economy, i.e. the more elastic the labor 
supply. Second, optimal selectivity is larger, the more persistent the aggregate productivity 
shocks. Finally, optimal selectivity is larger, the lower the variance of productivity innovations. 
The model can be extended to allow for firm entry and trend productivity growth, and a 
selection process with memory. Empirical evidence suggests that, in accordance to the 
model, countries with less regulated product markets exhibit lower aggregate inertia. 
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1 Introduction

In most of macroeconomics, agents are considered as su¢ ciently intelligent

to carry all required calculations and compute the rational expectations equi-

librium (REE). An important literature, however, questions that assumption

and tries to examine the extent to which the economy can "learn" such an

equilibrium1. In many cases, for example, a reduced form law of motion for

the variables of interest is postulated and the agents learn its parameters,

typically by using least squares or Bayesian techniques.

This paper asks the following question: how does an economy behave,

when learning takes place through a Darwinian selection mechanism by which

less pro�table �rms are eliminated and more pro�table ones replicate them-

selves? Does greater selection systematically bring the economy closer to the

rational expectations equilibrium? When it does not, what are the dynamic

properties of aggregate �uctuations, and how does welfare depend on the

parameters that govern the selection process?

A naive "as if" argument would predict that the more selective the econ-

omy, the closer it is to the REE. Yet such an argument overlooks the fact that

the market signals that are driving selection need not be the correct ones,

because the environment in which selection takes place, as determined by

the current value of the shocks and the current distribution of the individual

�rms�characteristics, is not the same that will apply to the �rms that have

been selected. Furthermore, selection of a given type of �rm perturbs the

market signals in such a way that mistakes in the selection process can be

reinforced2.

I study these issues in the context of a simple partial equilibrium economy

1See for example Marcet and Sargent (1989), Evans and Honkahpoja (2001), Marcet
and Nicolini (2003).

2This issue arises in Saint-Paul (2007), in a model where competing �rms set their
prices subject to mistakes.
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with potential cobweb cycles. As in Nelson and Winter (1982), �rms di¤er

in their labor/capital ratio. They do not choose it optimally, rather it is a

characteristic of a �rm (that is, this behavior is hard wired in their DNA).

Firms whose labor/capital ratio is further away from the pro�t-maximizing

one are selected out. As a result the distribution of �rms evolves over time in

a way that favors the most pro�table �rm types. A single parameter, called

selectivity, captures how stringly the most pro�table types are favored.

Which �rm type is most pro�table depends on current wages and on the

current realization of an aggregate productivity shocks. Therefore, selection

may be inadequate because di¤erent wages and productivity levels will pre-

vail in the future. Furthermore, excess selection may be destabilizing because

it may induce a cobweb cycle: when wages are low the most labor-intensive

�rms are selected, which leads to too high wages and too high labor demand

in the subsequent period, where the least labor-intensive �rms will be se-

lected, thus intensifying the cycle. Such cycles illustrate that �rms are being

selected on the basis of incorrect market signals and that selection itself also

contributes to this mispricing.

I compare economies that di¤er in the volatility and persistence of their

productivity shocks, as well as the elasticity of labor supply. For each of

those economies I can characterize their aggregate dynamics as a function

of their degree of selectivity. I can also compute aggregate welfare and the

selectivity level which maximizes that welfare.

The key �ndings are as follows.

First, there is a trade-o¤ due to the fact that, on the one hand, greater

selection allows the economy to better track aggregate shocks (as long as they

have some persistence) and limits the mutational drift in the cross-sectional

variance of �rm types; on the other hand, as just pointed out, selection may

strengthen cobweb oscillatory dynamics, which leads to increased volatility

and potentially unstable dynamics.
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Second, there seems to be a value in maintaining a diverse "ecology of

�rms", because the �rm types that will be more adequate in future (un-

certain) environments have to be drawn from the pool of existing �rms. If

selection is too extreme in the current environment, the �rms that are best

adapted to a given future environmental change, yet performing poorly in

present circumstances, will be very scarce, and it will take longer for the

economy to produce a large number of such �rms in the new environment.

These observations help us to understand the results. We �nd that

� Optimal selectivity is larger, the less "cobweb unstable" the economy,
i.e. the more elastic the labor supply. This is because the more elastic

the labor supply, the less distorted the wage signals may be and the

more dampened the oscillations of the economy in response to an initial

misalignment in wages. Therefore, the less destabilizing a given degree

of selectivity will be. Indeed, if labor supply were in�nitely elastic, that

would pin down wages at their correct social value; they could not be

distorted by wrong decisions on the demand side of the labor market.

� Optimal selectivity is larger, the more persistent the aggregate produc-
tivity shocks. This is because selection that takes place now a¤ects the

distribution of �rms in the future. If shocks are more persistent �rms

that do better today are also more likely to do better in the future,

hence selectivity is more valuable.

� Optimal selectivity is larger, the lower the variance of productivity in-
novations. This is the "biodiversity" e¤ect. When productivity shocks

are more volatile, the future is more uncertain and this makes it more

valuable to keep a su¢ cient mass of �rms of various types, because it

is more likely that one of them will be the optimal one.

The model can also be extended to account for an endogenous capital
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stock, economic growth, and a selection process "with memory", i.e. which

rewards past performance in addition to just current performance. It is shown

that the optimal selectivity level should go up (resp. down) with economic

growth, if capital accumulation is unresponsive (resp. responsive) to growth.

Also, my numerical simulations indicate that if selectivity is chosen optimally,

faster growing economies will tend to have more volatile �uctuations. Finally,

memory tends to raise the optimal level of selectivity, because it introduces

another mechanism for raising inertia.

While selection is governed by a mechanical process, its parameters can

be intuitively related to economic institutions. For example, we may think

that greater selectivity is the outcome of more competitive markets or more

stringent credit conditions. The results imply that which institutions work

best at delivering a sound macroeconomic performance depends on the struc-

ture of the shocks and of the productivity growth process faced by the econ-

omy. I provide some suggestive evidence that the nexus between institutions,

selectivity, and aggregate inertia may be at work in a cross-section of coun-

tries: I show that there exists a positive correlation between the ranking of a

country in a number of indicators of product market regulation, on the one

hand, and its inertia in the aggregate labor/capital ratio, on the other hand.

This is consistent with the model provided one assumes that product market

regulations reduce selectivity.

2 Related literature

Selection naturally intervenes in all models where some relevant dimension

of economic activity is subject to an extensive margin (see for example Jo-

vanovic (1982), Caballero and Hammour (1994), Mélitz (2003)). However, as

long as agents optimize, such selection is just a by-product of the existence

of nonconvexities and �xed costs. The assumption that �rms are rational
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optimizing agents is not adequate to analyze the central role of selection as

a mechanism for error correction in a capitalist economy3. By contrast in

models of bounded rationality and adaptive learning, selection is an essential

ingredient of the process by which the economy evolves.

This is not the �rst paper which studies those issues in the context of

the cobweb model. Following the standard results of Ezekiel (1938) and

Muth (1961), the literature has analyzed whether the cobweb cycle converges

depending on learning processes (Carlson (1969), Bray and Savin (1986)).

More recently, Arifovic (1994) has addressed the same issue using genetic

algorithms, that is, applying Darwinian selection mechanisms to the learn-

ing strategies being used4. Her simulations indicate that, in the absence of

shocks, the economy generally converges to the rational expectations equi-

librium, even though the parameters may be such that it is cobweb-unstable.

Franke (1998), building on this work, provides a number of interesting simu-

lations that typically (but not systematically) imply that the economy does

not deviate much from the Walrasian equilibrium.

Our simple framework allows us to parametrize selectivity by a single

number, derive linear dynamics at the aggregate level, and compute the se-

lectivity parameters that deliver the highest welfare. The price to be paid is

that the strategies that the �rms follow are �xed (as in Arifovic (1994)) so

that the richer adaptive learning strategies of Franke (1998) are not consid-

3As pointed out by Caballero and Hammour (1996), in general entry and exit will not
be e¢ cient (as compared to some optimal benchmark) if there are market failures; this is
an instance of inadequate selection, but only as a consequence of the market failure.

