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ABSTRACT 
 

Treatment Effect Heterogeneity in Theory and Practice∗ 
 

Instrumental Variables (IV) methods identify internally valid causal effects for individuals 
whose treatment status is manipulable by the instrument at hand. Inference for other 
populations requires homogeneity assumptions. This paper outlines a theoretical framework 
that nests causal homogeneity assumptions. These ideas are illustrated using sibling-sex 
composition to estimate the effect of child-bearing on economic and marital outcomes. The 
application is motivated by American welfare reform. The empirical results generally support 
the notion of reduced labor supply and increased poverty as a consequence of childbearing, 
but evidence on the impact of childbearing on marital stability and welfare use is more 
tenuous. 
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2Denis Sargan noted the difficulty of the core instrumental variables identification problem, i.e.,
identification in models with constant effects, in his seminal 1958 paper: “It is not easy to justify the basic
assumptions concerning these errors, namely that they are independent of the instrumental variables.” (p. 396; quoted
in Arellano, 2002).

Empirical research often focuses on causal inference for the purpose of prediction, yet it seems fair

to say that most prediction involves a fair amount of guesswork.  The relevance or “external validity” of a

particular set of empirical results is always an open question.  As Karl Pearson (1911, p. 157) observed in

an early discussion of the use of correlation for prediction, “Everything in the universe occurs but once, there

is no absolute sameness of repetition.”  This practical difficulty notwithstanding, empirical research is almost

always motivated by a belief that estimates for a particular context provide useful information about the

likely effects of similar programs or events in the future.  Our investment of time and energy in often-

discouraging empirical work reveals that empiricists like me are willing to extrapolate.  

The basis for extrapolation is a set of assumptions about the cross-sectional homogeneity or temporal

stability of causal effects.  As a graduate student, I learned about parameter stability as “the Lucas critique,”

while my own teaching and research focuses on the identification possibilities for average causal effects in

models with heterogeneous potential outcomes.  Applied micro-econometricians devote considerable

attention to the question of whether homogeneity and stability assumptions can be justified, and to the

implications of heterogeneity for alternative parameter estimates.  Regrettably, this sort of analysis

sometimes comes at the expense of a rigorous examination of the internal validity of estimates, i.e., whether

the estimates have a causal interpretation for the population under study.  Clearly, however, even internally

valid estimates are less interesting if they are completely local, i.e., have no predictive value for populations

other than the directly affected group. 

In this paper, I discuss the nature and consequences of homogeneity assumptions that facilitate the

use of instrumental variables (IV) estimates for extrapolation.2  To be precise, I am interested in the

assumptions that link a Local Average Treatment Effect (LATE) tied to a particular instrument with the

population Average Treatment Effect (ATE), which is not instrument-dependent.  Implicitly, I have in mind
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prediction for populations defined by covariates.  I focus on ATE because it answers the question: “If we

were to treat individuals with characteristics X, what would the likely change in outcomes be”?  This allows

me to sidestep variability due to changes in the process determining treatment status.  For example, causal

research often focuses on average treatment effects on the treated population.  Overall average treatment

effects are theoretically more stable than average effects on the treated, since the latter depend on who gets

treated as well as on the distribution of potential outcomes.  

The external validity of IV estimates is of special interest both because of the growing importance

of IV methods in empirical work (see, e.g., Moffitt, 1999), and because the ex ante generality of IV estimates

is limited in a precise way by a number of well-known theoretical results.  Except in special cases like

constant treatment effects and certain types of randomized trials, the standard IV assumptions of exclusion

and independence – analogous to the notion that the instrument induces a good experiment for the effect of

interest – are not sufficient to capture the expected causal effect on a randomly selected individual or even

in the population subject to treatment.  Rather, basic IV assumptions identify causal effects on “compliers,”

defined as the subpopulation of treated individuals whose treatment status can be influenced by the

instrument.  Although this limitation is unsurprising, the nature and plausibility of assumptions under which

IV estimates have broader predictive power are worth exploring. 

The next two sections develop a theoretical framework linking alternative causal parameters to

population subgroups defined by their response to an instrument.  That is, I consider formal links between

parameters like LATE and ATE.  My agenda is to make this link using a range of assumptions, progressing

from stronger (no selection bias) to weaker (a proportionality assumption).   These theoretical ideas are then

applied to the same sex instrument, used by Angrist and Evans (1998) to estimate the effects of childbearing

on labor supply. This instrument arises from the fact that some parents prefer a mixed sibling sex

composition.  In particular, among parents who have at least two children, those with two boys or two girls

are much more likely to go on to have a third child.  Because child sex is virtually randomly assigned, a
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dummy for same sex sibling pairs provides an instrumental variable that can be used to identify the effect

of childbearing on a range of economic and family outcomes.

My earlier work with Evans using the same sex instrument focused on the effects of childbearing on

labor supply.  While labor supply outcomes also appear in this paper, the empirical work features an

investigation of the effects of childbearing on marital stability.  An inquiry into the effects of family size on

marital stability can be motivated by American welfare reform, which penalizes further childbearing by

women receiving public assistance on the grounds that increases in family size make continued poverty and

welfare receipt more likely.  I therefore look at effects on marital status, poverty status, and welfare use, as

well as labor supply.  Estimates of ATE for the effects of childbearing are generally smaller than estimates

of LATE.   For example, while estimates of LATE for the effect of childbearing on welfare use and marital

stability are mostly significantly different from zero, most (though not all) of the estimates of ATE for effects

of childbearing on marital status and welfare use are small and insignificant.  One tantalizing result is that

for teen mothers, LATE appears to be virtually identical to the population average treatment effect when the

latter is imputed under the assumptions considered below.

The empirical results suggest a pattern of modest effects, but the variability in parameter estimates

across model specifications and samples, as well as the usual problem of more imprecise estimates under

weaker identifying assumptions, reduces the predictive value any findings.   On balance it seems fair to say

that the attempt to go from LATE to ATE weakens the evidence for an adverse effect of childbearing on

marital stability and welfare use, but the estimates of ATE do not provide a sharp alternative to LATE.  This

is perhaps not surprising, given the difficulty of the underlying identification problem.  As in the

experimental sciences, the best evidence for predictive value is likely to come from new data sets and new

experiments, which in the case of applied econometrics usually means new instruments.



3See Maynard, et al (1998) for more on the motivation for family caps.  The possibility of a link between
childbearing and poverty notwithstanding, there is little evidence that family caps actually affect fertility behavior. 
See, e.g., Grogger and Bronars (2001), Blank (2002) or Kearney (2002). 
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1. Causality and Potential Outcomes in Research on Childbearing

The effects of children on marital stability have long been of interest to social scientists and are of

course of more than academic interest to many married couples.  Previous research (e.g., Becker, Lanes, and

Michael, 1977; Cherlin, 1977; Heaton, 1990 and Waite and Lillard, 1991) suggests the presence of young

children increases marital stability, although many authors acknowledge serious selection problems that may

bias results.  A related issue is the connection between childbearing and women’s standard of living.  A large

literature looks at the effect of teen childbearing on mothers’ schooling, earnings, and welfare status,

sometimes using instrumental variables (e.g., Bronars and Grogger, 1994).  Interest in this question can be

motivated by welfare reform, which include “family caps” in many U.S. states.  Family caps reduce or

eliminate benefits paid for children born to welfare recipients, on the theory that further childbearing by

welfare mothers increases the likelihood they will stay poor and therefore continue to receive benefits.3  

Are children the glue that holds couples together or a burden that accelerates a fragile family’s

collapse?  Does childbearing further impoverish poor women?  Implicit in these questions is the notion of

potential outcomes, i.e., a contrast in circumstances with and without childbearing, for a given family.  To

represent this idea formally, let Di be an indicator for women with more than two children in a sample of

women with at least two children.  Because Di is binary, I will refer to it as a “treatment,” even though

family size is not determined directly by a program or policy.   Let Y1i be a woman’s circumstances if Di=1,

and let Y0i be her circumstances otherwise.  We imagine both of these potential outcomes are well-defined

for everyone, though only one is ever observed for each woman.  Formally, this can be expressed by writing

the observed outcome, Yi, as

Yi = Y0i(1)Di) + Y1iDi.

For both practical and substantive reasons, I focus here on fertility consequences defined with
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reference to the transition from two to more than two children.  On the practical side, instruments based on

sibling sex composition are available for this fertility increment.  Angrist and Evans (1998) used parents

preferences for a mixed sibling sex composition to estimate the labor supply consequences of childbearing.

On the substantive side, post-war reductions in marital fertility have been concentrated in the 2-3 child range

(see, e.g., Westoff, Potter, and Sagi, 1963).  While almost all couples want at least one child, the decision

to have a third child may be due in part to a sense of whether this is good for long-term marital stability or,

more generally, the economic welfare of the family.  Finally, interest in the 2-to-3 child increment is

supported by the fact that the population of welfare mothers in 1990 had an average of about 2.3 children

and a median of 2 children. 

Since both Y1i and Y0i are never both observed for the same woman, research on causal effects tries

to capture the average difference in potential outcomes for different subpopulations.  For example, we may

be interested in E[Y1i ! Y0i| Di=1], which is the effect on women who have a third child.  Note that E[Y1i|

Di=1] is an observed quantity, so estimating E[Y1i ! Y0i| Di=1] is equivalent to estimating the counter-factual

average, E[Y0i| Di=1].  Alternately, we may be interested in the unconditional average treatment effect (ATE),

E[Y1i ! Y0i], which can be used to make predictive statements about the impact of childbearing on a randomly

chosen woman (or a woman with a particular set of characteristics if the analysis conditions on covariates).

Estimation of ATE is equivalent to estimation of both counterfactual averages, E[Y0i| Di=1]and E[Y1i| Di=0].

Causal parameters are easy to describe but hard to measure.  The observed difference in outcomes

between those with Di=1 and Di=0 equals E[Y1i ! Y0i| Di=1] plus a bias term:

E[Yi| Di=1] -  E[Yi| Di=0] =  E[Y1i| Di=1] -  E[Y0i| Di=0] (1)

=  E[Y1i-Y0i| Di=1] +{E[Y0i| Di=1]-E[Y0i| Di=0]}.

