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1 Introduction

Often, the value of a variable of economic interest can only be observed un-
der particular circumstances – the variable is censored. Ignoring censoring
may lead to inconsistent estimators. The seminal example is from Tobin
(1958): Because household expenditure is only observed when it is positive,
ordinary least squares estimators for the relationship between household ex-
penditure and income are downwardly biased. To circumvent this problem,
Tobin suggested the maximiser of a particular objective function as an esti-
mator. Every observational unit contributes to this objective function and
the contribution can take two forms: If the value is observed, the contribution
is the density evaluated at the observed value. If the value is not observed,
the contribution is the probability of not observing the value. So, the objec-
tive function is neither a density nor a probability function evaluated at the
observed value; rather, it is a hybrid of both. Hence, it is not a likelihood
function.

Since Tobin’s discovery, a plethora of censoring problems has been estimated
using objective functions which hybridise density and probability contribu-
tions. In fact, respective estimators have long found their way into economet-
rics textbooks. However, as Davidson and MacKinnon correctly point out
(1993, p. 539), there is something “fishy” about such objective functions;
despite the fact that they are usually called likelihood functions, their max-
imiser does not necessarily feature the properties of a maximum likelihood
estimator. It might not even be consistent.

If the censoring problem is of the simple nature that characterises the orig-
inal Tobin model, that is if the variable cannot be observed below a fixed
threshold and if errors are normally distributed, there is no reason to worry.
Under these conditions, Amemiya (1973) proves that the maximiser of the
objective function suggested by Tobin has the properties of a maximum likeli-
hood estimator. But many censoring problems do not fall into this category
and hence it is not clear whether the maximiser of the objective function
features the desired properties. While initially authors wandered about this
deficiency and justified their objective functions (for example by monte carlo
simulation, see Nelson 1977), more recent applications are less cautious (e.g.
Attanasio 2000). A possible way to ensure the desired properties is to use
standard results about M-estimators (Amemiya 1985, Newey and McFad-
den 1996). But taking this route requires the constant re-invention of the
wheel: For every censoring problem and the respective objective function
very similar conditions need to be checked. Possibly this is the reason why
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M-estimator results are rarely evoked to justify objective functions in the
censoring context. Finding out whether the maximiser of the objective func-
tion has certain properties is only the second step when estimating with
censored data. Before getting to this stage, one has to construct an objective
function. While there seems to be a lot of working knowledge, intuition, and
experience involved in this process, there is no explicit rule how to derive
such a function. So, we are left with two interrelated problems: How do we
find an objective function for a given censoring problem? How do we ensure
that its maximiser has desirable properties? Both questions will be addressed
subsequently.

This article provides a rule how to construct an objective function for a
very general class of censoring problems. Under regularity conditions, the
maximiser of this objective function features important properties of a max-
imum likelihood estimator. Namely, it is consistent, invariant to monotone
transformations, and root-n times the estimator is asymptotically normal
and efficient. If there is no censoring, this estimator becomes the ordinary
maximum likelihood estimator. Thus, the estimation method is in a sense a
generalisation of maximum-likelihood estimation.

The next section lays out a formal description of the class of censoring prob-
lems considered and explains how to construct a generalised likelihood for
a given censoring problem. In section 3, this construction method is ap-
plied to particular problems, which were addressed in the literature. In most
of the cases, the respective “likelihood”-functions are monotone transforma-
tions of the generalised likelihood. This implies that the respective maximiser
has maximum-likelihood properties. For some cases, comparing “likelihood”
and generalised likelihood represents a simple complementary way of prov-
ing their properties. For other cases, it is the first time that these properties
are proven. Section 4 gives the regularity conditions under which the max-
imiser of the generalised likelihood has the desired properties. The proofs are
based on standard results for M-estimators and very similar to the respective
proofs for maximum-likelihood estimators. Section 5 embeds the problem of
censoring in a regression context. Finally, section 6 concludes.

2 Constructing the objective function

Consider the following example. An employer reimburses the moving costs
for workers, who come from a different city. To keep costs low, the employer
uses the following rule: the worker has to obtain two quotes and the cheaper
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one is reimbursed. Suppose for simplicity, that there are only two moving
companies and that the parameters of economic interest are the means of the
price offers by these two companies. However, the employer only keeps track
of the reimbursed costs and the name of the selected moving company. The
average reimbursed costs when a particular company was chosen underesti-
mates the mean price offer made by this company. The offer of a company
is simply more likely to be observed when it is lower. Is there any way to
consistently estimate this mean?

This example is a special case of the more general problem, how to estimate
a p-dimensional parameter θ ∈ IRp, which governs a continuously distributed
random vector Y = (Y1, . . . , Yq) with a joint density function f(y, θ) and
realisation y = (y1, . . . , yq) when some components of y cannot be observed
sometimes. To advance on this issue, we assume that the econometrician
knows at least the conditions under which the components are not observ-
able. Suppose further that any such condition can be expressed in terms of
components of y. In other words, the observability of the j-th component
of the realisation of Y depends on the random vector Y itself. Formally, Vj

denotes the set of realisations of Y such that yj is observable whereas V̄j is
the complement, that is the set of realisations y of Y for which yj is not
observable. The set Vj is called visibility set.

In the example, Y is the random variable describing the moving costs, θ =
(µ1, µ2) are the means of the price offer distribution, and y = (y1, y2) are the
actual price offers submitted by the two moving companies. The price offer
by the first moving company y1 is observed whenever y1 is smaller than y2.
Conversely, y2 is observed when it is smaller than y1. So, the visibility set
for y1 is V1 = {y1, y2|y1 < y2} and that for y2 is V2 = {y1, y2|y2 ≤ y1}.

Is it restrictive to assume that the conditions for observing a component of
Y can be expressed in terms of realisations of Y ? Not really, because we
are not limited to a particular random vector Y . So if –for example– one
component is censored below a random threshold, which is distributed with
a particular distribution, we can add a component to Y , which follows this
distribution and use it to write down the visibility set.