4The Darwinian view according to which �rms, rather than optimizing, are character-
ized by an array of �xed business strategies that one may interpret as their "DNA" is
pervasive in the business literature. See for example Marks (2002).
To be sure, the strategies described in such a book are far more complex and qualitative

than just deciding one�s capital/labor ratio. Nevertheless they exemplify how capitalism
is a trial-and-error process through which unpro�table behavioral rules are eventually
abandoned, while pro�table ones are replicated. This paper is a �rst step at analyzing the
consequences of this trial-and-error process for aggregate dynamics.
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ered5. Besides showing that greater selectivity reduces inertia and raises the

likelihood of unstable aggregate oscillations, this paper�s key contribution is

to show how the optimal degree of selectivity depends on the economic en-

vironment, as de�ned by (i) the elasticities of supply and demand, (ii) the

volatility and persistence of aggregate shocks, (iii) the variance of mutations,

and (iv) the trend rate of productivity growth.

3 A simple selection process

There is a continuum of �rms of total mass equal to one. Each �rm i has

one unit of capital. Its production function at date t is

yit = Atl
�
i ;

where At is an aggregate productivity shock. Firms do not optimize, instead

their behavior is pinned down by their "type". Here this means that each

�rm pursues a �xed employment policy li: More generally this could stand

for various aspects of the "DNA" of a �rm, such as managerial practices,

etc. Optimization then only takes place indirectly, through the way markets

select �rms.

At date t; total labor supply is such that

wt = !L
t ;

where Lt is total employment and wt is the wage.

Given wt; the pro�t of a �rm of type l at date t is given by

�t(l) = Atl
� � wtl:

5Note however that Franke�s results themselves, somewhat fascinatingly, show that a
large proportion of �rms survive following �xed output strategies, despite the other �rms
pursuing more �exible behavioural rules.
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The most pro�table �rm type, at t, is the one such that

l = l�t =

�
�At
wt

� 1
1��

:

I assume that the distribution of �rm type at t is given by ft(x); where

x = ln l: ft() evolves over time for two reasons. First, �rm types are subject

to random mutation. Second, selection by markets raises the frequency of

the most pro�table �rms. This selection process is formalized as follows:

the greater the distance between a �rm type and the most pro�table type,

the more its frequency is reduced in the following period. More speci�cally,

let x�t = ln l�t and let �
2
t = V art(x) be the cross-sectional variance of the

distribution of log �rm size: At the end of period t; random mutation takes

place, so that x is replaced by x+ "; where " is a random noise with density

h("): That is, the distribution of �rm types at the end of period t is given by

gt(x) =

Z +1

�1
ft(y)h(x� y)dy:

After this mutation takes place, selection operates so as to favor the �rm

types that were closer to the most pro�table one6. Hence the distribution at

the beginning of t+ 1 is given by

ft+1(x) =
gt(x) exp(�� (x�x

�
t )
2

2
)

Dt

; (1)

whereDt =
R
gt(x) exp(�� (x�x

�
t )
2

2
)dx: The parameter � captures the intensity

of selection. At � = 0 no selection takes place, and the distribution of �rms

keeps spreading under the in�uence of random mutations. At � = +1 only

�rms that have the optimal employment level survive, and next period all

�rms will have that type.

6Strictly speaking, it would be more rigorous to assume that ft(x) is altered by a
multiplicative factor which is increasing in �t(ex); but replacing pro�ts by the distance to
the optimal employment level is a handy approximation.

7



The model is silent about how this selection process operates. There are

three potential margins: imitation (by either new entrants or existing �rms),

exit, and growth of the most successful �rms. The relative importance of

these three margins is irrelevant here.

It is easy to see that if ft() is normal, i.e. ft(x) = 1p
2��t

exp(� (x��xt)2
2�2t

); and

if h is normal, that is h(") = 1p
2��m

exp(� "2

2�2m
); then so is ft+1: Furthermore

the mean log employment level then evolves according to

�xt+1 =
�xt + � (�2t + �2m)x

�
t

1 + � (�2t + �2m)
; (2)

while the variance of the distribution evolves according to

�2t+1 =
�2t + �2m

1 + � (�2t + �2m)
: (3)

We are now in a position to solve for the equilibrium of this economy. It

will be useful to use the following parameters:

� =



1� �

and

d = ��2m:

We have that

x�t =
1

1� �
(ln�+ at � lnwt) ; (4)

where at = lnAt;

lnLt = lnEtl = Et ln l +
�2t
2
= �xt +

�2t
2
: (5)

This determines the wage at t :

lnwt = 


�
�xt +

�2t
2

�
+ ln!: (6)
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Finally, substituting (6) into (4) and then into (2) we get

�xt+1 = bt +
� (�2t + �2m)

(1 + � (�2t + �2m))(1� �)
at +

1� �� �
 (�2t + �2m)

(1 + � (�2t + �2m))(1� �)
�xt; (7)

where

bt =
� (�2t + �2m)

(1 + � (�2t + �2m))(1� �)

�
ln
�

!
� 


�2t
2

�
:

Equations (7) and (3) characterize the dynamics of the system. While

they are non linear, the system is asymptotically univariate and linear.

This is because (3) implies that �2t evolves deterministically and converges

monotonically to

�21 = �
�2m
2
+

p
�4m + 4�

2
m=�

2
: (8)

This asymptotic cross-sectional dispersion of �rms is larger, the greater

the "mutation rate" �2m and the smaller the selectivity parameter �: It be-

comes in�nite as � ! 0 and nil as � !1:

Also, the deterministic (log) employment component bt converges to

b1 =
��21
1� �

�
ln
�

!
� 
�21=2

�
(9)

Asymptotically, then, the evolution equation of �x becomes

�xt+1 = b1 +
��21
(1� �)

at + ��xt; (10)

where

� =
�21

�21 + �2m
� �
�21
1� �

=

p
1 + 4=d� 1� 2�
1 +

p
1 + 4=d

: (11)

This formula shows the �rst result of this paper:

PROPOSITION 1 �Assume the stochatic process for at is stationary.

The dynamics of �xt are stable if and only if � > �1; or equivalently
1

d
>
� 2 � 1
4

: (12)
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Furthermore, if
1

d
< � + � 2; (13)

then the dynamics are oscillatory, i.e. � < 0.

PROOF �The AR1 term, �21
�21+�

2
m
� �
�21

1�� ;is always < 1: Dynamics are

stable i¤ it is > �1: This is equivalent to � < 1��



�
1

�21+�
2
m
+ 1

�21

�
; which by

(8) is equivalent to (12). Dynamics are oscillatory i¤ �21
�21+�

2
m
� �
�21

1�� < 0;i.e.

� < 1��



1
�21+�

2
m
; which is equivalent to (13). QED

The case where � = +1 and where there are no shocks delivers the

standard cobweb cycle (Ezekiel, 1938): by selecting only the most pro�table

�rm at t; markets set labor demand a t + 1 at the level that corresponds to

wages at t; if wages are high at t; employment is low at t + 1; and wages

are low at t + 1: It is well known that this cycle converges if and only if


 < 1 � �; i.e. � < 1: Indeed, if � < 1; (12) always holds. In the sequel I

will label an eonomy such that the cobweb cycle converges "cobweb-stable".

Furthermore, the greater � ; the greater the absolute value of the root of such

a cycle. Hence � is an index of cobweb instability.

As shown by Proposition 1, if the economy is cobweb-stable, then it is

even more stable under �nite selectivity. Otherwise, it will be stable provided

selectivity remains below a given threshold. The economy is more stable,

the lower its selectivity and the lower the mutation rate. Therefore, the

selectivity threshold below which the economy is stable is lower, the greater

the mutation rate. In generating instablility, mutation plays a somewhat

similar role as selectivity. A greater mutation rate means that the pool of

�rms pursuing today�s optimal policy rather than yesterday�s will be larger,

which increases the number of �rms that will pursue this policy tomorrow,

and therefore the likelihood of instability.

If we interpret, plausibly, economies with a larger � or a larger mutation
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rate as being more of the "capitalist" kind, then Proposition 1 provides some

foundations for the often heard claim that "capitalist economies are inher-

ently instable". This instability comes from the fact that selection takes

place on the basis of incorrect prices �that is, on the basis on wages at t;

instead of the REE wages at t+1 �and by inducing too many �rms to adopt

the incorrect type, prices next period are made even more incorrect.