The bias term disappears when childbearing is determined in a manner independent of a woman’s potential

outcomes.  But this independence assumption seems unrealistic since childbearing decisions are made in light

of information about family circumstances and earnings potential.
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Two sorts of strategies are typically used to estimate causal effects in the presence of possible

omitted variables bias.  One assumes that conditional on covariates, Xi, the regressor of interest, Di, is

independent of potential outcomes.  Then any causal effect of interest can be estimated from weighted

conditional-on-X comparisons.  This is a strong assumption that seems most plausible when researchers have

considerable prior information about the process determining Di.  Alternately, we might try to find an

instrumental variable which, perhaps after conditioning on covariates, is related to Di but independent of

potential outcomes.  The instrument used here is a dummy variable indicating same-sex sibling pairs.  

2. IV in context

IV estimates capture the effect of treatment on the treated for those whose treatment status can be

changed by the instrument at hand.  This idea is easiest to formalize using a notation for potential treatment

assignments that parallels the notation for potential outcomes.  In particular, let D0i and D1i denote potential

treatment assignments indexed relative to a binary instrument.  Suppose, for example, Di is determined by

a latent-index assignment mechanism, 

Di = 1((0 + (1Zi > 0i), (2)

where Zi is a binary instrument, and 0i is a random error independent of the instrument.  Then the potential

treatment assignments are D0i = 1[(0 > 0i] and D1i = 1[(0 + (1 > 0i], both of which are independent of Zi.  

The constant-effects latent-index assignment model is restrictive since it implies D1i > D0i for all i,

or vice versa.  We can relax this restriction by allowing a random (1i for each i, in which case the latent index

model is just an alternative  notation for D0i and D1i.  Whether linked to an index model or note, D0i tells us

what treatment i would receive if Zi=0, and D1i tells us what treatment i would receive if Zi=1.  The observed

assignment variable, Di, can therefore be written:

Di = D0i(1)Zi) + D1iZi.

This notation makes it clear that, paralleling potential outcomes, only one potential assignment is ever



4Proof of the LATE result: E[Yi| Zi=1]=E[Y0i + (Y1i-Y0i)Di| Zi=1], which equals E[Y0i + (Y1i-Y0i)D1i] by
independence.  Likewise E[Yi| Zi=0]=E[Y0i + (Y1i-Y0i)D0i ], so the Wald numerator is E[(Y1i-Y0i)(D1i-D0i)].
Monotonicity means D1i-D0i equals one or zero, so E[(Y1i-Y0i)(D1i-D0i)]=E[Y1i-Y0i|D1i>D0i]P[D1i>D0i]. A similar
argument shows E[Di| Zi=1]-E[Di| Zi=0] = E[D1i-D0i]=P[D1i>D0i].
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observed for a particular individual.

The key assumptions supporting IV estimation are given below (for a model without covariates):

INDEPENDENCE. {Y0i, Y1i, D0i, D1i} ” Zi.

FIRST STAGE.  P[Di=1| Zi=1] …P[Di=1| Zi=0].

MONOTONICITY.  Either D1i $ D0i œ i or vice versa; without loss of generality, assume the former.

These assumptions capture the notion that the instrument is “as good as randomly assigned” (independence),

affects the probability of treatment (first-stage), and affects everyone the same way if at all (monotonicity).

Imbens and Angrist [1994] show that together they imply:

E[Yi| Zi=1]!E[Yi| Zi=0]
))))))))))))))))    = E[Y1i-Y0i| D1i > D0i].
E[Di| Zi=1]!E[Di| Zi=0].

The left-hand side of this expression is the population analog of Wald’s (1940) estimator for regression

models with measurement error.  The Local Average Treatment Effect (LATE) on the right hand side, E[Y1i-

Y0i| D1i > D0i], is the effect of treatment on those whose treatment status is changed by the instrument, i.e.,

the population for which D1i=1 and D0i=0.4

A standard assumption invoked in most empirical studies is constant causal effects, i.e.,

Y1i = Y0i + ",

for some constant ".  In the childbearing application, a constant effects assumption implies that IV

consistently estimates the common effects of childbearing on all women, since, given constant effects, E[Y1i-

Y0i| D1i > D0i]=".  The LATE result above highlights the fact that in a more realistic world where this effect
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varies (and indeed it must vary if, for example, Yi is a binary outcome or other variable with limited support),

then we can be sure only that IV captures the effect on individuals whose treatment status can be changed

by manipulating Zi.  These are people with D1i=1 and D0i=0, or D1i)D0i=1. Note also that since D1i and D0i

are defined with reference to a particular instrument, then – again, in the absence of additional assumptions

– we should expect different instruments to uncover different average causal effects.  We might, for example,

expect an IV strategy based on the same sex instrument to identify a different average effect than an

instrument based on twin births.  In fact, Angrist and Evans (1998) report IV estimates using twin birth

instruments that are much lower than those using same sex instruments.

Angrist, Imbens, and Rubin (1996) refer to people with D1i!D0i=1 as the population of compliers.

This terminology is motivated by an analogy to randomized trials where Zi is a randomized offer of treatment

and Di is actual treatment status.  Since D1i!D0i=1 implies Di=Zi, compliers are those who comply with an

experimenter’s intended treatment status (though not all those with Di=Zi are compliers, as explained below).

For compliers, the averages of Yi1 and Y0i as well as the average difference are also identified.  In particular,

Abadie (2002) shows that

E[YiDi| Zi=1]!E[YiDi| Zi=0]
)))))))))))))))))))    = E[Y1i| D1i > D0i] (3a)
   E[Di| Zi=1]!E[Di| Zi=0]

E[Yi(1!Di)| Zi=1]!E[Yi(1-Di)| Zi=0]
)))))))))))))))))))))))) = E[Y0i| D1i > D0i]. (3b)
   E[(1!Di)| Zi=1]!E[(1!Di)| Zi=0]

The entire (marginal) distributions of Y1i and Y0i are similarly identified, a fact used by Abadie, Angrist, and

Imbens (2002) to estimate the causal effect of treatment on the quantiles of potential outcomes for compliers.

An important econometric result in the theory of causal effects is that when treatment is assigned

by a mechanism like (2), population average treatment effects and the effect on the treated are not identified

without assumptions such as constant effects or some other assumption beyond the 3 given above.  This

result or theorem appears in various forms; see, for example, Chamberlain (1986), Heckman (1990), and
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Angrist and Imbens (1991).  The next section develops a framework that highlights the limits to identification

and the role played by alternative homogeneity assumptions in efforts to go beyond LATE.  The Same sex

instrument offers an especially challenging proving ground for these ideas since at most 7% of American

women have an additional child as a result of sex preferences.  Causal effects on same sex compliers can

therefore be quite far from overall average effects if the impact of childbearing on these women is not typical.

Before turning to a general discussion of treatment effect heterogeneity, I briefly explore the relationship

between LATE, ATE, and effects on the treated in a parametric model that mimics the same sex setup.

2.1 A Parametric Example

Following Heckman, Tobias, and Vytlacil (2001), I calculated average causal effects using a

trivariate Normal model for the joint distribution of potential outcomes and the error term in the latent-index

assignment mechanism given by equation (2).  Assuming the distribution of [Y1i Y0i 0i]N is joint standard

Normal, ATE is zero by construction.  Assume also that (1>0 so monotonicity is satisfied with D1i$D0i and

let D10 be the correlation between Y1i!Y0i and 0i.  In this parametric model, LATE can be written:

E[Y1i-Y0i| D1i > D0i] = E[Y1i-Y0i| (0+(1> 0i > (0] (4)

= D10{[N((0)!N((0+(1)][M((0+(1)!M((0)]!1},

where N(A) and M(A) are the Normal density and distribution functions.  Similarly, we can use Normality to

write the effect on the treated as:

 E[Y1i!Y0i| Di=1] = E{E[Y1i-Y0i| (0+(1Zi >0i, Zi]| Di=1} (5)

= !D10{8((0+(1)E[Zi| Di=1] + 8((0)(1!E[Zi| Di=1])}.

where 8(A) is the inverse Mill’s ratio, N(A)/M(A).  This formula is useful for calculation, but the following

expression better clarifies the difference between LATE and the effect on the treated:

 E[Y1i!Y0i| Di=1] = E[Y1i-Y0i| (0 + (1 > 0i >(0]T + E[Y1i-Y0i| (0 > 0i](1!T), (6)

where T={M((0+(1)!M((0)}[P(Zi=1)/P(Di=1)] and 1!T=M((0)/P(Di=1).  Equation (6) shows the effect on



5A leading example is the randomized trial used to evaluate subsidized training programs offered through
the Job Training Partnership Act, one of America’s largest Federally-sponsored training programs.  Subsidized
training was offered but not compulsory in the randomly selected treatment group.  About 60 % of those offered
treatment took up the offer, so E[Di| Zi=1]=.6, where Zi is the randomized offer of treatment and Di is actual training
status.  On the other hand, (virtually) no one in the control group received treatment, so E[Di| Zi=0].0.  In this case,
LATE is the effect on the treated because the set of always-takers is virtually empty.  See Orr, et al (1996) for an IV
analysis of the JTPA.  
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the treated to be a weighted average of LATE and the average effect on those with (0 > 0i, with weights that

depend on the first stage and the distribution of Zi.

2.1.1 LATE vs. The Effect on the Treated

LATE and the effect on the treated both depend on the correlation between potential outcomes and

the latent first-stage error, and on the first-stage coefficients.  The effect on the treated also depends on the

distribution of the instrument.  The relationship between alternative causal parameters in the parametric

model is sketched in Fig. 1, which plots ATE ( a constant equal to zero), LATE, and the effect on the treated

against M((0) for a fixed first stage of .07 and an instrument that is Bernoulli(.5).  In other words, as with the

same sex instrument in Angrist and Evans (1998), the simulated instrument is a dummy that equals one with

probability ½ , and increases the probability that Di equals 1 by 7 percentage points.  The top panel of Fig.

1 sets D10 = !.1, so that the probability of treatment increases with the gains from treatment, as in a Roy

(1951) model, while the bottom panel sets D10 = !.5 for stronger selection on gains.  With positive D10, the

figure would be reflected through the horizontal axis.

