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ABSTRACT 
 

The Effect of Renewable Energy Development on 
Carbon Emission Reduction: 

An Empirical Analysis for the EU-15 Countries 
 
The increased concerns about climate change have made renewable energy sources an 
important topic of research. Several scholars have applied different methodologies to 
examine the relationships between energy consumption and economic growth of individual 
and groups of countries and to analyze the environmental effects of energy policies. Previous 
studies have analyzed carbon emission savings, using renewable energy usage as an 
individual source or in combination with traditional sources of energy (e.g., hybrid plants) in 
connection with lifecycle analysis methods. It is shown that after a certain period, economic 
growth leads to the promotion of environmental quality. However, econometric modelling 
critiques have opposed the results of these studies. One reason is that the effectiveness of 
governance-related parameters has previously been neglected. In this research, we analyze 
the impact of renewable energy development on carbon emission reduction. We estimate a 
model to evaluate the effectiveness of renewable energy development, technological 
innovation, and market regulations in carbon emission reduction. The empirical results are 
based on a panel data estimation using the EU-15 countries data observed from 1995 to 
2010. The elasticities of CO2 emissions are estimated, in order to evaluate the effectiveness 
of each parameter. The findings show that the effects of a negative climate change could be 
mitigated by governance-related parameters instead of economic development. 
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1. Introduction 

During the last three decades, two different approaches have been applied in the research of 
natural resources. The first approach is based on the viewpoint that considers the effect of 
natural resources on economic growth. Many researchers have studied the relationship 
between energy consumption and economic growth. Early studies were published in the 
1970s, including Allen et al. (1976), Hitch (1978), and Kraft and Kraft (1978). This 
relationship has been studied in both individual and groups of countries. Akarca and Long 
(1980), Yu and Hwang (1984), Cheng (1995), and Stern (2000) applied this methodology in 
the US. Wold-Rufael (2005) employed the causal relationship methodology in a study of 19 
African countries. Lee and Chang (2007) tested causality in 16 Asian countries, while Huang 
et al. (2008) tested causality in 82 countries. The effect of energy consumption on economic 
growth differs substantially in developed countries. Narayan and Prasad (2007) found 
different causality effects in 30 OECD countries. This means that conservative energy policy 
could affect individual countries differently.  

The second approach takes into account the environmental effects of economic growth. 
Following the empirical study of Grossman and Kruger (1991), many scholars analyzed the 
relationship between economic growth and environmental pollution. Coondoo and Dinda 
(2002) studied the relationship of income and CO2 emissions based on a Granger causality 
test of cross-country panel data. Zhang and Cheng (2009) investigated Granger causality 
among economic growth, energy consumption, and carbon emissions in China. Soytas and 
Sari (2009) examined causality relationships between these variables in Turkey. In a recent 
study, Choi et al. (2011) used the Environmental Kuznets Curve (EKC) to examine the 
relationship of carbon dioxide emissions with economic growth and openness.  

In the present study, we investigate EKC according to a number of variables frequently used 
in empirical studies. The variables are: share of renewable energy sources in total power 
generated; number of patents per million inhabitants for energy applications adopted to 
mitigate climate change; ICT as a proxy variable for technological innovation; environmental 
tax per capita as a proxy variable for market regulation; and time trend. We examine the 
effects of these variables on carbon emission per capita.  

Our contribution is the investigation of the effectiveness of power generated by renewable 
energy sources, technological innovation, and market regulations on the mitigation of climate 
change. We also calculate the elasticity of carbon emissions per capita for each parameter. 
The results obtained could be used by policy makers to evaluate effectiveness of different 
policy tools and the effects of interactions between these policies. 

Rest of this study is organized as follows. Section 2 outlines the methodology and framework. 
The data, model specification, and estimation is discussed in Section 3. Section 4 presents the 
estimation result and its analysis. The final section concludes the paper with a final 
discussion. 
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2. Methodology and Analytical Framework 

In this section, we explain the methodology used to build the model. We explain the model 
specification and state the hypothesis of the model.   