Based on the visibility set, we can define a random variable, which describes
whether a particular component is visible or not. Consider the function Vj(y),
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which takes on the value one if component j is visible and zero else:

Vj(y) :=

{
1 if y ∈ Vj
0 if y 6∈ Vj.

Then, Vj := Vj(Y ) is a random variable indicating visibility. For this random
variable to be well defined, we must be able to compute the probability of
observing the j-th component. Hence, we make the following assumption.

Assumption 1. For all j, the visibility set Vj is (Lebesgue-)measurable.

This implies that the vector of random variables V := (V1, . . . , Vq) is also well
defined. Each realisation v = (v1, . . . , vq) of this vector may be regarded as a
visibility state s. A state s is thus characterised by a vector vs = (vs1, . . . , v

s
q),

where the j-th component indicates whether the respective variable can be
observed in this state or not. Because any of the q components in the vector
vs can take on two values, there are exactly 2q states. These states can be
numbered s = 0, . . . , 2q−1, where the label s = 0 is reserved for that state in
which no component is visible: v0 = (0, . . . , 0). A particular state s realises
if and only if the associated visibility vs occurs; according to the definition
of visibility, this is the case if and only if the realisation y of Y is in the
respective visibility sets:

y ∈
⋂

{j|vsj=1}
Vj ∩

⋂

{j|vsj=0}
V̄j

︸ ︷︷ ︸

=:Vs

.

The state set Vs condenses the restrictions placed on the realisation y in state
s by the fact that certain variables are visible in this state and others are
not. Together, all state sets {Vs}s=0,...,2q−1 form a disjoint decomposition of
the IRq (proof see appendix). This result is important, as it will later ensure
that each realisation contributes to the objective function only via one state.
The probability of a particular state s is equal to:

P (S = s) = P (y ∈ Vs) =

∫

Vs

f(y, θ)dy,

where S is a random variable describing the visibility state before it is re-
alised.

In the moving company example, there are four states of visibility: neither
variable is observable (s = 0), only y1 is observable (s = 1), only y2 is ob-
servable (s = 2), or both are observable (s = 3) – see figure 1. However, the
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Figure 1: Relation between states, state sets, and visibility sets

If the realisation y of Y is in the visibility set V1, its first component y1
is observable; if it is in the visibility set V2, the second can be observed.
This induces four states: In state s = 0, no component can be observed and
the realisation must be in the state set V0. In state s = 1, only the first
component is visible and y ∈ V1. For the state s = 2 only the second and
for s = 3 both components are visible while y is in the sets V 2 and V3.

sets V0 and V3 are empty and the respective probability is zero: There is
always exactly one price offer, which can be observed. If Y is jointly normal
distributed with mean θ and variance-covariance matrix Σ, the probability
for s = 1 is P (S = 1) = P (y ∈ V1) = P (y1 < y2) = Φ(y2|θ,Σ), where
Φ(·|θ,Σ) is the cumulative density of the normal distribution.

Because estimators have to be defined in terms of observables and because
some components of y are sometimes not observed, an operator which ex-
tracts the observable components of y in a given state s is very useful for the
notation of estimators.

Definition 1. Denote by νs an operator which extracts the visible components
of y in state s:

νs : IN × IRq −→ IRl(s) ⊆ IRq

(s, y) 7−→ (yj1 , yj2 , . . . , yjl(s)),

where j1, . . . , jl(s) ∈ {j|vsj = 1} and l(s) is is the number of observable compo-
nents in state s. Define ν̄s to be an operator which extracts the unobservables

5



components:

ν̄s : IN × IRq −→ IRq−l(s) ⊆ IRq

(s, y) 7−→ (yj1 , yj2 , . . . , yjq−l(s)
),

where j1, . . . , jq−l(s) ∈ {j|vsj = 0}.

To see how the operators work, reconsider the moving company example:
ν1y = y1 because the observable component in state s = 1 is y1, while
ν2y = y2 in state s = 2 when the second provider submitted the lower bid
(y2 < y1). Likewise the unobservable component in state s = 1 can be ob-
tained by the invisibility operator ν̄1y = y2 and similarly the unobservable
component in the state s = 2 can be extracted: ν̄1y = y2.

Let i = 1, . . . , n be the index of n observational units which are randomly
sampled from Y ; a particular realisation of this random sample is denoted
by yi· = (yi1, . . . , yiq) and leads to a state si. Then, the visibility operator
allows the following succinct representation of the data which is available for
estimation:

(si, ν
siyi·)i=1,...,n.

In words: the econometrician knows which variables are observable and the
values for those variables.

The conditional distribution given a particular state s is characterised by the
respective conditional density function. This function can be obtained by
integrating over all components which are unobservable in that state (ν̄sy)
and dividing by the probability of the state to occur:

fs(ν
sy, θ) =

1

P (S = s)

∫

Vs

f(y, θ)d(ν̄sy).

The actual observations for a given state s are adequately described by this
conditional density. Hence, the available data for a given state s, which are
{νsiyi|si = s}, can be used to obtain an ordinary maximum likelihood estima-
tor of θ. Of course, it might be problematic to identify θ using the –possibly
few– observable components of y in state s. Moreover, the described tech-
nique may be carried out for various observed states s and therefore lead to
a multitude of estimators for θ. Ideally, we want to combine the information
of different states to better identify θ, to increase efficiency, and to obtain a
single estimator which incorporates all available information.
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Based on the introduced notation, we now devise such an estimator. To
derive the contribution of a particular observational unit, we start out with
the density f(y, θ). The respective realisation y leads to a visibility state
s. Some components of y are not observable in this state, so we integrate
them out. But the unobserved components cannot have any value, they are
restricted by the fact that we are in state s. Hence, we do not integrate over
the whole domain but limit integration to the visibility set V s. Overall, we
get:

f̃s(ν
sy, θ) :=

∫

Vs

f(y, θ)d(ν̄sy),

where the integration is simply ignored if there are no unobserved components
ν̄sy. This function is closely related to the conditional density:

f̃s(ν
sy, θ) = P (S = s)fs(ν

sy, θ)

