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ABSTRACT

Analyzing the Effect of Dynamically Assigned Treatments
Using Duration Models, Binary Treatment Models, and
Panel Data Models®

Often, the moment of a treatment and the moment at which the outcome of interest occurs
are realizations of stochastic processes with dependent unobserved determinants. Notably,
both treatment and outcome are characterized by the moment they occur. In this paper, we
compare different methods of inference of the treatment effect. We argue that the timing of
the treatment relative to the outcome conveys useful information on the treatment effect,
which is discarded in binary treatment frameworks.
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1 Introduction

In many real-life treatment situations, the outcome of interest can be character-
ized by the moment at which it occurs, and both the treatment and the outcome
of interest are realized at random points of time. Typical examples include the
effect of training programs or punitive benefits reductions on unemployment du-
rations, the effect of the hiring of replacement workers on strike durations, and
the effect of promotions on tenure. There is an extensive methodological econo-
metric literature on the evaluation of social programs and treatment effects, but
in general this literature does not focus on duration variables as outcome vari-
ables and does not exploit the specific information in the timing of successive
events (see, for instance, Heckman, LaLonde and Smith, 1999, for an overview of
this literature). Empirical research on the effect of dynamic programs on dynamic
outcomes has often resorted to the “timing of events” method.! In this approach,
event-history models along the lines of Kalbfleisch and Prentice (1980), Heckman
and Singer (1984), and Lancaster (1990) are used to jointly model the rate at
which the treatment occurs and the rate at which the outcome occurs.? This
approach is firmly rooted in the econometric literature on state dependence and
heterogeneity (Heckman and Borjas, 1980, and Heckman, 1981), but has mostly
been developed independently from the econometric treatment-effects literature.
This paper aims to provide a better understanding of the differences between
the various approaches, with a focus on the identification of the treatment effect.
Specifically, we make a comparison between, on the one hand, the timing-of-events
method, and, on the other hand, latent variable methods with binary treatment
indicators and panel data methods.?

Our discussion of the timing-of-events approach to program evaluation builds
on recent work by Abbring and Van den Berg (2003b) (henceforth AVdB), who
explicitly consider the evaluation of treatment effects in a simple event-history
(bivariate duration) context. In particular, they discuss the following framework.

!Examples in economics include Card and Sullivan (1988), Gritz (1993), Lillard (1993),
Lillard and Panis (1996), Bonnal, Fougere and Sérandon (1997), Abbring, Van den Berg and
Van Ours (1997), Richardson and Van den Berg (2001), Rosholm (2001), Van den Berg, Holm
and Van Ours (2002), Brodaty (2003), Rged and Raaum (2003), and Van den Berg, Van der
Klaauw and Van Ours (2004). See also Ridder (1986), Ham and LaLonde (1996), and Eberwein,
Ham and LaLonde (1997) for strongly related empirical approaches.

’In fields like epidemiology, the use of event-history models to analyze treatment effects is
widespread (see e.g. Andersen et al., 1993, and Keiding, 1999).

3See Maddala (1983), Heckman, LaLonde and Smith (1999), Angrist and Krueger (1999),
Blundell and MaCurdy (1999), Baltagi (2001), and Wooldridge (2002) for a comprehensive
overview of latent variable methods and panel data methods and their applications.



Consider a subject in a certain state. After a certain stochastic amount of time,
the subject leaves this state. The subject may receive a treatment at some stochas-
tic moment before it leaves the state. The parameter of interest is the effect of the
treatment on the exit rate out of the state. AVdB adopt an explicit general model
framework for the distribution of the durations until treatment and outcome. It
allows the duration variables to be dependent by way of dependent unobserved
determinants, with each single duration having its own Mixed Proportional Haz-
ard (MPH) model specification.* In addition to this, a causal effect of the realized
treatment works on the exit rate out of the current state from the moment the
treatment is realized onwards

AVdB demonstrate that their baseline model, including the causal treatment
effect, is non-parametrically identified from single-spell duration data. This result
has a number of notable aspects. First, it does not require exclusion restrictions
on observed covariates, so the data need not contain a variable that affects the
treatment assignment but does not affect the outcome of interest other than by
way of the treatment. Exclusion restrictions are often difficult to justify. If a
variable is observed by the analyst then it is often also observable to the indi-
viduals under consideration. If the variable affects the probability of treatment
and the individual knows this, then he takes his value of the variable into ac-
count in determining his optimal strategy. In turn, this strategy affects the rate
at which the individual leaves the state of interest. Indeed, if the individual knows
that the variable is an important determinant of the treatment assignment pro-
cess then he may have a strong incentive to inquire its actual value. Second,
the result does not require parametric functional form assumptions on the bi-
variate probability distribution of the unobserved heterogeneity terms or on the
duration dependence, the covariate effects, and the treatment effect. Obviously,
this is a desirable property. Third, as mentioned above, the AVdB model allows
for selection effects by way of unobserved determinants affecting both the treat-
ment assignment and the outcome. In other words, it is not necessary to make
a conditional independence assumption stating that the data are able to capture
all systematic determinants of the process of treatment assignment so that the
remaining observed variation in the treatment assignment is independent of the
determinants of the outcome of interest. In applications, such an assumption may
be difficult to justify, for example if the treatment assignment is carried out by
case workers who use discretionary power, taking individual characteristics of the
subject that are unobserved to the analyst into account.