 

2.1 Methodology 

A cross-country panel data model has been applied to EU-15 countries data. Hsiao (2003) and 
Klevmarken (1989) mentioned various advantages for using panel data, such as controlling 
for individual heterogeneity, more variability, less co-linearity among the variables, more 
degrees of freedom, and more efficiency (Baltagi, 2008). The countries differ in terms of 
economic structure, technology, and policy. If this heterogeneity is not accounted for, serious 
misspecifications could result. Moreover, the probability of co-linearity is high in time-series 
studies, but it is less likely with a panel data, because the cross-country dimension adds to 
variability. Additionally, informative data could lead to the increased reliability of estimators. 
Several different linear models can be applied to panel data. The model for the scalar 
dependent variable, itY , is specified as:  

(1)  ittiitit vXY +γ+α+'β=   

where iα  and tγ  are error components specific to units i and time periods t. The composite 

error term ittiit vu +γ+α=  is generally not independent and identically distributed, but its 

variance-covariance matrix )(Ω could be estimated. itY is the nx1 matrix of a dependent 

variable, itX  is the NxK matrix of independent variables, β is the 1Kx matrix of unknown 

parameters to be estimated. Two different assumptions may be applied for iα  and tγ : fixed-
effects and random-effects models (Johnston and DiNardo, 2007). In the fixed-effect (FE) 
model, iα  and tγ  can be correlated with the independent variables, but it is assumed that 

itX  is uncorrelated with the error term itv . The attraction of the FE model is that it follows a 
consistent estimator (Cameron and Trivedi, 2009). The random-effect (RE) model assumes 
that iα  and tγ  are random, and they are not correlated with the independent variables.  

Based on the Gauss-Markov theorem, if the errors have an expectation of zero, are 
uncorrelated, and have equal variance, the least-square estimators (OLS) has minimum 
variance in the class of linear unbiased estimators. It is called the best linear unbiased 
estimator, or BLUE (Johnston and DiNardo, 2007). Therefore, if we have these assumptions: 

(2)  0)( =XuE   

(3)  Ωσ=)'( 2XuuE   

In eq. 2, the disturbances have conditional zero mean. In eq. 3, NI=Ω  is an NxN identity 
matrix. It means that conditional on the X , the disturbances are independent and identically 
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distributed with conditional variance 2σ  (Jackman, 2004) Then the ordinary least estimator 

YXXXOLS ')'(=β̂ 1-  with variance-covariance matrix 12 )'(σ=)β̂̂( -XXV OLS  is BLUE. If 
the assumption in eq. 3 fails to hold, the mentioned estimator is unbiased but not BLUE. 
According to Johnston and DiNardo (2007), eq. 3 states that disturbances have 
homoscedasticity and are pair-wise uncorrelated. However, this condition is rarely satisfied in 
practice, so it is important to develop feasible generalized least square (FGLS) estimators, 
where unknown parameters are substituted by consistent estimates (Johnston and DiNardo, 
2007).  

It should be noted that when eq. 3 holds, NI=Ω  and OLSGLS β=β ˆˆ . Considering that we 

usually do not have knowledge of FGLSβΩ ˆ,  is non-operational, and we have to utilize the 
FGLS estimator. FGLS estimators are calculated in three steps (Jackman, 2004): (i) OLS 
analysis to yield estimated residuals û , (ii) analysis of the û  to form an estimate of Ω, and 
(iii) estimation of the FGLS estimator as YXXXFGLS

1-1-1- Ω̂')Ω̂'(=β̂ . 

FGLS is the most commonly used estimator in dealing with residual autocorrelation and 
heteroscedasticity. Cochrane-Orcutt (1949) and Paris-Winsten (1954) established procedures 
for )1(AR disturbances yielding FGLS estimators. Judge et al. (1980) and Amemiya (1985) 
provided different rigorous treatments of FGLS estimators in this regard (Jackman, 2004). 