But it is simpler to compute because the probability of the state s need not be
calculated. Note that f̃s(ν

sy, θ) is not a density function as integrating over
the remaining variables yields P (S = s) rather than one. Next, consider
an objective function to which each observation (si, ν

siyi·) contributes by
f̃si(ν

siyi·, θ). Then, define the following estimator:

θn := argmaxθ

n∏

i=1

f̃si(ν
siyi·, θ) (1)

Note, that the objective function is not an ordinary likelihood function be-
cause it is not the product of density functions. Consequently, the criticism
of Davidson and MacKinnon (1993) applies and the maximiser does not nec-
essarily have the usual properties of a maximum likelihood estimator. Later,
we determine when the maximiser in (1) is consistent and root-n times the
estimator is asymptotically normally distributed and efficient. If there is no
censoring, the objective function in (1) is an ordinary likelihood function.
Because most properties of a likelihood estimator are preserved for the max-
imiser in (1), the respective objective function is called generalised likelihood.

3 Application

The developed framework covers a large range of censoring problems. Ac-
cordingly, maximising the generalised likelihood provides estimators with
desirable properties for these censoring problems. This section reconsiders
some censoring problems, derives the generalised likelihood, and compares
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it with “likelihood functions” that were used for the respective problem by
other authors.

Recall the simple tobit model in which a (one-dimensional) realisation y1
cannot be observed when it is below zero. This model has two states si = 0
and si = 1. In the state si = 0, the variable is not observable since y1 < 0;
respectively ν1y = ν̄0y = y1. Thus, the visibility set of the variable is
V1 = {y1|y1 ≥ 0}, so that the state sets are V0 = V̄1 = {y1|y1 < 0}. and
V1 = V1. Given a normally distributed y1 with mean µ and variance σ2, the
calculated contribution for state s = 0 is:

f̃0(y1, θ) =

∫

V0

f(y, θ)dν̄0y = P (y1 < 0) = Φ(µ;σ2),

where θ = (µ, σ2). If y1 is observable (s = 1), the formula for the contribution
yields:

f̃1(y1, θ) = f(y1, θ) = φ(y1{µ, σ2),

where φ(·|µ, σ2) is the normal density. Hence, the objective function from
equation (1) becomes:

∏

{i|si=0}
Φ(0|µ, σ2)

∏

{i|si=1}
φ(y1|µ, σ2)

This, however, is exactly the objective function which is usually used to ob-
tain the tobit estimator. Consequently, this estimator is a special case of
estimator (1) and all properties which are valid for this estimator are also
valid for the tobit estimator. In the case of the tobit estimator, this might
not be very exciting since Amemiya (1973) has already derived its properties.
However, for other estimators, the properties of which have not been proven,
the method is more useful.

As an example take the tobit type II model as introduced by Amemiya (1984).
In this model, there are two components y = (y1, y2) which are normally
distributed around the means µ1 and µ2 with variance-covariance matrix

Σ =

(
σ11 σ12
σ12 σ22

)

so that θ = (µ1, µ2, σ11, σ12, σ22).

The realisation y1 is never observable but y2 is observable whenever y1 > 0.
So, there are two states s = 0 and s = 1 and the visibility set for y2 is
V1 = {(y1, y2)|y1 > 0}, while the state sets are V0 = V̄1 = {(y1, y2)|y1 ≤ 0}
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and V1 = V1 = {(y1, y2)|y1 > 0}. The respective contribution for state s = 0
is:

f̃0(y2, θ) =

∫

V0

f(y, θ)dν̄0y = P (y1 · 0) = Φ(0|µ1, σ11)

while the state s = 1 contributes:

f̃1(y2, θ) =

∫

V1

f(y, θ)dν̄1y = φ(y2|y1 > 0, µ1, µ2,Σ)P (y1 > 0).

So again, the generalised likelihood coincides with the standard objective
function given by Amemiya (1984):

∏

{i|si=0}
Φ(0|µ1, σ11)

∏

{i|si=1}
φ(y2|y1 > 0, µ1, µ2,Σ)P (y1 > 0).

However, previously the properties of the maximiser of this objective func-
tion were not known. Identifying this maximiser with the estimator defined
by (1) enables us to state that the tobit type II estimator is consistent and
root-n asymptotically normally distributed. It can be shown that the objec-
tive function for the tobit models of type III to V according to Amemiya’ s
classification (1984) are also special cases of the objective function leading
to (1). Hence, the respective maximisers all have desirable properties (under
regularity conditions).

A different censoring problem was analysed by Nelson (1977). In this model,
there are again two realisations y1 and y2 from normally distributed random
variables and the same parameters as in the tobit type II model. This time
the second component operates as an unobservable censoring threshold. That
means y1 is observable whenever it is above y2, the visibility set for y1 is
V1 = {y1 > y2}. Nelson (1977) proposes the following “likelihood function”:

∏

{i|si=0}
Φ

(
µ2 − µ1

σ11 + σ22 − 2σ12

)
∏

{i|si=1}

y1∫

−∞

φ(y1, y2|µ1, µ2,Σ)dy2.

He neither provides a proof nor a reference why the maximiser of his “like-
lihood function” is –for example– consistent, but he conducts a small sim-
ulation study which suggests that the maximiser has this property. The
properties can be formally affirmed if the proposed “likelihood function” co-
incides with the general likelihood function from (1). To check this, compute
the contribution for the state s = 0 in which y1 is not observable is:

f̃0(y1, θ) =

∞∫

−∞

∞∫

y1

φ(y1, y2)dy2dy1 = Φ

(
µ2 − µ1

σ11 + σ22 − 2σ12

)

.
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The contribution for the state where y1 can be observed (s = 1) is:

f̃1(y1, θ) =

∫

V0=V̄1

f(y, θ)dν̄0y =

y1∫

−∞

φ(y1, y2|µ1, µ2,Σ)dy2.