“The MPH model is by far the most popular duration model. See Van den Berg (2001) for
a survey.



Standard methods of treatment evaluation often rely on exclusion restric-
tions, parametric functional form assumptions on the joint distribution of the
“error terms” in the model, or conditional independence assumptions to identify
the treatment effect. In this sense, treatment evaluation with the AVdB model
compares favorably to those methods. The aim of the present paper is to provide
a better understanding of this. More precisely, we examine which information or
variation in the data enables identification of the treatment effect in the AVdB
model framework, by comparing the model specification and the data to those
used in standard methods of treatment evaluation in the presence of selection
effects.

The paper is organized as follows. In Section 2 we present the AVdB model
framework. Section 3 makes the comparison to latent variable methods. Section
4 makes the comparison to panel data methods. Section 5 concludes.

2 A duration model framework with dynami-

cally assigned treatments

Consider a subject in a certain state. After a certain amount of time, the subject
leaves this state. The subject may receive a treatment at some moment before
it leaves the state. We are interested in the determinants of the event of leaving
the state, so the latter event is the event of interest, and the duration until this
event is the variable of interest. To fix thoughts, consider an individual who is
unemployed and who moves to employment at a certain point of time, and who
may receive a training at some point during his spell of unemployment. For the
sake of convenience, we use the term “individual” in general to denote the subject.

We normalize the point of time at which the individual enters the state to
zero. The durations T;,, and 7, measure the duration until the event of interest
and the duration until treatment, respectively. The population that we consider
concerns the inflow into the state, and the unconditional probability distributions
that are defined below are distributions over this inflow into the state. Whether
this is the inflow at a fixed point of calendar time or the total inflow over some
range of inflow dates depends on the application at hand.

The two durations are random variables. We use ¢, and ¢, to denote their
realizations. We assume that all individual differences in the joint distribution of
T,,, T, can be characterized by explanatory variables X, V', where X is observed
and V' is unobserved to the analyst. This means that any association between



T,, and T, conditional on X,V has a causal interpretation.” We assume that the
joint distribution of T}, 7| X,V is absolutely continuous, so that it can be char-
acterized in terms of the hazard rates 6,(t|x, V') and 6,,(t|t,, , V') of, respectively,
T,|z,V and T,,|t,, z,V.% Here and in similar settings below, z denotes the event
{X =z}, and ¢, the event {T), =1,}.

As noted in the introduction, we are interested in the causal effect of treatment
on the exit out of the current state. The treatment and the exit are character-
ized by the moments at which they occur, and we are interested in the causal
effect of treatment at time ¢, on the individual outcome hazard 0,,(t|t,,z, V).
To proceed, we assume that treatment only possibly affects this hazard from the
moment of treatment, ¢,, onwards. There is no effect of future treatment on the
current outcome hazard. More precisely, for given ¢ the individual outcome haz-
ard 6,,(t|t,,z,V) is the same for all future treatment times ¢, > ¢. This level of
O, (t|ty, x, V') is interpreted as the baseline “no treatment” level of the outcome
hazard. For t, < t, 0,,(t|t,, z, V) may be different from this baseline level. The
difference is the effect of the past treatment at ¢, on the hazard at ¢ > ¢,. AVdB
call the assumption that future treatment does not affect the current individual
outcome hazard a “no anticipation” assumption and show that such an assump-
tion is crucial for identification.”® It should be stressed that this assumption does
not exclude that forward-looking individuals have information on properties of

5AVdB formalize these statements by presenting the model in terms of potential-outcome
variables. In the present paper we suppress this for expositional convenience.

SFor a nonnegative random (duration) variable T, the hazard rate is defined as 6(t) =
limge o Pr(T € [t,t + dt)|T > t)/dt. Somewhat loosely, this is the rate at which the spell is
completed at ¢t given that it has not been completed before, as a function of ¢. It provides a full
characterization of the distribution of T (see Lancaster, 1990, and Van den Berg, 2001).