The leftmost point in the figure shows that LATE equals the effect on the treated when M((0)=E[Di|

Zi=0]=0.  This is incompatible with the Normal latent-index model since it requires (0=!4, but E[Di| Zi=0]=0

is an important special case in practice, most commonly in randomized trials with partial compliance in the

treated group only (see, e.g., Bloom, 1984 or Angrist and Imbens, 1991).5  At the other end of the figure, the

effect on the treated approaches the overall average effect when almost everyone gets treated.  Finally, Fig.

2 shows that increasing the size of the first stage effect from .07 to .30 pulls both LATE and the effect on



6Joint symmetry means that if f(yji, 0i) is the joint density of yji=Yji!E[Yji] and 0i, then f(!yji, !0i)= f(yji, 0i). 
A weaker condition with the same result (a symmetric first stage ranging from p to 1!p gives LATE=ATE) is that
E[yji| 0i] is an odd function (as for a linear model) and that 0i has a symmetric distribution.  Angrist (1991) somewhat
more loosely noted that IV estimates should be close to ATE when the first stage changes the probability of
treatment at values centered on one-half, as is required for the first stage to be symmetric.

11

the treated closer to the overall average effect.

The effect of treatment on the treated is above LATE for all first-stage baseline values, a

consequence of the fact that selection on gains makes E[Y1i!Y0i| (0 > 0i] bigger than LATE.   Moreover,

LATE provides a better measure of the effect of treatment on a randomly chosen individual (ATE) than does

the effect on the treated for most parameter values.  A final important feature of the figure (also apparent

from equation (4)) is that LATE=ATE when (1=!2(0 since N((0)=N(!(0) by symmetry of the Normal

density.  Thus, as noted by Heckman and Vytlacil (2000), a “symmetric first stage” that changes the

probability of treatment from p to 1!p implies LATE equals ATE in the Normal model, or in any latent

variable model with jointly symmetric errors.6

3. Identification Problems and Prospects

Angrist, Imbens, and Rubin (1996) show that the potential-outcomes framework for IV divides a

population into three groups, which I refer to below as “potential-assignment subpopulations.”  The first are

compliers, i.e., those for whom D1i=1 and D0i=0.  In the latent index model, compliers have (0+(1>0i>(0.  The

other two groups include individuals whose treatment status is unaffected by the instrument.  One consists

of never-takers, with D1i=D0i=0.  Never-takers are never treated regardless of the value of Zi to which they

might be exposed.  In the latent index model, never-takers have 0i>(0+(1.  The second unaffected group

consists of always-takers, with D1i=D0i=1.  Always-takers are always treated regardless of the value of Zi to

which they might be exposed.  In the latent-index model, always-takers have (0>0i.  A possible fourth group

with D0i=1 and D1i=0 is empty by virtue of the monotonicity assumption. 

The set of the treated is the union of the disjoint sets of always-takers and compliers with Zi=1.  This



12

provides an interpretation for the following identity:

Di  = D0i + (D1i!D0i)Zi,

since D0i=1 indicates always-takers and (D1i!D0i)Zi, indicates compliers with Zi=1.  Since Zi is independent

of complier status, compliers with Zi=1 are representative of all compliers.  Causal effects on the treated can

therefore be decomposed as:

E[Y1i ! Y0i| Di=1] = E[Y1i ! Y0i| D0i>D1i](1!P(D0i=D1i=1| Di=1)) + (7)

 E[Y1i ! Y0i| D0i=D1i=1]P(D0i=D1i=1| Di=1)).

Equation (7) generalizes (6), which gives the same decomposition for the Normal model.  Because an

instrumental variable provides no information about average treatment effects in the set of always-takers,

LATE is identified while E[Y1i!Y0i| Di=1] is not. 

To further pinpoint the identification challenge in this context, note that E[Y1i| D0i=D1i=1] and E[Y0i|

D0i=D1i=0] can be estimated using the following relations:

E[Y1i| D0i=D1i=1] = E[Y1i| D0i=1] = E[Yi| Di=1, Zi=0] (8a)

E[Y0i| D0i=D1i=0] = E[Y0i| D1i=0] = E[Yi| Di=0, Zi=1]. (8b)

The missing pieces of the identification puzzle are therefore the fully counter-factual averages, E[Y1i|

D0i=D1i=0] and E[Y0i| D0i=D1i=1].

3.1 Restricting Potential-Assignment Subpopulations

The conditional expectation functions (CEFs) of Y1i and Y0i given potential assignments provide a

framework for the discussion of alternative identification strategies.  These CEFs can be written:

E[Y1i| D0i, D1i] = "1 + $10D0i + $11D1i (9a)

E[Y0i| D0i, D1i] = "0 + $00D0i + $01D1i. (9b)

Equations (9a) and (9b) impose no restrictions since there are three potential-assignment subpopulations and

three parameters in each CEF.  The 6 conditional means, E[Yji| D0i, D1i], are uniquely determined by (9a,b)



7See Chamberlain (1986).  The multinomial assumption has some content since it implies that potential
outcomes have bounded support, so that ATE and effects on the treated are bounded.  See Manski (1990) or
Heckman and Vytlacil (2000).
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as follows:

Group Definition Indicator CEF for Y0i CEF for Y1i

Compliers D1i=1, D0i=0 D1i!D0i "0 + $01 "1 + $11
Always-takers D1i=D0i=1 D0i  "0 + $00 + $01 "1 + $10 + $11
Never-takers D1i=D0i=0 1!D1i  "0 "1 

The CEF for observed outcomes, E[Yi| Di, Zi], has a distribution with 4 points of support, while the

CEFs of Y0i and Y1i given D0i and D1i depend on 6 parameters.  This suggests the latter are not identified from

the former without additional restrictions, a result implied by the theorem below.

THEOREM:  Suppose the Independence, First-Stage, and Monotonicity assumptions hold and that Y0i and  Y1i
have multinomial distributions.  Let f0(y| D1i, D0i) and f1(y| D1i, D0i) denote the conditional distribution
functions for potential outcomes given potential assignments and let fYDZ(y, d, z) denote the joint distribution
of Yi, Di, and Zi.  Then f0(y| D1i, D0i) and f1(y| D1i, D0i) are not identified from fYDZ(y, d, z).

PROOF:  Factor the d.f. using fYDZ(y, d, z) = fY|DZ(y| d, z)gDZ(d,z).  The second term is unrestricted.  Let
fj(y| D1i, D0i) = "j(y) + $j0(y)D0i + $j1(y)D1i,

substitute into fY|DZ(y, d, z), and iterate expectations to obtain the multinomial likelihood solely as a function
of the parameters determining f0(y| D1i, D0i) and f1(y| D1i, D0i).  Finally, substitute for f0(y| D1i, D0i) and f1(y|
D1i, D0i) to show the likelihood is invariant to the choice of $00(y) and $11(y) as long as "1(y)+$11(y) is
constant.  Non-identification of $00(y) implies non-identification of the marginal distribution of Y0i while
non-identification of $11(y) implies non-identification of the marginal distribution of Y1i.  

The multinomial distributional assumption raises the question of how general the theorem is.  It seems

general enough for practical purposes since, as noted by Chamberlain (1987), any distribution can be

approximated arbitrarily well by a multinomial.  Moreover, I’d like to rule out identification based on

continuity or support conditions to avoid paradoxes such as “identification at infinity”.7

3.2 A Menu of Restrictions 

A variety of restrictions on (9a,b) are sufficient to identify ATE.  I briefly discusses 4 cases that

strike me as being of special interest.  The simplest is ignorable treatment assignment or “no selection bias.”



8A weaker version of Restriction 1 with $11=$00=0 is also sufficient to identify ATE since this equates never-
takers with compliers for the CEF of Y1i and always-takers with compliers for the CEF of Y0i. This seems no easier to
motivate than Restriction 1, so I limit the discussion to the over-identified case.  
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RESTRICTION 1 (NO SELECTION BIAS).  $00=$01=$10=$11=0; 

This implies LATE = "1!"0 = ATE.  Under Restriction 1, ATE can be estimated from simple treatment-

control comparisons.

Because the assumption of no selection bias involves four restrictions while two would be sufficient,

ATE is over-identified in this case.8  A standard Hausman (1978) test for endogeneity exploits over-

identification by comparing IV and OLS estimates, equivalent here to a comparison of Wald estimates with

treatment-control differences.  A modified and potentially more powerful test can be based on the fact that

under Restriction 1, E[Y1i| D0i=1]="1 and E[Y0i| D1i=0]="0.  Using (8a,b), this suggests the following

specification test:

TEST FOR SELECTION BIAS.

E[Yi| Zi=1]!E[Yi| Zi=0]
))))))))))))))))    = {E[Yi| Di=1, Zi=0] ! E[Yi| Di=0, Zi=1]}. (T1)
E[Di| Zi=1]!E[Di| Zi=0].

In the appendix, I show how a test statistic based on T1 can be computed using regression software. 

The Hausman test for selection bias replaces E[Yi| Di=1, Zi=0]!E[Yi| Di=0, Zi=1] on the right hand

side of T1 with E[Yi| Di=1]!E[Yi| Di=0].  The Hausman test will also work in the causal framework outlined

here since under Restriction 1 both OLS and IV estimate ATE.  The difference between T1 and a Hausman

test arises from the fact that the Hausman test implicitly compares E[Yji| D1i>D0i] with E[Yji| Di=j] for j=0,1,

while T1 implicitly compares E[Yji| D1i>D0i] with E[Yji| D1i=D0i=j] for j=0,1.  These two pairs of comparisons

are the same under monotonicity but not in general.  The empirical results below suggest that T1, which uses



9Abadie (2002) develops a number of related bootstrap specification tests. 

10Note that the first part of Restriction 2 is sufficient to identify the effect of treatment on the treated, while
the second part is sufficient to identify the effect of treatment on the non-treated.  Although conditional constant
effects is the basis of much empirical work and may be a reasonable approximation for practical purposes, as a
theoretical matter this is typically implausible unless treatment is exogenous; see, e.g., Wooldridge (1997, 2003).
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monotonicity, indeed provides a more powerful specification test.9 

While pivotal for specification testing, the assumption of no selection bias is an unattractive basis

for causal inference since the use of IV is motivated by the possibility of selection bias.  An alternative

assumption that allows for selection bias amounts to the claim that the difference between Y1i and Y0i is

mean-independent of potential treatment assignments.  I refer to this as “conditional constant effects.”