This implies that Nelsons objective function is indeed a generalised likeli-
hood function and that the estimator is consistent and has the respective
other properties.

However, not all objective functions used for censoring models coincide with
the generalised likelihood. Attanasio (2000) proposed a model for inertia
when the stock of a durable commodity is adjusted. Observations are cen-
sored in a very sophisticated way because sometimes the initial stock and
sometimes the final stock is not observable. If we construct state sets ac-
cording to the proposed rule, they are different from the “groups” by which
observations contribute in Attanasio’s setting. Attanasio does not explicitly
relate the groups to theoretical realisations of random variables. It is there-
fore difficult to assess whether any realisation contributes to the objective
function and does so in a unique way. Overall, the properties of Attanasio’s
estimator cannot be deduced from the properties of estimator (1) and still
remain to be explored.

The last censoring problem shows that there is by no-means a unique ap-
proach to construct objective functions from densities for estimation pur-
poses. Likewise, the term “likelihood” is ambiguous when it comes to cen-
soring problems. The virtue of the approach taken here is that it allows a
general treatment of these problems and leads to an estimator with known
properties.

4 Properties of the maximiser

In this section, we analyse the properties of the estimator defined by (1). The
first part deals with consistency, the second part with asymptotic normality,
and the third part with efficiency.

4.1 Consistency

In this section, consistency is proven by using a standard result on the con-
sistency of M-estimators. As θ̂n is the maximiser of any monotone transfor-
mation of the objective function in (1), one can alternatively work with the
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following objective function:

Qn(θ) :=
1

n

n∑

i=1

log f̃si(v
siyi·, θ) (2)

and use the machinery of M-estimation to determine the properties of the
maximiser and in particular to check whether it is consistent. To do so we
employ the following standard result (see e.g. Amemiya 1985 or Newey and
McFadden 1996):

Theorem 1 (Consistency of M-estimators). If there are measurable
functions Qn(θ) and a non-stochastic function Q0(θ) such that (i) Qn(θ)
converges uniformly in probability to Q0(θ), (ii) Q0(θ) is continuous, (iii)
Q0(θ) is uniquely maximised at θ0, and (iv) the parameter space is compact,

then θ̂n is consistent for θ0: θ̂n
p→ θ0.

The rest of this section will be devoted to find primitive conditions for (i) to
(iii) to hold.

The objective function needs to converge to the non-stochastic function
Q0(θ). Before we are able to find the maximiser of the limit of the ob-
jective function, we must ensure that this function exists and is finite. Thus,
we assume that the expected value of the logarithm of the density exists:

E| log f(Y, θ)| <∞. (FIN)

From this condition on the general density, we can conclude the finiteness of
the expectation of the contributions of state s.

Lemma 1. From (FIN) follows:

EY |S

∣
∣
∣log(f̃s(ν

sY ), θ)
∣
∣
∣ <∞.

Proof. By the mean-value theorem for integrals, we can rewrite the contri-
bution of state s:

f̃ s(νsy) =

∫

Vs

f(h(νsy, ν̄sỹ), θ)d(ν̄sy) = f(h(νsy, ζ)) for some ζ ∈ Vs, (3)

where h is the appropriate permutation of the values such that y1 is the first
argument of f(·) and yn is the last. Now, take condition (FIN) and rewrite
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it.

∞ > E |log {f(Y, θ)}|
= ES

[
EY |S |log {f(Y, θ)}|

]

= ES

[
Eν̄sY,νsY |S |log {f(Y, θ)}|

]

= ES

[
Eν̄sY |S

[
EνsY |ν̄sY,S |log {f(Y, θ)}|

]]
.

This implies:

∀(ν̄Sy) : E(νSY )|(ν̄SY ),S

∣
∣log

{
f(h(νSY, (ν̄SY )), θ)

}∣
∣ <∞

⇒ E(νsY )|ζ,S |log {f(h(νsY, ζ), θ)}| <∞.

Together with (3), we get:

∞ > E(νsY )|ζ,S |log {f(h(νsY, ζ), θ)}| = E(νsY )|S

∣
∣
∣log

{

f̃s(ν
sY, θ)

}∣
∣
∣ .

Using the finiteness and the law of the large numbers, we can determine the
probability limit of the objective function when the number of observations
tends to infinity.

Proposition 1 (Convergence). Given condition (FIN), Qn(θ) converges
uniformly in probability to

Q0(θ) =
∑

s

∫

Vs

log
{

f̃s(ν
sy, θ)

}

f̃s(ν
sy, θ0) d(ν

sy). (4)

Proof. Since observational units are drawn independently, Qn(θ) is the mean
of independent random variables. The law of the large numbers applies, and
the mean converges in probability to its expected value

EY |θ0

[

log
{

f̃S(ν
SY, θ)

}]

= ES|θ0

[

EY |S,θ0

[

log
{

f̃S(ν
SY, θ)

}]]

, which is finite by (FIN)

=
2q−1∑

s=0

P (S = s, θ0)

∫

Vs

log
{

f̃s(ν
sy, θ)

}

fs(ν
sy, θ0)d(ν

sy)

=
2q−1∑

s=0

∫

Vs

log
{

f̃s(ν
sy, θ)

}

f̃s(ν
sy, θ0)d(ν

sy).

12



Next, we have to ensure continuity of the limiting objective function Q0(θ) so
that stochastic convergence of the argument leads to stochastic convergence
of the values of the function.

Proposition 2 (Continuity). If

f(y, θ) is continuous in θ (CON),

Q0(θ) is continuous in θ.

Proof. If f(y, θ) is continuous in θ, f̃s(ν
sy, θ) =

∫

Vs f(y, θ)d(ν̄
sy) is continu-

ous in θ, and so is Q0(θ).

