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STC at all. 
 
 
JEL Classification: J65 
 
Keywords: short-time compensation, unemployment insurance, welfare 
 
 
Corresponding author: 
 
Björn Brügemann 
VU/FEWEB/Economics 
De Boelelaan 1105 
1081 HV Amsterdam 
The Netherlands 
E-mail: b.a.brugemann@vu.nl 
 
 

                                                 
1 We are grateful to Klaudia Michalek for her participation in early stages of the project. We would like 
to thank Pierre Cahuc, Rob Euwals, Moritz Kuhn, and numerous seminar and conference participants 
for helpful comments and discussions. 

mailto:b.a.brugemann@vu.nl


1 Introduction

Virtually all developed countries have public unemployment insurance (UI) systems. In addition, many

countries run public short-time compensation (STC) schemes, which pay benefits to workers that have

not lost their job but are working reduced hours. In contrast to UI, STC has not been a universal

component of social insurance systems in developed countries. Before the 2008-2009 crisis, STC schemes

existed in 18 out of 33 OECD countries. Such schemes increased in popularity during the crisis, with

many countries expanding existing schemes and others introducing new schemes on a temporary basis.2

This increase in the popularity of STC has also revived academic interest in this policy instrument.

Recent research has primarily focussed on employment effects of STC during the crisis.3 What has

received little attention, both in recent and earlier work, are effects of STC on social welfare. This

contrasts with UI, which has been studied extensively from a welfare perspective. In this paper we study

welfare effects of STC in a setting in which UI is socially optimal, consistent with the observation that

UI is a universal feature of social insurance systems in developed countries. We ask if introducing STC

can improve welfare in a situation in which the instrument of UI is already used optimally.

We study this question in a static model of implicit contracts, building on existing theoretical work

on STC. Workers are risk averse and ex ante heterogeneous in that they are either attached to a firm

or unattached. Both attached and unattached workers can be unemployed ex post. We follow existing

work in not separating the role of workers and employers: workers attached to a firm are both suppliers

of its labor input as well as its owners. Firms are subject to idiosyncratic profitability shocks, and can

adjust through a combination of layoffs and work sharing in the sense of adjusting hours per worker.

Profitability shocks are interpreted as temporary, and layoffs are interpreted as temporary layoffs that

do not break attachment to the firm. The government has two policy instruments, UI and STC. UI is a

payment to each unemployed worker, where a worker is considered unemployed if working zero hours.4

Thus workers are unemployed either because they are unattached or on temporary layoff. UI is the only

source of income for unattached workers. STC is a payment for each hour by which working time is

reduced below some threshold of normal hours. We allow for the possibility that eligibility for STC may

require a minimum reduction in hours per worker, a common feature of existing STC schemes. The

2Arpaia et al. (2010) and Hijzen and Venn (2011) survey STC schemes.

3 See for example Arpaia et al. (2010), Hijzen and Venn (2011), Boeri and Bruecker (2011), Cahuc and Carcillo (2011),

Hijzen and Martin (2013), and Balleer et al. (2014).

4Since the model is static, search activity is not modeled explicitly and thus does not enter the definition of unemploy-

ment. Unattached workers are eligible for unemployment insurance payments in the model. For this to be consistent with

the typical UI system, the status of being unattached should be interpreted as including having worked in the recent past.
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government balances the budget through a linear tax on total hours. When studying public insurance,

it is important to take into account agents’ access to private insurance (PI). Here we consider two polar

scenarios: either firms have access to perfect PI, or they have no access to PI.

Welfare effects of UI in this setting are well understood. It has a positive effect on utilitarian welfare

via redistribution towards unattached workers. If firms lack access to perfect PI, UI also provides

insurance to attached workers. The cost of UI is a distortion of labor inputs, as firms do not internalize

the impact of layoffs on the government budget (Feldstein, 1976).

Starting from a situation in which the level of UI is chosen to maximize social welfare, the introduction

of STC can affect welfare through two channels. First, since private labor input decisions are distorted

by UI, STC affects welfare through its impact on these decisions. This is the only welfare effect of STC

when firms have access to perfect PI. If firms lack such access, STC also has a direct insurance effect,

since it reallocates resources across firms with different realizations of profitability.

Our analysis proceeds in two main steps. First, we analyze firms’ decisions for given values of

the policy instruments. In particular, we characterize how firms adjust labor inputs in response to

profitability shocks, conditional on the decision to take up STC. This is well known for the case of perfect

PI: when profitability is sufficiently low for layoffs to be optimal, a further reduction in profitability

causes lower employment, while hours per worker remain constant. For the case of no PI and for our

specification of preferences, which is a standard specification in macroeconomics, we establish a new

comparative statics property: the availability of UI induces firms to respond to a decline in profitability

by reducing employment and increasing hours per worker. This occurs because lower profitability raises

the marginal utility of consumption relative to the marginal disutility of working longer hours for workers

with positive hours. This property turns out to be the key factor in determining the welfare effects of

STC when firms lack access to PI.

In the second step, we study welfare-maximizing choices of UI and STC. We rely on computational

experiments, calibrating the model by targeting features of the US labor market. We obtain two main

results. First, introducing STC substantially improves welfare, but only if firm have access to PI. If firms

have such access, STC can mitigate labor input distortions in form of excessive temporary layoffs caused

by UI. This mechanism fails if firms lack access to PI, due to the comparative statics property discussed

above. In the absence of STC, unprofitable firms would choose layoffs combined with high hours per

worker, and this makes the take-up of STC unappealing. For the same reason, STC has a direct negative

insurance effect, but quantitatively this is relatively unimportant. Our second main result is that optimal

STC is substantially less generous than UI even when firms have access to PI. In our model there is no

reason to expect that equal generosity is optimal, since the optimal levels of STC and UI are governed
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by different trade-offs. According to our computational experiments, STC should be about one third

as generous as UI. Furthermore, equally generous STC is worse than not offering STC at all. This is

important, given that equal generosity of STC and UI is a common feature of existing schemes.5

We contribute both to the literature using implicit contract models to study STC, and the broader

literature using such models to study the response of layoffs and hours per worker to shocks. Our analysis

of STC builds heavily on Burdett and Wright (1989, henceforth BW) and Wright and Hotchkiss (1988,

henceforth WH). BW use an implicit contract model to study effects of UI and STC on layoffs, hours per

worker, and wages. A key feature of their model is that laissez faire is socially optimal. Their analysis

is focussed on the distortions induced by UI and STC. They find that while UI distorts the level of

employment, STC distorts hours per worker. WH extend the analysis of BW in several directions, two

of which are important for our purposes. While BW consider a model in which workers and employers

are distinct agents, WH also consider a simplified model which abstracts from this heterogeneity. We

adopt this simplification. Second, WH use this simplified model to analyze social welfare. As in BW,

having neither UI nor STC is socially optimal. Alternatively, UI and STC can be neutralized through

full experience rating. Our main contribution to this literature is an analysis of the welfare effects of

STC in a setting in which there is a reason for the existence of public UI. This is an important setting

to consider, given that UI is universal across developed economies. The existence of UI gives rise to a

nontrivial trade-off for STC, since STC can mitigate distortions induced by UI. In our model we generate

a reason for the existence of UI through the presence of unattached workers.6

Since the work of BW and WH on STC, there has been tremendous progress in the development of

dynamic models of the labor market. Nonetheless, we think that static implicit contract models remain a

natural starting point for studying the welfare effects of STC. What makes this class of models attractive

for analyzing STC is the combination of three features: (i) specificity of employment relationships,

captured by the attachment of workers to firms, (ii) multi-worker firms, adjusting at both the extensive

and the intensive margin, (iii) private insurance arrangements among the agents attached to a firm, in a

setting with incomplete markets. While there are dynamic models capturing these features individually,

5More precisely, a common feature is that the replacement rates received by workers are often the same across UI and

STC. What matters in our model is the generosity of the program from the joint perspective of workers and employers.

Some programs have equal replacement rates for workers, but impose additional costs of utilizing STC on employers, and

thus are effectively less generous than UI.

6 When firms lack access to perfect PI, an additional source of welfare gains from UI and potentially STC in our model

is insurance provision against idiosyncratic profitability shocks. In contrast, in both BW and WH shocks are aggregate

and thus undiversifiable, whether through public or private insurance.
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models capturing them jointly have not yet been developed.7 Of course, the static nature of our model

prevents us from evaluating some potential effects of STC, such as the common concern that STC reduces

the reallocation of workers to more productive firms.8

Our contribution to the broader implicit contracts literature is the comparative statics property

discussed above, which applies when firms lack access to PI and public UI is available: if profitability

is sufficiently low for layoffs to be optimal, then a firm responds to a further reduction in profitability

by reducing employment and increasing hours per worker. Rosen (1985) and FitzRoy and Hart (1985)

study the corresponding comparative statics for the case of perfect PI, and show that hours are constant

across profitability levels for which layoffs are optimal. The analysis closest to ours is Miyazaki and

Neary (1985), who study the comparative statics of employment and hours for a firm without access

to PI. They find that an increase in profitability can reduce both employment and hours per worker if

firms have to cover fixed costs that are independent of employment, or if income effects are sufficiently

strong. Our finding differs in that a change in profitability induces an opposite response of employment

and hours, and that this pattern is induced by the presence of UI, which acts like a fixed cost per worker.

The remainder of the paper is organized as follows. We introduce the model in Section 2. In Section

3 we characterize the allocation for a given system of UI and STC. Section 4 contains the computational

experiments. Section 5 considers an alternative specification of technology, and Section 6 concludes.

2 Model

There is a continuum of firms. Each firm has a mass N of workers attached to it. We normalize N = 1.

The firm is jointly owned and operated by these workers. A fraction υ of the total population of workers

is not attached to a firm.

Technology. Each firm has the production function

(1) xf(nh)

7The paper that comes closest is Cooper et al. (2007), who construct a model with search frictions with the aim

of matching the comovement of labor market variables in the aggregate and at the establishment level. Their model

exhibits the first two features. It has two types of agents, risk neutral employers and risk averse workers. To maintain

tractability, they assume that employers have all the bargaining power. In equilibrium all workers, whether employed or

unemployed, obtain the same level of utility. Workers have GHH preferences, ensuring marginal utilities of consumption

are also equalized. Thus it does not matter whether markets are complete or incomplete. They do not analyze a version

of their model in which employers are risk averse.

8See OECD (2010) for a discussion of this concern.
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where n denotes the mass of workers working strictly positive hours, and h denotes the number of

hours worked by each of these workers. Here x parametrizes the profitability of the firm. The function

f : [0,+∞) → [0,+∞) is twice continuously differentiable with f ′ > 0 and f ′′ < 0 on (0,+∞), and

satisfies the Inada conditions liml→0 f
′(l) = +∞ and liml→∞ f ′(l) = 0. Profitability x is subject to

stochastic shocks that can be of technological or other origin, with density p(x) and support (0,+∞).

Hours per worker and employment enter equation (1) multiplicatively. Thus hours of different workers

are perfect substitutes. This specification is used by WH, and dubbed the standard case by BW. BW

also study a specification with imperfect substitutability. We maintain the standard case for most of our

analysis. In Section 5 we consider the case in which hours of different workers are perfect complements.

Preferences. The utility function of a worker is E [u(c, h)], where c denotes consumption and h denotes

hours worked. The function u takes the form proposed by King et al. (1988, KPR):

(2) u(c, h) =
[cv(h)]1−σ − 1

1− σ

with σ > 1. The function v : [0, hmax) → (0, 1] satisfies v(0) = 1. Here hmax ∈ (0,+∞] is a physical

upper limit on hours. The function v incorporates a fixed utility loss from working strictly positive

hours: limh→0 v(h) = v0 with v0 ∈ (0, 1). The function v is twice continuously differentiable and satisfies

v′ < 0 on (0, hmax). We assume that − v′

v is strictly increasing on (0, hmax) to ensure that consumption

is a normal good. Let V (h) ≡ −v(h) 1−2σ
σ v′(h). We assume V ′(h) > 0 to ensure that u(c, h) is strictly

concave, and we impose the Inada condition limh→hmax
V (h) = +∞.

Our specification is more general than BW in that we allow for a fixed utility loss from working

strictly positive hours. It is less general than BW in that the KPR functional form restricts the relative

strength of income and substitution effects. The KPR functional form is standard in macroeconomic

models, since it is necessary for balanced growth. We see this paper as a step towards incorporating

STC in a dynamic macroeconomic model, making this functional form a natural choice.

Private Insurance. We consider two polar cases, parametrized by χ ∈ {0, 1}. If χ = 0, firms have

access to perfect PI. If χ = 1, firms have no access to PI. We assume perfect risk sharing within firms.

Policy Instruments. UI takes the form of a payment gUI > 0 to workers with zero hours worked.

STC takes the form of a payment gSTC ≥ 0 to employed workers for every hour that hours worked fall

short of some normal level h̄. We impose the restriction h̄gSTC ≤ gUI , so the maximal amount of STC,

obtained by working marginally positive hours, cannot exceed the level of UI. The normal level h̄ is
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taken as given by firms and equal to the average level of hours in equilibrium. Most countries with STC

schemes require a minimum hours reduction (MHR). To capture this feature, firms are eligible for STC if

hours are below gMHRh̄, where gMHR ≤ 1. The government balances the budget through a proportional

tax τ > 0 on total hours nh. Thus a firm with employment n and hours h receives the net subsidy

(3) (1− n)gUI + nI
[
h ≤ gMHRh̄

]
·
(
h̄− h

)
· gSTC − τnh

where I denotes the indicator function. Unattached workers receive the unemployment benefit gUI .

Notice that this system of UI and STC is uniform: it does not differentially treat workers based on the

profitability of their firm, nor does it distinguish between attached and unattached workers. We do not

model the reasons why the government does not use differential benefits.

This specification of policy is based on BW and WH, and generalizes theirs in three directions. First,

they restrict attention to the case in which the normal level of hours h̄ coincides with the physical upper

limit hmax. This implies that in their models firms always receive STC. This allows them to ignore the

decision of firms whether to take up STC. We allow h̄ and hmax to differ. To pin down h̄ we require that

in equilibrium it is equal to the average level of hours across states of the world.

Second, BW restrict attention to two regimes: an American regime with gSTC = 0, and a European

regime in which UI and STC are equally generous, that is, h̄gSTC = gUI . We allow any value of gSTC

between 0 and equal generosity. While many countries have equal replacement rates for UI and STC,

in some countries STC is effectively less generous. For example, in Germany firms are required to pay

social security contributions for STC hours. In our computational experiments it turns out that equal

generosity is not optimal.