 

2.2 Model Specification 

We specify and estimate our model based on the Environmental Kuznets Curve (EKC). The 
Kuznets Curve was introduced, in order to show the relationship between inequality in the 
distribution of income and levels of income (Kuznets, 1955). However, in the 1990s, the 
curve became an engine for studying the relationship between emissions and economic 
growth. The standard form of this function is defined as follows (Grossman and Krueger, 
1991):  

(4)  itititiit PEPGDPPE ε+β+β+α= ))/(ln()/ln()/ln( 2
21   

where E is urban air pollution, P is population, GDP is gross domestic product, and ln 
indicates natural logarithms. Several basic models have been estimated without additional 
independent variables (Grossman and Krueger, 1991; Shafik, 1992; Selden and Song, 1994). 
Many researchers have employed this model, by using additional explanatory variables, to 
evaluate the environmental effects of different factors. Panayotou (1993) examined the 
hypothesis of deforestation (DEF) as a function of income per capita (INC) and population 
density (POP) as follows:  

(5)  
ititit

ititititit

INCPOP
INCPOPPOPINCDEF

ε+lnlnα+
)(lnα2/1+)(lnα2/1+lnα+lnα+α=ln

12

2
22

2
11210
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A translog formulation is applied to allow for nonlinearity and interaction effects between 
explanatory variables and the evaluation of elasticities. 

Some researchers investigated the effects on environmental quality of literacy, political rights, 
and civil liberties (Torras and Boyce, 1998), output structure (Panayotou, 1997), and trade 
(Suri and Chapman, 1998). Choi et al. (2011) employed trade dependence, fossil 
consumption per capita, share of renewable energy, and time trend in an attempt to broaden 
the concept of EKC and evaluate the impact of these parameters on CO2 emissions. Magnani 
(2000) used R&D expenditure as a proxy to measure the impact of environmental protection 
on emissions.  

In this study, we evaluate the impact of renewable energy deployment, technological 
innovation and market regulation on carbon emission reduction. Similar to Panayotou (1993), 
our model is also formulated in a translog functional form, in order to investigate the non-
linear interaction effects between variables and calculate elasticities. Our model also permits 
us to check the shape of the relationship between dependent variables and explanatory 
variables.  

(6)  
itj jitjtj k kitjit

tttj jitjjjitj jit

tXXX

tXXY

ε+lnβ+lnlnβ+

tβ2/1+β+)(lnβ2/1+lnβ+α=ln

∑∑ ∑
∑∑

jk

22
0

 

where the variable Y represents the dependent variables defined as carbon emission per capita 
(CO2/P), X represents a vector of independent variables, including gross domestic product per 
capita (GDP/P), share of electricity generated by renewable energy sources in total power 
generation (Ren/TPG), number of energy-related patents per million inhabitants (Pateng/P), 
number of ICT patents per inhabitant (Patict/P), environmental tax per capita (Evt/P), and t is 
the trend (t) representing the rate of technical change in the CO2 function over time. 

 

2.3 Analytical Framework for Variable Selection 

Considering the long lifetime of CO2 in the atmosphere, stabilizing the concentration of 
greenhouse gases (GHGs) at any level depends on large reductions of worldwide CO2 
emissions from current levels (IEA, 2012a). Therefore, CO2 emission reduction could be used 
as an index to evaluate climate change mitigation. In our model, CO2 emission is considered 
a dependent variable, and it is defined as total carbon dioxide emissions caused by the 
consumption of energy. The explanatory variables are defined as follows:  

Gross domestic product (GDP): There is an extensive literature about the relationship 
between economic growth, energy consumption, and environmental pollution (Schmalensee, 
2012; and Bartelmus, 2013).  

Renewable energy sources: We used share of electricity produced by renewable energy 
sources (Ren) in total power generation (TPG) in our model. This is in line with the literature 
on the effectiveness of renewable energy sources in climate change mitigation (Sinha, 1995; 
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Frankl et al., 1997; Schleisner, 2000; Lehner et al., 2005; Benitez et al., 2008; Saner et al., 
2010. Renewable energy sources include biomasses, hydro, geothermal, solar, wind, ocean 
thermal, wave action, and tidal action (EIA, 2013). 