Like in the case of maximum likelihood estimation, it must be possible to
extract the desired information about parameters from the observations. Two
different parameter values which generate the same observations cannot be
distinguished. In other words it must be possible to identify the parameter
from the observations. We define the statistical model to be identified if and
only if

∀θ 6= θ′ ∃s : P (S = s) > 0 : fs(ν
sy, θ) 6= fs(ν

sy, θ′). (ID)

In other words, there must exist at least one state under which differences in
the parameter translate into differences in the conditional density. Similarly,
to the identification condition in maximum likelihood estimation, this condi-
tion may be difficult to verify. The next result proves that the parameter is
indeed uniquely determined when the condition can be verified. The proof is
very similar to the proof of the uniqueness of the maximiser of the limiting
objective function when working with ordinary likelihoods.

Proposition 3 (Unique maximiser). Under (ID) and (FIN),
Q0(·) is uniquely maximised at the true parameter θ0.

Proof. Consider the difference between the limiting objective function eval-
uated at the true parameter, Q0(θ0), and at a different parameter Q0(θ):

Q0(θ0)−Q0(θ) = EY |θ0

[

log
{

f̃s(ν
sy, θ0)

}

− log
{

f̃s(ν
sy, θ)

}]

= EY |θ0

[

− log

{

f̃s(ν
sy, θ)

f̃s(νsy, θ0)

}]

> ES|θ0

[

− log

{

EY |S,θ0

[

f̃s(ν
sy, θ)

f̃s(νsy, θ0)

]}]

,

(5)

where the last inequality follows from the strict version of Jensen’s inequality
for non-constant random variables. By (ID), the expected value is indeed

13



taken over a non-constant random variable. As EY |S

[
f̃s(νsy,θ)

f̃s(νsy,θ0)

]

= 1, we get

Q0(θ0)−Q0(θ) > 0, and θ0 is the unique maximum.

The consistency of the estimator (1) can now be deduced from the conditions
(FIN), (CON), and (ID) which together with the propositions 1 to 3 imply
that the requirements of the standard consistency theorem are valid.

Theorem 2 (Consistency of the estimator). If there are measurable
functions Qn(θ), (FIN), (CON), (ID) hold, and the parameter space is com-

pact, then θ̂n
p→ θ0.

It is simple to construct an alternative to estimator (1) by replacing f̃s(·)
by the conditional density contributions fs(·) where the “density” for state
s = 0 is defined as f0(y, θ) ≡ P (S = 0, θ). Multiplying these conditional
density contributions, we get the state conditional likelihood function QSCL

n ;
the maximiser will be referred to as state conditional likelihood estimator or
as SCL-estimator. All propositions and proofs in this section can be adapted
to the state conditional likelihood estimator, so that it is also consistent under
(FIN), (CON), (ID). In addition to the evaluation of an integral, which is also
necessary to obtain the generalised likelihood, the state conditional likelihood
requires the computation of the probability of all states. If there is no closed
form for the respective probabilities, this will increase the computational
effort substantially. To distinguish the two estimators the estimator resulting
from the generalised maximum likelihood, θ̂n is called GL-estimator.

4.2 Asymptotic normality

Another property of maximum likelihood estimators is their asymptotic nor-
mality and efficiency. In this section, conditions are derived under which (1)
has these properties. More precisely, we assume that the objective function
in (1) has an interior maximum and examine the solution to the first-order
condition which results from maximising the objective function. Again, the
conditions resemble the respective conditions for maximum likelihood esti-
mators. This is no coincidence, since the proof is based on a standard result
for M-estimators (Theorem 4.1.3 in Amemiya 1985 where assumption B is
replaced using Theorem 4.1.5):

Proposition 4 (Asymptotic normality of M-estimators). If (i) θ̂n, the
maximiser of Qn(·), is consistent for θ0, (ii) θ0 lies in the interior of the
parameter space Θ, (iii) Qn is twice continuously differentiable in an open

and convex neighbourhood N of θ0, (iv)
√
n∇θQn(θ)|θ=θ0

d→ N(0, J), (v)

14



∇θθQn(θ)|θ=θ̂n

P→ H(θ0) with H(θ) finite, non-singular, and continuous at θ0,

then
√
n(θ̂n − θ0)

d→ N(0, H−1JH−1).

Under the assumptions of theorem 2, condition (i) is valid. Condition (ii)
ensures that the maximum is not a corner solution and hence that the first
derivative of Q0(·) disappears at θ0. Subsequently, conditions (iii) to (v)
should be replaced by primitive conditions on the density f(y, θ).

We begin by assuming:

f(y, θ) is twice continuously differentiable at θ0. (DIFF)

Denote the operator which yields the first derivative of a vector-valued func-
tion by ∇θ and use the convention that this operator turns a real-valued
component of the function into a (1, p)-vector, where the first value is the
derivative with respect to θ1, the second with respect to θ2 and so forth. Like-
wise ∇θθ is the operator which gives the second derivative of a real-valued
function, the Jacobian matrix. We want the differentiation operators to be
exchangeable with integration which is for example fulfilled if the area over
which is integrated does not depend on θ:

∇θ

∫

f(y, θ)dy =

∫

∇θf(y, θ)dy ∇θθ

∫

f(y, θ)dy =

∫

∇θθf(y, θ)dy,

(EID)
where we require the equalities to hold only evaluated in the neighbourhood
of θ = θ0. We can use the exchangebility to compute the first and second
derivative of f̃ s(νsy, θ) with respect to θ at θ0:

∇θf̃
s(νsy, θ)

∣
∣
∣
∣
θ=θ0

=

∫

Vs

∇θf(y, θ)d(ν̄
sy)

∣
∣
∣
∣
θ=θ0

∇θθf̃
s(νsy, θ)d(ν̄sy)

∣
∣
∣
∣
θ=θ0

=

∫

Vs

∇θθf(y, θ)d(ν̄
sy)

∣
∣
∣
∣
θ=θ0

(6)