Third, in their specification firms receive STC whenever hours are below the normal level h̄, which, as

discussed above, coincides with the physical upper limit hmax in their model. We introduce the parameter

gMHR to investigate whether a minimum hours reduction is a desirable feature of STC schemes.

BW assume that the government balances the budget through a lump sum tax. In their setup without

a relevant eligibility threshold, a lump sum tax is isomorphic to our specification with a proportional

tax on total hours.9 This is no longer true in our setup with an eligibility threshold. Given this, we

prefer the specification with a proportional tax, since it mimics more closely the observed financing of

9 Without the eligibility threshold, net subsidy schedule (3) reduces to (1− n)gUI + n(h̄− h) · gSTC − τnh. A system

with unemployment benefit ĝUI and short-time compensation ĝSTC financed through a lump sum tax τ̂ has the net subsidy

schedule (1−n)ĝUI +n(h̄− h) · ĝSTC − τ̂ . The isomorphism is defined by setting ĝUI = gUI + h̄τ , ĝSTC = gSTC + τ , and

τ̂ = h̄τ .
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UI through payroll taxes.10

Our specification does not include so-called experience rating, which requires that a firm reimburses

the government for part of the UI and STC benefits received by its workers. Exactly as in the models

of BW and WH, experience rating is redundant in our model: in Appendix C we show that a system

with experience rating is equivalent to a system without experience rating and lower benefits. Thus we

can omit experience rating without loss of generality. When mapping the model to the data, gUI and

gSTC should be interpreted as subsidies net of any experience rating. Furthermore, the restriction that

UI and STC are uniform should be understood as a restriction on net subsidies.11

Firm Optimization Problem. Let T (x) ∈ {0, 1} indicate the decision of the firm to take up STC

in state x. Let ι(x) denote the net transfer received from PI in state x. The firm chooses cw(x), cb(x),

n(x), h(x), ι(x), and T (x) for all x ∈ (0,+∞) to maximize

(4)

∫ ∞

0

{n(x)u(cw(x), h(x)) + (1− n(x))u(cb(x), 0)} p(x)dx

subject to

n(x)cw(x) + (1− n(x))cb(x) = xf(n(x)h(x)) + ι(x)− τn(x)h(x)(5)

+(1− n(x))gUI + n(x)
(
h̄− h(x)

)
T (x)gSTC ,

n(x) ≤ 1,(6)

T (x) ·
(
h(x)− gMHRh̄

)
≤ 0,(7)

χι(x) = 0(8)

for all x ∈ (0,+∞) and

(9)

∫ ∞

0

ι(x)p(x)dx = 0.

Constraint (9) requires that PI is actuarially fair. If χ = 1, then (8) enforces that the firm has no access

to PI by requiring ι(x) = 0 in every state.

10Of course a payroll tax would be based on wages. Thus it would not only depend on total hours, but also on

profitability. We exclude policy instruments that condition on profitability.

11If only gross benefits are restricted to be uniform, and if experience rating is allowed to differentiate between workers

based on profitability or attached status, then the restriction has no content, since any desired differentiation can be

implemented through experience rating.
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Government Optimization Problem. We restrict the government to choose the vector of policy

instruments g =
{
gUI , gSTC , gMHR, h̄, τ

}
from a set G. By varying G, we can restrict the set of policy

instruments available to the government. In our computational experiments, we consider a sequence

of expanding sets G, to examine the added value of introducing the policy instrument STC with and

without a minimum hours requirement. The objective function of the government is utilitarian welfare,

giving weight υ to unattached workers.12 Let U(g) denote the maximized value of the firm optimization

problem as a function of the policy vector, and let cw(x, g), cb(x, g), n(x, g), h(x, g), ι(x, g), and T (x, g)

denote corresponding maximizers. Given these functions, the government chooses g ∈ G to maximize

(10) (1− υ)U(g) + υu (gUI , 0)

subject to the government budget constraint

(11)

∫ ∞

0

{
(1− n(x, g))gUI + n(x, g)

(
h̄− h(x, g)

)
T (x, g)gSTC − τn(x, g)h(x, g)

}
p(x)dx = 0

and the constraint that normal hours coincide with average hours per worker

(12) h̄ =

∫∞
0
n(x, g)h(x, g)p(x)dx∫∞
0
n(x, g)p(x)dx

.

First-Best Optimization Problem. A useful reference point for the allocations chosen by the gov-

ernment is the first-best allocation. It is obtained by choosing cw(x), cb(x), n(x), h(x), and unattached

workers’ consumption cν to maximize utilitarian welfare

(1− ν)

∫ ∞

0

{n(x)u(cw(x), h(x)) + (1− n(x))u(cb(x), 0)} p(x)dx+ νu(cν , 0)

subject to constraint (6) and the resource constraint

(1− ν)

∫ ∞

0

{n(x)cw(x) + (1− n(x))cb(x)− xf(n(x)h(x))} p(x)dx+ νcν = 0.

When firms have access to perfect PI, the only reason why the government cannot achieve the first-

best is that attached workers on layoff are not excluded from UI. If firms do not have access to PI, then

an additional reason is that the government’s policy instruments do not enable it to condition transfers

12One can also interpret attachment as an initial uninsurable shock. In this interpretation all workers are ex ante

identical, and the government simply maximizes expected utility.
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directly on profitability x.

3 Optimal Firm Behavior

In this section we analyze the firm optimization problem, proceeding in three steps. In Section 3.1 we

derive first-order conditions and obtain comparative statics properties of optimal hours. In Section 3.2

we analyze how optimal labor inputs vary with profitability conditional on the decision to take up STC.

That is, we fix the take-up decision, and study optimal labor input profiles separately for the cases of

take-up and no take-up of STC. In Section 3.3 we combine these results to discuss the take-up decision.

3.1 First-Order Conditions

Let λ(x)p(x), ν(x)p(x), ζ(x)p(x), ρ(x)p(x), and µ denote the multipliers associated with constraints (5),

(6), (7), (8), and (9). The first-order conditions for cw(x), cb(x), n(x), h(x), and ι(x) are

uc(cw(x), h(x)) = λ(x),(13)

uc(cb(x), 0) = λ(x),(14)

u(cb(x), 0)− u(cw(x), h(x)) = λ(x)
[
xf ′(n(x)h(x))h(x)− cw(x) + cb(x)(15)

− gUI +
(
h̄− h(x)

)
T (x)gSTC − τh(x)

]
− ν(x),

−n(x)uh(cw(x), h(x)) = λ(x)
[
xf ′(n(x)h(x))n(x)− n(x)T (x)gSTC − τn(x)

]
− T (x)ζ(x),(16)

λ(x) = µ+ ρ(x)χ.(17)

Conditions (13)–(14) imply that consumption levels of employed and unemployed workers are cw(x) =

c∗w(λ(x), h(x)) and cb(x) = c∗b(λ(x)), respectively, with c
∗
w(λ, h) ≡ λ−1/σv(h)(1−σ)/σ and c∗b(λ) ≡ λ−1/σ.

Next, we analyze the first-order conditions that determine the optimal level of hours per worker. We

first consider the case in which the employment constraint (6) is slack, and then turn to the case in which

it binds. In both cases we focus on the case in which constraint (7) is slack, since its impact on optimal

hours is straightforward. If the constraints (6) and (7) are slack, that is, if ν(x) = 0 and ζ(x) = 0, then

combining first-order conditions (15) and (16) yields

(18) u(cb(x), 0)−u(cw(x), h(x))+uh(cw(x), h(x))h(x) = λ(x)
[
cb(x)− cw(x)− gUI + h̄ · T (x)gSTC

]
.

This is the first-order condition for a variation that reduces employment while increasing hours per worker

h to keep total hours nh constant. The left-hand side gives the utility gain from this variation. Each
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worker now has a larger chance of being on layoff, which yields the utility gain u(cb(x), 0)−u(cw(x), h(x)).

To keep total hours constant, the additional layoff must be compensated by redistributing h(x) hours

across the remaining workers, which yields a utility loss of −uh(cw(x), h(x))h(x). The right-hand side

gives the impact of this variation on the budget constraint. The additional worker on layoff is switched

from consumption cw(x) to consumption cb(x) and collects the UI benefit gUI . The firm loses (h̄−h(x)) ·

T (x)gSTC in STC for the worker on layoff, and an additional h(x) · T (x)gSTC due to higher hours for

remaining workers, for a total of h̄ · T (x)gSTC .

Substituting the functions c∗w and c∗b , we obtain a condition linking hours and the multiplier λ which

does not directly involve profitability x:

(19) u(c∗b(λ), 0)− u(c∗w(λ, h), h) + uh(c
∗
w(λ, h), h)h+ λ

[
c∗w(λ, h)− c∗b(λ) + gUI − h̄T · gSTC

]
= 0.

The following proposition establishes that this equation has a unique solution for hours, and characterizes

the comparative statics of hours with respect to λ and T . All proofs are collected in Appendix A.

Proposition 1 Equation (19) has a unique solution for h given any λ > 0 and T ∈ {0, 1}. If gSTC > 0,

then this solution is strictly decreasing in T . If gUI − h̄T · gSTC > 0, then it is strictly increasing in λ.

If gUI − h̄T · gSTC = 0, then it is independent of λ.

Hours are decreasing in T if gSTC > 0, since gSTC subsidizes low hours. The relationship between

the multiplier λ and hours is less obvious. In the absence of a net payment from the government

(gUI − h̄T · gSTC = 0), hours are determined by the trade-off between the fixed disutility of working

positive hours and the increasing marginal disutility of working long hours. Higher fixed costs favor

longer hours, while convex disutility favors spreading hours across many workers. With KPR utility,

the optimal level of hours determined by this trade-off is not affected by the multiplier λ. UI benefits

introduce an additional fixed cost of working positive hours, incurred in terms of the consumption good.

A higher multiplier λ indicates that consumption is more valuable. This shifts the trade-off in favor of

higher hours. Thus UI distorts the composition of labor inputs in the direction of higher hours and lower

employment. If taken up, STC counteracts this distortion and eliminates it entirely if UI and STC are

equally generous, that is, if h̄gSTC = gUI .

The property that hours are strictly increasing in λ if gUI − h̄T · gSTC > 0 and independent of λ if

gUI− h̄T ·gSTC = 0 also holds for other common specifications of utility. In particular, it also holds when

utility is additively separable in consumption and hours. With GHH preferences, hours are independent
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of λ even if gUI − h̄T · gSTC > 0.13

The key implication of equation (19) is that hours are affected by profitability x only through the

multiplier λ(x), which is the marginal utility of consumption. With perfect PI, λ(x) does not vary with

profitability, hence hours are constant. As we discuss below, without PI λ(x) is decreasing in x, hence

hours are declining in x. Thus firms experiencing an uninsured decline in profitability and engaging in

layoffs have relatively high hours for those workers that remain at work.

Next, consider the case in which the employment constraint is binding. Substituting n(x) = 1 along

with the function c∗w into first-order condition (16) yields

−uh(c∗w(λ, h), h) = λ [xf ′(h)− τ − T · gSTC ] .

Substituting the functional forms of uh and c∗w yields

(20) V (h) = λ
1
σ [xf ′(h)− τ − T · gSTC ] .

The following proposition establishes that this equation has a unique solution for hours, and characterizes

the comparative statics of hours with respect to x, λ, and T .

Proposition 2 Equation (20) has a unique solution for h given any x > 0 and T ∈ {0, 1}. This solution

is strictly increasing in x and λ, and converges to hmax as x converges to infinity. If gSTC > 0, then it

is strictly decreasing in T .

UI does not directly affect the choice of hours when the firm does not engage in layoffs.

3.2 Labor Input Profiles Conditional on STC Take-Up

In this section we analyze how optimal labor inputs vary with profitability conditional on STC take-up,

separately for the cases of perfect PI and no PI. Let h0(x) and n0(x) denote the levels of hours and

employment that would be optimal if STC is not taken up. Here the superscript indicates that T = 0.

Analogously, let h1(x) and n1(x) denote the corresponding levels if STC is taken up, that is, if T = 1.

3.2.1 Perfect Private Insurance

Proposition 3 If χ = 0, then the functions h0(x), n0(x), h1(x), and n1(x) are continuous and have

the following properties.

13These claims are established at the end of the proof of Proposition 1.
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1. There exists a threshold x0N ∈ (0,+∞) such that h0(x) is constant on
(
0, x0N

)
and strictly increasing

on
(
x0N ,+∞

)
, while n0(x) is strictly increasing on

(
0, x0N

)
and equal to one on

(
x0N ,+∞

)
.

2. There exist thresholds x1N ∈ (0,+∞) and x1MHR ∈ [xN1 ,+∞] such that h1(x) is constant on
(
0, x1N

)
,

strictly increasing on
(
x1N , x

1
MHR

)
, and constant at gMHRh̄ on

(
x1MHR,+∞

)
, while n1(x) is strictly

increasing on
(
0, x1N

)
and equal to one on

(
xN1 ,+∞

)
.

3. If gSTC > 0, then h1(x) < h0(x) for all x ∈ (0,+∞).

This proposition is illustrated in Panels (a) and (b) of Figure 1. Part 1 characterizes h0(x) and n0(x).

There are two profitability regions across which the qualitative behavior of labor inputs differs, divided

by a threshold x0N at which the employment constraint becomes binding. Below this threshold the firm

engages in layoffs, and hours per workers are constant. The latter follows directly from Proposition

1, which states that hours do not vary with profitability x conditional on the multiplier λ(x). Perfect

PI implies that λ(x) is independent of x, hence hours are constant. Employment is strictly increasing

over this region. Above x0N the behavior of hours is governed by Proposition 2. Hours are now strictly

increasing in profitability as it is no longer possible to take advantage of higher profitability by raising

employment. This characterization of labor input profiles in the case of perfect PI is well-known, and

can be found in Rosen (1985), FitzRoy and Hart (1985), and Burdett and Wright (1989), among others.

Part 2 of the proposition describes h1(x) and n1(x). Again there is a threshold xN1 at which the

employment constraint becomes binding, and the qualitative behavior of labor inputs above and below

this threshold is very similar to the case of no take-up. The only difference stems from the MHR

constraint. Above xN1 , hours are strictly increasing in profitability until the MHR constraint is binding.

It is also possible that the MHR constraint is already binding below xN1 , in which case hours do not vary

with profitability over the entire profitability range (0,+∞).