Suppose now a central planner wants to choose how capitalist the economy

is, i.e. what the optimal value of � should be. This central planner can be

viewed as a metaphor for the outcome of "systems competition" à la Sinn

(2003). That is, it is reasonable to assume that economies that do poorly will

eventually adopt the institutions of economies that do well. By looking at the

optimum, I am silent about the way this macro-selection process operates,

as the model is equally silent about how the selectivity parameter � relates

to actual institutions.

Our central planner clearly faces a trade-o¤: the economy is more stable

when � is lower, on the other hand it takes longer for it to learn the correct

price, and it is less reactive to shocks. Finally, a lower value of � also raises the

asymptotic dispersion of �rm size because less selective pressure is exerted

against mutations. The central planner would want all �rms to choose the

Walrasian employment level (which also maximizes total surplus) given by

xt =
1

1�� (ln�+ at � lnwt) and lnwt = 
xt; that is

~xt =
1

1� �+ 

(ln�+ at): (14)

I assume that the central planner�s welfare is given by

E

+1X
t=0

�t ln(St +�t);

where St is the workers surplus and �t total pro�ts. It is shown (Appendix

1) that maximizing this expression can be approximated by the following

problem:
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minE

+1X
t=0

�t(�2t + (1 + �)(�xt � ~xt)2): (15)

I assume that at follows an AR1 process

at = �at�1 + "t; (16)

with "t � N(0; �2"): Furthermore, the central planner acts "asymptotically"

by minimizing the long-term welfare �ow on the RHS of (15). That is, the

government minimizes limt!1 �
2
t + (1 + �)E(�xt � ~xt)2;which is equal to

L =�21 + (1 + �)((Eu)2 + V ar(u)); (17)

where ut = �xt�~xt is the "average log size gap" (ALSG), that is, the di¤erence
between the average log size of a �rm in our economy and the (common to

all �rms) log size in the Walrasian economy. The preceding derivations allow

us to characterize the law of motion for the ALSG:

ut+1 = �u�
1

1� �+ 

"t+1 +

1� �

1� �+ 

at + �ut; (18)

where

�u = ���
2
�41: (19)

From the RHS of (17), we see that the asymptotic losses to the social

planner come from three sources:

1. The cross-sectional dispersion of �rm size, given by

�21 =
�2m
2
(�1 +

p
1 + 4=d): (20)

This is larger, the larger the mutation rate and the smaller the selectivity

level.

2. The average output gap, given by

Eu =
�u

1� �
: (21)
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This formula tells us that the average mistake made by a �rm setting

employment in this economy compared to the Walrasian one is larger, the

more cobweb-unstable (the larger �) and the less selective (the lower �) the

economy. Why is that so? The average output gap is negative (meaning

�rms on average are too small compared to the Walrasian allocation) because

log �rm size dispersion per se tends to raise aggregate employment due to

Jensen�s inequality7. This tends to raise wages above the Walrasian level,

which reduces average log �rm employment. This e¤ect is stronger, the

greater the reaction of wages to employment, i.e. the greater the instability

� ; and the greater the asymptotic cross sectional variance of log employment,

i.e. the lower the selectivity parameter d:

3. The volatility of the ALSG, given by

V ar(u) =
�2"

(1� �+ 
)2
2

(1 + �)(1 + �)(1� ��)
: (22)

3.0.1 The e¤ect of � and �

Table 1 reports the optimal value of d as a function of � and � for a typical

set of simulations. The other parameters have been set to � = 0:5; �2" = 0:02

and �2m = 0:05: The optimal value of d is driven by the trade-o¤ between

long-term cross-sectional dispersion in �rms�type and aggregate stability of

employment dynamics. Two key patterns emerge.

First, optimal selectivity is larger, the more persistent the productivity

shocks. This is because the more persistent those shocks, the more the most

pro�table �rms at date t are likely to be the optimal �rm type in the subse-

quent periods. Note that even if the shocks are not persistent some selectivity

7By the same token, log �rm size dispersion would tend to push aggregate employment
above its Walrasian level. But we have proved that the social planner�s objective can be
expressed as a function of the cross-sectional deviation of log �rm size and the absolute
value of the output gap. Thus taking those into account we can ignore employment.
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is optimal, since otherwise mutations would accumulate and the dispersion of

�rm types would become in�nite, which is ine¢ cient. Furthermore, as long

as it is not strong enough to generate instability, some selectivity brings the

�rm types in line with the correct ones on average.

Second, the greater � ; i.e. the more cobweb-unstable the economy, the

lower the selectivity level. The greater � ; the more wages react to a deviation

in aggregate employment, and the greater the welfare loss in subsequent

periods from picking the wrong �rm type at a given date. Since selection

never operates on the basis of the correct market signals, one is more willing

to mitigate it when � is larger. We can also note that when 
 is large,

selectivity is very inelastic to the degree of persistence in productivity shocks.

�n
 0 0.2 0.5 1 2 5
0.01 1.86 1.08 0.61 0.32 0.14 0.03
0.2 3.76 1.63 0.79 0.37 0.15 0.03
0.4 13.3 2.57 1.00 0.43 0.15 0.03
0.6 99 4.26 1.27 0.47 0.16 0.03
0.8 99 6.69 1.5 0.52 0.18 0.03
0.99 99 11.5 1.7 0.56 0.18 0.03

Table 1 �Optimal value of d as a function of � and 
; � = 0:5; �2" = 0:02,

�2m = 0:05:

Table 2a reports the corresponding value of �; the AR1 coe¢ cient in

aggregate employment dynamics. Note that this is not the autocorrelation

in �xt; but instead the part of it that is induced by selectivity (the other part

comes from the autocorrelation in the shocks a). Under � = +1 it would be

equal to �� : As Table 2a makes clear, this contribution is most of the time
negative. Table 2b reports the autocorrelation of average log employment �xt;

which is equal to �+�
1+��

:8 We see that in some cases it is optimal to pick d so as

8This is due to the fact that if x̂t = �xt � E�x; then x̂t+1 = d
1�� ât + �x̂t; so that

V ar(x̂t) =
d2(1+��)�2"

(1��)2(1��)(1��2) and Ex̂tx̂t+1 = �V ar(x̂t) +
d2��2"

(1��)2(1��)(1���) :
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to allow for negative autocorrelation. This is the case for � not too large and


 large. In other cases the optimal choice of d will increase the persistence of

employment relative to its Walrasian counterpart (where it is simply equal

to �). Note also that empirically observing a positive autocorrelation, i.e.
�+�
1+��

> 0; does not preclude the endogenous dynamics of employment to be

oscillatory, i.e. � < 0:

�n
 0 0.2 0.5 1 2 5
0.01 0.28 0.12 -0.07 -0.28 -0.54 -0.77
0.2 0.18 0.02 -0.15 -0.35 -0.59 -0.77
0.4 0.07 -0.07 -0.24 -0.42 -0.59 -0.77
0.6 0.01 -0.17 -0.32 -0.47 -0.65 -0.77
0.8 0.01 -0.24 -0.38 -0.51 -0.71 -0.77
0.99 0.01 -0.30 -0.41 -0.56 -0.71 -0.77
Table 2a � Persistence parameter � at the optimal choice of d: Same

parameters as Table 1.