Formally, this means:

RESTRICTION 2 (CONDITIONAL CONSTANT EFFECTS).  $00=$10; $01=$11.

This pair of restrictions is just sufficient to identify ATE.  In particular, we again have LATE = "1!"0 =

ATE., or, equivalently, E[Y1i)Y0i| D1i, D0i] = E[Y1i)Y0i].  While restriction 2 allows for selection bias in the

sense that Y1i and Y0i are correlated with potential treatment assignments, the correlation is restricted to be

the same for both potential outcomes, so that the difference between Y1i and Y0i is orthogonal to potential

treatment assignments.

In the same sex example, Restriction 2 amounts to saying that average treatment effects, while not

constant, are nevertheless the same regardless of a woman’s likelihood of having children.  Restriction 2

rules out Roy (1951) type selection, where treatment status is determined at least in part by the gains from

treatment.  In the case of childbearing, for example, a woman’s childbearing decision must (somewhat

implausibly) be independent of individual-level variation in the labor-supply consequences of childbearing.

On the plus side, Restriction 2 is weaker than the usual constant-effects assumption in that it does not require

a deterministic link between Y1i and Y0i.10  
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A third restriction, which I call “linearity,” is appealing because it is not fundamentally inconsistent

with a benchmark Roy-type selection model. The linearity condition is:

RESTRICTION 3 (LINEARITY).  $00=$01; $10=$11.

In this case, the potential-outcomes CEFs can be written:

 E[Y1i| D0i, D1i] = "1 + $11(D0i + D1i) (10a)

E[Y0i| D0i, D1i] = "0 + $01(D0i + D1i). (10b)

Restriction 3 requires the potential-outcomes CEF to be linear in Di
*
/D0i + D1i, where Di

* is a summary

measure of the desire or suitability of an individual for treatment.  If the restriction is false, we can

nevertheless think of (10a) and (10b) as providing a minimum mean-squared error approximation to the

unrestricted model, (9a) and (9b).

To see how average causal effects are identified under Restriction 3, write the probabilities of being

an always-taker and never-taker as

P[D0i=D1i=1] = E[D0i] = pa 

P[D0i=D1i=0] = E[1!D1i] = pn.

and note that 

E[D0i + D1i] = 1 + (pa ! pn).

Substitute into (10a) and (10b) and difference to obtain

E[Y1i ! Y0i] = [("1 + $11) ! ("0 + $01)] + ($11 ! $01)(pa ! pn) (11)

= E[Y1i ! Y0i | D1i >D0i ] 

+ {(E[Y1i| D0i=1]!E[Y1i| D1i>D0i]) ! (E[Y0i| D1i>D0i]!E[Y0i| D1i=0])}(pa ! pn).

The components on the right hand side of (11) are easily estimated; details are given in the appendix.  

A calculation similar to that used to derive (11) shows that the effect of treatment on the treated can



11With no always-takers, we have D0i/0, so Restriction 3 is not binding.  
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be constructing using 

E[Y1i ! Y0i| Di=1] = [("1 + $11) ! ("0 + $01)] + ($11 ! $01)(pa/pd) (12)

= E[Y1i ! Y0i | D1i >D0i ] 

+ {(E[Y1i| D0i=1]!E[Y1i| D1i>D0i]) ! (E[Y0i| D1i>D0i]!E[Y0i| D1i=0])}(pa/pd),

where pd is the probability of treatment.  From (12), we can immediately derive the Bloom (1984) result that

if there are no always-takers, LATE is the effect on the treated.11

3.1 Symmetry Revisited

 Restriction 3 is closely related to the symmetry property discussed in the parametric example.  To

see this, note that as a consequence of linearity we can interpolate the CEF for compliers by averaging as

follows:

E[Yji | D1i > D0i] = {E[Yji | D0i=1] + E[Yji | D1i=0]}/2. (13)

This means that expected outcomes for compliers can be obtained as the average of expected outcomes for

always- and never-takers.  What distributional assumptions support a relation like (13)?  Suppose treatment

is determined by a latent-index assignment mechanism, as in equation (2).  Then, 

E[Yji | D1i = D0i =0] = E[Yji | 0i > (0 + (1]

E[Yji | D1i = D0i =1] = E[Yji | 0i < (0],

and

E[Yji | D1i > D0i] = E[Yji | (0 + (1 > 0i >(0].

If in addition, (1=!2(0, then equation (13) holds as long as (Yji, 0i) is jointly symmetric, as in the Normal

model.  The restriction (1=!2(0 implies 

P[Di=1| Zi=0] = P[0i < (0] = 1!p (14)

P[Di=1| Zi=1] = P[0i < !(0] = p



12To see this, note that P[Di=1| Zi=0]=1!p implies pa = 1!p.  Since pa + pn + {P[Di=1| Zi=1]!P[Di=1| Zi=0]}
= (1!p) + pn + (2p!1)=1, this implies pn=1!p.  As noted in the discussion of the parametric model, LATE=ATE
given (14) also results when E[yji| 0i] is an odd function and the marginal distribution of 0i is symmetric. This makes
it possible to have a relation like (13) with, say, a binary or otherwise limited dependent variable for which a
symmetric distribution is implausible.
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for some p 0 [0,1] so the first stage is also symmetric (e.g, a first stage effect of .1 that shifts the probability

of treatment from 1!p=.45 to p=.55).  

The upshot of the previous discussion is that a symmetric latent error distribution and a symmetric

first stage imply the interpolating property, (13), or, equivalently, Restriction 3.  Moreover, we again have

LATE equals ATE since pa=pn given the first stage described in (14).12  Intuitively, a symmetric first-stage

with symmetrically distributed latent errors equates LATE with ATE because average treatment effects for

individuals with characteristics that place them in the middle of the 0i distribution (compliers) are

representative of average treatment effects for individuals over the entire distribution of 0i.

A first-stage relationship may be fortuitously symmetric, as for the 1990 Census sample of teen

mothers using the same sex instrument.  In such cases, it seems reasonable to invoke Restriction 3 and

proceed under the assumption that LATE equals ATE.  But what if, as seems more typical, the first stage

shifts the probability of treatment asymmetrically?  In the empirical section, I describe a simple scheme for

using covariates to construct a subsample with a symmetric first stage.  IV should estimate average treatment

effects in this specially constructed sample.  This approach naturally raises the question of how to use

average treatment effects for one sample to make inferences about average effects in another.  For a recent

attack on this question, see Hotz, Imbens and Klerman (2000), who outline a procedure designed to

extrapolate the results from randomized trials across sites with different populations.  Here I rely on the fact

that if effects differ little between two samples with and without a symmetric first-stage, then given

Restriction 3, the extrapolation problem is solved under the maintained assumption that average treatment

effects would be similar in the symmetric sample and its complement.
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3.2 Weakening Restriction 3

Suppose again that treatment assignment can be modeled using equation (2), and that the potential-

outcomes CEFs are linear in 0i (as would be the case under joint Normality).   Then we can write,

E[Y1i| D0i, D1i] = "1 + D1E[0i| D0i, D1i] (15a)

E[Y0i| D0i, D1i] = "0 + D0E[0i| D0i, D1i] (15b)

where

E[0i| D0i, D1i] = E[0i| D1i=0] + {E[0i| D0i=1]!E[0i| D1i=1, D0i=0]}D0i + (16)

{E[0i| D1i=1, D0i=0]!E[0i| D1i=0]}D1i.

Substituting (16) into (15a) and (15b) generates an expression for the coefficients in (9a), (9b).  This leads

to the following generalization of Restriction 3:

RESTRICTION 4 (PROPORTIONALITY).  $00=2$01; $10=2$11, for 2>0.

The first part of the proportionality restriction comes from (15a,b) alone.  Using (16), we have

2 = {E[0i| D0i=1]!E[0i| D1i=1, D1i=0]}/{E[0i| D1i=1, D0i=0]!E[0i| D1i=0]}, (17)

which shows why 2 is positive.  

Restriction 4 leads to a generalization of the interpolation formula for average potential outcomes.

In particular, we now have

E[Yji | D1i > D0i] = (1/(1+2))E[Yji | D0i=1] + (2/(1+2))E[Yji | D1i=0], (18)

so that if 2=0, compliers have the same expected potential outcomes as always-takers, while as 2 approaches

infinity, compliers have the same expected potential outcomes as never-takers.

The linearity assumption used to motivate Restriction 4 seems most plausible in the context of a

model for continuous outcomes.  It may be more of stretch, however, for binary outcomes such as marital

status.  On the other hand, without covariates the distribution of 0i is arbitrary.  We can therefore define 0i



13The requires that the underlying error have a continuous distribution.

14To compute the effect of treatment on the treated under Restriction 4, replace 2pa!pn with 2pa/pd in (19).
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as the latent error term in an assignment mechanism like (2), after transformation to a uniform distribution

on the unit interval.13  This guarantees that (15a,b) can generate fitted values for outcome CEFs that also fall

in the unit interval.  Alternately, the weighted average in (18) can be motivated directly as a natural

generalization of equally-weighted interpolation using (13).

To develop an estimator using (18), substitute Restriction 4 into (9a) and (9b) to obtain:

E[Y1i| D0i, D1i] = "1 + $11(2D0i + D1i)

E[Y0i| D0i, D1i] = "0 + $01(2D0i + D1i).

Differencing and averaging, we have

E[Y1i ! Y0i] = [("1 + $11) ! ("0 + $01)] + ($11 ! $01)(2pa ! pn) (19)

= E[Y1i ! Y0i | D1i >D0i ] 

+ {2!1(E[Y1i| D0i=1]!E[Y1i| D1i>D0i]) ! (E[Y0i| D1i>D0i]!E[Y0i| D1i=0])}(2pa ! pn).

We can map out the values of ATE consistent with the data by evaluating (19) for alternative choices of 2.