Part 3 of the proposition shows that hours under take-up are always below hours under no take-up. In

essence, this follows directly from the comparative statics for hours with respect to take-up established in

Propositions 1 and 2.14 Notice that Part 3 is silent on the relative position of the employment schedules

n0(x) and n1(x). First-order condition (15) shows that take-up provides an employment subsidy of

(h̄−h)gSTC per worker, which by itself increases employment. However, the reduction in hours induced

by take-up reduces the marginal product from employing an additional worker. Thus the total effect of

take-up on employment is ambiguous.15 This implies that the relative position of the thresholds xN0 and

14 Proposition 1 implies this result for profitability below min[xN0 , x
N
1 ], and Proposition 2 does so for the region above

max[xN0 , x
N
1 ]. The only extra work in the proof of Part 3 of Proposition 3 is to establish this result between xN0 and xN1 .

15Van Audenrode (1994, p. 84) notes this ambiguity in a similar model.
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Figure 1: Labor Input Profiles and STC Take-Up with Perfect PI
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xN1 is also ambiguous. In our computational experiments the case n1(x) < n0(x) always prevails, and in

this case xN1 < xN0 . This is the case illustrated in Panel (b) of Figure 1.

3.2.2 No Private Insurance

Proposition 4 If χ = 1, then the functions h0(x), n0(x), h1(x), and n1(x) are continuous and have

the following properties.

1. There exists a threshold x0N ∈ [0,+∞] such that h0(x) is strictly decreasing on
(
0, x0N

)
and

strictly increasing on
(
x0N ,+∞

)
, while n0(x) is strictly increasing on

(
0, x0N

)
and equal to one

on
(
x0N ,+∞

)
.

2. There exist thresholds x1N ∈ [0,+∞], x1MHR,L ∈ [0, xN1 ], and x1MHR,H ∈ [xN1 ,+∞] such that h1(x)

is constant at gMHRh̄ on
(
0, x1MHR,L

)
, weakly decreasing on

(
x1MHR,L, x

1
N

)
, strictly increasing on(

x1N , x
1
MHR,H

)
, and constant at gMHRh̄ on (x1MHR,H , +∞). It is strictly decreasing on

(
x1MHR,L,

x1N
)
if gUI − h̄gSTC > 0. Employment n1(x) is strictly increasing on (0, x1N ) and equal to one on(

xN1 ,+∞
)
.

3. If gSTC > 0, then h1(x) < h0(x) for all x ∈ (0,+∞).

This proposition is illustrated in Panels (a) and (b) of Figure 2. Employment schedules behave quali-

tatively as in the case of perfect PI. In contrast, the behavior of hours is different. Consider first the

case of no take-up. The profile h0(x) is strictly decreasing in profitability below the threshold xN0 . This

is explained by Proposition 1, according to which hours are strictly increasing in the multiplier λ if

gUI − h̄T · gSTC > 0, which holds if STC is not taken up. In the absence of PI the multiplier λ, which

coincides with marginal utility of consumption, is strictly decreasing in profitability.16 This carries over

to hours. As explained in the discussion of Proposition 1, λ affects optimal hours through its interaction

with gUI , which acts like a fixed cost of employment in terms of the consumption good. Consumption is

scarce after an uninsured decline in profitability. The optimal response of the firm is to send workers to

collect UI benefits, which is one way of obtaining consumption, and to implement longer hours for work-

ers that remain on the job.17 This comparative statics result is new to the implicit contracts literature.

In Section 4 we show that it has important implications for the welfare effects of STC.

Above the full-employment threshold x0N , hours are strictly increasing in profitability. Qualitatively,

this is as in the case of perfect PI. But the economic forces underlying this result are somewhat different.

16This is established in the course of the proof of Proposition 4.

17Notice that we have assumed that all fixed costs of employment accrue in terms of utility, so that UI is the only fixed

cost in terms of consumption. If other fixed costs also accrue in terms of consumption, then this strengthens the result.
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Figure 2: Labor Input Profiles and STC Take-Up without PI
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With perfect PI, the increase in hours is purely driven by a substitution effect, thus our assumption of

KPR preferences is not important for this result. In contrast, here the marginal utility of consumption

is decreasing in profitability, hence the response of hours depends on the relative strength of income and

substitution effects. KPR preferences imply that these effects would cancel exactly in the absence of

policy, that is, if τ = 0. The presence of a positive tax τ makes the income effect relatively weaker. Thus

hours remain strictly increasing in profitability.

The hours profile conditional on take-up of STC h1(x) is qualitatively similar to h0(x). As in the

case of perfect PI, its shape only differs due to the MHR constraint. However, the hours profile would be

V -shaped in the absence of the MHR constraint. This implies that in general there are two profitability

intervals over which the MHR constraint binds. First, below a threshold x1MHR,L, which lies in the

profitability range with a slack employment constraint. Second, above a threshold x1MHR,H , which lies

in the profitability range over which the employment constraint binds.

Part 3 of the proposition establishes that, as in the case of perfect PI, hours under take-up are always

below hours under no take-up.

3.3 STC Take-Up

Having analyzed labor input profiles conditional on take-up, we now discuss optimal take-up. Consider

first the case of perfect PI. The next proposition gives sufficient conditions such that take-up is monotone

in profitability, occurring at low levels of profitability.

Proposition 5 Suppose that χ = 0 and gSTC > 0. If f(nh) = (nh)α for some α ∈ (0, 1), and if

x1N < x0N , then there exists a threshold xT ∈ [0,+∞] such that the following take-up function is optimal:

T ∗(x) =

 1 for x ∈ (0, xT ],

0 for x ∈ (xT ,∞).

The first condition is that the technology is Cobb-Douglas, which we employ in our computational

experiments. The second condition is that the employment constraint starts to bind at a lower level

of profitability in the case of take-up, that is, x1N < xN0 . As discussed in the context of Proposition 3,

xN1 < xN0 prevails in all our computational experiments, although the reverse is a theoretical possibility.

The monotonicity of optimal take-up in Proposition 5 is driven by the complementarity between total

hours nT (x)hT (x) and profitability. Take-up is associated with a reduction in hours. Everything else

equal, this leads to lower total hours. This can be countered by an increase in employment, but only if

the employment constraint is slack. Once profitability is sufficiently high, firms taking up STC run into
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the employment constraint. This makes take-up more costly, the more so the higher is profitability.

The take-up threshold xT can lie anywhere in [0,+∞]. Panels (c) and (d) of Figure 1 illustrate the

optimal labor input profiles for the case in which xT lies between the two employment thresholds x1N

and x0N . They are generated from Panels (a) and (b) by selecting the take-up schedules h1(x) and n1(x)

to the left of xT , and the no take-up schedules h0(x) and n0(x) to the right of xT . As profitability

increases, hours are first flat while employment is increasing. Hours start to increase as the employment

constraint becomes binding under take-up at xN1 . Next, hours jump up and employment jumps down as

the take-up threshold xT is reached. After that, hours are once again flat while employment is increasing

until the employment constraint becomes binding under no take-up at xN0 . Beyond this point, hours are

once again increasing.

Next, consider the case of no PI. Here we do not have any theoretical results concerning take-up,

as the analysis is substantially complicated by the income effects arising in this case. As in the case of

perfect PI, one economic force that remains at work is that taking up STC is more costly if it would

be optimal to choose high hours in the absence of STC. In the case of perfect PI, this gave rise to the

following property: take-up is monotone in the hours that the firm would choose conditional on no-take

up. Since the latter are monotone in profitability, so is take-up. For the sake of illustration, suppose that

this force remains dominant in shaping take-up in the case of no PI. The key difference to the case of

perfect PI is that hours are not monotone in profitability, but V -shaped. Given this, one would expect

no take-up to occur in two separate regions of profitability, both at very low levels of profitability and

at very high levels of profitability. Panels (c) and (d) of Figure 2 illustrate such a case with two take-up

thresholds, denoted xT,L and xT,H . The lower take-up threshold xT,L is located in the profitability region

over which hours conditional on take-up are strictly declining in profitability, both for T = 1 and T = 0.

In the case illustrated here, the second take-up threshold is located between x1N and x0N , when hours are

still strictly decreasing in profitability conditional on no take-up, but are already strictly increasing in

profitability conditional on take-up due to a binding employment constraint. The labor input schedules

in Panels (c) and (d) are generated from Panels (a) and (b) by selecting the no-take schedules h0(x) and

n0(x) to the left and to the right of xT,L and xT,H , respectively, and the take-up schedules h1(x) and

n1(x) in between. Hours jump down and employment jumps up at xT,L, the reverse happens at xT,H .

4 Computational Experiments

In this section we carry out computational experiments to examine whether introducing STC can improve

on a system restricted to UI in our model. We obtain two main results. First, the ability of STC to
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improve on UI critically depends on firms’ access to PI. STC substantially improves welfare if firms have

access to perfect PI, but yields only a negligible improvement when firms lack access to PI. Under perfect

PI, STC improves welfare by mitigating labor input distortions induced by UI. This mechanism is greatly

diminished if firms lack access to PI, because the most distressed firms prefer long hours over taking up

STC. Second, we find that even with perfect PI, the optimal generosity of STC is substantially below

that of UI, and that introducing STC with equal generosity results in a large welfare loss in comparison

to having no STC at all.

4.1 Calibration

We calibrate the model to match features of the US labor market. The functional form of the production

function is

f(nh) = (nh)α.

We set α = 2
3 , implicitly assuming that capital cannot be adjusted in response to profitability shocks.

For the utility function given in equation (2) above, we specify

v(h) = exp

(
−η h

1+ψ

1 + ψ
+ log (v0) I [h > 0]

)
,

where η and ψ are strictly positive. The parameter η only affects the level of hours, so we can use it

to normalize employment-weighted average hours to one. We set the coefficient of relative risk aversion

to σ = 2, within the “plausible” range 1–5 indicated by micro estimates, see Heathcote et al. (2009).

The parameter ψ governs the Frisch elasticity of labor supply. Based on the recent survey of the

microeconomic evidence in Hall (2009), we target a Frisch elasticity of 0.7.18 We set υ = 0.045, so that

4.5% of workers are not attached to a firm. Together with the level of temporary layoffs targeted below,

this matches the average unemployment rate in the US of about 6%.

The density p(x) is log-normal. We normalize the mean of log(x) to zero. As the standard deviation

of log(x) we choose σx = 0.1, which is a reasonable order of magnitude for firm-level idiosyncratic shocks

for a time horizon between six month and one year, see for example Comin and Philippon (2006) and

Davis et al. (2007).

We calibrate an economy that has UI but no STC. Thus two parameters remain to be calibrated: the

parameter v0 that governs the fixed utility loss from working strictly positive hours, and the UI benefit

gUI . They are jointly calibrated to match two targets. First, we target that 1.5% of all workers are

18The Frisch elasticity is
(
ψ + σ−1

σ

(
ηh1+ψ

))−1
. At average hours, this reduces to

(
ψ + σ−1

σ
η
)−1

.
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Table 1: Calibration: Perfect PI and No PI

Value Perfect PI No PI Target

σ 2 2

α 0.67 0.67

σx 0.1 0.1

ψ 1.1 1.1 Frisch elasticity 0.7

η 0.664 0.667 h = 1 (Normalization)

υ 0.045 0.045 Unattached workers 0.045

v0, % c, % h 0.934, 6.6, 9.8 0.89, 11, 16 Temporary layoffs 0.015

gUI 0.247 0.247 Replacement rate 25%

unemployed while attached to a firm. Thus 25% of all the unemployed are attached. We choose this

target based on the empirical prevalence of temporary layoffs, defined as unemployment in spells that

end with being rehired by the previous employer. In the US Current Population Survey, on average 14%

of the unemployed are classified as on temporary layoff.19 Based on the Survey of Income and Program

Participation, Fujita and Moscarini (2013) report that a group of unemployed workers of about equal

size is not classified as on temporary layoff, but ultimately returns to the previous employer.20 Second,

we target that the replacement rate of UI is 25%, where we define the replacement rate in the model

as gUI divided by the average consumption of workers. Recall that experience rating is neutral in our

model and gUI corresponds to the UI subsidy net of experience rating. Topel (1983) reports that on

average the net subsidy is 31% of earnings. In our model workers jointly own and operate firms, hence

implicitly their average consumption reflects income from both wages and profits. This leads us to adopt

the somewhat lower target of 25%. These targets pin down gUI and v0 as follows. Both gUI and v0

act as a fixed cost of working positive hours. The fraction of workers on temporary layoff is increasing

in fixed costs, so the corresponding target pins down v0 for given gUI . We then vary gUI to match the

target for the replacement rate.

The calibration for both cases, perfect PI and no PI, is summarized in Table 1. The policy parameter

gUI is pinned down quite directly by the replacement rate target. Only the utility fixed cost v0 differs

substantially between the two calibrations. With perfect PI it is equal to 0.934, which corresponds to

6.63% in terms of consumption and 9.76% in terms of hours.21 Its value is higher in the case of no

19The average is taken over the years 1967-2012.

20Compared with other countries for which evidence is available, the incidence of temporary layoffs in the US is about

average. In a survey of the available evidence, OECD (2002) reports that temporary layoffs account for almost 40% of

unemployment in Canada, 20% of unemployment in Austria and Denmark, and fractions closer to 10% in other European

countries such as Germany, Norway and Sweden.

21The cost associated with v0 is expressed in terms of consumption (hours) by considering a compensating proportional
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Table 2: Policy Experiments

Policy Experiment Restrictions on the Set of Policy Instruments G Remarks

g∗UI gSTC = 0, gMHR = 1

g∗STC |g∗UI gUI = g∗UI , gMHR = 1

gmaxSTC |g∗UI gUI = g∗UI , gSTCh = g∗UI , gMHR = 1 Perfect PI only

(gUI , gSTC)
∗

gMHR = 1

(gSTC , gMHR)
∗ |g∗UI gUI = g∗UI

(gUI , gSTC , gMHR)
∗

None

gSTC |g∗UI
gUI = g∗UI , gSTCh/gUI takes same value as in

No PI only
experiment g∗STC |g∗UI under perfect PI, gMHR = 1

PI, corresponding to 11% in terms of consumption. Lack of insurance makes firms more reluctant to

carry out layoffs, thus the fixed cost must be higher to match the targeted level of temporary layoffs. In

Appendix B we show that the main results obtained in the remainder of this section are insensitive to

changes in parameters and targets over a wide range of values.