�n
 0 0.2 0.5 1 2 5
0.01 0.29 0.13 -0.06 -0.27 -0.53 -0.77
0.2 0.37 0.22 0.05 0.16 -0.45 -0.68
0.4 0.45 0.33 0.18 0.03 -0.26 -0.54
0.6 0.61 0.47 0.35 0.18 -0.08 -0.32
0.8 0.8 0.70 0.61 0.48 0.22 0.07
0.99 0.99 0.98 0.98 0.97 0.94 0.92
Table 2b �Employment autocorrelation at the optimal choice of d: Same

parameters as Table 1

Table 3 reports the corresponding asymptotic cross-sectional dispersion

of �rm size, �1; while Table 4 reports the average ALSG. Given (20), the

interpretation of Table 3 is straightforward. Table 4 con�rms the negative

e¤ects of �rm size dispersion which is discussed above. As selectivity reduces

dispersion, it also reduces the size of the ALSG.
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�n
 0 0.2 0.5 1 2 5
0.01 0.019 0.03 0.044 0.067 0.11 0.26
0.2 0.011 0.02 0.037 0.061 0.11 0.26
0.4 0.003 0.01 0.031 0.055 0.11 0.26
0.6 0.0005 0.009 0.026 0.052 0.10 0.26
0.8 0.0005 0.007 0.023 0.049 0.097 0.26
0.99 0.0005 0.004 0.021 0.046 0.097 0.26
Table 3 �Cross-sectional log employment variance at the optimal choice

of d: Same parameters as Table 1

�n
 0 0.2 0.5 1 2 5
0.01 0 -0.4 -1.1 -2.2 -4.5 -11.8
0.2 0 -0.3 -0.9 -2.0 -4.3 -11.8
0.4 0 -0.2 -0.8 -1.8 -4.3 -11.8
0.6 0 -0.1 -0.6 -1.7 -4.0 -11.8
0.8 0 -0.1 -0.6 -1.6 -3.9 -11.8
0.99 0 -0.05 -0.5 -1.5 -3.9 -11.8
Table 4 �Average ALSG (%) at the optimal choice of d: Same parameters

as Table 1

3.0.2 The e¤ect of �2m and �2":

How do the variances of mutations and aggregate shocks a¤ect the optimal

selectivity level? We can again answer this question by running numerical

simulations. Also, in some special cases we can get an analytical solution.

For � = � = 0 we have that

Eu = 0

and

V ar(u) =
�2"

(1� �)2
2

1 + �
;
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while it is always true that

�21 =
��2m
1� �

:

Therefore, one replace the choice variable by � and the asymptotic objec-

tive is

min
�

��2m
2(1� �)

+
2�2"

(1� �2)(1 + �)
:

The optimal value of � is

� =
2�" � (1� �)�m
2�" + (1� �)�m

and the corresponding value of d is9

d =

�
�2"

(1� �)2�2m
� 1
4

��1
if 2�" > (1� �)�m

= +1 if 2�" � (1� �)�m:

This expression suggests that optimal selectivity is a decreasing function

of the �"=�m ratio. The greater the variance of productivity shocks, the

greater the "biodiversity" value of maintaining a large enough pool of �rms

at various employment level, in order to better react to future "changes in

the environment", i.e. productivity shocks that call for a change in the

optimal �rm size. One can also show, based on the preceding formula, that

d�=d�2m > 0: Thus selectivity clearly goes up with the variance of mutational

shocks. Bigger mutations raise the long-term cross sectional dispersion of

�rm size, which induces an increase in selectivity so as to limit the associated

welfare losses.

Are these results con�rmed in more general parameter con�gurations? To

answer that question we again have to use numerical simulations. Figure 1

shows the evolution of d as a function of �2" for � = 0:5 and twelve di¤erent

9As � =
p
1+4=d�1

1+
p
1+4=d

; if the optimal � is negative, it cannot be reached by picking d: I

such cases, one cannot to better than setting d = +1:
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set of parameter values for �2m; � and 
: These values are reported in Table

6.

Simul. # �2m � 

1 0.05 0.2 0.2
2 0.05 0.2 0.5
3 0.05 0.2 0.8
4 0.05 0.8 0.2
5 0.05 0.8 0.5
6 0.05 0.8 0.8
7 0.1 0.2 0.2
8 0.1 0.2 0.5
9 0.1 0.2 0.8
10 0.1 0.8 0.2
11 0.1 0.8 0.5
12 0.1 0.8 0.8
Table 6 �Parameter values for Figure 1

As Figure 1 reports an inverse measure of d (1=(1 + d)), it con�rms our

intuition that selectivity falls with the variance of productivity shocks.

Figure 2 reports the evolution of � as a function of �2m: The corresponding

parameter values are reported on Table 7. We see that selectivity goes up

with �2m for low values of 
 but falls with �
2
m for large values of 
:
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Simul. # �2" � 

1 0.02 0.2 0.2
2 0.02 0.2 0.5
3 0.02 0.2 0.8
4 0.02 0.8 0.2
5 0.02 0.8 0.5
6 0.02 0.8 0.8
7 0.04 0.2 0.2
8 0.04 0.2 0.5
9 0.04 0.2 0.8
10 0.04 0.8 0.2
11 0.04 0.8 0.5
12 0.04 0.8 0.8
Table 7 �Parameter values for Figure 2

How can we explain this pattern? For a given �; an increase in the size of

mutations makes the cross-sectional distribution of �rm size less persistent,

which in turn reduces the persistence parameter �: For � < 0 this makes ag-

gregate dynamics more unstable, with the associated welfare losses captured

by (22). This e¤ect is stronger, the more negative �; i.e. the greater � : To

o¤set it, one must pick a lower value of �: This e¤ect dominates for � large

enough, explaining the negative dependence of � on �2m: On the other hand,

for � low, the dynamics are unlikely to be oscillatory, and the contribution

of �1 dominates: selectivity goes up when mutations are larger, to o¤set the

increase in the long run cross-sectional dispersion of �rm size.

4 Extensions

4.1 Endogenous number of �rms and the e¤ect of growth

In the above model, the number of �rms is �xed. In this section I make

it more general by endogenizing the number of �rms. This extension will

then prove convenient to analyze the consequences of the introduction of an
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exogenous growth trend in total factor productivity.

I assume that a fraction s of total output is saved (as in the Solow (1956)

model), and that these savings are used to accumulate capital, which means

more �rms here. But instead of a linear relationship between savings and

capital accumulation, I assume that it is non linear and subject to decreasing

returns to scale, so that the following relationship holds:

Kt+1 = �Y  
t ; (23)

with  2 [0; 1]: In general � should depend on s; but this dependency is

immaterial, and we ignore it here. The above model is a special case for

s = 0; � = 1 and  = 0: The  parameter captures how sensitive the number

of �rms is to the output level. The evolution of the distribution of �rm size

is unchanged from the previous analysis, meaning that the RHS of (1) drives

the distribution of �rm size among new entrants as well as survivors.

We clearly have that Yt = AtKtEtl
�
i : Taking logs and denoting by yt =

lnYt, this clearly implies that

yt = at + kt + ��xt + �2
�2t
2
: (24)

Similarly, Lt = KtEtli and therefore

lnLt = kt + �xt +
�2t
2
:

This equation allows us to derive the equilibriumwage and pro�t-maximizing

log �rm size, that are respectively equal to

lnwt = ln! + 
(kt + �xt +
�2t
2
)

and

x�t =
1

1� �
(ln

�

!
+ at � 
(kt + �xt +

�2t
2
)):
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Using the same derivations as in Section 3 we get the aymptotic law of

motion for �xt :

�xt+1 = (1� ��21(1 + �))�xt � ���21kt +
��21
1� �

at + b1; (25)

where b1 is de�ned by (9).

Using (23) we also get an evolution equation for kt = lnKt :

kt+1 =  at +  kt +  ��xt + c1; (26)

where

c1 = ln � +
 �2�21
2

:

Proposition 2 characterizes the stability properties of the dynamical sys-

tem (25-26), thus extending Proposition 1.

Proposition 2 �The dynamical system (25-26) is stable if and only if

1

d
>

�
�+
 
1+ 

�2
� 1

4
: (27)

Proof �See Appendix

We note that (27) is more likely to hold, the greater  : the more en-

try is sensitive to economic activity, the more stable the economy. Capital

accumulation raises inertia, making it less likely that the economy oscillates.

The preceding extension can be applied to an economy where TFP at has

a deterministic growth trend. More speci�cally, I assume that at = aCt + gt;

where g is the trend growth rate and aCt the cyclical component. I assume

that the law of motion for aCt is given by the same AR1 process as above,

i.e. eq. (16).
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We want to know how the optimal selectivity depends on growth; we also

want to know how this dependence a¤ects the economy�s cyclical properties.