Next, define:

J(θ) := EY |θ0

[

∇θf̃s(ν
sY, θ)′∇θf̃s(ν

sY, θ)

f̃s(νsY, θ)f̃s(νsY, θ)

]

, (7)

where expectations are taken with respect to the true parameter θ0 and
where the prime denotes the transpose of a vector or matrix. Later, it will
be proven that J(θ) is the second derivative of the limit function Q0(θ) and
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thus deserves the letter “J” indicating that it is a Jacobian matrix. Since,
we want this second derivative to exist and to be finite at its maximiser θ0,
we suppose that

J := J(θ0) exists and is finite. (EX)

Under the defined conditions, it is now possible to calculate the distribution
of the first derivative of the objective function:

Proposition 5 (Asymptotic normality of the first derivative). Under
(DIFF), (FIN), (EX), (EID), and if J defined in (EX) is non-singular, then

√
n∇θQn(θ)|θ=θ0

d→ N(0, J).

Proof.
√
n∇θQn(θ)|θ=θ0 can be rewritten as the sum of i.i.d. random vari-

ables:
√
n∇θQn(θ)|θ=θ0 =

1√
n

n∑

i=1

∇θf̃s(ν
siyi·, θ)|θ=θ0

f̃s(νsiyi·, θ)|θ=θ0
︸ ︷︷ ︸

=:Qi
∇

, (8)

and by the central-limit theorem its distribution converges to a normal dis-
tribution with mean E(Qi

∇) and variance-covariance matrix COV [Qi
∇] . The

existence of E(Qi
∇) is assured by (EX) and Jensen’s inequality, its value is:

E(Qi
∇) =

∑

s

P (S = s, θ0)

∫ ∇θf̃s(ν
sy, θ)|θ=θ0

f̃s(νsy, θ0)
· f̃s(ν

sy, θ0)

P (S = s, θ0)
d(νsy)

(EID)
=

∑

s

P (S = s, θ) · ∇θ

∫
f̃s(ν

sy, θ)

P (S = s, θ)
d(νsy)

︸ ︷︷ ︸

=1

∣
∣
∣
∣
θ=θ0

= 0.
(9)

As the expected value is the zero vector, COV [Qi
∇] = E [(Qi

∇)
′Qi
∇]. By

plugging in Qi
∇ one immediately gets COV [Qi

∇] = J, the existence of which
is ensured by (EX).

Assumptions (DIFF), (EX), and (EID) do not only enable us to compute the
first but also the limit of the second derivative when it is evaluated at the
maximiser:

Proposition 6 (Convergence of the second derivative). Given (DIFF),

(EX), (EID), and θ̂n → θ0, it follows that ∇θθQn(θ)|θ=θ̂n

P→ −J , where J is
positive definite.
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Proof. The second derivative of the objective function with respect to θ is:

∇θθQn(θ) =
1

n

n∑

i=1

f̃s(ν
sy, θ)∇θθf̃s(ν

sy, θ)−∇θf̃s(ν
sy, θ)′∇θf̃s(ν

sy, θ)

f̃s(νsy, θ)2
︸ ︷︷ ︸

=:Qi
∇∇

.

(10)
By the law of large numbers Qi

∇∇ approaches its expected value:

E(Qi
∇∇(θ)) = E

(

∇θθf̃s(ν
sy, θ)

f̃s(νsy, θ)

)

− E

(

∇θf̃s(ν
sy, θ)′∇θf̃s(ν

sy, θ)

f̃s(νsy, θ)2

)

=
∑

s

P (S = s, θ0)

∫

∇θθf̃s(ν
sy, θ)d(νsyy) · 1

P (S = s, θ0)
− J(θ)

(EID)
=

∑

s

P (S = s, θ0)∇θθ

∫

f(νsy, θ)d(νsyy)
︸ ︷︷ ︸

=0

−J(θ) = −J(θ).
(11)

As this expected value is continuous in θ around θ0, we can use Theorem
4.1.5 in Amemiya (1985) to conclude that from θ̂n

p→ θ0 it follows that

E[Qi
∇∇(θ̂n)]

p→ E [Qi
∇∇(θ0)] . So overall, we get∇θθQn(θ)|θ=θ̂n

p→ E [Qi
∇∇(θ0)] =

−J . As −J is the second derivative of the objective function evaluated at a
unique and interior maximum, it must be negative definite. So, J must be
positive definite.

Using theorem 2 and propositions 4 to 6, we can state:

Theorem 3 (Asymptotic normality of the GL-estimator). If (ID),
(EX), (FIN), (EID), and (DIFF) hold, and θ0 is in the interior of the compact

parameter space Θ, then
√
n(θ̂n − θ0)

d→ N(0, J−1).

Again, the results for the state conditional estimator θ̂SCLn can be derived
by replacing the contributions f̃s(·) by the conditional density contributions
fs(·) and the generalised likelihood Qn by the state conditional likelihood
QSCL

n in propositions 4 to 6. This yields the following result.

Corollary 1 (Asymptotic normality of the SCL-estimator). If (ID),
(EX), (FIN), (EID), and (DIFF) hold, and θ0 is in the interior of the compact

parameter space Θ, then
√
n(θ̂SCL

n − θ0)
d→ N(0, (ΣSCL)−1), where

ΣSCL := EY |θ0

[∇θfs(ν
sY, θ)′∇θfs(ν

sY, θ)

fs(νsY, θ)fs(νsY, θ)

]

. (12)
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The asymptotic variance-covariance matrix of the derivative of the state de-
pendent likelihood function ΣSCL is identical to the variance-covariance ma-
trix for the generalised likelihood J , if the probabilities of the various states
do not depend on the unknown parameter: ∇θP (S = s, θ) = 0⇒ ΣSCL = J.

However, generally the two matrices will not be identical. When they are
different, the respective root-n estimators may not be equally asymptotically
efficient. But which of the estimators has the smaller asymptotic variance-
covariance matrix?