We use the calibrated model to carry out the following sequence of policy experiments, summarized in

Table 2. Each experiment is defined by restrictions on the set of policy instruments G in the government

optimization problem of Section 2. First, we restrict the set of policy instruments to UI and determine the

welfare-maximizing level of gUI . We denote this level as g∗UI , and also use g∗UI to label this experiment.

We use g∗UI rather than the calibrated level of gUI as the starting point for experiments that introduce

STC. Otherwise welfare gains from STC could merely reflect a suboptimal level of gUI , rather than a

genuine added value of gSTC as a policy instrument. The next three experiments introduce short-time

compensation, but without a minimum hours requirement, hence gMHR = 1. In the first, we determine

the optimal level of gSTC holding constant gUI at g∗UI . By construction, introducing gSTC in this way

does not affect the level of consumption of unattached workers. Therefore, to the extent that STC does

improve the allocation, it can only do so by mitigating the distortion of labor inputs induced by UI. We

refer to the corresponding level of STC and also the entire experiment as g∗STC |g∗UI to indicate that g∗STC

is optimal conditional on fixing the level of UI at g∗UI . In the second experiment, we introduce a level of

gSTC that is as generous as g∗UI . This level satisfies gSTC h̄ = g∗UI , and the corresponding experiment is

labeled gmax
STC |g∗UI . In the next step, we determine the welfare-maximizing combination of gSTC and gUI

denoting this experiment as (gUI , gSTC)
∗. The next two experiments introduce an MHR by allowing

gMHR do differ from one. First, in the experiment (gSTC , gMHR)
∗|g∗UI we once again fix the level of UI

at g∗UI while jointly choosing gSTC and gMHR optimally. Finally, in the experiment (gUI , gSTC , gMHR)
∗

we choose all three policy instruments optimally.

decrease in consumption (increase in hours) that leaves workers with v0 = 0 as well off as under the calibrated value.
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Table 3: Policy Experiments: Perfect PI

Calibr. g∗UI g∗STC |g∗UI gmaxSTC |g∗UI (gUI , gSTC)
∗

(gSTC , gMHR)
∗ |g∗UI (gUI , gSTC , gMHR)

∗
FB

gUI 0.247 0.262 0.262 0.262 0.284 0.262 0.28

gSTC 0.08 0.308 0.13 0.0643 0.0933

gMHR 1 1 1 0.81 0.82

τ 0.0158 0.0214 0.0196 0.0501 0.0278 0.017 0.0237

REPRUI (%) 25 26.7 27.1 29.2 29.9 26.8 29.1

REPRSTC (%) 7.97 29.2 13 6.43 9.32

STC Take-Up (%) 51.6 49 52.1 16.2 28.1

n̄ 0.984 0.968 0.988 1 0.98 0.991 0.982 1

h̄ 1 1 0.965 0.853 0.943 0.98 0.963 1.02

ȳ 0.999 0.991 0.979 0.911 0.96 0.991 0.975 1.02

c̄ 0.987 0.978 0.967 0.898 0.947 0.978 0.961 0.982

Welf. Rel. to g∗UI (%c) −0.1886 0.30107 −1.8582 0.52629 0.4027 0.60792 6.0165
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Figure 3: Hours and Employment, Perfect PI
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4.2 Perfect Private Insurance

Results for the case of perfect PI are displayed in Table 3. The calibration and the first best (FB)

are shown as points of reference. For each experiment, the first six rows show the values of the policy

instruments gUI , gSTC and gMHR, and the budget clearing tax τ , along with the replacement rates

implied by the values of gUI and gSTC , labeled REPRUI and REPRSTC , respectively.
22 The next

row reports the take-up rate for STC, that is, the average fraction of attached workers receiving STC

in percent. The next four rows show the average of employment and average (employment weighted)

hours for attached workers, denoted n̄ and h̄, respectively, along with average output ȳ and consumption

c across attached workers. The final row shows, for each allocation, the gain in welfare vis-à-vis the

experiment g∗UI . Here and in the remainder of the paper, all welfare gains are expressed in percentage

consumption-equivalent terms. Figure 3 compares labor input profiles for the three experiments g∗UI ,

g∗STC |g∗UI , and (gUI , gSTC)
∗
and the first best. These correspond to the theoretical labor input profiles of

Figure 1, showing hours and employment as a function of profitability x.23 Thick gray segments indicate

the region of STC take-up.

22REPRUI is defined as the ratio between gUI and average consumption, expressed in percentage terms. Analogously,

REPRSTC is defined as the ratio between the maximal STC benefit gSTC h̄ and average consumption. Thus the two

replacement rates coincide if gSTC h̄ = gUI .

23The x-axis is scaled to the distribution of profitability shocks.
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Figure 4: Welfare Gains, Perfect PI

−1.5

−1

−0.5

0

g
max

STC0  0.1 0.2

gST C

Welfare Gain Rel. to g
∗

UI

0.6 0.7 0.8 0.9 1
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

gMHR

Welfare Gain Rel. to (gUI , gSTC )∗

Experiment g∗UI shows that optimal UI is somewhat above the calibrated level. The corresponding

level of n̄ is 0.968, compared to 0.984 in the calibration. Thus the number of workers on layoff doubles.

Hence layoffs respond quite strongly to gUI , a point we return to below. Employment is below one at

sufficiently low levels of profitability and increasing. Hours are constant over the profitability range with

positive layoffs and increasing otherwise, as established in Part 1 of Proposition 3. In contrast, first-best

employment is one irrespective of profitability, and first-best hours are increasing throughout.

Experiment g∗STC |g∗UI shows that introducing STC is optimal when UI is fixed at g∗UI , and it estab-

lishes half of our first main result: under perfect PI, STC can substantially improve welfare, here by

0.3%. The optimal level of gSTC is modest: the implied replacement rate for STC is 7.97%, compared

to 27.1% for UI. Nevertheless, this level of STC is quite effective, reducing layoffs by more than half.

As discussed in Section 3.2.1, an increase in employment is not implied by our theoretical analysis, but

occurs in all of our computational experiments. Hours per worker drop substantially, so that output is

lower than in experiment g∗UI , despite the increase in employment. The reduction in spending on UI out-

weighs the spending on STC, and government outlays as a percentage of output are reduced from 2.19%

under experiment g∗UI to 2%. The labor input profiles for this experiment conform to Propositions 3 and

5. The take-up threshold xT lies above the threshold xN0 at which the employment constraint becomes

binding under no take-up.24 Thus some firms taking up STC would have retained all workers even in

the absence of STC. For these firms, STC does not have the benefit of reducing layoffs, but it distorts

hours. Employment is then continuous at the take-up threshold, while hours jump up. Throughout the

take-up region, hours are strictly lower than in the experiment g∗UI and employment is uniformly higher.

In experiment gmax
STC |g∗UI , STC eliminates layoffs completely, but induces a very large decline in hours.

Overall, this leads to a large welfare loss of 1.85% vis-à-vis experiment g∗UI . Together with the preceding

24Thresholds are not labeled in the figure, as it contains multiple experiments.
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Figure 5: Hours and Employment, Perfect PI: Minimum Hours Reduction
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experiment, this establishes our second main result: Optimal STC is substantially less generous than

UI, and introducing STC with equal generosity results in a large welfare loss in comparison to having no

STC at all. The left panel of Figure 4 illustrates this result by plotting the welfare gain as a function of

gSTC , with gUI fixed at g∗UI and with gSTC varying up to gmaxSTC . In our model there is no natural reason

for UI and STC to be equally generous. The optimal levels of UI and STC are determined by different

trade-offs. Optimal UI balances the benefit of making transfers to unattached workers against the cost

of distorting the layoff decision of firms. Optimal STC balances mitigation of this distortion against the

cost of distorting hours in firms that would abstain from layoffs even in the absence of STC.

Experiment (gUI , gSTC)
∗ shows that the optimal combination of UI and STC involves substantially

more generous UI than under experiment g∗UI : the benefit level gUI increases by more than 8% (from

0.262 to 0.284), which corresponds to an increase in the replacement rate from 27.1% to 29.9%. STC

mitigates the distortions associated with UI, which in turn makes it optimal to offer more generous

UI. Thereby the availability of STC improves insurance indirectly. As in experiment g∗STC |g∗UI , STC

is substantially less generous than UI. The welfare gain of moving from g∗UI to (gUI , gSTC)
∗ is 0.53%.

About half of this gain can be obtained by moving to g∗STC |g∗UI , indicating that adjusting the level

of UI is equally important in order to reap the full benefit of the availability of STC as an additional

instrument. Qualitatively the pattern of labor inputs across profitability in Figure 3 is very similar to

the experiment g∗STC |g∗UI . However, both hours and employment are lower since both UI and STC are
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more generous.

The next two experiments (gSTC , gMHR)
∗|g∗UI and (gUI , gSTC , gMHR)

∗ allow the government to im-

pose a minimum hours reduction (MHR), and the results in Table 3 show that doing so leads to further,

albeit small welfare gains. The optimal level of gMHR is similar in the two experiments, at 0.81 and

0.82, respectively. As in the previous experiments without an MHR, optimal STC is substantially less

generous than UI. In fact, it becomes slightly less generous, as the MHR makes it possible to achieve the

same reduction in layoffs with a lower level of gSTC . The corresponding labor input profiles in Figure 5

show that the MHR binds throughout the take-up region, and that the take-up threshold is substantially

lower than in the experiments without an MHR. The latter is reflected in lower take-up rates in Table

3. Taxes are lower due to reduced expenditures on STC. Average hours and employment are higher.

To illustrate how the MHR affects welfare, the right panel of Figure 4 plots welfare gains as a

function of gMHR, holding gSTC and gUI fixed at (gUI , gSTC)
∗. Lowering gMHR from a value of one

first leaves welfare unaffected because all firms taking up STC have hours strictly below one. As the

constraint becomes binding with further reductions in gMHR, some firms with n = 1 choose to forgo STC.

This effect is desirable since for these firms take-up of STC only distorts hours without any beneficial

effect on employment. However, other firms with n = 1 reduce hours even further to meet the MHR.

Quantitatively, this negative effect dominates and consequently welfare decreases. For further reductions

in gMHR, the MHR constraint also binds for firms with n < 1. In contrast to firms with n = 1, for

these firms imposing the MHR has the additional positive effect of reducing layoffs. Due to this effect,

welfare now increases as gMHR is reduced further. The welfare-maximizing level of gMHR is reached in

this region. Further reductions in gMHR lead to large negative effects due to inefficient hours reductions

and because there are now more and more firms with n < 1 that do not take up STC. Finally, there is

a second flat region at very low levels of gMHR for which take-up is zero.

A noteworthy feature of the calibrated model is that the level of unemployment is very sensitive to

policy. The local semielasticities of unemployment with respect to the replacement rate are 15.6 and

10.4 at g∗UI and g∗STC |g∗UI , respectively. In their empirical analysis Costain and Reiter (2008) estimate a

semielasticity of 3. This suggests that the model may be missing features that reduce the semielasticity.

Interestingly, the model implies that STC can play an important role in reducing the semielasticity.

Specifically, the impact of an increase in the replacement rate on unemployment is much weaker when

STC is adjusted optimally. At g∗STC |g∗UI , for example, the associated local semielasticity is 4.52.
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Table 4: Policy Experiments: No PI

Calibr. g∗UI g∗STC |g∗UI gSTC |g∗UI (gUI , gSTC)
∗

FB

gUI 0.247 0.25 0.25 0.25 0.25

gSTC 0.00316 0.0758 0.00331

gMHR 1 1 1

τ 0.0157 0.017 0.017 0.018 0.0171

REPRUI (%) 25 25.3 25.4 25.8 25.4

REPRSTC (%) 0.321 7.6 0.336

STC Take-Up (%) 78.9 51.3 78.8

n̄ 0.984 0.98 0.98 0.984 0.98 1

h̄ 1 1 0.999 0.969 0.999 1.02

ȳ 0.996 0.994 0.992 0.975 0.992 1.02

c̄ 0.984 0.982 0.981 0.963 0.981 0.982

Welf. Rel. to g∗UI (%c) −0.012572 0.00092858 −0.076012 0.0009721 7.0041

Figure 6: Welfare Gains, No PI
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4.3 No Private Insurance

We now turn to the scenario in which firms have no access to PI. This opens an additional channel

through which STC can affect welfare, via a direct insurance effect. At first sight, the analysis in Section

4.2 may suggest that this effect is positive. In Figure 3 hours per worker are increasing in profitability

(weakly so in the region with positive layoffs). Taking as given this pattern of labor inputs, STC improves

insurance by reallocating consumption to less profitable firms. However, the labor input profiles in Figure

3 are optimal when firms have access to perfect PI. As seen in Section 3, labor input profiles are different

if firms lack this access. In particular, the hours profile is declining over the profitability region in which

firms engage in layoffs. We will see that this has important implications for the welfare effects of STC.

Table 4 reports the results of the policy experiments. The optimal level of gSTC in experiment

g∗STC |g∗UI is positive but very close to zero at 0.003, yielding a negligible welfare gain of 0.93 per million.

This gain is imperceptible in the left panel of Figure 6, which plots welfare gains for levels of STC up to
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Figure 7: Hours and Employment, No PI
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gmaxSTC = g∗UI/h̄, given g
∗
UI . This finding completes our first main result: STC delivers substantial welfare

gains if firms have access to perfect PI, but fails to do so if firms have no access to PI.

Since the optimal level of STC in experiment g∗STC |g∗UI is so small, the availability of STC has a

negligible impact on the optimal level of UI when both are optimized jointly in experiment (gUI , gSTC)
∗
.

Under perfect PI, a modest level of STC is optimal. To understand why STC of a similar magnitude

is not optimal here, we conduct an additional experiment labeled gSTC |g∗UI . Here gSTC is chosen such

that the ratio of STC to UI is the same as in the experiment g∗STC |g∗UI under perfect PI.

Figure 7 is the counterpart of Figure 3, showing labor input profiles for this new experiment, together

with the familiar experiments g∗UI and g∗STC |g∗UI . Starting with experiment g∗UI , the key difference in

the pattern of labor inputs vis-à-vis Figure 3 is that hours per worker are strictly decreasing rather than

increasing over the profitability range with positive layoffs, in accordance with Proposition 4. Hours are

strictly increasing over the region with n = 1, in line with Proposition 4, yet quantitatively they are

virtually flat. Recall from Section 3.2.2 that with perfect PI the strictly increasing pattern of hours over

this region is due to a substitution effect. For the case of no PI, this substitution effect is counteracted

by an income effect. Given KPR preferences, the income effect would fully offset the substitution effect,

were it not for the presence of the tax. Quantitatively the impact of the tax is small.