For this we �rst need to extend the welfare criterion derived in (17) to the case

with an endogenous capital stock. This is done in the Appendix. Then, in

order to compute social welfare, one needs to compute the stochastic steady

state moments of the relevant vector (kt; �xt; at): The relevant formulas are

also derived in the Appendix. One can then use those formulas to compute

the welfare-maximizing level of d: The next table shows how it depends on

g and  : The other parameters were � = 0:5; � = 1; s = 0:5; 
 = 0:5; ! =

1; � = 0:01; �2" = 0:02 and �
2
m = 0:05:

gn 0 0.2 0.5 0.7 0.9 1 2/3
0 0.61 0.54 0.47 0.45 0.45 0.47 0.45
0.02 0.61 0.59 0.56 0.43 0.01 0.01 0.45
0.05 0.67 0.67 0.61 0.39 0.01 0.01 0.45
0.1 0.79 0.79 0.72 0.32 0.01 0.01 0.45
0.15 0.96 0.96 0.85 0.25 0.01 0.01 0.45
0.2 1.13 1.13 1.0 0.19 0.01 0.01 0.45

Table 8 �Optimal d as a function of g and  

To interpret Table 8, one should �rst note that the deterministic growth

component of the average log �rm size is equal to (see Appendix)

gx = g
1�  (1 + �(1� �))

(1� �)(1 + � �  (1 + �(1� �)))
:

This component is the same in our equilibrium and in the Walrasian one:

our economy does not diverge from its Walrasian counterpart over time.

If  < 1
1+�(1��) ; gx is positive and grows with g : the capital stock is not

responsive enough to trend growth for the size distribution of �rms to remain

constant. Firm size grows over time. We have seen in Table 4 that �rm size

is typically smaller, on average, than the Walrasian benchmark. Since the

distribution of �rm size that produces at t + 1 is selected from the pool of
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�rms at date t; an increase in g tends to widen the gap between the average

�rm size at t and its Walrasian counterpart. This raises the gain to the social

planner of being more selective, because greater selectivity reduces the ALSG

Eu in absolute value; as illustrated by (19) and (21).

For  > 1
1+�(1��) ; however, entry "overshoots" the level that would deliver

a constant distribution of �x through time. As a result, the average �rm size

shrinks over time, more so, the greater g: The lag in �rm selection now tends

to o¤set the fact that the ALSG is smaller in our equilibrium than in the

Walrasian one. This o¤setting factor is stronger, the greater g: Therefore, as

g goes up, the ALSG shrinks in absolute value, which reduces the bene�ts of

selectivity.

Finally, for  = 1
1+�(1��) ; both our economy and the Walrasian one are

in a balanced growth path where the cross-sectional distribution of �rm size

(which is degenerate in the Walrasian case) has no deterministic trend. As

a result the growth rate has no impact on the ALSG and consequently no

impact on the optimal selectivity level. For our parameter values this corre-

sponds to  = 2=3 and is reported in the last column of Table 8.

gn 0 0.2 0.5 0.7 0.9 1 2/3
0 0.006 0.010 0.023 0.039 0.072 0.103 0.035
0.02 0.006 0.011 0.023 0.039 0.076 0.159 0.035
0.05 0.006 0.011 0.024 0.039 0.076 0.159 0.035
0.1 0.007 0.012 0.025 0.038 0.076 0.159 0.035
0.15 0.008 0.013 0.026 0.037 0.076 0.159 0.035
0.2 0.009 0.014 0.026 0.036 0.076 0.159 0.035

Table 9 �Output volatility as a function of g and  

Table 9 reports the corresponding volatility of output. For  < 1
1+�(1��) =

2=3; selectivity grows with g; and we observe that this is associated with an

increase in volatility. For  = 0 this is due to the increase in the absolute

value of the negative root, i.e. an ampli�cation of the cobweb cycle, as
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discussed above. For  > 0 the roots are complex and the results are more

di¢ cult to interpret. Overall, though, the results suggest that economies

that grow faster should be more volatile, although this is not systematic (see

column 5).

4.2 Selection with memory

I now study an extension of the model where selection takes place on the

basis of current and past pro�tability, instead of current pro�tability alone.

Intuitively, this means that investors have a "long memory" and that the

�rms that are selected for are those that have a greater pro�t over some

period of time10. A natural way to formalize this is to assume that instead

of (1) we have

ft+1(x) =
gt(x) exp(�� (x�x̂t)

2

2
)

Dt

; (28)

,where the most selected type is a geometric weighted average of current and

past most pro�table types:

x̂t = �x̂t�1 + (1� �)x�t

= �x̂t�1 +
1� �

1� �
(ln�+ at � lnwt) :

� is a parameter which captures the memory, or horizon, of the selection

process. It is obvious that (3) is unchanged and that in (2) x�t has to be re-

placed by x̂t: Consequently, asymptotically we end up with a two dimensional

system which evolves as

10Keeping track of memory can be implemented in the economy through institutions
such as money, or more generally, wealth. See Kocherlakota (1998).
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�xt+1 =

 
�1 +

p
1 + 4=d

1 +
p
1 + 4=d

!
�xt +

d

2
(�1 +

p
1 + 4=d)x̂t

x̂t+1 =

�
�� (1� �)�d

2
(�1 +

p
1 + 4=d)

�
x̂t � �(1� �)

 
�1 +

p
1 + 4=d

1 +
p
1 + 4=d

!
�xt

��(1� �)�2m
4

(�1 +
p
1 + 4=d) +

1� �

1� �
(ln�+ at+1) ;

We can already analyze how the stability of the system is a¤ected by the

selection process parameters (�; �): The following proposition can be proved.

Proposition 3 �A su¢ cient condition for the system to be stable is

� >
� �

p
1 + 4=d

� +
p
1 + 4=d

: (29)

PROOF �See Appendix 2.

We note that this condition is satis�ed for any � provided � <
p
1 + 4=d;

which is equivalent to condition (12). Condition (12) is associated with

the special case � = 0: Intuitively, the longer the memory of the selection

process, the less likely it is that the economy will oscillate and the more likely

it is to be stable11. A longer memory thus enhances the range of selectivity

values compatible with stability�the trade-o¤ between selectivity and inertia

is eased. As (29) makes clear, the maximum level of selectivity consistent

with stability becomes in�nite as � converges to 1.

11From the Proof of Proposition 3, we can partition the (�; �) plane in various regions.
Negative roots prevail for high values of � and low values of �: If the economy is cobweb
unstable, there is a region where � is too large and � too low for these oscillations to be
stable. But there is also a region where they are dampened. For � larger and � smaller,
the roots are positive and the economy is always stable. Finally there is a region where the
roots are complex, and in this case the economy is again stable, with dampened oscillations
at a frequency lower than a 2-cycle.
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It is then natural to expect that the optimal selectivity level will depend

positively on the length of memory �: The following Table reports simulations

of the optimal d for di¤erent values of � and 
; and it con�rms this intuition:12

�n
 0 0.2 0.5 1 2 5
0.0 1.86 1.08 0.61 0.32 0.14 0.03
0.2 5.25 2.33 1.13 0.56 0.25 0.06
0.4 99 13.3 3.17 1.28 0.52 0.14
0.6 99 99 99 6.69 1.56 0.35
0.8 99 99 99 99 99 2.125
0.99 99 99 99 99 99 99
Table 10 � Optimal selectivity d as a function of � and 
; � = 0:5;

�2m = 0:05; �
2
" = 0:5; � = 0:01

5 An empirical illustration

While the preceding discussion obviously rests on a very speci�c model, which

ignores many features of an economy as well as many dimensions of a �rm�s

characteristics upon which selection may take place, it is interesting to il-

lustrate empirically one key proposition emerging from the above analysis,

namely that there is a negative relationship between the intensity of selection

and the degree of inertia at the macroeconomic level.

While how to measure selection in a real economy is open to discussion,

I am more particularly interested in documenting the view that some insti-

tutions such as barriers to entry, lack of investor protection, etc, are likely to

reduce the selection level. If the above analysis is correct, we should expect

countries with more regulated markets to exhibit a higher level of macroeco-

nomic inertia.