Energy patent applications: Innovation has responded to the changes in expenditure for 
emission abatement over time (Lanjouw and Mody, 1996; Popp, 2003). Innovation is exhibit 
through energy efficiency (Li and Colombier, 2009) and technological change in renewable 
energy capacity (Popp et al., 2011). Therefore, considering that technological innovation 
plays an important role in mitigating the effects of environmental problems, we added the 
number of energy technologies patents (Pateng) to the model.   

ICT patent applications: Energy efficiency is a solution used to reduce carbon emissions. 
Different technologies could be used for this purpose. Besides electric vehicles (Ford, 1995; 
Kempton and Letendre, 1997; Kempton and Tomic, 2005), virtual power plants (Pudjianto et 
al., 2007; Ruiz et al., 2008; Jansen et al., 2010), and smart meters (Hartway et al., 1999; 
Faruqui, 2007; Depuru et al., 2011), ICT is a significant technology as it is a part of many 
technologies. The number of ICT patent (Patict) applications to the European Patent Office is 
employed as another kind of technological innovation indicator in our model.  

Environmental tax: Environmental tax (Evt) is used as a proxy for market regulation, in order 
to evaluate its impact on carbon emission reduction. Finland and Sweden are in the forefront 
of taxing fuels because of environmental damage (Bhattacharyya, 2011). In line with the 
literature and based on the findings (Alfsen et al., 1995; Brännlund and Nordström, 2004; 
Galinato and Yodar, 2010), environmental tax is used as an explanatory variable. Total 
environmental taxes are for energy products, pollution, and natural resources.  

Trend: Time trend represents the possibility that technological change causes shifts in the 
environment function over time (Shafik and Bandyopadhyay, 1992; Cole et al., 1997; Luzzati 
and Orsini, 2009). It is expected that the CO2 function shifts downwards, suggesting progress 
or reduction in CO2 over time for given energy use and GDP production. The inclusion of 
trend squared and its interaction with explanatory variables allows testing for the nonlinearity 
and non-neutrality of the changes in the CO2 function. 

Fossil fuel energy is a major source of CO2 emissions. However, this variable is not used in 
order to avoid the co-linearity problem. Considering that we have employed GDP in our 
model, the related effects could be captured through this variable. Fossil fuel is the major 
source of primary energy consumption in EU-15. If fossil fuel consumption is used as an 
independent variable in our model, we may have co-linearity between GDP and fossil fuel 
consumption. 

The translog formulation allows examining the interactions among the variables and their 
potential effects. For example, an increase in environmental compliance cost could lead to 
increases in the patenting of new environmental technologies (Jaffe and Palmer, 1997). 
Therefore, they could have an interaction effect on carbon emission reduction. According to 
Stern (1998), the use of resources implies the production of waste. In order to comply with 
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Stern’s comment, we apply a flexible translog functional form to allow for interaction effects.     

  

2.4 Hypotheses 

We define three hypotheses. First, the power generated by renewable energy sources in the 
EU-15 has been able to affect carbon emission by displacing traditional capacity fueled 
through fossil fuels. We also expect negative elasticity for renewable energy sources 
regarding carbon emission. (Note, elasticity, or the derivative of a variable y with respect to a 
variable x, is defined as a measure of how changing one independent variable x affects the 
dependent variable y, assuming all other independent variables are constant.) Second, 
technological advances are able to decrease the costs of renewable energy technologies and 
energy efficiencies, thereby saving energy and reducing carbon emissions. Therefore, we 
expect a negative relation between technological innovation and carbon emission. 
Furthermore, we expect negative elasticity for technological innovation, represented by a 
time trend. Finally, environmental tax applied by governments has a direct negative relation 
to carbon emissions. The size of this parameter could indicate its importance, compared with 
renewable energy development and technological innovation. We also expect a negative 
elasticity for environmental tax. The answers to these hypotheses help countries to make 
appropriate decisions to achieve targets for carbon emission reduction. 

 

3. Data, Model and Estimation 

In this section, we compare our proposed model with two other forms of function formulation 
and evaluate it by testing the functional form, model specification, and significance of the 
parameters. We then analyze the results and parameters.  