Since the optimal level of STC in experiment g∗STC |g∗UI is very small, labor input profiles lie virtually

on top of profiles from experiment g∗UI . The thick gray segments indicate that take-up of STC occurs at
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Figure 8: Change in Net Transfers Due to STC, No PI
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high levels of profitability, distorting hours without any benefit in terms of reduced layoffs. The effects of

STC on labor input profiles are easier to discern for the new experiment gSTC |g∗UI . Here only firms with

intermediate profitability take up STC, and for most of these firms STC merely distorts hours, without

any reduction in layoffs. Firms with very low profitability, which account for most layoffs, forego STC

in favor of high hours. Thereby the V -shaped pattern of hours severely weakens the positive welfare

effect of STC observed in the case of perfect PI. Correspondingly, Table 4 shows little positive impact

on employment, whereas hours and welfare decline significantly in this experiment.

The V -shaped pattern of hours not only undermines STC’s ability to reduce layoffs, it also works

against its ability to improve welfare through the new effect arising in this scenario, namely the direct

insurance effect. The most distressed firms forego STC, thus STC reallocates consumption away from

this group. STC does shift consumption in the right direction within the group of firms with the highest

levels of profitability, those that employ all workers and take up STC, since hours are strictly increasing

over this profitability region. This effect is small, however, since hours are virtually flat over this region.

To quantify the overall direct insurance effect of STC, we fix labor input decisions at those from

experiment g∗UI and calculate net government transfers induced by the levels of STC from experiment

g∗STC |g∗UI in conjunction with a corresponding budget clearing tax τ . Figure 8 plots the difference

between the resulting net-transfer schedule and the net-transfer schedule from experiment g∗UI . Clearly,

net transfers worsen for the group of low profitability firms who do no take-up STC. Within the group

of firms that take up STC, those with lower profitability gain more. The welfare effect of this change

in net transfers is negative, and very small quantitatively at 0.79 per million. Of course this reflects in

part that gSTC is very small. The direct insurance effect in experiment gSTC |g∗UI is −0.002%. This is

negligible in comparison to the welfare gain of 0.3% induced by a similar STC level in the case of perfect

PI. Thus the failure to substantially improve welfare is explained by the weakened ability to mitigate

labor input distortions, rather than a negative direct insurance effect.
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The finding of small direct insurance effects of STC does not mean that STC can be evaluated in a

model with risk neutral firms, when firms do in fact lack access to PI. The degree of access to financial

markets shapes how firms adjust labor inputs in response to shocks, and this matters for the ability

of STC to affect labor input decisions. Thus taking into account firms’ access to financial markets is

important, independent of whether STC has small or large direct insurance effects.

The option to combine STC with an MHR does not yield any additional welfare gains, that is,

gMHR = 1 is optimal. Thus experiments (gSTC , gMHR)
∗|g∗UI and (gUI , gSTC , gMHR)

∗ are omitted from

Table 4. The right panel of Figure 6 is the counterpart of the corresponding panel of Figure 4, and

illustrates that the introduction of an MHR does not improve welfare in the experiment (gSTC , gUI)
∗.

As in Figure 4 the impact of reducing gMHR is non-monotone. Once the MHR is low enough to bind,

welfare first decreases and then increases, but never exceeds the level obtained for gMHR = 1.25

5 Intensive-Margin Technology

Up to now, we have focused on a specification of technology in which hours of different workers are

perfectly substitutable. Of course, the welfare effects of STC may vary with features of technology, such

as the substitutability of hours. In this section we take a first step in analyzing the role of technology.

We consider a specification that, in terms of the substitutability of hours of different workers, lies at the

opposite end of the spectrum in that there is no substitutability at all. A firm then either produces with

n = 1 or shuts down entirely, and all adjustment of labor inputs occurs along the intensive margin. We

refer to this as the intensive-margin case in short.

We find that our main results also hold for this specification. First, STC yields substantial welfare

gains only in the case with perfect PI. In fact, optimal STC is zero under no PI. Second, optimal STC

is substantially less generous than optimal UI, and equally generous STC results in a large welfare loss.

Two main differences emerge vis-à-vis the standard technology. First, welfare gains of STC under

perfect PI are smaller. This is because STC can mitigate the distortions caused by UI only via the

shutdown margin, which is not very responsive to STC. Second, STC has a positive direct insurance

effect in the no-PI scenario. This does not happen under the standard technology because the most

distressed firms adjust by choosing layoffs in conjunction with high hours. In contrast, here hours per

worker are the only way to adjust, short of shutting down. Nevertheless, the direct insurance effect is

too small to make STC worthwhile.

To put both the standard technology and the intensive-margin technology in a common framework,

25The kink in Figure 6 is not present here, as all firms adopting STC have employment n = 1.
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Table 5: Calibration: Intensive-Margin Case

Value Perfect PI No PI Target

σ 2 2

α 0.67 0.67

σx 0.1 0.1

ψ 1.1 1.1 Frisch elasticity 0.7

η 0.663 0.661 h = 1 (Normalization)

υ 0.045 0.045 Unattached workers 0.045

v0, % c, % h 0.712, 29, 41 0.425, 57, 87 Temporary layoffs 0.015

gUI 0.246 0.245 Replacement rate 25%

we start with the more general specification used by BW: l(n, h) is a function that combines employment

and hours into a labor-input index, and output is given by xf(l(n, h)). The standard case is l(n, h) = nh.

The intensive-margin case is

(21) l(n, h) =

 h for n = 1,

0 for n < 1.

The labor-input index is zero whenever employment falls short of one, hence adjusting hours per worker

is the only possible response to a profitability shock, apart from shutting down production. This case and

the standard case are at the two ends of the spectrum of specifications exhibiting a property which BW

refer to as Assumption L. This assumption requires that technology is not biased against work sharing,

in the sense that reducing hours per worker while keeping total hours constant does not reduce output.26

Work sharing is neutral under the standard technology: reducing hours per worker given constant total

hours has no effect on output. The intensive-margin case is most favorable to work sharing: reducing

employment for given total hours results in a complete loss of output.

We do not need to revisit the theoretical analysis of Section 3 for this specification. The only change

is that there is no longer a region in which employment lies strictly between zero and one. The analysis

of the behavior of hours per worker when the employment constraint binds carries over directly. Thus

we immediately turn to the sequence of computational experiments described in Section 4.

The calibration for the two scenarios of perfect and no PI is shown in Table 5. Parameters are

essentially unchanged, with exception of the fixed-cost parameter v0. Layoffs are much less attractive in

the intensive-margin case, as they result in a complete loss of output. Matching the target for temporary

layoffs then requires a substantially higher fixed cost of working positive hours. For the case of perfect

26 Formally, the function l(n, h) satisfies Assumption L if n2h2 = n1h1 and n2 > n1 imply l(n2, h2) ≥ l(n1, h1).
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Table 6: Intensive-Margin Case, Perfect PI

Calibr. g∗UI g∗STC |g∗UI gmaxSTC |g∗UI (gUI , gSTC)
∗

FB

gUI 0.246 0.268 0.268 0.268 0.272

gSTC 0.0516 0.315 0.0566

gMHR 1 1 1

τ 0.0157 0.0218 0.0221 0.0542 0.0236

REPRUI (%) 25 27.6 27.8 30 28.3

REPRSTC (%) 5.25 30 5.76

STC Take-Up (%) 49.6 48.8 49.5

n̄ 0.984 0.968 0.975 0.994 0.972 1

h̄ 1 1 0.979 0.85 0.977 1.02

ȳ 0.996 0.984 0.975 0.904 0.972 1.02

c̄ 0.984 0.971 0.963 0.892 0.959 0.986

Welf. Rel. to g∗UI (%c) −0.21582 0.074817 −2.2137 0.082714 4.138

PI, it amounts to a consumption-equivalent value of 28.8% as opposed to 6.63% for the standard case.

Similarly, for the case of no PI, this cost increases from 11% to 57.5% in consumption equivalents.27

5.1 Perfect Private Insurance

Table 6 contains the results for the case of perfect PI. The left panel of Figure 9 shows welfare as a

function of gSTC with UI fixed at g∗UI . Introducing STC is optimal, yet comparison with the left panel

of Figure 4 shows that the ability of STC to improve welfare is more limited. Welfare is maximized at a

level that is lower relative to g∗UI , and the welfare gain of 0.075% is relatively small. The reason is that

STC is less effective in mitigating the distortion of employment levels caused by UI. The employment

profiles in Figure 10 exhibit a shutdown region with n = 0 for low profitability, immediately followed

by an operating region with n = 1. There is no intermediate region with employment strictly between

zero and one. Thus STC cannot raise employment at the margin for a given level of profitability x,

and affects employment only by shrinking the shutdown region. In proportion to g∗STC = 0.052, the

increase in employment from 0.968 to 0.975 is small when compared to the response observed under

the standard technology. Yet STC once again reduces hours over a range of profitability levels that

would have chosen n = 1 even in the absence of STC. This adverse effect is about as strong as under

the standard technology. Taken together, this explains the lower level of optimal STC. The results for

27 By targeting the aggregate rate of temporary layoffs, we implicitly impose that all firms have the intensive-margin

technology. If the technology of some sectors is close to the standard case, while other sectors are closer to the intensive-

margin case, then one may expect a higher rate of temporary layoffs in the former. In future research, it would be interesting

to consider sector-specific calibrations of the model.
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Figure 9: Welfare Gains, Intensive-Margin Case, Perfect PI
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Figure 10: Intensive-Margin Case, Perfect PI
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experiment gmax
STC |g∗UI show that as in the standard case, making STC as generous as UI results in a large

welfare loss. In experiment (gUI , gSTC)
∗
, the availability of STC again improves insurance indirectly by

allowing for more generous UI. Yet the associated welfare gains are negligible, while in the standard case

this effect accounts for about half of the gains of introducing STC.

Table 6 omits experiments involving gMHR, because imposing an MHR is not optimal. This is

illustrated in the right panel of Figure 9, which shows that an MHR cannot increase welfare further

in experiment (gUI , gSTC)
∗
. As in Figure 4, at first there is a flat segment as gMHR is reduced below

one because the MHR does not yet bind. As gMHR is reduced further, the usual trade-off arises as

some firms forego STC and other firms reduce hours further to meet the MHR. The effect on welfare is
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Table 7: Intensive-Margin Case, No PI

Calibr. g∗UI gSTC |g∗UI FB

gUI 0.245 0.239 0.239

gSTC 0.0723

gMHR 1

τ 0.0157 0.0131 0.0146

REPRUI (%) 25 24.2 24.6

REPRSTC (%) 7.24

STC Take-Up (%) 45.4

n̄ 0.984 0.993 0.992 0.94

h̄ 1 1 0.973 1.03

ȳ 0.993 1 0.983 0.978

c̄ 0.981 0.989 0.972 0.953

Welf. Rel. to g∗UI (%c) −0.063892 −0.13709 3.4684

non-monotone. In contrast to Figure 4, welfare always remains below the level at gMHR = 1.

5.2 No Private Insurance

STC has a direct insurance effect in the absence of PI. For the standard technology this effect is negative.

This is driven by declining hours over the profitability region where some but not all workers are laid off.

This region is absent in the intensive-margin case. All operating firms have n = 1, and thus Proposition

4 implies a strictly increasing hours profile, which ensures a positive direct insurance effect of STC.

Introducing STC is not optimal, despite this positive insurance effect. This echoes the case of no

PI under the standard technology, where optimal STC is very small. Here STC is less desirable, due

to a relatively low optimal level of UI. In all preceding experiments, optimal UI exceeds its calibrated

level, which in turn implies that the associated level of layoffs exceeds the calibration target. In contrast,

here g∗UI falls short of the calibrated level, and at 0.7% the corresponding level of layoffs is much lower

than the calibration target. This leaves little room for STC to reduce layoffs. To illustrate what this

means for the effects of STC, we again conduct experiment gSTC |g∗UI , introducing a level of STC that is

as generous as the optimal level under perfect PI. The results are displayed along with the experiment

g∗UI and the first best in Table 7. Introducing STC even reduces employment slightly. The top panel of

Figure 11 shows that STC still leads to a strong reduction of hours. Without a strong positive response

of employment, there cannot be a sufficient reduction in UI payments to offset the costs of STC. Thus

the tax rate τ must increase, inducing the perverse employment effect. This emphasizes the importance

of the magnitude of layoffs for the welfare benefits of STC.

The low level of g∗UI , in turn, is due to a high marginal welfare loss from increasing the tax rate τ . This
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Figure 11: Intensive-Margin Case, No PI
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Figure 12: Intensive-Margin Case, Change in Net Transfers Due to STC, No PI
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is generated by the interaction between the intensive-margin technology and the lack of insurance, which

puts firms with low profitability in an especially adverse position. Under the standard technology, firms

can smoothly adjust to profitability shocks through layoffs. This smooth adjustment is not possible

here. As a consequence, the average marginal utility from consumption across firms is substantially

higher than in the standard case, making it very costly to raise revenue for financing UI.

While the direct insurance effect is positive, it is too small to matter. Figure 12 is constructed in the

same way as Figure 8, and shows that the net transfers induced by STC in experiment gSTC |g∗UI shift

consumption towards low profitability states. The magnitude of these transfers is very small, because the

hours profile is virtually flat for the reason discussed in Section 4.3. Consequently, the direct insurance

effect on welfare, computed as in Section 4.3, is very small at 0.00023%. Overall, then, STC does not

directly improve insurance in the settings we have studied in this paper. It only has the potential to do
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so in the absence of perfect PI. Yet the shape of the hours profile precludes substantial positive effects.

6 Conclusion

We have studied the welfare effects of short-time compensation (STC), departing from previous work by

considering a setting in which unemployment insurance (UI) is socially optimal, and obtained two main

results. First, STC can substantially improve welfare compared to a system that only relies on UI, but

only when firms have access to private insurance. Second, optimal STC is substantially less generous

than UI even when firms do have access to private insurance, and equally generous STC is worse than

not offering STC at all.

In the course of this analysis, the paper also contributes a new comparative statics result to the

implicit contracts literature: lacking access to private insurance, firms engaging in layoffs respond to a

further decline in profitability by reducing employment and increasing hours per worker. This property

is a key determinant of the welfare effects of STC and a testable implication of the model. Thus a natural

next step is to investigate this implication empirically.