This sensitivity analysis is subject to the caveat that at the extremes where 2 equals zero or infinity, ATE is

not identified, a fact apparent from (18).14

An alternative to sensitivity analysis is to try to estimate 2 using (17).  Although 2 is not identified

without further assumptions, it clearly depends in large part on the first stage coefficients, (0 and (1.  This

suggests a strategy for estimating 2 using information on these coefficients only.  Suppose that (15a,b) holds

for a latent error transformed to Uniform as discussed above, or that the CDF of 0i can be approximated by

a uniform distribution on the unit interval.  Then a straightforward calculation gives

2 = [(0 + (1]/[1!(0] = P(Di=1| Zi=1)/[1!P(Di=1| Zi=0)]. (20)

This has the property that 2=1 when P(Di=1| Zi=1)=1!P(Di=1| Zi=0), while capturing deviations from

symmetry in a straightforward manner.  The value of 2 calculated using (20) in the 1990 Census sample
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analyzed here is .61, close to the value calculated using Normality (.58).

Specification Tests for Homogeneity Restrictions

Because ATE is – by definition – invariant to the particular instrument used to estimate it,

Restrictions 2, 3, and 4 can be partly checked by comparing alternative estimates using different instruments.

In the case of Restriction 2, this amounts to a Sargan (1958) over-identification test comparing alternative

IV estimates of the same structural coefficient.  Under Restrictions 3 and 4, the relevant comparison should

use equation (19) to convert estimates of LATE into estimates of ATE.  A final set of specification tests is

suggested by the fact that under Restrictions 3 or 4,

E[Y1i ! Y0i| D1i, D0i]= ("1! "0) + ($11 ! $01)(2D0i + D1i).

A test of whether $11 ! $01 equals zero is therefore a test of conditional constant effects, while a test of

whether $11 ! $01 is positive is a test for Roy-type selection on the gains from treatment.  

4. Childbearing, Marital Status, and Economic Welfare

The same sex instrument is a dummy for having two boys or two girls at first and second birth.

Angrist and Evans (1998) showed this instrument increases the likelihood mothers with at least two children

go on to have a third child by about 6-7 percentage points, but is otherwise uncorrelated with mothers’

demographic characteristics.  The data set used here is the 1990 Census extract used in the Angrist and Evans

paper.  This sample includes mothers aged 21-35 with two or more children, the oldest of whom was less

than 18 at the time of the Census.  

Descriptive statistics are reported in Table 1 for the full sample, for a subsample of ever-married

women, and for four subsamples defined by mothers’ education and age at first birth.  The division into

subsamples was motivated by earlier results showing markedly different effects of childbearing by maternal

education, and because of the policy interest in teen mothers.   The probability of having a third child ranges



15See Abadie (2003) and Frolich (2002) for nonlinear causal models with covariates.  

16Although we cannot identify individual compliers in any sample and tabulate their characteristics directly,
it nevertheless is possible to use data to describe the distribution of complier characteristics, and to compare this to
the unconditional distribution.  In particular, the difference in first-stage estimates across samples defined by
covariates characterizes the distribution of covariates among compliers.  To see this, note that for a binary covariate,
xi, E[xi| D1i>D0i]/E[xi] = E[D1i!D0i| xi=1]/E[D1i!D0i].  Table 2 therefore also shows same sex compliers to be less
educated and more likely to have been married than the overall average.
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from a low of .33 in the sample of women with some college, to a high of .5 in the sample of teen mothers.

The probability of having a same-sex sibling pair is more or less constant at .505.  Some of the estimates

control for the demographic covariates listed in Table 1 using linear models.15  Means for the outcome

variables of interest appear at the bottom of Table 1.

4.1 OLS, IV, and 2SLS Estimates

The effect of same sex on the probability of having a third child varies from a low of 5.9 percentage

points in the some-college sample to a high of 6.5 percentages points in the no-college sample.  This can be

seen in the first row of Table 2, which reports first-stage estimates.   The first-stage effect without covariates,

E[Di| Zi=1])E[Di| Zi=0] = E[D1i)D0i], is also an estimate of the proportion of the population in the compliers

group.16  As a benchmark, the next two rows of Table 2 show estimates of the effect of childbearing on two

of the labor supply variables studied by Angrist and Evans (1998).  These are IV and OLS estimates from

models without covariates, i.e., Wald estimates and simple treatment-control contrasts. 

The Wald (IV) estimates of the effect of a third child on employment status and weeks worked

suggest mothers reduced their labor supply as a consequence of childbearing, though not by as much as

indicated by the OLS estimates.  For example, women who had a third child were about 13 percentage points

less likely to work, but the corresponding IV estimate suggests a causal effect of only 8 percentage points.

The OLS and IV estimates for weeks worked are about !7 and !5.  The IV estimates of labor supply effects

are larger for less-educated women than for those with some college; in fact, the labor supply estimates are
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not significant in the some-college sample.  In contrast, the IV estimates are smaller for women who had their

first birth as teenager than for women who had their first birth as an adult.

The last two rows in Table 2 show first-stage, OLS and two-stage least squares (2SLS) estimates

after adding controls for age, age at first birth, dummies to indicate first-born and second-born boys, race

dummies, and dummies for three schooling groups.  Since same sex is uncorrelated with these covariates,

including them has little effect on the 2SLS estimates.  Moreover, in spite of the fact that some of the

 covariates are good predictors of outcomes, estimates with covariates are only slightly more precise

than those without.  Perhaps more surprisingly, the OLS estimates of labor supply effects also change little

in response to the addition of covariates.  

Estimates of the effect of having a third child on marital status, poverty status, and welfare use are

reported in Table 3 for models with and without covariates.  In the sample of all women, those with more

children are less likely to be married.  But this is at least in part due to uncontrolled demographic factors such

age at first birth, since OLS estimates with controls show that additional childbearing is associated with an

increase in the likelihood of being married.  In contrast to the OLS estimates, IV estimates with or without

covariates suggest that the causal effect of childbearing is a reduced probability of being married.  Thus, an

important finding is that when the effect of childbearing is estimated in models with demographic controls,

IV and OLS estimates have opposite signs. 

The most important change in marital status caused by childbearing appears to be an increase in the

likelihood of being divorced or separated.  The estimated effects of childbearing on the probability of being

ever-married or divorced (but not separated) are not significantly different from zero.  Consistent with an

increase in marital breakup, the birth of a third child also appears to lead to a marked increase in the

likelihood a woman lives in a family with total family income below the poverty line.  Here we should expect

at least a mechanical effect since the poverty threshold falls as family size increases.  Although OLS

estimates are larger than IV estimates in models without covariates, OLS and IV estimates in models with
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covariates both indicate that a third child increases the likelihood a woman is poor by 9-10 percentage points.

Given the elevated rates of marital breakup and the increase in poverty rates that appear to be caused

by childbearing, it seems reasonable to expect that the birth of a third child also increases the likelihood a

woman is on welfare.  Both the IV and OLS estimates tend to support this, though the IV estimates are

imprecise.  The OLS estimate of the effect on welfare use range from 6.7 percentage points without

covariates to 3.9 percentage points with covariates.  The IV estimate is a marginally significant 3.3 % with

or without covariates.  While small in levels, an effect of this magnitude represents a roughly one-third

increase in the number of women on welfare.

The IV estimates show no relationship between childbearing and the probability a woman has ever

been married, so estimates limited to the sample of ever-married women are unlikely to be affected by

selection bias.  Not surprisingly, therefore, the IV estimates in the sample of ever-married women are almost

identical to those in the full sample.  On the other hand, while the IV estimate of the reduction in marriage

rates is a significant 8 percentage points (s.e.=.028) for women with no college, it is close to zero and

insignificant for women with some college.  The effects of childbearing on poverty are also larger in the no-

college sample, though the difference in effects on welfare use by college status is reversed and much smaller

than the difference in effects on poverty rates.

The difference in estimates by mothers’ age at first birth also suggest a pattern of larger effects with

decreasing socioeconomic status, though the contrast is not as clear cut as the differences by schooling group.

While the increases in marital dissolution and welfare receipt are larger for teen mothers than for adult

mothers, the estimates are significant only in the latter group.  Estimates of effects on divorce/separation are

similar in the two groups, though again much more precise for the sample of adult mothers.  This difference

in precision undoubtedly reflects the smaller sample of teen mothers.  One clear contrast, however, is the

higher likelihood that a third birth pushes a teen mother into poverty.  The impact on poverty status is

significant regardless of mothers’ age at first birth, but it is roughly three times larger for teen mothers.  
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4.2 Heterogeneity across potential-assignment subpopulations

The first-stage estimates imply that 6-7 % of each sample consists of compliers, i.e., mothers who

had a child in response to a homogenous sibling-sex mix.  Because the overall probability of treatment ranges

upwards from about .32, the overwhelming majority of treated individuals are always-takers.  This can be

seen in Table 4, which gives the distribution of potential-assignment subpopulations.  In the sample of all

women, for example, 6.3 % are compliers, 34 % are always-takers (i.e., have a third child without regard to

sibling-sex composition), and 59 % are never-takers (i.e., would never have a third child regardless of

sibling-sex composition).  The proportion of treated who are compliers is 1!(pa/pd), or about 8 %.  Given the

relatively small proportion of compliers, the scope for differences in average causal effects across potential-

assignment subpopulation is substantial. 

Table 4 also reports the estimate of (pa!pn), the multiplier that determines how far LATE is from

ATE when the latter is calculated using Restriction 3 and equation (11), or in models with covariates as

described in the Appendix.  The estimate of (pa!pn) is -.25 in the full sample, and ranges from 0 for teen

mothers to -.352 in the sample of adult mothers.  

4.2.1 Symmetric subpopulations

The value of zero for (pa!pn) in the teen mother sample is noteworthy because it means that LATE

is the same as ATE under Restriction 3.  This is a consequence of the fact that the first stage for teen mothers

is almost perfectly symmetric: the same sex instrument shifts the probability of further childbearing from

about .47 to .53.  Moreover, because 2 for teen mothers is about 1 when estimated using (20), estimates of

ATE for teen mothers under Restriction 4 are also close to LATE.  

The first two columns of Table 5 focus on the comparison between estimates for all women and teen

mothers only, repeating earlier estimates for these samples from Table 3 without covariates, including the

first-stage coefficient and intercept.  For the most part,  IV estimates for teen mothers are similar to those for



17As with an over-identification test, the power of the test turns on maintaining the validity of a benchmark. 
Here, we maintain E[Y1i!Y0i| X=teen mothers]=E[Y1i!Y0i].