 

3.1 Data  

The data for this research on the effects of renewable energy development, technological 
innovation, and market regulation on carbon emission reduction is based on the EU-15 
countries.1 These countries are selected because they are at the forefront of renewable energy 
development and have applied market regulation to mitigate climate change. In 1990, Finland 
was the first country to introduce a carbon tax, followed by Norway, Sweden and Denmark in 
1992 (Bhattacharyya, 2011). Germany’s renewable sector is considered the most innovative 
and successful in the world. Since starting negotiations about climate change in 1991, the EU 
has provided leadership in global climate policy (Oberthür and Kelly, 2008).  

These countries are studied during the period from 1995 to 2011. The impact of the financial 
crisis began in 2008, thus the pre- and post-crisis period can be compared. Different sources 
                                           
1 The sample include Austria, Belgium, Germany, Denmark, Spain, Finland, France, Greece, Ireland, Italy, 
Luxembourg, Netherlands, Portugal, Sweden, and the UK.   



8 

 

are used to obtain the necessary information for the model specification. The data on carbon 
emission, total power generation, and electricity produced by renewable energy sources was 
obtained from the US Energy Information Administration (EIA, 2013) database. The 
information related to environmental tax and the number of patent applications in energy 
technology and ICT was derived from the European Commission database (Eurostat). 
Population sizes were extracted from the World Bank database. Table 1 shows the summary, 
including the definition and sources of data for the explanatory variables CO2/P (CDECAP), 
GDP/P (GDPCAP), Ren/TPG (REGENP), Pateng/P (PTGCAP), Patict/P (PTICAP), Evt/P 
(EVTCAP), and TREND, where P indicates population resulting in per capita measures.  

As the variables are measured in different units, the continuous variables are transformed to 
logarithmic form. The coefficients are interpreted directly as elasticities based on the 
percentage of changes. Regarding the units of measurement, the same unit was used for the 
explanatory variables. GDP per capita and environmental tax per capita were measured by a 
constant US dollar (2005). They were normalized by the deflator index. The measurement of 
the energy patents and ICT technologies are based on the number of patents per million 
inhabitants.  

Table 1. Summary of the variables, their definitions, and data sources 

Variable Definition Source 

CDECAP 

Carbon dioxide emissions per capita generated by fossil fuels burning 
and the cement manufacturers. CO2 generated by consumption of solid, 
liquid, and gas fuels, (gas flaring is included) The unit is in metric ton 
per capita. 

WB 

REGENP Share of electricity produced by renewable energy sources in total 
power generation. EIA 

GDPCAP GDP per capita based on the 2005 constant dollar. The unit is 1000 
USD per capita.  WB 

PTGCAP Number of patents in energy technologies or applications for mitigation 
or adaptation against climate change per million inhabitants.  Eurostat 

PTICAP Number of patents in ICT per million inhabitants.  Eurostat 

EVTCAP 
Total environmental tax per capita based on the 2005 constant dollar, 
including: energy products, transport, and pollution. The unit is in 
$1000 per capita.  

Eurostat 

TREND Time trend  

 

Table 2 displays the correlation matrix for the variables presented in Table 1. If an 
explanatory variables shows a high correlation (higher than 0.50) with another, it should be 
omitted or redefined in order to avoid co-linearity and confounded effects. As the covariance 
matrix shows, no significant correlation was found between the explanatory variables.  
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Table 2. Correlation matrix between explanatory variables (p-values in parenthesis) 

  CDECAP GDPCAP REGENP PTGCAP PTICAP EVTCAP TREND 

CDECAP 
1.0000              

              

GDPCAP 
0.7085  1.0000            

(0.000)              

REGENP 
0.0.640 0.1642  1.0000          

(0.323)  (0.011)            

PTGCAP 
0.1441  0.4685  0.0715  1.0000        

(0.026)  (0.000)  (0.269)          

PTICAP 
0.0516  0.0843  -0.1138  0.1087  1.0000      

(0.426)  (0.193)  (0.078)  (0.093)        