We see our analysis as groundwork for studying the welfare effects of STC in dynamic models of the

labor market. As discussed in the introduction, dynamic models capturing all the features which make

implicit contract models a natural choice for studying STC have not yet been developed. Given this,

a potentially fruitful next step is to consider a variety of dynamic models, each retaining some of the

features of the static model. The findings of the present paper can help to identify which models are

likely to be interesting, as well has indicate potential pitfalls.

A relatively straightforward dynamic extension is a model in which firms face credit constraints and

self-insure against fluctuations in profitability. Here one could maintain the simplification that attached

agents are homogeneous, and assume that attachment is permanent. This setting would be especially

interesting for revisiting the direct insurance effect of STC. In our static setting, the lack of private

insurance affects low and high profitability levels symmetrically. This generates a flat hours profile

across high profitability states without layoffs, as firms cannot save. The option to save would make

STC less attractive for highly profitable firms and hours would rise more strongly in response to a

temporary increase in profitability, potentially increasing the direct insurance effect of STC.

This extension still does not permit an evaluation of potential adverse effects of STC on worker

reallocation. Introducing mobility of workers while maintaining incomplete markets may be intractable,

however. Proceeding with complete markets and assuming exogenous UI would yield an interesting set-

ting for studying the trade-off between STC’s ability to mitigate distortions caused by UI, and potential
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reallocation effects. When interpreting results from this exercise, however, one should keep in mind that

such a model may not capture well the STC take-up behavior of firms facing credit constraints.

A Proofs

Proposition 1

Substituting the functions c∗w and c∗b into equation (19) and using functional form (2) yields

λ−
1−σ
σ

1− σ
− λ−

1−σ
σ v(h)

1−σ
σ

1− σ
+ λ−

1−σ
σ v(h)

1−σ
σ
v′(h)h

v(h)
= λ−

1−σ
σ

[
1− v(h)

1−σ
σ

]
− λ

[
gUI − h̄T · gSTC

]
.

Dividing both sides by λ−
1−σ
σ and rearranging terms, we obtain

(22)
σ

1− σ
+ v(h)

1−2σ
σ

[
v′(h)h− σ

1− σ
v(h)

]
+ λ

1
σ
[
gUI − h̄T · gSTC

]
= 0.

Evaluating the left-hand side (LHS) at h = 0 gives

σ

1− σ

(
1− v

1−σ
σ

0

)
+ λ

1
σ
[
gUI − h̄T · gSTC

]
> 0.

This term captures the fixed cost of employing an additional worker. The first summand reflects the

utility fixed cost, and is strictly positive since v0 ∈ (0, 1). The second term reflects the fixed cost in

terms of the consumption good, induced by policy. It is nonnegative since h̄gSTC ≤ gUI . Let

Ṽ (h) ≡ v(h)
1−2σ

σ

[
v′(h)h− σ

1− σ
v(h)

]
.

Straightforward differentiation yields Ṽ ′(h) = −hV ′(h), where V (h) is defined in Section 2. As V ′(h) >

0, the LHS of equation (22) is strictly decreasing in h. Furthermore, limh→hmax Ṽ (h) = −∞ since

limh→hmax V (h) = ∞. Thus the LHS of equation (22) converges to −∞ as h converges to hmax. Hence

equation (22) has a unique solution in (0, hmax). If gSTC > 0, then the LHS of equation (22) is strictly

decreasing in T , and thus the solution for hours is strictly decreasing in T . If gUI − h̄T · gSTC > 0, then

the LHS of equation (22) is strictly increasing in λ, hence the solution for hours is strictly increasing in

λ. If gUI − h̄T · gSTC = 0, then the solution for hours is independent of λ.

As discussed in the text, the result that hours are increasing in λ if gUI − h̄T · gSTC > 0 and

independent of λ if gUI − h̄T · gSTC = 0 also holds for other common specifications of utility besides
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KPR. If preferences are additively separable, that is, u(c, h) = c1−σ

1−σ + v(h), then equation (19) becomes

v′(h)h− [v(h)− v(0)] + λ
[
gUI − h̄T · gSTC

]
= 0.

Once again hours are strictly increasing in λ if gUI − h̄T · gSTC > 0 and independent of λ otherwise. If

utility takes the GHH form u(c, h) = (c+v(h))1−σ−1
1−σ , then equation (19) becomes

λv′(h)h− λ [v(h)− v(0)] + λ
[
gUI − h̄T · gSTC

]
= 0.

In this case hours are independent of λ for any value of gUI − h̄T · gSTC .

Proposition 2

Since V (h) is strictly increasing on (0, hmax), it follows that limh→0 V (h) is finite. Since limh→0 f
′(h) =

+∞, the right-hand side (RHS) of equation (20) strictly exceeds the left-hand side (LHS) as h converges

to 0. Since limh→hmax V (h) = +∞ while f ′ (hmax) is finite, the LHS of equation (20) strictly exceeds

the RHS as h converges to hmax. Since V is strictly increasing while f ′ is strictly decreasing, equation

(20) has a unique solution in (0, hmax). The RHS is strictly increasing in x, hence the solution is strictly

increasing in x. Suppose that the solution does not converge to hmax as x converges to infinity. Then

the LHS converges to a finite value while the RHS converges to infinity as x converges to infinity, a

contradiction. If gSTC > 0, then the RHS is strictly decreasing in T , hence the solution is strictly

decreasing in T . Finally, note that at the solution the term in square brackets on the RHS is strictly

positive. Thus the RHS is strictly increasing in λ, which implies that the solution for hours is strictly

increasing in λ.

Proposition 3

We start with preliminary steps that apply to both T = 0 and T = 1. Let h̃T (λ) denote the level of

hours that solves equation (19), which is well defined according to Proposition 1. Let h̃TN (x, λ) denote

the level of hours that solves equation (20), which is well defined according to Proposition 2.

With χ = 0, first-order condition (17) implies that λ(x) does not vary with x at the solution. Let λ∗

denote its constant value. Substituting the functions c∗w and c∗b into equation (15), we can solve explicitly
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for the value that employment would have to take if constraint (6) is slack:

n̂T (x, h) ≡ (f ′)−1

(
1

xh

{
1

λ∗
[u(c∗b(λ

∗), 0)− u(c∗w(λ
∗, h), h)]

+ gUI − h̄T · gSTC + (τ + T · gSTC)h+ c∗w(λ
∗, h)− c∗b(λ

∗)

})
· 1
h
.

(23)

As a function of x for given h, n̂T (x, h) is strictly increasing, and the Inada conditions on f ′ imply that

n̂T (x, h) converges to infinity as x converges to infinity, and converges to zero as x converges to zero. It

follows that there exists a unique threshold x̂TN (h) such that n̂T
(
x̂TN (h), h

)
= 1. We are now ready to

prove the two parts of the proposition.

1. Across profitability levels with a slack constraint (6), hours are constant at h0(x) = h̃0(λ∗), while

employment is n0(x) = n̂0
(
x, h̃0(λ∗)

)
and thus strictly increasing in x. Hence constraint (6)

becomes binding at x0N ≡ x̂0N

(
h̃0(λ∗)

)
, thus it is slack on

(
0, x0N

)
and binding on

(
x0N ,+∞

)
. On

the latter interval, hours are h0(x) = h̃0N (x, λ∗) and thus strictly increasing.

2. The proof for T = 1 is similar to the one for T = 0 in Part 1. The only difference is that constraint

(7) may bind. Let h̃1MHR ≡ min
[
h̃1(λ∗), gMHRh̄

]
. Then, across profitability levels with a slack

constraint (6), hours are constant at h1(x) = h̃1MHR, while employment is n1(x) = n̂1
(
x, h̃1MHR

)
and thus strictly increases in x. Hence constraint (6) becomes binding at x1N ≡ x̂1N

(
h̃1MHR

)
.

Thus it is slack on (0, x1N ) and binding on (x1N ,+∞). On the latter interval, hours are h1(x) =

min
[
h̃1N (x, λ∗), gMHRh̄

]
. If h̃1N

(
x1N , λ

∗) ≥ gMHRh̄, set x1MHR = x1N . If limx→∞ h̃1N (x, λ∗) ≤

gMHRh̄, set x
1
MHR = +∞. Otherwise, set x1MHR to the unique value of x that satisfies h̃1N (x, λ∗) =

gMHRh̄. With this definition of x1MHR, hours h
1(x) are strictly increasing on

(
x1N , x

1
MHR

)
, and

constant at gMHRh̄ on
(
x1MHR,+∞

)
.

3. There are four cases. First, suppose x ≤ min[x0N , x
1
N ]. Then h0(x) = h̃0(λ∗) and h1(x) =

min
[
h̃1(λ∗), gMHRh̄

]
. The desired result follows immediately from Proposition 1, which implies

h̃1(λ∗) < h̃0(λ∗). Second, consider x ≥ max[x0N , x
1
N ]. Then h0(x) = h̃0N (x, λ∗) and h1(x) =

min
[
h̃1N (x, λ∗), gMHRh̄

]
. The desired result follows immediately from Proposition 2, which implies

h̃1N (x, λ∗) < h̃0N (x, λ∗). Third, suppose x1N < x0N and consider x ∈ [x1N , x
0
N ]. Now h0(x) = h̃0(λ∗)

and h1(x) = min
[
h̃1N (x, λ∗), gMHRh̄

]
. The desired result follows from

h̃1N (x, λ∗) ≤ h̃1N (x0N , λ
∗) < h̃0N (x0N , λ

∗) = h̃0(λ∗)

where the first inequality uses that h̃1N (x, λ∗) is increasing in x, the second uses Proposition 2, and
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the final equality uses the definition of x0N . Fourth, suppose x0N < x1N and consider x ∈ [x0N , x
1
N ].

Here h0(x) = h̃0N (x, λ∗) and h1(x) = min
[
h̃1(λ∗), gMHRh̄

]
. The desired result follows from

h̃0N (x, λ∗) ≥ h̃0N (x0N , λ
∗) = h̃0(λ∗) > h̃1(λ∗)

where the first inequality uses that h̃0N (x, λ∗) is strictly increasing in x, the equality uses the

definition of x0N , and the second inequality uses Proposition 1.

Proposition 4

We start with preliminary steps that apply to both T = 0 and T = 1. First, we analyze the comparative

statics of hours and employment with respect to profitability in a relaxed problem without constraints

(6) and (7). Let ñT (x) and h̃T (x) denote the optimal levels of employment and hours in this problem.

Since χ = 1, constraint (9) is irrelevant, thus there is no interdependence of the optimization problem

across across profitability levels, so we can solve the problem separately for each level of x. Only the

constraints (5) and (8) remain, and we reduce the problem for given x to an unconstrained problem of

choosing hours and employment. To do so, substitute the functions c∗w and c∗b along with ι = 0 into the

budget constraint. Solving the resulting equation for λ−
1−σ
σ yields

(24) λ−
1−σ
σ =

[
xf(nh) + (1− n)gUI + n

(
h̄− h

)
T · gSTC − τnh

nv(h)
1−σ
σ + (1− n)

]1−σ

.

Substituting the functions c∗w and c∗b along with ι = 0 into the objective yields

nu(cw, h) + (1− n)u(cb, 0) =
1

1− σ
λ−

1−σ
σ

[
(nv(h)

1−σ
σ + (1− n)

]
− 1

1− σ
.

Using equation (24) to replace λ−
1−σ
σ and dropping the constant − 1

1−σ , the objective can be written as

1

1− σ

[
xf(nh) + (1− n)gUI + n

(
h− h

)
T · gSTC − τnh

]1−σ [
nv(h)

1−σ
σ + (1− n)

]σ
.

The optimal labor input levels ñT (x) and h̃T (x) must maximize this objective. Since σ > 1, this is

equivalent to maximizing G(n, h, x) ≡ log [Ω(n, h, x)]− 1
ψ log [Γ(n, h)] where ψ ≡ σ−1

σ ∈ (0, 1) and

Ω(n, h, x) ≡ xf(nh) + (1− n)gUI + n
(
h− h

)
T · gSTC − τnh,

Γ(n, h) ≡ nv(h)−ψ + (1− n).
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To simplify notation, we suppress arguments of functions in what follows. The functions Ω and Γ satisfy

Ωnh = −x|f ′′|nh+
1

n
Ωh,(25)

Γhh = −nψv−(2+ψ)
[
vv′′ − (1 + ψ)(v′)2

]
> 0.(26)

The first-order conditions are

Gn =
Ωn
Ω

− 1

ψ

Γn
Γ

= 0 and Gh =
Ωh
Ω

− 1

ψ

Γh
Γ

= 0.

From now on, all second derivatives are evaluated at the solution to these first-order conditions. Using

that Ωx = f , Ωnx = f ′h, and Ωhx = f ′n, the second derivatives involving profitability are

Gnx =
f ′hΩ− Ωnf

Ω2
and Ghx =

f ′nΩ− Ωhf

Ω2
.

Using that Ωnn = −x|f ′′|h2, Ωhh = −x|f ′′|n2, and equation (25), second derivatives for labor inputs are

Gnn = −x|f
′′|h2Ω+ (Ωn)

2

Ω2
− 1

ψ

ΓnnΓ− Γ2
n

Γ2
,

Ghh = −x|f
′′|n2Ω+ (Ωh)

2

Ω2
− 1

ψ

ΓhhΓ− Γ2
h

Γ2
,

Gnh = −
x|f ′′|nhΩ− 1

nΩhΩ+ ΩnΩh

Ω2
− 1

ψ

ΓnhΓ− ΓnΓh
Γ2

.

Using equations (25)–(26), Γnh = n−1Γh, Γnn = 0, and the first-order conditions, they can be written as

Gnn = −x|f
′′|h2Ω+ (1− ψ)(Ωn)

2

Ω2
,

Ghh = −x|f
′′|n2Ω+ (1− ψ)(Ωh)

2

Ω2
− 1

ψ

Γhh
Γ
,

Gnh = −x|f
′′|nhΩ+ (1− ψ)ΩnΩh

Ω2
.

The sign of d
dx h̃

T (x) equals the sign of −GnnGhx + GnhGnx. Dropping the denominator Ω2, which

appears in all four second derivatives involved in this expression, we see that it has the same sign as

(27)
(
x|f ′′|h2Ω+ (1− ψ)(Ωn)

2
)
(f ′nΩ− Ωhf)− (x|f ′′|nhΩ+ (1− ψ)ΩnΩh) (f

′hΩ− Ωnf) .
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Exploiting cancelations, this reduces to

(28) − [x|f ′′|hΩf + (1− ψ)ΩΩnf
′] · [hΩh − nΩn] .