"In reality, there is often no information available on the degree to which an actual treatment
is anticipated. Even if some anticipation cannot be ruled out, there is virtually never any
information on the moment at which the individual receives information on the moment of
treatment except in the special case that one knows that the moment of treatment is perfectly
foreseeable by the individual. The fact that a realization of the event of interest could be due to
the anticipation of a future treatment has haunted the empirical literature on treatment effects.
Many standard treatment evaluation studies suffer from a potential bias due to anticipatory
effects. This includes studies using “difference-in-differences” methods where one “difference”
concerns a comparison between pre- and post-treatment circumstances (see Heckman, LaLonde
and Smith; 1999, for an overview).

8Note that we attribute the entire association between T}, and T}, conditional on X,V to a
causal effect of the treatment on the outcome. We do not consider reverse causal effects of the
outcome on the treatment. This is natural within the current asymmetric treatment-outcome
setup. Formally, it requires the additional assumption that there are no anticipatory effects of
future outcomes on the assignment of the treatment. AVdB provide discussion.



the treatment process, and act on this information. Such information, and the
induced association between the treatment and outcome processes, can be cap-
tured by the covariates X, V. Note, however, that conditioning on X,V typically
also serves to control for other selection effects. Thus, we do not attach a causal
interpretation to the association between 7,,7, on the one hand and X,V on
the other hand.’

Let V := (Vj, V) be a (2x1)-vector of unobserved covariates. Let T, 1LV, |z, V},
implying that 6,(t|z, V) = 6,(t|z,V}). Furthermore, let T,,, 1LV, |t,, x, V},, so that
O (tlty, x, V) = On(t|ty, x, Viy). Somewhat loosely, one may say that V, (V,)
captures the unobserved determinants of 7}, (7,). Now let us turn to the specifi-
cations of the hazard rates 0,,(t|t,, z, V;,) and 0,(t|x,V,). We adopt the following
model framework,

Model 1.
Op(tlz, Vi) = Ap(t)dp(2)V) (1)

Om(ttp, 2, Vi) = Am(t)m ()6 (t]tp, )PV, )

where I denotes the indicator function, which is 1 if its argument is true and 0
otherwise.

Apart from the factor involving 6(¢|t,, x), the above hazard rates have Mixed
Proportional Hazard (MPH) specifications. The function J; is called the “baseline
hazard”, because it gives the shape of the hazard rate #; for any given individual.
The hazard rate is said to be duration dependent if its value changes over t.
Positive (negative) duration dependence means that J; is increasing (decreasing).
The factor ¢;(z) is called the “systematic part” of the hazard. In applied duration
analysis, it is common to specify ¢;(x) = exp(z'f;), so that the hazard function
is multiplicative in all separate elements of x.!° Finally, the factor V; is called the
“unobserved heterogeneity” factor.!!

The factor §(tt,, z)!*>%) captures the treatment effect. The notation used
here requires some discussion. First, note that there are alternative but observa-
tionally equivalent ways of capturing this effect. For example, one may suppress

9As a consequence, we cannot predict outcomes under counterfactual treatment-assighment
mechanisms. Identification of such outcomes would require additional information, such as
strong functional-form assumptions, instrumental variables, or the imposition of an economic-
theoretic structure on the model.

10Tn biostatistics, B; is often called the “treatment effect” if = captures whether the subject
has received a treatment at the beginning of the spell, but we avoid such confusing terminology.

1AVdB also analyze alternative model specifications, notably with § depending on ¢, z, and
on a third unobserved heterogeneity factor, say Vj.



I(t > t,) and redefine ¢ such that it equals 1 if ¢ < ¢,. This is however less at-
tractive from an expositional point of view. For example, in our setup a constant
treatment effect is relatively easy to capture. The function 6(¢|t,, z) is not iden-
tified on ¢ € [0,¢,], so by not restricting its values on this interval we create an
uninteresting identification problem. In the sequel, it is tacitly understood that
all statements concerning §(t|t,, z), including identification statements, concern
§(t|ty, x) on {(t,ty, z) € [0,00)* x X : t > t,}.

Clearly, treatment is ineffective if and only if 6(¢|¢,,2) = 1. Now suppose
d(t|t,, x) is equal to a constant larger than one. When 7, is realized then the level
of the individual exit rate out of the current state increases by a fixed percentage.
This stochastically reduces the remaining duration in that state, in comparison
to the case where the treatment is given at a later point of time. More in general,
we allow the treatment effect to vary with the moment of treatment ¢,, with z,
and with the elapsed time ¢ in the current state. As a result, the individual effect
may also vary with the time ¢ — ¢, since (the onset of) treatment.