EVTCAP 
0.1798  0.2749  -0.0876  0.3829  0.0934  1.0000    

(0.005)  (0.000)  (0.176)  (0.000)  (0.149)      

TREND 
0.0017  0.3479  -0.0661  0.3472  0.0283  0.1517  1.0000  

(0.979)  (0.000)  (0.308)  (0.000)  (0.662)  (0.019)    

 

The sign for some variable pair coefficients such as CO2 emission per capita and GDP per 
capita (CDECAP-GDPCAP), environmental tax per capita and number of energy patent per 
million inhabitants (EVTCAP-PTGCAP), TREND and GDPCAP, and environmental tax per 
capita and gross domestic production per capita (EVTCAP-GDPCAP) are as expected. 
However, others, such as CO2 emission per capita and energy patent (CDECAP-PTGCAP) 
and CO2 emission per capita and environmental tax per capita (CDECAP-EVTCAP) are not 
as expected. We should consider that correlation matrix presents the unconditional relation 
between variables. This means that the sign and significance situation could change when 
they are studied conditional on other variables.  

A Fisher-type test was applied to check the stationarity of all variables. In the context of panel 
data, the Fisher-type test performs a unit root test for each panel individually and then 
combines the p-values from these tests to obtain an overall test to identify whether the panel 
series contains a unit root. The null hypothesis tested is that all panels contain a unit root. For 
a finite number of panels, the alternative hypothesis is that at least one panel has stationarity.  

Table 3 shows results for a selection of Fisher-type unit root tests for all panels, based on 
augmented Dickey-Fuller tests. All tests rejected the null hypothesis and it is detected that all 
panels are stationary. 
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Table 3. Fisher-type unit-root tests result 

Variable 
Inverse 

chi-squared 
Inverse  
normal 

Inverse 

logit 
Modified inv. 
Chi-squared 

LCDECAP 102.4375 -6.9248 -7.1988 9.3516 

LGDPCAP 121.3020 -7.2424 -8.4251 11.7870 

LPTGCAP 154.5430 -9.4482 -11.0220 16.0784 

LPTICAP 108.2611 -6.3102 -7.1981 10.1035 

LEVTCAP 101.8071 -6.5370 -7.0435 9.2703 

LREGENP 79.0775 -5.0988 -5.2345 6.3359 

LGDPCAP2 116.7426 -7.0275 -8.0665 11.1984 

LREGENP2 60.1541 -3.3450 -3.3837 3.8929 

LPTGCAP2 130.8208 -8.4524 -9.3066 13.0159 

LPTICAP2 103.8467 -5.6432 -6.5478 9.5336 

LEVTCAP2 63.0009 -4.0403 -4.0083 4.2604 

GDPRENP 87.7950 -5.7567 -5.9721 7.4613 

GDPPTIP 109.2815 -6.1472 -7.0694 10.2352 

GDPENGP 154.4527 -9.4641 -11.0214 16.0668 

GDPEVTP 93.2944 -5.7185 -6.2946 8.1713 

RENPTGP 152.1289 -9.3607 -10.8274 15.7668 

RENPTIP 63.3171 -3.4676 -3.5652 4.3012 

RENEVTP 74.5212 -4.5670 -4.8312 5.7477 

PTGPTIP 147.9147 -9.2704 -10.5574 15.2227 

PTGEVTP 93.9943 -6.4550 -6.5826 8.2616 

 
3.2 Model specification and testing functional form  

The standard form of Environmental Kuznets Curve is defined as given in eq. 4. In order to 
evaluate the impact of renewable energy deployment and technological innovation in energy 
applications adopted with climate change mitigation and ICTs, we include the additional 
variables related to these parameters and test the functional form by comparing it with two 
quadratic equations, Model 1 and Model 2, in the logarithmic form as follows:  

(4)  itititoit PGDPPGDPPCO ε+β+β+α= 2
212 )/(ln()/ln()/ln(  

(6)  
itj jitjtj k kitjit

tttj jitjjjitj jit

tXXX

tXXY

ε+lnβ+lnlnβ+

tβ2/1+β+)(lnβ2/1+lnβ+α=ln

∑∑ ∑
∑∑

jk

22
0
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These models are frequently used. The translog function has become more popular as it 
provides more flexibility (Corbo and Meller, 1979).  