Since, from the definition of Ω,

(29) hΩh − nΩn = n
[
gUI − h̄T · gSTC

]
,

the expression in equation (28) is strictly negative if gUI − h̄T ·gSTC > 0 and zero if gUI − h̄T ·gSTC = 0.

The sign of d
dx ñ

T (x) equals the sign of −GhhGnx +GnhGhx, and thus the sign of

(
x|f ′′|n2Ω+ (1− ψ)(Ωh)

2
)
(f ′hΩ− Ωnf)− (x|f ′′|nhΩ+ (1− ψ)ΩnΩh) (f

′nΩ− Ωhf) +
Ω4

ψ

Γhh
Γ
Gnx.

Apart from the last term, this expression is symmetric to equation (27), with switched roles of n and h.

Thus it simplifies to

[x|f ′′|nΩf + (1− ψ)ΩΩhf
′] · [hΩh − nΩn] +

Ω4

ψ

Γhh
Γ
Gnx.

Equation (29) implies that the first summand is nonnegative. Next, we show that Gnx is strictly positive,

which allows us to conclude that ñT (x) is strictly increasing in x. Using the definition of Ω, we have

Gnx =
f ′hgUI + (f − f ′nh) ·

[
gUI − h̄T · gSTC + (T · gSTC + τ)h

]
Ω2

.

This is strictly positive as gUI − h̄T · gSTC ≥ 0, and since strict concavity of f ensures f − f ′nh > 0.

So far we have shown that ñT (x) is strictly increasing in x, and that h̃T (x) is weakly decreasing in

x, strictly so if gUI − h̄T · gSTC > 0. Next, we derive the result mentioned in Footnote 16: the marginal

utility of consumption, which is equal to the Lagrange multiplier associated with the budget constraint,

is strictly decreasing in x in the relaxed problem. Let λ̃
T
(x) denote the value of this multiplier at

the optimal solution. For the case gUI − h̄T · gSTC > 0, Proposition 1 establishes a strictly increasing

relationship between λ̃
T
(x) and h̃T (x). Since h̃T (x) is strictly decreasing, so is λ̃

T
(x). Next, consider the

case gUI− h̄T ·gSTC = 0. Equation (24) implies log(λ) = σ[log(Γ)− log(Ω)]. Since hours are independent

of x in this case, we have

d

dx
log

(
λ̃
T
(x)

)
= σ

[
Γn
Γ

− Ωn
Ω

]
d

dx
ñT (x)− σ

Ωx
Ω

= −σ 1− ψ

ψ

Γn
Γ

d

dx
ñT (x)− σ

Ωx
Ω
,
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where the second equality uses the first-order condition Gn = 0. This expression is strictly negative,

since Ωx > 0, ψ ∈ (0, 1), Γn > 0, and d
dx ñ

T (x) > 0.

Since ñT (x) is strictly increasing, we can determine the unique threshold profitability level xTN at

which constraint (6) becomes binding. If limx→0 n
T (x) ≥ 1, let xTN = 0. If limx→∞ nT (x) ≤ 1, let

xTN = +∞. Otherwise, let xTN be the unique level of x that satisfies ñT (x) = 1.

So far we have studied the relaxed problem without constraints (6) and (7). Next, we modify this

problem by imposing constraint (6) with equality. Let h̃TN (x) denote the level of hours that maximizes

G(1, h, x). It is strictly increasing if Ghx > 0. Evaluated at n = 1, the sign of Ghx equals the sign of

f ′Ω− Ωhf = f ′
[
xf − τh+ (h̄− h)gSTC

]
− [xf ′ − τ − gSTC ] f = f ′h̄gSTC + [f − f ′h] · [τ + gSTC ],

where the first equality substitutes Ω and Ωh, and the second equality exploits cancelations. The resulting

expression is strictly positive, thus h̃TN (x) is strictly increasing in x.

As the final preliminary step, we need to determine how employment varies when constraint (7) is

binding. Let n̂T (x, h) denote the level of employment that maximizes G(n, h, x) for a given level of hours

h. Above we established that Gnx > 0, hence n̂T (x, h) is strictly increasing in x.

Using these preliminary results, we are ready prove the first two parts of the proposition.

1. Across profitability levels with a slack constraint (6), hours and employment are h0(x) = h̃0(x)

and n0(x) = ñ0(x), respectively. Constraint (6) becomes binding at x0N . Hours h0(x) are strictly

decreasing since the condition gUI − h̄T · gSTC > 0 is satisfied for T = 0, as gUI > 0. Employment

n0(x) is strictly increasing on (0, x0N ). On (x0N ,+∞), employment n0(x) equals one. Hours are

h0(x) = h̃0N (x) on this interval and thus strictly increasing.

2. First, we determine x1MHR,L. Consider the decreasing function h̃1(x). If limx→x1
N
h̃1(x) ≥ gMHRh̄,

set x1MHR,L = x1N . If limx→0 h̃
1(x) ≤ gMHRh̄, set x1MHR,L = 0. Otherwise, let x1MHR,L be

the unique level of x ∈ (0, x1N ) that satisfies h̃1(x) = gMHRh̄. Next, we determine x1MHR,H .

Consider the strictly increasing function h̃1N (x). If limx→x1
N
h̃1N (x) ≥ gMHRh̄, let x

1
MHR,H = x1N .

If limx→∞ h̃1N (x) ≤ gMHRh̄, let x
1
MHR,H = ∞. Otherwise, let x1MHR,H be the unique level of

x ∈
(
x1N ,∞

)
that satisfies h̃1N (x) = gMHRh̄. Having constructed these thresholds, we have

(
h1(x), n1(x)

)
=



(
gMHRh̄, n̂

1
(
x, gMHRh̄

))
for x ∈

(
0, x1MHR,L

)
,(

h̃1(x), ñ1(x)
)

for x ∈
(
x1MHR,L, x

1
N

)
,(

h̃1N (x), 1
)

for x ∈
(
x1N , x

1
MHR,H

)
,(

gMHRh̄, 1
)

for x ∈
(
x1MHR,H ,+∞

)
.
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The properties of the functions n̂1
(
x, gMHRh̄

)
, h̃1(x) , ñ1(x), and h̃1N (x) imply that h1(x) and

n1(x) vary with profitability as stated in the proposition.

For Part 3 of the proposition, we begin by establishing two preliminary results, once again starting with

the solution to the relaxed problem without the constraints (6) and (7), that is, the functions h̃T (x)

and ñT (x). So far, we have only defined these functions for T ∈ {0, 1}. We now extend this definition

to T ∈ [0, 1], letting take-up vary continuously. Using ΩT = n(h̄ − h)gSTC , ΩnT = (h̄ − h)gSTC , and

ΩhT = −ngSTC , second derivatives involving take-up are

GnT =
Ω− Ωnn

Ω2
(h̄− h)gSTC and GhT = −Ω+ Ωh(h̄− h)

Ω2
ngSTC .

Hours h̃T (x) are strictly decreasing in T if −GnnGhT + GnhGnT is strictly negative. Substituting the

second derivatives into this expression, dropping Ω2, and exploiting cancelations, we obtain

−gSTC
{
x|f ′′|hnΩ

[
(h̄− h)(Ωhh− Ωnn) + Ωh̄

]
+ (1− ψ)ΩΩn

[
Ωnn+Ωh(h̄− h)

]}
.

Equation (29) implies hΩh − nΩn ≥ 0. Thus the preceding expression is strictly negative if h ≤ h̄. If

h̃0(x) ≤ h̄, h̃T (x) is then strictly decreasing in T at T = 0. This ensures that h̃T (x) remains below h̄ as

T increases towards one. This yields a first preliminary result: h̃0(x) ≤ h̄ implies h̃1(x) < h̃0(x).

Next, we modify the relaxed problem by imposing constraint (6) with equality. The optimal level of

hours in this problem is h̃TN (x), now defined for T ∈ [0, 1]. Hours h̃TN (x) are strictly decreasing in T if

GhT < 0. If h̃0N (x) ≤ h̄, then GhT < 0 is satisfied at T = 0. Thus h̃TN (x) remains below h̄ as T increases

towards one. This yields a second preliminary result: h̃0N (x) ≤ h̄ implies h̃1N (x) < h̃0N (x).

Using these preliminary results, we can prove Part 3 of the proposition:

3. If h0(x) > gMHRh̄, then the result follows immediately from the MHR, which implies h1(x) ≤

gMHRh̄. So suppose h0(x) ≤ gMHRh̄. There are four cases. First, suppose x ≤ min[x0N , x
1
N ]. Then

h0(x) = h̃0(x). Since h̃0(x) ≤ gMHRh̄ ≤ h̄, the first preliminary result implies h̃1(x) < h̃0(x).

Thus the MHR does not bind, and h1(x) = h̃1(x) < h0(x). Second, consider x ≥ max[x0N , x
1
N ].

Then h0(x) = h̃0N (x). Since h0N (x) ≤ gMHRh̄ ≤ h̄, the second preliminary result implies h̃1N (x) <

h̃0N (x). Thus the MHR does not bind, and h1(x) = h̃1N (x) < h0(x). Third, suppose that x1N <

x0N and consider x ∈ [x1N , x
0
N ]. Then h0(x) = h̃0(x). Since h̃0 is decreasing, we have h̃0(x) ≥

h̃0(x0N ) = h̃0N (x0N ). Thus h̃0N (x0N ) ≤ gMHRh̄ ≤ h̄, hence the second preliminary result ensures

h̃0N (x0N ) > h̃1N (x0N ). Since h̃1N is increasing, it follows that h̃1N (x0N ) ≥ h̃1N (x). Thus the MHR

does not bind at x, and h1(x) = h̃1N (x) < h0(x). Fourth, suppose that x0N < x1N and consider
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x ∈ [x0N , x
1
N ]. Here h0(x) = h̃0N (x). Since the function h̃0N is strictly increasing, it follows that

h̃0N (x) ≥ h̃0N (x0N ) = h̃0(x0N ). This implies that h̃0(x0N ) ≤ gMHRh̄ ≤ h̄, hence the first preliminary

result implies h̃0(x0N ) > h̃1(x0N ). Since the function h̃1 is decreasing, it follows that h̃1(x0N ) ≥ h̃1(x).

Thus the MHR does not bind at x, and h1(x) = h̃1(x) < h0(x).

Proposition 5

As a first step, we examine how the maximized value of the objective conditional on take-up varies with

profitability x. For given x and T , the optimal value of the tuple (cw(x), cb(x), n(x), h(x)) must maximize

n(x)u(cw(x), h(x)) + (1− n(x))u(cb(x), 0) + λ∗
{
xf(n(x)h(x))− τn(x)h(x)

+ (1− n(x))gUI + n(x)
(
h̄− h(x)

)
T · gSTC − n(x)cw(x)− (1− n(x))cb(x)

}(30)

subject to the constraints (6) and (7). The corresponding optimal values of labor inputs are hT (x) and

nT (x). Let UT (x) denote the associated maximized value of objective (30). The optimal take-up decision

T ∗(x) must maximize UT (x). By the envelope theorem, we have

(31)
dUT

dx
(x) = λ∗f

(
nT (x)hT (x)

)
.

Using this preliminary result, we now prove the proposition by sequentially analyzing the three regions

(0, x1N ], [x1N , x
0
N ], and [x0N ,+∞), thereby determining the location of the threshold xT .

First, consider the interval (0, x1N ]. According to Proposition 3, both h0(x) and h1(x) are constant

over this interval. Furthermore, for both T = 0 and T = 1, employment is obtained by substituting

hours into equation (23). Using the latter relationship to solve for nT (x)hT (x) yields

(32) nT (x)hT (x) = (f ′)−1

(
AT

x

)
=

(
α
x

AT

) 1
1−α

where AT is a constant that depends on take-up T , and the second equality uses the assumption f(nh) =

(nh)α, which implies (f ′)−1(y) = (α/y)1/(1−α). Consequently, using equation (31) we obtain

d

dx

[
U1(x)− U0(x)

]
= λ∗

(
α
x

A1

) α
1−α

[
1−

(
A1

A0

) α
1−α

]
.

The sign of the RHS does not depend on x. Furthermore, UT (0) = u(cb(λ
∗), 0) + λ∗ [gUI − cb(λ

∗)] is

independent of T . Consequently, if A1 > A0, then U1(x) < U0(x) for all x ∈ (0, x1N ]. We set xT = 0 in
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this case. Below we show that no take-up is optimal at all levels of profitability in this case. If A1 < A0,

then U1(x) > U0(x) on (0, x1N ], and the threshold xT will lie to the right of this interval.

The case A1 = A0 can also arise as part of the optimal solution. Given λ∗, the firm is then indifferent

concerning take-up at any given x ∈
(
0, x1N

]
. Meanwhile, the budget constraint requires that, across

profitability levels, a specific expected value of employment must be allocated to take-up. One optimal

choice is to choose a threshold xT ∈ [0, x1N ] and set T ∗(x) = 1 on (0, xT ] and T ∗(x) = 0 on (xT , x1N ]. We

proceed with this choice, and the precise value of xT is then determined by the budget constraint.

Next, consider the interval [x1N , x
0
N ]. Here there are two cases, depending on the results for the interval

(0, x1N ]. First, if U1(x) ≤ U0(x) on (0, x1N ], then take-up remains inferior on [x1N , x
0
N ]: if constraint (6)

were not binding for take-up, then the analysis for the interval (0, x1N ] would directly extend to [x1N , x
0
N ],

and the binding constraint (6) makes take-up even less attractive. Second, if U1(x) > U0(x), then there

are two possibilities. First, take-up may remain optimal on the entire interval [x1N , x
0
N ]. Second, no

take-up may be optimal on part of this interval. Next, we show that if there is a switch to no take-up

somewhere within this interval, then no take-up remains optimal after this switch. Suppose there is a

profitability level x̃T ∈ [x1N , x
0
N ] such that U1(x̃T ) = U0(x̃T ). Using equation (31) and the fact that

n1(x) = 1 on [x1N , x
0
N ], we have

(33)
d

dx

[
U1(x)− U0(x)

]
= λ∗

[
f
(
h1(x)

)
− f

(
n0(x)h0(x)

)]
.