We assume that V' is independent of X with distribution G. We also assume
that E(V;) < co. This is a common assumption in the analysis of single-spell du-
ration data with MPH-type models (see Heckman and Taber, 1994, and Van den
Berg, 2001, for surveys). Note that we treat V as a “random effect”. An alter-
native approach treats the individual values of V' as unknown individual-specific
parameters (or, equivalently, as “incidental” parameters or “fixed effects”). For
convenience, we also impose a number of normalizations and regularity assump-
tions on the model (see AVdB). Notably, the individual values of  are taken to
be time-invariant. For our results it is useful to point out that “binary treatment”
analyses often define the issue of time-varying covariates away, by assuming that
there is only a single point of time at which possible treatment and outcome may
occur. Time-varying covariates are potentially very useful for the identification
of duration models (see Honoré, 1991, and Heckman and Taber, 1994).

The model does not impose parametric functional form restrictions on the
distributions of Ty|z, V, and T,,|t,, x, V,,,. More specifically, the model is nonpara-
metric in the sense that we do not make parametric functional form assumptions
on the probability distribution of the unobserved heterogeneity factors, the base-
line hazards, the systematic hazards, and the treatment effect. Furthermore, we
do not impose that there are observed explanatory variables that do affect T,
but do not affect 7}, other than by way of ¢,. In other words, we do not exclude
elements of = from ¢,,(z) that are included in ¢,(z).

It is useful to phrase the problem of the identification of the treatment effect
in the presence of “selectivity”, in the context of our Model 1. First, note that



the data typically provide observations on realizations of T;, and X. In addition,
if treatment is initiated before the realization ¢,, then we also observe the treat-
ment time ¢,, otherwise we merely observe that 7}, exceeds ¢,,. Now consider the
(sub)population of individuals with a given value of x. The individuals who are
observed to receive a treatment at a date ¢, are not representative (in terms of
their distribution of 7,,,7,,V) for this population. The most important reason
for this is that the distribution of V}, among them does not equal the correspond-
ing population distribution, because individuals with high values of V], are more
likely to have been treated before at time ¢,. If V,, and V},, are dependent, then by
implication the distribution of V,,, among them does not equal the corresponding
population distribution either. A second reason is that, in order to observe the
fact that treatment occurs at ¢,, the individual should not have left the state
of interest before ¢,. Because of all this, the treatment effect cannot be inferred
from a direct comparison of realized durations t,, of these individuals to the real-
ized durations of other individuals. If the individuals with a treatment at ¢, have
relatively short durations then this can be for two reasons: (i) the individual
treatment effect is positive, or (ii) these individuals have relatively high values
of V,, and would have relatively short durations anyway. The second relation is
called a spurious relation as it is merely due to the limited observability of the
set of explanatory variables. This relation is referred to as “selectivity”. If V,,
and V), are independent then I(¢ > t,) is an “ordinary” exogenous time-varying
covariate for 7}, and one may infer the treatment effect from a univariate dura-
tion analysis based on the distribution of T},t,, z, V;,, mixed over the distribution
of V,,. However, in general there is no reason to assume independence of V,, and
Vp, and if this possible dependence is ignored then the estimate of the treatment
effect may be inconsistent.

We now examine Model 1 from a number of different angles. First, the prob-
ability Pr(T,,, > t,,,T, > t,|z) can be expressed as

r(T,, > t,1, > t)|r) =
/ / exp (=G ()0 [A(mindt, £,}) + I(t > £,)A(t]ty, 7)]

—p(2)vp Ay (tp)) dG (v, )
with



The joint density of T,,,, T,|x follows from differentiation with respect to ¢,, and
tp. Note that Model 1 and the above include a specification of the distribution of
T, for T, > T,,. This specification is immaterial, as it does not play any role in
the paper or indeed in any empirical analysis.

To make comparisons to other models, it is useful to rewrite Model 1 as a
regression-type model. It is well known that the integrated hazard of a duration
distribution has an exponential distribution with parameter 1 (see e.g. Ridder,
1990, Horowitz, 1999). From this it follows that we can write

log A, (T,) = —log ¢p(z) —log V), + ¢, (3)

log [A, (min{T,,,t,}) + U(T5, > t,) A(Tnlty, )] (1)
= —log ¢ () — log Vi + €m,
where

em AL &y, and (Em,ep) 1L (X,V)

and ¢, and ¢, have an Extreme Value — Type I (EV1) probability distribution.
This distribution does not have any unknown parameters; its density equals

fle) = efie ", —00 < g; < 0.

Note that V), and V},, are allowed to be dependent. Also, it is important to stress
that the fact that €, and ¢, have a fully specified distribution does not mean that
we make a parametric functional form assumption on the distributions of T, |z, V,
and T,|tp, x, Vi, This is because the left-hand sides of the above regression-
type equations specify unknown transformations of the dependent variables: the
integrated baseline hazard A, for T}, and a generalized integrated baseline hazard
(including treatment effects depending on t,) for T,,,. Equation (3), for example,
can be rewritten as

_ e°r
=5 ()

where A_' is the (generalized) inverse of A,.