4.3 Asymptotic Efficiency

To show that root-n times the GL-estimator is asymptotically efficient, we
proceed in two steps. First, we determine the Cramer-Rao lower bound for
the class of censoring problems under consideration. This yields the “small-
est” variance-covariance matrix which can be attained using the available
(censored) information. Second, we observe that the asymptotic variance-
covariance matrix of the root-n GL-estimator coincides with this lower bound.
Hence, the root-n GL-estimator must be asymptotically efficient.

Proposition 7 (Cramer-Rao lower bound). In the censoring problem de-
scribed above and given that (ID), (EX), (FIN), (EID), and (DIFF) hold, the
asymptotical variance-covariance matrix limn→∞COV [

√
nT ] of any asymp-

totically unbiased estimator
√
nT for θ0 is larger or equal to J according to

the Löwner ordering:

∀x : lim
n→∞

x′COV
[√

nT
]
x ≥ x′J−1x.

Proof. Denote the observable sample by νsy := (νs1y1., . . . , ν
snyn.) Let

√
nT (·)

be an asymptotically unbiased estimator for the true parameter: E
[
T (νSY )

]
=

θ0, for n → ∞. Then, write out the expected value using the independence
of the observations:

θ0 = lim
n→∞

EY |θ0
[
T (νSY )

]

= lim
n→∞

2q−1∑

s1=0

P (S = s1, θ0) · · ·
2q−1∑

sn=0

P (S = sn, θ0) ·

·
∫

· · ·
∫

Vs1 Vsn

T (νs1y1, . . . , ν
snyn)

n∏

i=1

fsi(ν
siyi, θ0) d(ν

s1y1) · · · d(νsnyn).
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Using relationship f̃s(ν
sy, θ) = P (S = s)fs(ν

sy, θ), this simplifies to:

θ|θ=θ0 = lim
n→∞

2q−1∑

s1=0

· · ·
2q−1∑

sn=0

∫

Vs1

· · ·
∫

Vsn

T (νsy)
n∏

i=1

f̃si(ν
siyi, θ0) d(ν

s1y1) · · · d(νsnyn).

(13)

Now, take the derivative with respect to θ on both sides:

I = lim
n→∞

2q−1∑

s1=0

· · ·
2q−1∑

sn=0

∫

· · ·
∫

Vs1 Vsn

T (νsy)∇θ

n∏

i=1

f̃si(ν
siyi, θ0) d(ν

s1y1) · · · d(νsnyn).

(14)
Next, consider the following sophisticated expression for a zero matrix:

θ0 ∇θI = θ0∇θ

2q−1∑

s1=0

· · ·
2q−1∑

sn=0

∫

· · ·
∫

Vs1 Vsn

∇θ

n∏

i=1

f̃si(ν
siyi, θ0) d(ν

s1y1) · · · d(νsnyn).

(15)
Subtracting this sophisticated zero from the right-hand side in (14) yields:

I = lim
n→∞

2q−1∑

s1=0

· · ·
2q−1∑

sn=0

∫

Vs1

· · ·
∫

Vsn

(T (νsy)− θ0)∇θf̃s.(ν
sy, θ0) d(ν

s1y1) · · · d(νsnyn),

where f̃s.(ν
sy, θ0) :=

∏n

i=1 f̃si(ν
siyi, θ0). By multiplying with and dividing by

√
nfs·

(νsy, θ0) :=
n∏

i=1

fsi(ν
siyi, θ0),

we get:

I = lim
n→∞

2q−1∑

s1=0

· · ·
2q−1∑

sn=0

∫

Vs1

· · ·
∫

Vsn

√
n (T (νsy)− θ0)

∇θf̃s.(ν
sy, θ0)√

nfs·
(νsy, θ0)

fs·
(νsy, θ0)d(ν

sy)

= lim
n→∞

E [T W ] , (16)

where T =
√
n (T (νsy)− θ0) and W =

(∇θ f̃s. (ν
sy,θ0))

′

√
nfs· (ν

sy,θ0)
=

(∇θ log{f̃s. (νsy,θ0)})′

√
n

.

Next, write the complete asymptotic variance-covariance matrix of (T ,W).

lim
n→∞

(

E

[(
T T ′ T W ′

WT ′ WW ′

)]

−
(

E [T ] E [T ]′ E [T ] E [W ]′

E [W ] E [T ]′ E [W ] E [W ]′

))

.
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Recall that
√
nT is an asymptotically unbiased estimator such that limn→∞ E [T ]

is a zero vector of length q. By writing out E [W ] and exchanging the order
of integration and differentiation, it can be shown that E [W ] is also a zero
vector of length q. Thus, the subtracted matrix cancels and the asymptotical
variance-covariance matrix is:

lim
n→∞

COV [T W ] = lim
n→∞

E

[(
T T ′ T W ′

WT ′ WW ′

)]

.

Next, note that E [T T ′] = COV [T ] = COV [
√
n(T − θ0)] = COV [

√
nT ],

while

E [WW ′] =
1

n

n∑

i=1

E

[

∇θ log
{

f̃si(ν
sy, θ0)

}′
∇θ log

{

f̃si(ν
sy, θ0)

}]

= J.

and E [T W ′] = I. So overall, we get:

lim
n→∞

COV [T W ] = lim
n→∞

(
COV [

√
nT ] I

I J

)

. (17)

Being a variance-covariance matrix, this expression must be positive semi-
definite, so in particular

∀a (a′,−a′J−1) lim
n→∞

(
COV [

√
nT ] I

I J

)(
a

−J−1a

)

≥ 0.

If we multiply out this inequality, we get the result:

lim
n→∞

∀a a′
(
COV

[√
nT
]
− J−1

)
a ≥ 0.