18A maintained assumption here is that the distribution of yji and 0i is jointly symmetric conditional on the
covariates used to select the sample with a symmetric first stage.
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the sample of all women.  While the estimated effect on employment is considerably lower at -.026

(s.e.=.051) versus .084 (s.e.=.027) in the full sample, the effect of childbearing on weeks worked is -5.2

(s.e.=1.3) in the full sample and -4.8 (s.e.=2.4) for teen mothers.  Similarly, the effect on marital status is 

-.062 (s.e.=.024) in the full sample and -.066 for teen mothers (.051).   Note that we can view the parameters

estimated in the full sample as estimates of E[Y1i!Y0i| D1i>D0i, X=all women], while the estimates in column

2, for teen mothers, can be interpreted as measuring E[Y1i!Y0i| X=teen mothers] under Restriction 3 or 4.

A test of equality across columns 1 and 2 is therefore a joint test of the invariance of average treatment

effects to conditioning both on X and on the compliers potential-outcomes subpopulation.  The fact that these

are similar is evidence against substantial treatment effect heterogeneity in both dimensions, though of course

there are scenarios where this test has no power.17

There is some evidence for a difference in effects on poverty status between the teen mother and all-

women samples.  For all women, the IV estimate of the effect of childbearing on poverty status is .095

(s.e.=.023), while the corresponding estimate is.143 (s.e.=.05) in the teen mother sample.  The comparison

across samples is weakened, however, by the fact the estimates in the teen mother sample are much less

precise than in the full sample.  This raises the question of whether we can construct a larger sample with

a symmetric first stage.  I attempted to construct such a sample by estimating  a Probit first-stage allowing

interactions with covariates and then selecting the sample based on covariate-specific fitted values.18

The details of the symmetric sample selection are as follows.  The idea is to use a parametric model

capture the variation in the first-stage effect of same sex on childbearing with demographic covariates.  The

model allows for a large set of interaction terms with covariates.  I then look for covariate values where the

predicted first-stage effect is symmetric in the sense required by Restriction 3.  I began with a Probit first-
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stage equation:

P[Di=1| Zi, Xi] = M[60NXi + (61NXi)Zi], (21)

where Xi is a vector of covariates that includes age, age at first birth, Black and Hispanic dummies, and

dummies indicating women with some college and college graduates.  The main effects, 60NXi, and interaction

terms, 61NXi, use the same parameterization of covariate effects (in particular, they both allow for linear terms

in the age variables plus main effects for the dummies).  In practice, 60NXi takes on about 1,700 distinct

values.  For each of these values, I calculated

B̂0(Xi) /  M[6̂0NXi],

the distribution of which is plotted in Fig. 3.  This gives the distribution of the probability of childbearing

for women with different X-characteristics and Zi equal to zero.  The distribution of B̂0(Xi) is concentrated

around the overall average of about .34, though there is considerable spread.

By definition, a symmetric first stage shifts the probability of treatment across the value of one-half.

To identify a sample where this is most likely, I initially selected women with B̂0(Xi) between .4 and .6. 

Column 3 of Table 5 reports estimates for this sample, which has about 104,000 observations.  The estimated

first-stage in this sample shifts the probability of treatment from .47 to .54, i.e., approximately from p to 1)p,

as required by symmetry.  For most outcomes, the IV estimates in this symmetric sample are smaller in

absolute value than in the full sample, and smaller than in the sample complementary to the symmetric

sample, for which results are reported in column 4.  For example, the estimated effect on weeks worked in

the symmetric sample is -3.7 (s.e.=2.2), while the corresponding estimate in the complementary sample is

-6 (s.e.=1.6).  Again, however, the comparison is handicapped by a lack of precision. 

The long right tail of the distribution of first-stage base values plotted in Fig. 3 suggests that an even

larger symmetric sample can be constructed simply by dropping values of B̂0(Xi) beginning from the left and

working up.  As it turns out, limiting the sample to individuals with values of B̂0(Xi) greater than or equal to

.35 leads to a first stage that shifts the probability of treatment from .465 to .533, virtually perfectly
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symmetric.  This can be seen in column 5 of Table 5, which reports first-stage and IV estimates for the

resulting sample of 162,264 observations.  Most of the estimates in this symmetric sample are close to those

in the full sample.  For example, the effect on weeks worked is -5.9 (s.e.=1.8) and the effect on divorce or

separation is .068 (s.e.=.032).  Perhaps surprisingly, the estimated effect on poverty status differs markedly

between this sample and its complement (.136 versus .048), but the estimated effect is still significantly

different from zero in the complementary sample.

4.2.2 Imputation of ATE

The results in Table 5 reflect an attempt to identify or construct samples where LATE=ATE.

Alternately, we can use equations (11) or (19) to impute a value of ATE for the various subsamples analyzed

in Table 3.  The results of this effort are presented in Table 6 for four outcomes; this table also reports the

no-selection alternative used to construct the specification test discussed at the beginning of Section 3.2. 

The estimates of the no-selection alternative are all slightly farther from the estimates of LATE than the

corresponding OLS estimates.  For example, the OLS estimate of the effect on weeks worked in the full

sample is -7.34 (s.e.=.08), while the no-selection alternative is -7.56 (s.e.=.12).  This suggests, as noted

earlier, that the contrast between IV and the no-selection alternative provides a more powerful specification

test than a conventional IV/OLS comparison. 

Estimates of ATE constructed using equation (11) for the effect of childbearing on weeks worked

are similar to the estimates of LATE, even in samples where the first-stage is not symmetric.  For example,

the estimate of ATE for the sample of non-teen (i.e., adult) mothers is -4.1 (s.e.=1.5), in comparison with an

estimate of LATE of -5.3 (s.e.=1.6).  Using the estimates of 2 shown in Table 4 and equation (19) generates

somewhat smaller estimates for the effect on weeks worked other than in the teen mother sample, though

again mostly still significant.

Estimates of ATE for outcomes other than weeks worked are mostly insignificant.  This contrasts
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with the mostly significant estimates of LATE.  Again, this is partly a problem of precision.  But the

estimates  of ATE outside the teen mother sample move substantially closer to zero than the estimates of

LATE.  For example, while LATE suggests the probability of divorce or separation increases by .053

(s.e.=.019), the corresponding estimates of ATE are .028 (s.e.=.019) when 2 equals one and .009 (.s.e.=.021)

when 2 is estimated.  The evidence that further childbearing increases divorce or separation for the typical

woman with two children is therefore weaker than the estimates of LATE would suggest.  Except for the

sample of teen mothers, the estimates of ATE for effects on poverty status are also smaller than the

corresponding estimates of LATE.

5. Summary and Conclusions

The framework outlined here provides a strategy for modeling treatment effect heterogeneity across

potential-assignment subpopulations.  I focused initially on restrictions that make IV estimates of causal

effects on compliers representative of the overall population average treatment effect.  The framework also

leads to procedures that can be used to impute average treatment effects from information on average

outcomes for compliers, always-takers, and never-takers.  An illustration of these ideas using same sex

instruments suggests this approach may be useful in applied work.  

On the empirical side, estimates of LATE for teen mothers are close to the corresponding average

treatment effects for this population, when the latter are inferred using a number of linearity or

proportionality assumptions. And while estimates of the overall average effect of childbearing are smaller

than the corresponding IV estimates, most of the estimated effects on labor supply and poverty status remain

substantial and significant.  On the other hand, most (though not all) of the estimated average effects on

marital status and welfare use are small and insignificant.

Estimates of the effects of childbearing on marital stability and welfare use using the same sex

instrument suggest the outline of a coherent picture, but many features remain unresolved.  In this
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application, the theory of parameter heterogeneity runs quickly into the sandpile of sampling variance and

specification uncertainty.  On balance, I think extrapolation efforts of the sort implemented here are more

likely to weaken the case for the predictive value of a particular causal estimate than to provide a concrete

and precise alternative to traditional IV.  For example, the evidence for an adverse effect of childbearing on

marital stability and welfare use is clearly weakened by the attempt to go from LATE to ATE.  This sort of

destructive evidence seems to me to be a prominent feature of life in the empirical world.  The external

validity of IV estimates is ultimately established less by new econometric methods than by replication in new

data sets, and, of course, by new instruments.
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APPENDIX: COMPUTATION

1. The test for selection bias.

Drop individual subscripts from the notation.  Consider the following two-equation system:

Y = )0 + )1D + : (A1)

Y = *0 + *1(1[D=Z]) + *2((D!Z)/2) + < (A2)

The test for selection bias is a test of whether )1 = *2 when (A1) is estimated by IV using Z as an instrument
and A2 is estimated by OLS.  The two coefficients and the asymptotic standard error for their difference can
be estimated by stacking A1 and A2 and allowing for heteroscedastic and correlated residuals.  In practice,
for sample sizes on the order of that used here, it seems reasonable to treat the estimate of *2 as non-
stochastic and use the standard error of the estimate of )1 to construct a t-test.

2. Estimates under Restriction 3.

Use (A2) to write:

E[Y1| D=1, Z=0] = E[Y1| D1=D0=1]= *0 + *2/2

E[Y0| D=0, Z=1] = E[Y1| D1=D0=0]= *0 ! *2/2.

Estimates of E[Y0| D1 > D0] and E[Y1| D1 > D0] can be obtained as IV estimates of the coefficients )01 and
)11 in (A3) and (A4), below:

DY = )10 + )11D + :1 (A3)

(1!D)Y = )00 + )01(1!D) + :0. (A4)

Estimates of ATE under Restriction 3 are a linear combination of  *0, *2, )01, and )11.  These coefficients and
the standard error for any linear combination of them can be estimated by stacking A2, A3, and A4.

To further simplify, rewrite equation (11) in terms of the parameters in A2-A4 as

E[Y1  ! Y0] = )11[1!(pa!pn)] ! )01[1+(pa!pn)] + 2*0(pa!pn). (A5)

To accommodate models with covariates, it is convenient to use a regression set-up to estimate pa!pn.  Define
a dependent variable d*=D(2Z!1)!Z.  Regress d* on Z; the coefficient on Z is an estimate of pa!pn.  Note that
(without covariates) the standard error for the estimated pa!pn is the same as the standard error for the first-
stage coefficient since the latter can be written 1!pn!pa. To estimate E[Y1  ! Y0| D=1], replace pa!pn with
pa/pd in (A5).