The fact that we specify the assignment of treatment by specifying the hazard
rate of a duration distribution rather than the individual realization of the dura-
tion variable itself implies that there is a random component in the assignment
that is by definition independent of all other variables. This random component
is represented by the term ¢, in the “regression” equation (3) for 7,. One may
interpret this random component in terms of the randomness in the treatment



assignment at ¢ that remains if we take 6,(¢|z,V}) as given. Consider an individ-
ual who has not yet been given a treatment and who has not yet left the state of
interest, at time ¢. Basically, in a small time interval [¢, ¢+ dt), the probability of
treatment is 0,(¢|x, V,)dt, and the probability of no treatment is 1 —6,(t|z, V,)dt.
This is a Bernoulli trial. Given 6,(t|z, V,)dt, its outcome is randomized. In prac-
tice, such randomization may reflect behavior of the institution that supplies or
imposes the treatments, or it may reflect random external shocks.

We first discuss identification from single-spell data. The components of Model
1 that can be freely specified are A,,, Ay, ¢, ¢p, A, and G. To each specification
of Am, Ap, m, 0p, A, G corresponds a joint distribution of 7,,,1(7,,, > 7,) and
T,1(T,, > T,) given z. Ideally, we can directly infer the latter from a large data
set and in the sequel we will simply refer to it as the “data”. We say that the
model is “identified” under the given assumptions if no two model specifications
that satisfy these assumptions generate the same data. AVdB demonstrate that
Model 1 is non-parametrically identified from single-spell data. The result implies
that the treatment effect is identified without exclusion restrictions or parametric
functional form restrictions on the distribution of unobserved heterogeneity.

We now turn to the case where the data cover multiple spells of an individual
in the state of interest, i.e. if the data are “multiple-spell” data. We assume that
an individual has a fixed value of V. For a given individual, the different spells
provide independent draws from the joint distribution of 7,,,I(T;, > T,) and
1, 1(T,, > T,) given x and V. The extension to more than two spells is trivial. Also
note that the setup includes cases in which physically different individuals share
the same value of V' and we observe one duration for each of these individuals.
Such a group of individuals is usually called a “stratum”.

Since V' is unobserved, the duration variables are not independent across
spells given z. In fact, any stochastic dependence across spells can only be due to
the presence of heterogeneity. It is ruled out by assumption that realizations of
T,, or T}, in one spell affect the distributions of durations in another spell. This
may be a strong assumption in some applications. For example, participation in
a training program for the unemployed may have an effect on the durations of
future unemployment spells.

Compared to Model 1, the AVdB model for multiple spells is much more
flexible. It allows for interaction between ¢ and x in the individual hazard rates,
so that the MPH structure is relaxed substantially. It also allows for dependence of
V and z, and it does not require that E(V;) < co. It is allowed that the individual
hazard rates in the second spell depend on ¢,z in a different way than they do in
the first spell. The treatment effect and the systematic components may also be



different across the two spells, and x may even be completely absent. However,
it still requires that the treatment effect and the unobservables affect the hazard
rates multiplicatively. AVdB demonstrate that this model is non-parametrically
identified from multiple-spell data.

3 Comparison to latent variable models with bi-

nary treatment assignment

We start this section by considering identification of a treatment effect in stan-
dard latent variable models with binary treatment assignment (see Maddala,
1983, and Wooldridge, 2002, for overviews). We restrict attention to the relations
between the mean of the endogenous variables on the one hand and the explana-
tory variables on the other. This is in line with the spirit in which these models
are interpreted.'?

Consider

Y = xlyﬁy +$I)/50 I(Z > 0) + ey
Z = l‘lzﬁz + &z

(5)

where Y, Z, €y, and €4 are continuous random variables, Z > 0 indicates treat-
ment, I(Z > 0) is a binary treatment indicator, and x}Jy is the treatment effect.
We assume that inference is based on a random sample of subjects with informa-
tion on Y, zy, xz, and I(Z > 0) for each subject. Furthermore, x := (zy,xz) is
independent of €y, c;. We take the parameter 55 to be identified from the data
on I[(Z > 0) and xz. It is generally acknowledged that either exclusion restric-
tions (stating that some covariates in z with non-zero parameters in 3 are not
included in zy) or parametric functional-form assumptions on the joint distribu-
tion of ey, e, are required for identification of the treatment-effect parameter dy.
To illustrate this, suppose one aims to identify dy from the difference in the mean
outcomes of treated and untreated individuals,

E(Y|Z >0,2) —E(Y|Z <0,2) =
JIIY(S() + E(€y|6z > —.Z’lzﬁz,l’z) — E(6y|6z S —JI’Zﬂz,sz). (6)

If we do not make parametric functional form assumptions on the joint distribu-
tion of ey, e then the difference in the conditional mean errors in the right-hand

12See e.g. Heckman (1990) for identification results based on full information.