Since U1(x) > U0(x) on
(
0, x1N

]
, this derivative must be strictly positive at x = x1N . To permit U1(x̃T ) =

U0(x̃T ), this derivative must turn strictly negative somewhere between x1N and x̃T . Consequently, there

must exist a profitability level xD ∈ [x1N , x̃T ] such that

(34) h1(xD) < n0(xD)h
0(xD).

Now consider x ∈ [xD, x
0
N ]. Equation (32) implies

(35)

(
x

xD

) 1
1−α

n0(xD)h
0(xD) = n0(x)h0(x).

Using the notation from the proof of Proposition 3, let h̃TN (x, λ∗) denote the solution to equation (20).

Using the assumption f(h) = hα, equation (20) can be written as

h = (αx)
1

1−α

[
(λ∗)

− 1
σ V (h) + τ + T · gSTC

]− 1
1−α

.

46



Thus

h̃1N (x, λ∗) =

( x

xD

) (λ∗)
− 1

σ V
(
h̃1N (xD, λ

∗)
)
+ (τ + gSTC)

(λ∗)
− 1

σ V
(
h̃1N (x, λ∗)

)
+ (τ + gSTC)


1

1−α

h̃1N (xD, λ
∗) <

(
x

xD

) 1
1−α

h̃1N (xD, λ
∗)

where the strict inequality follows as h̃1N (x, λ∗) is strictly increasing on [x1N , x
0
N ] and V (h) is strictly in-

creasing in h. Since h1(x) = min
[
h̃1N (x, λ∗) , gMHRh̄

]
and h̃1N (x, λ∗) is strictly increasing, this inequality

also holds the function h1:

(36) h1(x) <

(
x

xD

) 1
1−α

h1 (xD) .

Combining inequalities (34) and (36) with equation (35) yields h1(x) < n0(x)h0(x) for all x ∈ [xD, x
0
N ].

Since xD ≤ x̃T and U1(x̃T ) = U0(x̃T ), equation (33) implies U1(x) < U0(x) for all x ∈ [x̃T , x
0
N ]. Thus

there is at most one value x̃T in [x1N , x
0
N ] such that U1(x̃T ) = U0(x̃T ). If it exists, we set the threshold

xT to this value x̃T . Otherwise take-up remains optimal throughout the interval [x1N , x
0
N ].

Finally, consider the interval [x0N ,+∞). Over this range

(37)
d

dx

[
U1(x)− U0(x)

]
= λ∗

[
f
(
h1(x)

)
− f

(
h0(x)

)]
.

This expression is strictly negative, since h1(x) < h0(x) according to Part 3 of Proposition 3. Again

there are two cases, depending on the results obtained for the intervals (0, x1N ] and [x1N , x
0
N ]. In the first

case, we have already set a threshold xT ∈ [0, x0N ] such that T ∗(x) = 0 on (xT , x
0
N ]. Inequality (37) then

implies that no take-up T ∗(x) = 0 is also optimal on [x0N ,+∞). In the second case, we have not yet

determined a threshold xT , and T
∗(x) = 1 is optimal on (0, x0N ]. Inequality (37) then implies that there

is at most one profitability level x̃T in [x0N ,+∞) such that U1 (x̃T ) = U0 (x̃T ). If such a level exists, we

set xT = x̃T . Otherwise we set xT = +∞. With this definition of xT , T
∗(x) = 1 is optimal on [x0N , xT ],

and T ∗(x) = 0 is optimal on (xT ,+∞).

B Sensitivity Analysis

In this appendix we show that the main conclusions obtained in the computational experiments of Section

4 are not sensitive with respect to changes in parameters and targets.

Recall that the parameters σ, α, υ, and σx were chosen independently, while v0, gUI , and ψ were

pinned down by targets for temporary layoffs, the replacement rate of UI, and the Frisch elasticity. For
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each parameter in the first group we choose a low and a high value. Similarly, for each of the three

targets we choose a low and a high value. We vary one parameter or target at a time, and for each

deviation from the benchmark we recalibrate the model and repeat the welfare analysis.

Table 8 and Table 9 display the results for the cases of perfect PI and no PI, respectively. We omit

the results for the production function parameter α, since changing this parameter has very little impact

on the welfare effects associated with STC. We also do not report results for the fraction of unattached

workers, since it plays a role very similar to that of risk aversion σ.28 For each change in one of the

remaining parameters and targets, we present the results in a pair of rows. The first of these rows, labeled

‘Policy’, displays the values of the policy instruments for the respective policy experiment. The second

row, labeled ‘Welfare’, displays welfare relative to the experiment g∗UI in consumption equivalents. The

first pair of rows provides this information for the benchmark calibration.

B.1 Perfect Private Insurance

Our two main results of Section 4.2 are robust with respect to these changes in parameters and targets.

First, introducing STC can always improve on UI, with sizable welfare gains varying between 0.1%

and 1.5% for experiment g∗STC |g∗UI and between 0.1% and 2.4% for experiment (gSTC , gUI)
∗. When

we exclude the experiments involving a change in the degree of risk aversion, these gains vary between

0.2% and 0.5%, and between 0.5% and 0.8%, respectively. Naturally, the degree of risk aversion is a

key determinant of the magnitude of welfare gains. With high risk aversion, the motivation to insure

unattached workers is stronger, leading to a higher optimal level of g∗UI . The composition of labor inputs

is more distorted, leaving more room for STC to mitigate these distortions.

Second, optimal levels of STC are markedly less generous than UI, and the results for the experiment

ḡmax
STC |g∗UI show that introducing STC with the same generosity as gUI results in large welfare losses.

Another robust result is that the welfare gains from STC are about equally distributed between the

direct gain of introducing STC for a given level of UI and the additional gain from jointly optimizing

the levels of UI and STC.

Finally, the introduction of a minimum hours reduction does not generally lead to sizable welfare

improvements. In most experiments, the gains are less than a third of welfare gains achievable by STC

alone and negligible for some experiments.

28The benefit of UI is to insure this group of workers, and the magnitude of this benefit is determined by risk aversion

in conjunction with the size of this group.
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B.2 No Private Insurance

As in the benchmark calibration for the no-PI scenario, welfare gains from the introduction of STC

are generally negligible. Small but non-negligible gains arise for high risk aversion and a low targeted

replacement rate. However, in both cases the welfare gains remain an order of magnitude below the

gains obtained in the corresponding sensitivity analysis under perfect PI.
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Table 8: Sensitivity Analysis, Perfect PI

g∗UI g∗STC |g∗UI gmaxSTC |g∗UI (gUI , gSTC)
∗

(gSTC , gMHR)
∗ |g∗UI (gUI , gSTC , gMHR)

∗

Benchmark Policy 0.262 0.08|0.262 0.308|0.262 (0.284, 0.13) (0.0643, 0.809)|0.262 (0.28, 0.0933, 0.825)

Welfare 0 0.3011 −1.858 0.5263 0.4027 0.6079

σ=5 Policy 0.295 0.166|0.295 0.367|0.295 (0.302, 0.183) (0.166, 0.916)|0.295 (0.302, 0.183, 0.905)

Welfare 0 1.527 −0.3053 2.401 1.527 2.401

σ=1 Policy 0.24 0.0436|0.24 0.27|0.24 (0.255, 0.0679) (0.0442, 0.797)|0.24 (0.256, 0.0589, 0.807)

Welfare 0 0.07122 −1.641 0.1153 0.1326 0.1983

σx=0.15 Policy 0.275 0.0882|0.275 0.33|0.275 (0.295, 0.13) (0.0717, 0.735)|0.275 (0.295, 0.0966, 0.752)

Welfare 0 0.3385 −2.234 0.5255 0.4707 0.6686

σx=0.05 Policy 0.249 0.0629|0.249 0.286|0.249 (0.27, 0.123) (0.0499, 0.888)|0.249 (0.27, 0.123, 0.941)

Welfare 0 0.234 −1.644 0.5531 0.2881 0.5531

Frisch Elasticity 1 Policy 0.26 0.0687|0.26 0.319|0.26 (0.287, 0.127) (0.0523, 0.776)|0.26 (0.281, 0.084, 0.801)

Welfare 0 0.3293 −2.805 0.6634 0.4171 0.6836

Frisch Elasticity 0.4 Policy 0.266 0.0983|0.266 0.293|0.266 (0.279, 0.135) (0.0872, 0.86)|0.266 (0.279, 0.11, 0.867)

Welfare 0 0.2336 −0.7572 0.3365 0.3422 0.4554

Temp. Layoffs 0.025 Policy 0.253 0.084|0.253 0.295|0.253 (0.275, 0.136) (0.0663, 0.814)|0.253 (0.271, 0.0968, 0.83)

Welfare 0 0.3336 −1.55 0.5789 0.4307 0.644

Temp. Layoffs 0.005 Policy 0.279 0.0734|0.279 0.331|0.279 (0.299, 0.121) (0.0612, 0.8)|0.279 (0.297, 0.0879, 0.816)

Welfare 0 0.2508 −2.446 0.4422 0.3582 0.5492

Rep. Rate 30% Policy 0.3 0.0654|0.3 0.367|0.3 (0.319, 0.109) (0.0579, 0.79)|0.3 (0.319, 0.0821, 0.805)

Welfare 0 0.1955 −3.429 0.3466 0.307 0.4797

Rep. Rate 20% Policy 0.227 0.0986|0.227 0.259|0.227 (0.25, 0.154) (0.0749, 0.833)|0.227 (0.245, 0.111, 0.851)

Welfare 0 0.4621 −0.677 0.7715 0.5367 0.773
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Table 9: Sensitivity Analysis: No PI

g∗UI g∗STC |g∗UI (gUI , gSTC)
∗

(gSTC , gMHR)
∗ |g∗UI (gUI , gSTC , gMHR)

∗

Benchmark Policy 0.25 0.00316|0.25 (0.25, 0.00331) (0.00314, 0.996)|0.25 (0.25, 0.00329, 0.996)

Welfare 0 0.0009286 0.0009721 0.0009316 0.0009749

σ=5 Policy 0.271 0.0541|0.271 (0.276, 0.0796) (0.0541, 0.984)|0.271 (0.276, 0.0796, 0.976)

Welfare 0 0.2711 0.4612 0.2711 0.4612

σ=1 Policy 0.236 0|0.236 (0.236, 0) (0, 1)|0.236 (0.236, 0, 1)

Welfare 0 −0 −1.249e− 012 −0 −1.222e− 012

σx=0.15 Policy 0.258 0.000398|0.258 (0.258, 0.000406) (0.000439, 0.996)|0.258 (0.258, 0.000439, 0.996)

Welfare 0 1.072e− 005 1.096e− 005 1.562e− 005 1.59e− 005

σx=0.05 Policy 0.243 0.00338|0.243 (0.244, 0.00371) (0.00338, 0.998)|0.243 (0.244, 0.00371, 0.998)

Welfare 0 0.001878 0.002057 0.001878 0.002061

Frisch Elasticity 1 Policy 0.249 0.00246|0.249 (0.249, 0.00258) (0.00244, 0.996)|0.249 (0.249, 0.00256, 0.996)

Welfare 0 0.0007345 0.0007715 0.0007384 0.0007751

Frisch Elasticity 0.4 Policy 0.25 0.00414|0.25 (0.25, 0.00428) (0.00412, 0.998)|0.25 (0.25, 0.00426, 0.998)

Welfare 0 0.000995 0.001033 0.0009969 0.001034

Temp. Layoffs 0.025 Policy 0.243 0.0043|0.243 (0.243, 0.00455) (0.00427, 0.996)|0.243 (0.243, 0.00452, 0.996)

Welfare 0 0.001713 0.001812 0.001714 0.001813

Temp. Layoffs 0.005 Policy 0.262 0.00133|0.262 (0.262, 0.00137) (0.00131, 0.997)|0.262 (0.262, 0.00136, 0.997)

Welfare 0 0.0001646 0.0001694 0.0001699 0.0001747

Rep. Rate 30% Policy 0.293 0|0.293 (0.293, 0) (0, 1)|0.293 (0.293, 0, 1)

Welfare 0 −0 −6.2e− 011 −0 −7.841e− 011

Rep. Rate 20% Policy 0.206 0.0153|0.206 (0.208, 0.0189) (0.0153, 0.995)|0.206 (0.208, 0.0189, 0.994)

Welfare 0 0.02069 0.02529 0.02069 0.02529
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C Redundancy of Experience Rating

The redundancy of experience rating is a feature our model shares with those of BW and WH, and it

applies even to their models in which attached agents are heterogeneous in that some are workers while

others are employers. The reason for this redundancy is the absence of imperfections in the risk sharing

contract among agents attached to a firm.

First, we establish redundancy for a version of our model in which both UI benefits and experience

rating are allowed to differentiate between attached and unattached workers. Following BW and WH,

experience rating imposes a tax on a firm which amounts to a fraction e ∈ [0, 1] of the total benefits

received by the workers attached to that firm. We also allow for experience rating of unattached workers

with factor eν ∈ [0, 1].29 With experience rating, the net-transfer schedule for firms (3) becomes

(38) (1− e)
[
(1− n)gUI + nI

[
h ≤ gMHRh̄

]
·
(
h̄− h

)
· gSTC

]
− τnh

and the benefit received by unattached workers is (1 − eν)gνUI where gνUI is the UI benefit level for

an unattached worker, which for now is allowed to differ from gUI . It is immediately clear that this

system is equivalent to an alternative system (distinguished by a check) given by ǧUI = (1 − e)gUI ,

ǧSTC = (1− e)gSTC , ě = 0, ǧνUI = (1− eν)gνUI , and ě
ν = 0.

In our model without experience rating, we restrict STC and UI to be uniform. As discussed in

the text, this should be understood as a restriction on effective subsidies. Otherwise this restriction

has no content, as any differentiation can be implemented through experience rating. Next, we show

that experience rating is redundant under the assumption that the effective subsidy cannot differentiate

between attached and unattached workers:

(1− e)gUI = (1− eν)gνUI .

The system consisting of ǧUI , ǧSTC , and ǧνUI and no experience rating continues to be equivalent. It

satisfies ǧUI = ǧνUI , so the UI benefit does not differentiate between attached and unattached workers.

29A natural level for this is zero, given that these workers are not attached to a firm. However, one can also assume that

these workers were previously attached to some firm, and that the government imposes the experience-rating tax on the

owners of that firm. In our model of owner-operators, it is internally consistent to assume that unattached workers own

the firm from which they became unattached. In their role as owners, they are liable for the experience-rating tax induced

by the benefits they receive in their role as workers.
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