Models with covariates were estimated by adding covariates to the relevant first-stage equations, and
to equations A1-A4.  As a shortcut for inference for estimates of ATE using A5, it seems reasonable to treat
(pa!pn) and *0 as known since these are estimated much more precisely than )11 and )01, which are
themselves instrumental variables estimates.  Note also that IV estimates of )11 and  )01 are independent.
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3. Estimates under Restriction 4.

Substitute parameters from A1-A4 into (19) and simplify to obtain

E[Y1  ! Y0] = )11[1!(pa!2
!1pn)] ! )01[1+(2pa!pn)] + [*0(1+2!1) + (*2/2)(2!1

!1)](2pa!pn). (A6)

Standard errors were calculated treating pa, pn, *0, *2, and 2 as known.  
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Panel A: Moderate selection on gains 
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Panel B: Strong selection on gains  
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Fig. 1: The relationship between LATE, ATE and the effect on the treated for alternative first-
stage baseline values.  The first-stage effect is fixed at .07 and ATE=0. The top panel calculation 
sets the correlation between gains and the treatment index to -.1, while the bottom panel sets this 
correlation to -.5. 
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Fig. 2: The relationship between LATE, ATE and the effect on the treated for alternative first-
stage baseline values.  The first-stage effect is fixed at .30 and ATE=0. The top panel calculation 
sets the correlation between gains and the treatment index to -.1, while the bottom panel sets this 
correlation to -.5. 
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Fig. 3: Distribution of first-stage base probability as a function of covariates.  The  
covariates are age, age at first birth, Black and Hispanic dummies, and dummies for  
some college and college graduates.  There are about 1,700 values in the histogram. 



All Ever No Some Teen Adult
Variable Women Married College College or + Mothers Mothers

Children ever born 2.50 2.49 2.55 2.41 2.72 2.41
(0.76) (0.75) (0.81) (0.68) (0.90) (0.68)

More than 2 children (=1 if mother 0.375 0.370 0.405 0.328 0.500 0.324
had more than 2 children) (0.484) (0.483) (0.491) (0.470) (0.500) (0.468)

Boy 1st (=1 if 1st child was a boy) 0.512 0.512 0.510 0.514 0.509 0.513
(0.500) (0.500) (0.500) (0.500) (0.500) (0.500)

Boy 2nd (=1 if 2nd child was a boy) 0.511 0.511 0.509 0.512 0.508 0.511
(0.500) (0.500) (0.500) (0.500) (0.500) (0.500)

Two boys (=1 if first two children 0.264 0.264 0.262 0.266 0.262 0.264
were boys) (0.441) (0.441) (0.440) (0.442) (0.440) (0.441)

Two girls (=1 if first two children 0.241 0.241 0.242 0.240 0.245 0.240
were girls) (0.428) (0.427) (0.428) (0.427) (0.430) (0.427)

Same sex  (=1 if first two children 0.505 0.505 0.504 0.506 0.507 0.504
were the same sex) (0.500) (0.500) (0.500) (0.500) (0.500) (0.500)

Age 30.4 30.6 29.92 31.3 28.8 31.1
(3.5) (3.4) (3.60) (3.0) (3.89) (3.0)

Age at first birth (mother's age 21.8 22.0 20.85 23.4 17.9 23.5
when first child was born) (3.5) (3.5) (3.16) (3.50) (1.13) (2.8)

Black Mother 0.131 0.092 0.141 0.115 0.237 0.088
(0.337) (0.289) (0.348) (0.319) (0.425) (0.283)

Hispanic Mother 0.113 0.112 0.144 0.065 0.156 0.096
(0.317) (0.315) (0.351) (0.246) (0.363) (0.294)

Never Married 0.068 - 0.089 0.036 0.144 0.037
(0.252) - (0.285) (0.186) (0.351) (0.190)

Married Now 0.798 0.857 0.768 0.846 0.649 0.859
(0.401) (0.350) (0.422) (0.361) (0.477) (0.348)

Divorced 0.081 0.087 0.083 0.079 0.122 0.065
(0.273) (0.282) (0.276) (0.270) (0.327) (0.246)

Divorced or Separated 0.127 0.137 0.136 0.114 0.197 0.099
(0.333) (0.344) (0.343) (0.317) (0.398) (0.299)

High School Graduate  (=1 if high school 0.420 0.423 0.685 - 0.426 0.417
diploma and no further education) (0.494) (0.494) (0.465) - (0.495) (0.493)

Some College (=1 if some college, but 0.264 0.269 - 0.682 0.174 0.301
no degree) (0.441) (0.444) - (0.466) (0.379) (0.458)

College Graduate (=1 if bachelor's degree 0.123 0.131 - 0.318 0.018 0.166
or higher) (0.329) (0.338) - (0.466) (0.131) (0.372)

In Poverty (=1 if family income 0.197 0.158 0.256 0.103 0.347 0.136
 below the poverty line) (0.398) (0.364) (0.437) (0.303) (0.476) (0.343)

Welfare Recipient  (=1 if public 0.098 0.065 0.130 0.047 0.187 0.062
assistance income>0) (0.297) (0.247) (0.336) (212) (0.390) (0.241)

Worked for pay (=1 if worked for 0.662 0.674 0.623 0.723 0.650 0.667
pay in 1989) (0.473) (0.469) (0.485) (0.447) (0.477) (0.471)

Weeks worked  (weeks worked 26.2 26.9 24.27 29.3 25.0 26.7
in 1989) (22.9) (22.9) (23.00) (22.4) (22.81) (22.9)

Number of observations 380007 357063 236418 143589 110156 269851
Notes: Data are from the 1990 PUMS. The sample includes women with 2 or more children whose 2nd child was at least age 1 and who had their first birth  
at age 15 or later. The no-college sample includes women with no college or with an associate occupational degree. The some-college sample includes  
women with an associate academic degree, some college but no degree, or a college degree. Teen mothers are those who had their first birth at age 19 or 
younger. Standard deviations are reported in parentheses. All calculations use sample weights.

Means and Standard Deviations
TABLE 1: DESCRIPTIVE STATISTICS, WOMEN AGED 21-35 WITH 2 OR MORE CHILDREN



Variable OLS IV OLS IV OLS IV OLS IV OLS IV OLS IV

First Stage
More than 2 children 0.0628 - 0.0663 - 0.0652 - 0.0594 - 0.0638 - 0.0616 -

(0.002) - (0.002) - (0.002) - (0.003) - (0.003) - (0.024) -
Outcomes
Worked for pay -0.132 -0.084 -0.126 -0.083 -0.132 -0.105 -0.112 -0.057 -0.140 -0.026 -0.130 -0.109

(0.002) (0.027) (0.002) (0.026) (0.002) (0.034) (0.003) (0.044) (0.003) (0.051) (0.002) (0.032)

Weeks worked -7.34 -5.15 -7.12 -5.09 -7.22 -6.52 -6.59 -3.21 -7.47 -4.76 -7.19 -5.26
(0.08) (1.30) (0.09) (1.27) (0.11) (1.60) (0.14) (2.18) (0.15) (2.40) (0.10) (1.57)

First Stage
More than 2 children 0.0623 - 0.0658 - 0.0644 - 0.0592 - 0.0633 - 0.0623 -

(0.0017) - (0.0017) - (0.0022) - (0.0027) - (0.0033) - (0.0019) -
Outcomes
Worked for pay -0.148 -0.097 -0.148 -0.097 -0.144 -0.120 -0.151 -0.060 -0.132 -0.071 -0.154 -0.108

(0.002) (0.027) (0.002) (0.026) (0.002) (0.034) (0.003) (0.043) (0.003) (0.049) (0.002) (0.031)

Weeks worked -8.33 -5.93 -8.43 -5.92 -7.92 -7.43 -8.84 -3.45 -7.51 -7.55 -8.62 -5.30
(0.09) (1.27) (0.09) (1.24) (0.11) (1.57) (0.14) (2.15) (0.15) (2.28) (0.10) (1.52)

Notes: The table reports OLS and IV estimates of the coefficient on the More than 2 children variable. The IV estimates use Same sex  as an instrument. The covariates included in panel B 
are Age, Age at first birth, and dummies for Boy 1st, Boy 2nd, Black, Hispanic, Other race, High school graduate, Some college  and College graduate.  The samples are the same as in
Table 1. Standard errors are reported in parentheses. All calculations use sample weights.

A. No Covariates

B. With Covariates

TABLE 2: FIRST-STAGE AND LABOR SUPPLY ESTIMATES
Teen MothersAll Women Ever Married Some College or + Adult MothersNo College



Outcomes OLS IV OLS IV OLS IV OLS IV OLS IV OLS IV

Ever Married -0.021 -0.010 - - -0.026 -0.023 -0.002 0.007 -0.016 -0.010 0.0004 -0.003
(0.001) (0.153) - - (0.001) (0.021) (0.001) (0.020) (0.002) (0.0391) (0.0009) (0.014)

Married Now -0.025 -0.062 -0.0075 -0.055 -0.035 -0.082 0.008 -0.035 -0.015 -0.066 0.018 -0.048
(0.002) (0.024) (0.001) (0.020) (0.002) (0.030) (0.002) (0.036) (0.003) (0.051) (0.002) (0.025)

Divorced -0.013 0.011 -0.012 0.012 -0.012 0.0044 -0.017 0.022 -0.024 -0.010 -0.022 0.016
(0.001) (0.016) (0.001) (0.016) (0.001) (0.0195) (0.002) (0.027) (0.002) (0.035) (0.001) (0.017)

Divorced or Separated 0.0023 0.053 0.0056 0.055 0.0070 0.057 -0.011 0.046 -0.0030 0.048 -0.018 0.049
(0.0013) (0.019) (0.0014) (0.020) (0.0016) (0.024) (0.002) (0.032) (0.0027) (0.043) (0.001) (0.021)

In Poverty 0.143 0.095 0.124 0.082 0.167 0.107 0.070 0.088 0.178 0.143 0.083 0.062
(0.002) (0.029) (0.002) (0.020) (0.002) (0.031) (0.002) (0.030) (0.003) (0.050) (0.002) (0.024)