10



side of (6) can be linear in 2,57 on its support. If, in addition, we do not im-
pose an exclusion restriction then obviously dy is not identified from this linear
expression.

Now suppose that we do not observe Y but only I(Y" > 0). This is the “binary
treatment — binary outcome” specification. For example, Z > 0 may indicate
whether an unemployed individual has participated in a training program, and
Y > 0 may indicate whether he has found a job. The binary specification for Y
effectively reduces the information in the data, so identification needs at least as
many assumptions as above (see Cameron and Heckman, 1998, for results).

Before we contrast the identification results, it should be noted that using
latent variable models with binary treatment assignment or discrete-time panel
data models when Y is in fact a (function of a) duration variable leads to a
number of intractable practical problems. First, it requires aggregation over time.
Often, it is recorded whether a treatment occurs in a baseline period, and it
is recorded whether the outcome (i.e. the duration variable) is realized in the
subsequent period. Then, the question arises what to do when the treatment
and the outcome occur in the same period. In addition, it is not clear how to
deal with observations that are right-censored before the end of the observation
window. It is common that a spell in a state of interest can end in different
ways. Usually, only a subset of these are deemed interesting. For example, an
unemployment spell can end because of a transition to work, but also because of
a transition into education, military service, etcetera. A study of the transition
rate to work may treat transitions to other destinations as independently right-
censoring the duration until work. The treatment effect estimate may be biased
if such observations are discarded or if they are treated as observations of exit to
work.

Now let us consider the similarities and differences between the above model
and the duration model of Section 2 in its regression representation (3)—(4), and
the corresponding identification results. To shape thoughts, one may, in the above
latent variable model, interpret Y as logT,, and Z > 0 as T, < T,,. Of course,
alternative interpretations are possible, and each of them is imperfect. Moreover,
if Model 1 is the true model then in general the parameter Jy in the above model
specification is a complicated function of all parameters of Model 1.

The most notable similarity between the models concerns the proportionality
assumptions in Model 1 and the additivity assumption in regression equations.
Both impose some “smoothness” by excluding certain interactions of time and
explanatory variables at the individual level. The MPH specification does impose
more structure than a regression specification, because the former decomposes
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the “error term” into two terms.'3

The most fundamental difference between the data used for the latent variable
model and the data used for Model 1 concerns the fact that the latter incorporate
the timing of the treatment whereas the former do not. At the same time, the most
fundamental difference between the identification result for the latent variable
model and the identification result for Model 1 concerns the fact that the latter
does not need exclusion restrictions and even allows the treatment effect to have
a time dimension. This suggests that the timing of events provides potentially
very useful information on the treatment effect.

We shed more light on this by returning to Model 1. A single observation
is equivalent to an observation of a realization of min{T,,,T,},1(T,, > T,) and
T U(T,, > T,) given x. The pair min{7,,,7,},1(1,, > T,) is called the identi-
fied minimum of T,,,T,. The data and the model can be decomposed into two
parts: the identified minimum given z, and the duration from 7, until 7;,, if 7T}, is
smallest. Let us examine the part of the model that specifies the distribution of
this identified minimum given x. This is in fact the well-known competing risks
model with dependent risks, where the dependence runs by way of related unob-
served heterogeneity factors (see Heckman and Honoré, 1989, Lancaster, 1990).
Note that, because of the no-anticipation assumption, the specification of the
competing risks model does not depend on 6. Heckman and Honoré (1989) show
that, under a number of assumptions, the dependent competing risks model is
identified from single-spell data on the identified minimum and z. So if the data
provide exact knowledge of the joint distribution of the identified minimum given
x then ¢p,, ¢p, A, Ap, and G can be deduced. Of course, we observe not only the
identified minimum and x, but also 7,,, I(T;,, > T,). The latter, which is intimately
linked to the time distance between the moment of outcome and the moment of
treatment, can be used to identify 0(¢|t,, ). Intuitively, one can compare the
actual distribution of this time distance to the distribution that would prevail if
0 = 1. The latter distribution is identified from the competing risks model.

To clarify this further, we compare the observable exit rate 6,, at time ¢ for
individuals who are treated at some time ?, < ¢,

O (T, = Ly, ) = A ()b (2)0 (L, ©)E(Vin| Ty > £, T = 1, ),

13Because of this, identification of an MPH model requires data on the whole distribution of
the duration variable given X instead of just the mean given X, and without the proportionality
assumption embedded in the MPH specification the model is not identified (Van den Berg,
2001). All of this is also essential for the identification of the shape of § as a function of ¢ or
t —t, in Model 1, which is why a comparison of identification of the treatment effect to that in
the latent variable model is fairer if one restricts attention to constant d.
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to the exit rate 6,, at time ¢ for individuals who have not yet been treated at t,
O (t|T, > t,2) = My (£) P (2) E(V, | T3, > 8, T, > £, 20).
Note that

log 0, (|1}, = tp, x) —log b, (t|T, > t,z) =
log 6(t|t,, x) + log E(V,,| T, > t, T, = t,,x) —log E(V,,,|T,,, > t,T, > t, x).