My strategy is to use the Penn World Table to estimate a simple version

12How to compute the welfare criterion is described in the Appendix.
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of Equation (2) for a number of countries13, and correlate the implied inertia

in x (measured as the labor/capital ratio from the PWT) with some indices

of product market regulation from the OECD product market regulation

database. I remain relatively agnostic regarding the determinants of the

preceding period�s optimal value of x; and I proxy it by a set of three variables:

TFP, the real wage, and the real exchange rate. The coe¢ cient of interest is

the degree of inertia, i.e. the coe¢ cient on the lagged value of x: According

to the model, it should be equal to

�0 =
1

1 + � (�21 + �2m)
=

p
1 + 4=d� 1p
1 + 4=d+ 1

:

This is clearly decreasing from 1 to 0 as d goes up from zero to in�nity.

I then rank the countries by this estimated persistence coe¢ cient (hence

more highly ranked countries are interpreted as being more selective) and

correlate this with their rank in a number of OECD indices of product market

regulation. The results are reported in Table 11.

Indicator Rank correlation with �0

State control 0.22 (0.1)
Barriers to entrepreneurship 0.24 (0.11)
Barriers to international trade -0.15 (0.11)
Regulation of legal professions 0.14 (0.11)
Regulation of retail trade 0.35 (0.1)
Regulation of energy, transport and communication 0.28 (0.11)
Table 11 �Mean rank correlation between estimated inertia and OECD

indicators of product market correlation. Standard deviations in parentheses.

Both means and standard deviations estimated with bootstrap simulations

to account for the sampling error in the estimation of �0.

We see that the rank correlation, although not very large is generally

positive, reaching 0.35 for retail trade. The only indicator that exhibits a

13See the Appendix for the actual speci�cation and the estimated values for inertia.
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negative correlation with inertia is that of barriers to international trade.

However while this type of regulation forces domestic prices to deviate from

international prices, there is no reason to believe that it would reduce the

severity of selection among domestic �rms, contrary to the other indicators.

That this indicator, unlike the others, is not positively correlated with the

degree of inertia, therefore comes as no surprise.

While these results hardly constitute a proof of the model (we can think

of mechanisms other than selection through which regulation would a¤ect

inertia), they are consistent with its general message that there exists a link

between selectivity at the micro level and inertia at the macro level.

6 Conclusion

In this paper I have developed a model that allows us to study the inter-

actions between the intensity of selection at the microeconomic level and

aggregate dynamics, as well as to discuss what level of selectivity is most de-

sirable depending on the economic environment. This exercise has its limits

because it assumes a mechanical rule for the evolution of the cross-sectional

distribution of �rm characteristics. This is the price to be paid for analytical

transparency. An important direction for future research consists in provid-

ing foundations for the selection mechanism based on real world institutions

such as the rules governing bankruptcies and corporate governance, as well

as labor and product market regulations.
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7 Appendix

7.1 Derivation of (15).

The workers�surplus is equal to

St = wtLt � !t
L1+
t

1 + 

:

Therefore

�t + St = Yt � !t
L1+
t

1 + 

: (30)

Furthermore

Yt = At

Z +1

�1
ft(x)e

�xdx:

Therefore

lnYt = at + lnEl
�

= at + ��xt + �2
�2t
2
:

Similarly

lnLt = �xt + �2t=2:

For convenience we rewrite (14):

~xt =
1

1� �+ 

(ln�+ at � zt):

Using this and the preceding derivations, (30) can be rewritten as

�t + St = A
1+


1��+

t !

� �
1��+


t �
�

1��+
 exp(�(�xt � ~xt) + �2
�2t
2
)

�A
1+


1��+

t !

� �
1��+


t

�
1+


1��+


1 + 

exp((1 + 
)(�xt � ~xt +

�2t
2
)):
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This is equivalent to

ln (�t + St) =
1 + 


1� �+ 

at �

�

1� �+ 

+

�

1� �+ 

ln�

+�(�xt � ~xt;
�2t
2
);

where

�(u; v) = ln

�
exp(�u+ �2v)� �

1 + 

exp((1 + 
)(u+ v))

�
:

We note that for v � 0; �(u; v) � �(0; 0) = ln(1 � �
1+

); that �0u(0; 0) =

0; �0v(0; 0) = �
�(1��)
1� �

1+

< 0; and �00u;u(0; 0) = �

�(1+
)��2
1� �

1+

: Hence for u; v << 1

�(u; v) � ln(1� �

1 + 

)� �(1� �)

1� �
1+


�
v + (1 + �)u2=2

�
:

The other terms of the Taylor expansion are all negligible relative to

either u or v:Maximization of E� is therefore equivalent to minimizing E(v+

(1 + �)u2=2) = 1
2
(�21 + (1 + �)Eu2)
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7.2 Proof of Proposition 2

The relevant matrix to be studied is, from (25)-(26):

M =

�
1� ��21(1 + �) ����21

 �  

�
:

Let x = ��21 2 [0; 1]: The eigenvalues � of M are solution to

�2 � [ + 1� x(1 + �)]�+  (1� x(1 + 
)) = 0: (31)

The corresponding discriminant is

�(x) = [ + 1� x(1 + �)]2 � 4 (1� x(1 + 
)) :

This quantity is positive i¤

0 < x2(1 + �)2 + 2x( � (1 + �)�  (� � 2
)) + (1�  )2

It is easy to see that  �(1+�)� (��2
) = �b2 < 0 for all  2 [0; 1] and
that �2 = ( � (1 + �)�  (� � 2
))2 � (1�  )2(1 + �)2 2 (0; b22): Therefore
we have that �(x) < 0 for x 2 (x1; x2); with x1 = b2�

p
�2

(1+�)2
; x2 =

b2+
p
�2

(1+�)2
:

Straightforward computations show that 0 < x1 < x2 < 1: Furthermore,

x2 <
2(1+�� + (��2
))

(1+�)2
: Computations show that this quantity is smaller than

x� =
1 +  

1 + � +  (1 + 
)
:

In the zone where x 2 (x1; x2); the two roots of (31) are complex conjugate
since �(x) < 0: Their module is equal to  (1� x(1 + 
)) < 1: Therefore the
system is stable. In the zone where x =2 (x1; x2); the roots of (31) are real
and given by

�1 =
1 +  � x(1 + �)�

p
�(x)

2
;

�2 =
1 +  � x(1 + �) +

p
�(x)

2
:
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We can check that �2 < 1: As for �1; it must be greater than �1 for the
system to be stable. This is equivalent to

3 +  � x(1 + �) >
p
�(x):

This inequality is violated if x � 3+ 
1+�

: Suppose that x < 3+ 
1+�

: Then the

preceding inequality is equivalent to

(3 +  � x(1 + �))2 > �(x):

Rearranging, this latter condition is equivalent to

x < x�: (32)

Since, on the one hand, x� < 3+ 
1+�

; and, on the other hand, x� > x2 and

the system is stable for x 2 (x1; x2); it follows that the system is stable i¤

(32) holds. Then, we note that x = �d+
p
d2+4d
2

; substituting into (??) and

rearranging, we get that the system is stable i¤

1

d
>

�
�+
 
1+ 

�2
� 1

4
:

As � > 
; this is more likely to hold, the greater  :
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7.3 Computing social welfare in the model with en-
dogenous capital

Relative to Appendix 1, consumption now di¤ers from output. We have to

subtract savings from it. Therefore, the �ow of total welfare is given by

ln (�t + St � sYt) = ln((1� s)Yt � !
L1+
t

1 + 

):

We follow the approach of Appendix 1 and express welfare as a function

of the moments of the deviation between the endogenous variables �xt; kt and

their Walrasian counterparts, denoted by ~xt and ~kt: In the Walrasian equilib-

rium with wages equal to ~wt; we clearly have that ~xt = 1
1�� (ln�+ at � ln ~wt)

and ln ~wt = ln! + 
(kt + xt): Therefore,

~xt =
1

1� �+ 


�
ln
�

!
+ at � 
~kt

�
: (33)

The law of motion for capital in the Walrasian equilibrium is

~kt+1 = ln � +  ~kt +  at +  �~xt: (34)

For convenience we reproduce our dynamical system:

�xt+1 = (1� ��21(1 + �))�xt � ���21kt +
��21
1� �

at + b1; (35)

kt+1 =  at +  kt +  ��xt + c1: (36)

It is easy to compute the trend growth rates for �x and k from those

equations. One gets

gx = g
1�  (1 + �(1� �))

(1� �)(1 + � �  (1 + �(1� �)))

and
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gk = g
 (1 + �(1� �))

(1� �)(1 + � �  (1 + �(1� �)))
> 0:

One can also check from (33) and (34) that the trend growth rates of ~xt

and ~kt+1 are the same.