Welfare Recipient 0.067 0.033 0.050 0.032 0.079 0.028 0.030 0.049 0.091 0.018 0.030 0.032
(0.001) (0.018) (0.001) (0.014) (0.002) (0.024) (0.002) (0.022) (0.003) (0.042) (0.001) (0.017)

Ever Married 0.0026 -0.0051 - - 0.0038 -0.025 0.0061 0.023 0.0087 -0.031 0.0043 0.0025
(0.0009) (0.0136) - - (0.0013) (0.019) (0.0012) (0.018) (0.0022) -0.034 (0.0009) (0.0126)

Married Now 0.037 -0.052 0.037 -0.046 0.028 -0.080 0.057 -0.011 0.020 -0.078 0.047 -0.041
(0.001) (0.021) (0.001) (0.019) (0.002) (0.028) (0.002) (0.033) (0.003) (0.047) (0.002) (0.023)

Divorced -0.037 0.0071 -0.039 0.0067 -0.029 0.0010 -0.048 0.018 -0.026 -0.021 -0.040 0.017
(0.001) (0.0157) (0.001) (0.0159) (0.001) (0.0196) (0.002) (0.026) (0.002) (0.035) (0.001) (0.017)

Divorced or Separated -0.033 0.048 -0.036 0.047 -0.023 0.054 -0.049 0.038 -0.013 0.040 -0.041 0.048
(0.001) (0.019) (0.001) (0.019) (0.002) (0.025) (0.002) (0.031) (0.003) (0.043) (0.001) (0.020)

In Poverty 0.093 0.097 0.087 0.085 0.113 0.113 0.055 0.074 0.148 0.186 0.065 0.061
(0.001) (0.021) (0.001) (0.019) (0.002) (0.028) (0.002) (0.029) (0.003) (0.047) (0.002) (0.022)

Welfare Recipient 0.039 0.033 0.031 0.032 0.048 0.032 0.020 0.041 0.071 0.043 0.022 0.030
(0.001) (0.017) (0.001) (0.014) (0.002) (0.023) (0.001) (0.021) (0.003) (0.040) (0.001) (0.016)

Notes: The samples and models are as in Table 2, with different dependent variables. Standard errors are reported in parentheses. All calculations use sample weights.

A. No Covariates

B. With Covariates

TABLE 3: EFFECTS ON MARITAL STAUTUS, POVERTY STATUS AND WELFARE USE
All Women Ever Married No College Some College or + Teen Mothers Adult Mothers



P[D=1] pc pa pn pa-pn θ pc pa-pn

Sample (1) (2) (3) (4) (5) (6) (7) (8)

All Women 0.375 0.063 0.344 0.594 -0.250 0.619 0.062 -0.250
(0.0018) (0.0018) (0.0017) (0.0018)

Ever Married 0.370 0.066 0.337 0.597 -0.261 0.607 0.066 -0.260
(0.0018) (0.0018) (0.0017) (0.0018)

No College 0.405 0.065 0.372 0.563 -0.191 0.696 0.064 -0.191
(0.0023) (0.0023) (0.0022) (0.0023)

Some College 0.328 0.059 0.298 0.642 -0.344 0.510 0.059 -0.344
(0.0027) (0.0027) (0.0027) (0.0027)

Teen Mothers 0.500 0.064 0.468 0.468 -0.0006 0.999 0.063 -0.0005
(0.0034) (0.0034) (0.0033) (0.0034)

Adult Mothers 0.324 0.062 0.293 0.645 -0.352 0.502 0.062 -0.351
(0.0020) (0.0020) (0.0019) (0.0020)

Notes: The first column reports the proportion treated. The second column shows the proportion of compliers in the sample,
which is given by the first-stage effect of Same sex. The estimates of the proportion of always-takers and never-takers and
the parameter θ were calculated as described in the text. Estimates with covariates were calculated as described in the
appendix. Standard errors are reported in parentheses. All calculations use sample weights.

No Covariates With Covariates
TABLE 4: POTENTIAL-ASSIGNMENT SUBPOPULATIONS



π0(X)>=0.4 π0(X)<0.4 
All Women Teen Mothers  & π0(X)<=0.6 or π0(X)>0.6 π0(X)>=0.35 π0(X)<0.35

Variables (1) (2) (3) (4) (5) (6)

First Stage  (OLS estimates)
Coefficient 0.0628 0.0638 0.0713 0.0588 0.0684 0.0576

(0.002) (0.003) (0.003) (0.002) (0.003) (0.002)

Constant 0.344 0.468 0.471 0.296 0.465 0.253
(0.001) (0.002) (0.002) (0.001) (0.002) (0.001)

Outcomes  (IV Estimates)
Worked for pay -0.084 -0.026 -0.038 -0.109 -0.080 -0.092

(0.027) (0.051) (0.045) (0.034) (0.038) (0.039)

Weeks worked -5.15 -4.76 -3.72 -6.03 -5.90 -4.71
(1.30) (2.40) (2.21) (1.62) (1.83) (1.86)

Ever Married -0.010 -0.0098 -0.016 -0.0031 -0.0051 -0.0092
(0.015) (0.0391) (0.032) (0.0170) (0.0267) (0.0162)

Married Now -0.062 -0.066 -0.033 -0.066 -0.075 -0.039
(0.024) (0.051) (0.045) (0.027) (0.038) (0.028)

Divorced 0.011 -0.010 -0.029 0.025 0.012 0.0057
(0.016) (0.035) (0.031) (0.018) (0.026) (0.0189)

Divorced or Separated 0.053 0.048 0.020 0.063 0.068 0.033
(0.019) (0.043) (0.038) (0.022) (0.0032) (0.023)

In Poverty 0.095 0.143 0.095 0.087 0.136 0.048
(0.023) (0.050) (0.044) (0.027) (0.036) (0.028)

Welfare Recipient 0.033 0.018 0.021 0.034 0.027 0.032
(0.018) (0.042) (0.035) (0.020) (0.029) (0.020)

Number of Observations 380007 110156 103803 276204 162264 217743
Notes: Columns 1 and 2 repeat estimates from Tables 2 and 3, for models without covariates.  Columns 3-6 report estimates using samples 
selected as described in the text.  Standard errors are shown in parentheses. All calculations use sample weights.

TABLE 5: SYMMETRIC FIRST STAGE SAMPLES
Symmetric Sample IISymmetric Sample I



ATE
No Selection ATE θ = P[D=1|Z=1]

OLS Alternative LATE θ = 1 /(1-P[D=1|Z=0])
Outcome Sample (1) (2) (3) (4) (5)

Weeks All Women -7.34 -7.56 -5.15 -4.31 -3.19
Worked (0.08) (0.12) (1.30) (1.27) (1.45)

Ever Married -7.12 -7.33 -5.09 -4.41 -3.45
(0.09) (0.13) (1.27) (1.23) (1.43)

No College -7.22 -7.33 -6.52 -5.73 -4.94
(0.11) (0.16) (1.60) (1.57) (1.70)

Some College or + -6.59 -6.90 -3.21 -2.38 -0.60
(0.14) (0.21) (2.18) (2.08) (2.69)

Teen Mothers -7.47 -7.66 -4.76 -4.76 -4.76
(0.15) (0.22) (2.40) (2.40) (2.40)

Adult Mothers -7.19 -7.43 -5.26 -4.06 -2.19
(0.10) (0.15) (1.57) (1.48) (1.91)

Divorced or All Women 0.0023 0.0005 0.053 0.028 0.0092
Separated (0.0013) (0.0019) (0.019) (0.019) (0.0216)

Ever Married 0.0056 0.0043 0.055 0.024 -0.0002
(0.0014) (0.0020) (0.020) (0.019) (0.0221)

No College 0.0070 0.0053 0.057 0.032 0.011
(0.0016) (0.0024) (0.024) (0.024) (0.026)

Some College or + -0.011 -0.014 0.046 0.034 0.034
(0.002) (0.003) (0.032) (0.029) (0.037)

Teen Mothers -0.0030 -0.0063 0.048 0.048 0.048
(0.0027) (0.0040) (0.043) (0.043) (0.043)

Adult Mothers -0.018 -0.021 0.049 0.017 -0.0024
(0.001) (0.002) (0.021) (0.019) (0.024)

In Poverty All Women 0.143 0.150 0.095 0.049 -0.0023
(0.002) (0.002) (0.023) (0.024) (0.029)

Ever Married 0.124 0.129 0.082 0.054 0.020
(0.002) (0.002) (0.020) (0.021) (0.026)

No College 0.167 0.175 0.107 0.061 0.014
(0.002) (0.003) (0.031) (0.032) (0.036)

Some College or + 0.070 0.071 0.088 0.059 0.031
(0.002) (0.003) (0.030) (0.031) (0.042)

Teen Mothers 0.178 0.181 0.143 0.143 0.143
(0.003) (0.005) (0.050) (0.051) (0.051)

Adult Mothers 0.083 0.088 0.062 0.017 -0.039
(0.002) (0.003) (0.024) (0.025) (0.033)

Welfare All Women 0.067 0.072 0.033 0.0058 -0.026
Recipient (0.001) (0.002) (0.018) (0.0185) (0.022)

Ever Married 0.050 0.052 0.032 0.015 -0.0051
(0.001) (0.002) (0.014) (0.015) (0.0182)

No College 0.079 0.085 0.028 -0.001 -0.031
(0.002) (0.003) (0.024) (0.025) (0.029)

Some College or + 0.030 0.030 0.049 0.037 0.029
(0.002) (0.002) (0.022) (0.022) (0.030)

Teen Mothers 0.091 0.096 0.018 0.018 0.018
(0.003) (0.004) (0.042) (0.043) (0.043)

Adult Mothers 0.030 0.032 0.032 0.006 -0.024
(0.001) (0.002) (0.017) (0.017) (0.023)

Notes: Columns 1 and 3 repeat estimates from Tables 2 and 3. Column 2 shows the no-selection alternative under Restriction 1 and
for the selection-bias test. Column 4 reportes estimates of ATE under Restriction 3 and column 5 reports estimates of ATE under 
Restriction 4.

TABLE 6: IMPUTATION OF ATE
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