So, for ¢ near ¢, we have that

limy,, [log 0, (t|T, = t,,x) — log 0,,,(t|T, > t,x)] = (7)
log §(t.5 [ty ) +1og E(Viu|Ton > 8, Ty, = ty, 7) = log E(Viu|Ton > 1, T, > 1y, @),

where 0(tf|t,, ) := limy,, 6(t|t,) is the effect of treatment at ¢, on the out-
come hazard just after ¢,. The selection effect log E(V,,|T,,, > t,,T, = t,,z) —
log E(Viu| T, > tp, T, > t,, ) is identified from the competing risks part of the
model. In words, we know the average “quality” (V,) among treatment and con-
trol groups at t, from the competing risks part of the model. This enables iden-
tification of §(t; |t,, ). A given treatment works and only works from the day
the subject is exposed to its possible effects, whereas unobserved heterogeneity
affects the observed exit rate out of the current state from the start.'*

The above results based on the partitioning of model and data reinforce the
conclusions from the comparison between the binary treatment approach and
the duration model approach. First of all, the timing of events conveys useful
information on the treatment effect. Second, the MPH specification is important,
because this is assumed for the identification of the competing risks model.'®

4 Comparison to panel data models
Consider the dynamic panel data model

Wt = xg/V,tBW + ZL'II/V’té() I(Zt > 0) + VW + Ewt
Zy =y By + Vg +ezy,

(8)

M Econometric evaluation approaches typically require some independent variation in the
assignment of treatment for identification of a treatment effect. In our framework, this is taken
care of by the random component ¢, in the “regression” equation (3) for T}, which only affects
T, by way of the treatment.

15See Abbring and Van den Berg (2003a) for intuition behind the identification of the com-
peting risks model.
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where the index ¢ denotes time. We deliberately introduce new notation W; for the
outcome because below we adopt two different interpretations of W; in terms of
duration outcomes. Inference is based on a random sample of subjects with infor-
mation on Wy, Wy_y, Twy, w1, Tz, Tz4-1, 1(Z; > 0), and I(Z;,_, > 0) for each
subject. We take Elew,—1|Z,-1, Zy, xwy—1, vwy] = Elewy|Zi—1, Zi, xwyi—1, Twy] =
0. Thus, the spurious dependence between treatment and outcome (the “selection
effect”) runs by way of the relation between Vj, and V. We can treat Vj as a
fixed effect and control for it by taking first differences of W, across time,

EW,—W,11Z;-1 <0,Z; > 0, xwy—1, 2wy) = (Twy — Twi1) Bw +$§/V,t(5o- 9)

Clearly, dy is identified (under standard support conditions on the regressors).

Now suppose that [y, varies over time. The equivalent of the right-hand side of
equation (9) equals @y, Bw, — Ty, 1 Bw,s 1+ Ty ,00- As a result, oy is unidentified
from E[W, — Wi_1]Zi1 < 0,2y > 0,2w,—1, vwy). A “difference-in-differences”
however gives

EW, = Wi_1|Zi—1 < 0,2, > 0, wi—1, Twy)

(10)
—EW, = Wii1|Z121 £ 0,2, <0, 2w—1, wy] = 2,00,

so 0y is again identified. Note that this does not require the specification of a
model equation for the treatment assignment Z;. Moreover, Z; and Xy, may be
dependent, and the method even works in the absence of observed covariates.
Also, clearly, dy can be allowed to depend on ¢.

We can relate the dynamic panel data model to our model in two ways. We
can either (7) let W, be a survival indicator for a single outcome duration 7,, and
set Wy =1 < T, <t,or (i) relate each W, to a separate outcome duration,
say Ti -

Option () suggests a link between our single-spell duration model and a multi-
period panel data model. In fact, because a duration variable has a time unit,
single-spell duration models are often thought to be similar to multi-period panel
data models. However, this apparent similarity is deceptive. In the case of (i),
we only observe one duration outcome per individual, so W, { =1 = W, =1,
which is not necessarily so in the general case of specification (8). The latter
specification allows for more variation in W, and W,_; given Z,_1, Z;, w1, Twy-
This variation distinguishes panel data models from our duration model. As a
result, we cannot apply (9) and, in particular, we cannot apply difference-in-
differences as in (10).