Proposition 7 gives us the lower bound on the variance-covariance matrix.
Because this bound is asymptotically attained by the root-n estimator, we
can conclude immediately:

Corollary 2 (Asymptotic efficiency). In the censoring problem described
above and given that (ID), (EX), (FIN), (EID), and (DIFF) hold, the root-n
estimator

√
nθ̂n is asymptotically efficient.

The GL-estimator is thus superior to the SCL-estimator in the sense that
its root-n estimator has a lower asymptotical variance-covariance matrix. In
other words, the GL-estimator makes better use of the available information.
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5 A remark on censored regression

In many applications, observational units will differ by observable character-
istics Xi which have an effect on the distribution of Y . To allow for this in
our modelling framework, we suppose that the formerly fixed θ is an individ-
ual parameter which results from the interplay of observable characteristics
Xi with a fixed parameter β: θi = g(β,Xi).

Since observational units are drawn randomly, the observable characteristics
Xi can be modelled by a random variable. We assume this random vector
to be continuously distributed,1 so that the joint density of Y and X can
be decomposed: fY,X (y, g(β, x)) = fY |X (y|g(β, x)) · fX(x). Accordingly, the
contribution of a particular state s becomes:

f̃s(ν
sy, β, x) =

∫

Vs

f(y|β, x)d(v̄sy)

︸ ︷︷ ︸

=:f̃(νsy|β,x)

·fX(x),

and thus the logarithmitised objective function is:

Qn(θ) =
n∑

i=1

log
(

f̃s(v
siyi·|β, xi)

)

+
n∑

i=1

log (fX(xi)) . (18)

As the last term does not change in β, it can be ignored when maximising.
So we are left with an objective function which closely resembles the objec-
tive function from formula (2) which we analysed in the preceding sections.
All conditions, proofs, and theorems can be adapted to this new objective
function by replacing f(y, θ) by f(y|β, x) and f̃s(v

sy, θ) by f̃s(v
sy|β, x), and

requiring the respective statement to hold for all x. Additionally, one needs
∫
log(fX(x))fX(x)dx <∞, to ensure finiteness of the limiting objective func-

tion. The identifiability condition becomes:

∀β 6= β ′ ∃s,X : PX(x ∈ X ) > 0 : f̃s(ν
sy, β, x) 6= f̃s(ν

sy, β′, x). (ID’)

For the linear case g(X, β) = Xβ and given (ID), this is fulfilled if X has full
rank with positive probability.

On the asymptotic normality result the introduction of X has no effect: all
proofs are based on derivatives of the objective function with respect to the
parameter. Since the second sum in the objective function is independent of
the parameter β, it cancels when taking derivatives.

1Extension to the discrete case is straightforward.
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6 Conclusion

Parameters in censoring models are often estimated by maximising an objec-
tive function which resembles a likelihood. In fact, it is often misleadingly
called a likelihood function. It is then taken for granted that the maximiser
of this function has the usual properties of a maximum likelihood estimator.
Obviously, labelling the objective function “likelihood” is not sufficient for
the maximiser to have the properties, instead the function must fulfil certain
criteria.

In this article, it has been shown how to construct an objective function, the
generalised likelihood, such that the maximiser has the desired properties of
a maximum likelihood estimator under regularity conditions which are very
similar to the usual regularity conditions. The generalised likelihood estima-
tor can be applied to a wide range of censoring problems; in fact, the class
of censoring problems includes most problems considered in the literature.

The estimator reduces to the ordinary maximum likelihood estimator when
there is no censoring. Similar to the maximum likelihood estimator, it is vul-
nerable to a mis-specification of the density function and quantile-regression
is a sensible alternative when the density is unknown (for an overview see
Fitzenberger 1997). While quantile regression is less demanding with respect
to the density, it is no alternative for some censoring problems: simply, be-
cause it cannot be applied when the respective quantile is not observed.

The estimator proposed here coincides with many classical estimators for
censoring problems such as the tobit type I estimator. Checking whether the
objective function of an estimator is a monotone transformation of the gen-
eralised likelihood function is a simple method to prove that the estimator
has the desired properties. Hence, one can justify the use of many objective
functions which –up to now– were based on rules of thumb and intuition.
In this sense, the article can be viewed as an extension of the well-known
result of Amemiya (1973) to more general distributions than the normal dis-
tribution, to more involved censoring conditions and to multivariate random
variables.

Beyond proving the properties of existing estimators, maximising the gener-
alised likelihood offers the same convenience and properties, which are known
from ordinary maximum likelihood estimation, for various censoring settings.
It provides a clear rule how to derive estimators in such settings, so that there
is no need to rely on intuition or folk theorems.
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Appendix: Collection of states decomposes IR

Lemma 2. {Vs}s≥0 is a disjoint decomposition of IRq.

Proof. Part 1:
⋃

s Vs = IRq

Take any y ∈ IRq. Then, the respective visibility is (v1, . . . , vq). Call the state
corresponding to this visibility s. For this visibility realisation, it must hold
that y ∈ Vj if yj observable (vsj = 1) and y ∈ V̄j if yj not observable (vsj = 0).
Thus, y ∈ ⋂{j|vsj=1} Vj ∩

⋂

{j|vsj=0} V̄j, which by definition is equivalent to

y ∈ Vs. So, y ∈ ⋃s Vs and
⋃

s Vs ⊇ IRq. Because each Vs ⊆ IRq, it follows
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that
⋃

s Vs ⊆ IRq. Overall,
⋃

s Vs = IRq.

Part 2: Vs ∩ Vs′

= ∅ for s 6= s′.
If states differ (s 6= s′), it follows that there exists a component k which
is visible in one state but not in the other (vsk 6= vs

′

k ). Without loss of
generality, let s be the state where it is visible, then V s ⊆ Vk and Vs′ ⊆ V̄k
by the definition of the visibility set. Hence, (V s ∩ Vs′

) ⊆ (Vk ∩ V̄k). But the
latter is by construction the empty set: Vk ∩ V̄k = ∅. Thus, the visibility sets
must be disjoint: (Vs ∩ Vs′

) = ∅.
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