Let x̂ = �x� ~x and k̂ = k � ~k: Then we have that

Yt = exp(kt + at + ��xt + �2�21=2)

= exp(~kt + at + �~xt) exp(k̂t + �x̂t + �2�21=2):

Similarly,

L1+
t = exp((1 + 
)(~kt + ~xt)) exp((1 + 
)(k̂t + x̂t + �21=2)):

Now using (33) we get that

~kt + at + �~xt =
�

1� �+ 

ln
�

!
+Mt

and

(1 + 
)(~kt + ~xt) =
1 + 


1� �+ 

ln
�

!
+Mt;

where

Mt =
1 + 


1� �+ 

at +

(1 + 
) (1� �)

1� �+ 

~kt:

Clearly, then,

(1�s)Yt�!
L1+
t

1 + 

=
��
!

� �
1��+


expMt:

�
(1� s) exp(kt + at + ��xt + �2�21=2)

� �
1+


exp((1 + 
)(k̂t + x̂t + �21=2))

�
:

Only the expression in brackets depends on �: Therefore, maximizing

ln (�t + St � sYt) is equivalent to maximizing that term. Denoting this term
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by exp(�); computing its second-order Taylor expansion and keeping only

terms of order 0,1, and 2 in (k̂; x̂; �1) we get

exp� �
�
1� s� �

1 + 


��
1� a1k̂ + a2x̂+ a3�

2
1 + a4k̂

2 + a5x̂
2 + a6x̂k̂

�
;

(37)

where

a1 =
1� s� �

1� s� �=(1 + 
)

a2 =
��s

1� s� �=(1 + 
)

a3 =
�2 (1� s)� �

2 (1� s� �=(1 + 
))

a4 =
1� s� �(1 + 
)

2(1� s� �=(1 + 
))

a5 =
�2 (1� s)� �(1 + 
)

2(1� s� �=(1 + 
))

a6 =
��(s+ 
)

1� s� �=(1 + 
)
:

Applying again a second-order Taylor expansion for ln(1+x) to (37) and

taking expectations we get, neglecting again terms of order greater than 2:

E� � ln

�
1� s� �

1 + 


�
+ a1Ek̂ + a2Ex̂+ a3�

2
1 (38)

+

�
a5 �

a22
2

�
Ex̂2 +

�
a4 �

a21
2

�
Ek̂2 + (a6 � a1a2)Ek̂x̂:

This is the quantity being maximized in the numerical simulations.

To compute the moments that appear in the RHS of (38) we use the

following 4-dimensional system

k̂t+1 =  k̂t +  �x̂t +  �2
�21
2

(39)
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x̂t+1 =

�
����

4
1
2

+
 
 � 1
1� �+ 


g

�
+

�
 


1� �+ 

�aCt �

1

1� �+ 

�aCt+1

�
����21k̂t + (1� ��21(1 + �))x̂t +

 


1� �+ 

�~kt +

 
�

1� �+ 

�~xt(40)

�~kt+1 =  �~kt +  ��~xt +  (g +�aCt) (41)

�~xt+1 =
1�  


1� �+ 

g +

�
1

1� �+ 

�aCt+1 �

 


1� �+ 

�aCt

�
(42)

�  


1� �+ 

�~kt �

 
�

1� �+ 

�~kt

To get (39), subtract (34) from (36). To get (41), subtract (34) lagged

once from itself. To get (42), subtract (33) at t from itself at t + 1; then

replace �~kt+1 in the resulting expression with the RHS of (41). To get (40),

subtract (33) at t+1 from (35), then replace�~xt+1 in the resulting expression

with the RHS of (42).

This system can be rewritten in matrix form as

Vt+1 = AVt +B + �t+1;

where

V = (x̂; k̂;�~x;�k̂)0;

� =

0BB@
 


1��+
�aCt �
1

1��+
�aCt+1
0

1
1��+
�aCt+1 �

 

1��+
�aCt

 �aCt

1CCA
0

;

and the coe¢ cients of matrices A and B are obtained straightforwardly from

the above expressions.
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It can be checked that, denoting by L the lag operator,

� = (1� �L)�1�(L)";

where �(L) = �0+�1L+�2L
2; �0 = (� 1

1��+
 ; 0;
1

1��+
 ; 0)
0; �1 = (

1+ 

1��+
 ; 0;�

1+ 

1��+
 ;  )

0; �2 =

(�  

1��+
 ; 0;

 

1��+
 ;� )

0:

Therefore,

Vt � EV = (I � A)�1(1� �L)�1�(L)"t

=
+1X
j=0

Aj�0"t�j +
+1X
j=1

Aj�1(�1 + ��0)"t�j +
+1X
j=0

Aj

 
+1X
i=2

�i�(��1)"t�i�j

!
= Q(L)"t:

The last term can be computed as
P+1

k=2(�I�A)�1(�k�1I�Ak�1)�2�(��1):
Altogether, this expansion allows us to get all the coe¢ cients Qi of Q and

then to compute

V ar(V ) =

 
+1X
j=0

QiQ
0
i

!
�2":

Furthermore,

EV = (I � A)�1B:

This allows us to get all the moments in (37). Next, to compute to

compute the moments of the equilibrium, we rewrite (35)-(36) as well as the

law of motion for a as

vt+1 =Mvt + C +N"t + Zt;

where v = (�x; k; a)0: The variance-covariance matrix of the cyclical compo-

nent in v; 
; is solution to


 =M
M 0 +NN 0�2":

By rewriting (24) as yt = Dvt + E; we then compute detrended output

volatility as �2y = D
D0:
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7.4 Proof of Proposition 3

The characteristic equation for the eigenvalues of matrix A is

x2 � x(�Q+ �) +
�

1 + �
= 0;

where

Q = 1 +
�


(1 + �)(1� �)
:

Note that if the roots are complex their common module is
�

�
1+�

�1=2
< 1:

Therefore the dynamics are stable. Let us characterize this regime �rst.

Roots are complex i¤

(�Q+ �)2 <
4�

1 + �
: (43)

This will be the case provided � lies between the roots of

h(�) = �2Q2 + 2�

�
Q� � 2

1 + �

�
+ �2 = 0:

We note that if Q� � 2
1+�

< 0 and if these roots are real, they are both

positive, and one of them is lower than one since their product is �2 < 1:

Furthermore, h(1) = Q2+
�
2Q� � 4

1+�

�
+�2 = (Q+�)2� 4

1+�
= (1� 1

1+�
)2 > 0:

Therefore both roots, if they exist are between 0 and 1:

Next, we note that Q� =
�
1 + �


(1+�)(1��)

�
1
1+�

�
1� �


1��
�
; which, if it is

positive, is lower than
�
1 + �


(1��)

�
1
1+�

�
1� �


1��
�
< 1

1+�
< 2

1+�
: Thus we

always have that Q� � 2
1+�

< 0: Next, the roots are real if and only if�
Q� � 2

1 + �

�2
> �2Q2;

or equivalently
2

1 + �
�Q� > j�jQ:

This clearly always holds for � � 0: Furthermore, for � > 0; it is equiv-

alent to �Q < 1
1+�

; which we just proved above. This proves that for any �;
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there exists an interior interval of values of � included in [0; 1] ; [��c (�); �
+
c (�)];

over which (43) holds and therefore the eigenvalues of A are complex. Fur-

thermore, we can check that for � = 0; Q = 1 and � = 1=(1 + �); and we

have a double root equal to 1. On the other hand for � !1; we have Q!
1 + 


1�� and � ! � 

1�� ; and we get the double root ��=Q = 


1��+
 : Hence

the banana-shaped lens on Figure 1.

Let us now turn to the regime where the eigenvalues are real, i.e. where

(43) is violated. We have to distiguinsh between two cases.