Nevertheless, the results at the end of the previous section (see equation (7))
suggest that an approach in the spirit of the difference-in-differences approach

14



might be possible, provided that one can usefully compare different sets of in-
dividuals across time, and provided that the treatment assignment process is
specified. In Abbring and Van den Berg (2002) we develop such an approach.
Not surprisingly, it is much more involved than straightforward difference-in-
differences.

The point of departure in Abbring and Van den Berg (2002) is the observation
that difference-in-differences amounts to an examination of a specific interaction
effect: the extent to which the outcome over time differs between treated and
controls. Abbring and Van den Berg (2002) focus on the log rate at which a
treatment is given conditional on the moment of exit (log#f,(t|x,t,) with ¢t <
tm) and examine whether this behaves differently as a function of ¢ when t,, is
different. Intuitively, if 6 > 1 then many of those who “die” at t¢,, received a
treatment shortly before ¢,,, so 0,(t|x, t,,) will tend to increase shortly before t,,,
relative to 6,(t|z,t,) for larger ¢,,. This amounts to examining the interaction
effect between the moment of treatment ¢ and the outcome ¢,, in log 8, (t|x, t,). It
turns out that this approach allows one to distinguish between a causal treatment
effect and selectivity. Intuitively, if treatment and outcome are typically realized
very quickly after each other, no matter what the values of the other outcome
determinants are, then this is evidence of a positive causal treatment effect. The
selection effect does not give rise to the same type of quick succession of events.
The x variables play no role here. However, ¢ is assumed to be constant over ¢
and ¢,.

This result again illustrates the usefulness of the information on the timing
of events to assess the treatment effect. Both in the panel data approach and in
our duration model approach, the treatment effect works from a specific point of
time onwards, whereas the selection effect works at all points of time in a more
permanent way. In both approaches, separability assumptions, ruling out certain
interaction effects of the determinants of the individual outcome of interest, are
needed. In the panel data approach, additivity of treatment effect and unobserved
heterogeneity in the outcome equation (8) is crucial. The previous section argued
that in the duration model approach the additivity of the determinants of the
individual log outcome hazard rate log#6,,(t|t,, z,V,,) (equation (2)) is crucial.
The results in this section so far emphasize that what is particularly crucial is
the additivity of the treatment effect and the unobserved heterogeneity in this
log hazard rate (although this by itself seems to be insufficient to identify the
whole duration model including the way the treatment effect varies with ¢ and
ty).

These separability assumptions at the individual level enable an empirical
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distinction between the treatment effect, which works from a specific point of
time, and the selection effect, which works at all points of time. The duration
approach is much more involved because of the dynamic nature of selectivity in
duration analysis: as time proceeds, the composition of the survivors changes, so
the selection effect changes.

Now consider option (i7) for relating the dynamic panel data model to our
duration model framework. Let Z; indicate whether a treatment is given during
the t-th spell. This interpretation allows for a straightforward comparison with
our multiple-spell duration model. In both cases we observe multiple outcomes
for an individual with the same unobserved covariates. This suggests that we can
remove the role of unobserved heterogeneity in multiple-spell data by some sort
of conditional likelihood or first-differencing approach. AVdB discuss an analogue
of the fixed-effect panel data estimator based on (10). Neither estimator requires
any observed explanatory variables or a specification of the treatment assignment
process.

5 Conclusions

Variation in the duration until treatment relative to the duration until the out-
come of interest conveys useful information on the causal treatment effect in the
presence of selection effects. This information is discarded in a binary treatment
framework. Analysis of the duration variables allows for inference on causal treat-
ment effects if no valid instruments are available and if conditional independence
assumptions can not be justified. With single-spell duration data, this works as
follows. If treatment and outcome are typically realized very quickly after each
other, no matter what the values of the other outcome determinants are, then
this is evidence of a positive causal treatment effect. The selection effect does not
give rise to the same type of quick succession of events.

We make a number of qualifications. First, it is pivotal that individuals do not
anticipate the realization of the moment of treatment, because then the treat-
ment works from a moment in time that precedes the actual participation. It is
obvious that this would lead to incorrect inference. See AVdB for an extensive
methodological analysis of this issue. Second, the information in the timing of
events is useful for inference on how the causal treatment effect varies with time
and with the time since treatment. This provides potentially very useful insights
into the workings of the treatment, and this is important from a policy point
of view. Third, an important topic for further research is the robustness of the
identification results for the single-spell duration model framework to relaxation
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of the separability assumptions embedded in this framework.

The results lead to some suggestions for empirical work. First, it is useful not
to discard information on the timing of the treatment, and, in particular, not
to aggregate such information into a binary treatment indicator. Second, it is
potentially useful to exploit multiple-spell data, as this leads to inference under
much weaker assumptions than single-spell data.
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