Case 1:

(�Q+ �) > 0:

This inequality holds i¤

� >
�
 � (1� �)

(1 + �)(1� �) + �

= �pos(�):

This de�nes a threshold for � which is increasing in 
 and converges to



1��+
 as � !1: Then both eigenvalues are positive, and the largest one is

x1 =
�Q+ � +

p
�

2
;

where � = (�Q+�)2� 4�
1+�

: For the system to be stable we need that x1 < 1;

i.e. p
� < 2� �Q� �:

A necessary condition is that 2 � �Q � � � 0: This is equivalent to

� � (1+2�)(1��)+�

(1+�)(1��)+�
 ; which always holds since the RHS is � 1: Given that, the

preceding inequality holds i¤

� = (�Q+ �)2 � 4�

1 + �
< (2� �Q� �)2 ;

or equivalently

� �

1 + �
< 1� (�Q+ �);
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but

1� (�Q+ �) = 1� �+ (1� �)
�


(1 + �)(1� �)
� 1

1 + �
> � �

1 + �
:

This proves that dynamics are stable in the zone where the eigenvalues

are positive.

Next, note that at the frontier of this zone, we have �Q+� = 0; implying

that (43) holds. Therefore,

��c (�) < �pos(�) < �+c (�) for �pos(�) > 0:

This means that for � > (1 � �)=
; the eigen values are complex, and

stable, for ��c (�) < � < �+c (�); and positive, and stable for � > �+c (�); while

they are negative for � < ��c (�): On the other hand, for � < (1 � �)=
; the

eigenvalues are complex and stable for ��c (�) < � < �+c (�); and positive and

stable for � < ��c (�) and � > �+c (�):

Case 2:

(�Q+ �) < 0;

i.e.

� <
�
 � (1� �)

(1 + �)(1� �) + �

:

Then both roots are negative, and the largest one in absolute value is

x2 =
�Q+ � �

p
�

2
:

We have x2 > �1 i¤ p
� < 2 + �Q+ �:
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A necessary condition is 2 + �Q + � � 0: This necessary condition is

satis�ed i¤

� � �
 � (1� �)(3 + 2�)

(1 + �)(1� �) + �

:

If this condition is violated, the dynamics are necessarily unstable. If it

holds, then they are stable if

� < (2 + �Q+ �)2 :

This is equivalent to

� �

1 + �
< 1 + �Q+ �;

or equivalently

� >
�
 � (2 + �)(1� �)

�
 + (2 + �)(1� �)
= �stab(�): (44)

We note that

�
 � (1� �)(3 + 2�)

(1 + �)(1� �) + �

< �stab(�) < �pos(�):

Furthemore, at � = �stab(�) > 0; we have that � �
1+�

= 1 + �Q + �;

implying that (�Q+ �)2 =
�
1 + �

1+�

�2
> 4�

1+�
: Therefore (43) holds, implying

(since �stab(�) < �pos(�) < �+c (�)), that we must have

�stab(�) < ��c (�):

Therefore, if � > 3(1��)

�2(1��) ; the eigenvalues are negative and unstable for

� < �stab(�); negative and stable for �stab(�) < � < ��c (�); complex and

stable for ��c (�) < � < �+c (�); and positive and stable for � > �+c (�): On the

other hand, if 1��



< � < 3(1��)

�2(1��) ; the eigenvalues are negative and stable

for � < ��c (�); complex and stable for �
�
c (�) < � < �+c (�); and positive and

stable for � > �+c (�):

This completes the proof of Proposition 3.
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7.5 Computing welfare in the case with memory

We rewrite the dynamical system as

�xt+1 = c�xt + (1� c)x̂t

x̂t+1 = (�� (1� �)�(1� c)) x̂t � �(1� �)c�xt

��(1� �)�2m
4

(�1 +
p
1 + 4=d) +

1� �

1� �
(ln�+ at+1) ;

where c =
�
�1+
p
1+4=d

1+
p
1+4=d

�
:

Let ut = �xt � ~xt and vt = x̂t � ~xt: Let yt = (ut vt)0: Then

yt+1 = Ayt + wt+1;

where

A =

�
c 1� c

��(1� �)c �� (1� �)�(1� c)

�
and

wt+1 =

 
� 1
1��+
 (at+1 � at)

� �(1��)�2m
4

(�1 +
p
1 + 4=d) + ���(1+�)

1��+
 (at+1 � at)

!
:

We have that

Ew =

 
� g
1��+


� �(1��)�2m
4

(�1 +
p
1 + 4=d) + g(���(1+�))

1��+


!
and

Ey = (I � A)�1Ew:

Let ŵ = a� Ew and ŷ = y � Ey: Then ŷt+1 = Aŷt + ŵt: Furthermore,

ŵt+1 =

 
� 1
1��+


���(1+�)
1��+


!
((�� 1)aCt + "t+1):
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This allows us to compute the following quantities

EŵaC =

 
� 1
1��+


���(1+�)
1��+


!�
(�� 1)��2a + �2"

�
=

 
� 1
1��+


���(1+�)
1��+


!
�2"
1 + �

:

EŷaC = (I � �A)�1EŵaC :

Eŷtŵ
0
t+1 = (1� �)EŷaC(

1
1��+
 � ���(1+�)

1��+
 ) =M:

Eŵŵ0 = ((1� �)2 �2a + �2")

 
� 1
1��+


���(1+�)
1��+


!�
� 1
1��+


���(1+�)
1��+


�
=

2�2"
1 + �

 
� 1
1��+


���(1+�)
1��+


!�
� 1
1��+


���(1+�)
1��+


�
= N:

We then get that the variance-covariance matrix of ŷ; V; is the solution

to the linear equation

V = AV A0 +N + AM +M 0A0;

which can be solved by vectorization.

The asymptotic social welfare is then given by (17), i.e.

�E(�21 + (1 + �)(�xt � ~xt)2) = ��21 � (1 + �) [(Ey)1 + V11] :
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7.6 Regression results for estimating the persistence

parameter

Country �0 S.E. N R2

Australia 0.2 0.11 60 0.19
Austria 0.5 0.12 60 0.63
Belgium 0.36 0.12 60 0.4
Canada 0.32 0.12 60 0.25
Denmark 0.38 0.12 60 0.61
Finland 0.57 0.11 60 0.64
France 0.61 0.11 60 0.71
Germany 0.20 0.17 40 0.46
Greece 0.78 0.09 59 0.66
Iceland 0.34 0.14 54 0.26
Ireland 0.54 0.11 60 0.49
Italy 0.72 0.08 60 0.77
Japan 0.74 0.08 60 0.76
Korea 0.3 0.14 47 0.22

Country �0 S.E. N R2

Netherlands 0.42 0.12 60 0.62
New Zealand 0.35 0.13 60 0.18
Norway 0.46 0.12 60 0.63
Portugal 0.07 0.14 60 0.18
Spain 0.68 0.09 60 0.71
Sweden 0.37 0.12 60 0.55
Switzerland 0.66 0.1 60 0.69
United Kingdom 0.48 0.11 60 0.41
United States 0.00 0.18 60 0.11
Table A1 �Regression results for estimating the persistence parameter in

the aggregate labor/capital ratio. The speci�cation that was estimated for

each country was �x = �0�x(�1)+a0�w(�1)+a1�a(�1)+a2�e(�1)+C;
with � denoting the �rst di¤erence operator, x = lnL=K; w = lnW=L;

a = lnA; e = lnRER: The data used was the Penn World Table, with a

= TFP L = Total yearly hours worked = number of persons engaged *
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average annual hours worked, K = Total capital stock (national accounts),

w = real wage (=share of labor compensation (national accounts) * real GDP

(national accounts) / total hours worked), RER = real exchange rate = price

level of GDP, PPP, output side, US 2005 = 1. Estimation was conducted by

country, and countries outside the OECD or with fewer than 40 observations

were dropped.
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Figure 1 -- Effect of the variance of aggregate shocks on the optimal selectivity level   
(1/(1+d) on the vertical axis 
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Figure 2 -- Effect of the mutational variance on optimal selectivity  
((1/(1+δ) on the vertical axis) 
 