The Likelihood Ratio (LR) test is employed to select the best functional form (Johnston and 
DiNardo, 2007). The models are estimated in restricted and unrestricted forms and the test 
values are calculated. The null hypothesis will be rejected, if the ratio of the two Lln  values 
is small. The LR test is calculated as:  

(7)  [ ]))σ~,β~(ln())σ̂,β̂(ln(2=λln2= 22 LLLR -- ~ 2χ q    

where the two (.,.)L  terms are attributed to the restricted and unrestricted maximum 

likelihood estimation methods. 2and σβ and the unknown parameters estimated. The results 
of the LR test for all three models are presented in Table 4. The translog functional form of 
Model 3 (i.e., our model as shown in eq. 6), in comparison with its restricted versions of 
Model 2 and Model 1, is the most appropriate model to estimate the relation.   

Table 4. LR test for functional form 

  LR test Critical value  Result 

Model 3 vs. Model 1 340.0098 14.611 Model 3 accepted 

Model 2 vs. Model 1 221.1320 3.940 Model 2 accepted 

Model 3 vs. Model 2 118.8778 1.145 Model 3 accepted 

 
We employed the Akaike Information Criterion (AIC) and the Bayesian Information Criterion 
(BIC), in order to compare the functional form of the model specifications. The AIC and BIC 
are two popular statistical measures to compare models. They are defined as follows:  

(8)  kLAIC 2+)ln(2= -      

(9)  kNLBIC )ln(+)ln(2= -   

where k is the number of parameters estimated and N is the number of observations. AIC and 
BIC are measures that combine fit and complexity. Fit is measured by - )ln(2 L ; the larger the 
value, the worse the fit. Complexity is measured either by k2  for AIC or kN )ln(  for BIC. 
Among the two models fit on the same data, the model with the smaller value of information 
criterion is considered better (Stata Base Reference Manual, 2012). The results of AIC and 
BIC for comparing models are presented in Table 5.  

Table 5. Model specification test 

Model Observation ln(L) df AIC BIC 

Model 1 240 45.3051 18 -54.6102 8.0412 

Model 2 240 155.8711 28 -255.7423 -158.2844 

Model 3 (TL) 240 215.3100 43 -344.6200** -194.9525** 
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Based on the results, the model specified by the translog function, Model 3, is selected 
because it has the smallest value in both AIC and BIC measurements. 

 

3.3 Estimation method and testing procedures 

This model is usually estimated using panel data. Most studies have estimated both fixed and 
random effect models. The fixed effects model, eq. 1, assumes that αi and γt are correlated 
with explanatory variables, but they are considered random in the random effects model. The 
least-squares dummy variable (LSDV) is then applied to estimate the fixed effects model. In 
the case of the random effects model, the residuals from the OLS are used to estimate the 
variances and the model parameters by the Generalized Least Squares (GLS) technique. If a 
correlation is found between ti γ,α and the explanatory variables, the random effects model 
is inconsistent, and only the fixed effects model can estimate the regression consistently 
(Mundlak, 1978; Hsiao, 2003). A Hausman (1978) test was used to conduct the choice 
between the fixed effects and random effects models to measure consistency. With the 
assumption that no other statistical problem exists, the fixed effect model is estimated 
consistently.  

Our estimation method differs from most studies, because it uses FGLS to correct for 
heteroscedasticity and autocorrelation. Although sources of serious problems are 
heteroscedasticity and autocorrelation in residuals, no earlier studies presented diagnostic 
tests of models. Stern et al. (1996) identified that the heteroscedasticity problem is important 
if we are concerned with cross-sections. Many researchers (Cropper and Griffiths, 1994; 
Shafik, 1994; Westbrook, 1995; Horvath, 1997; Moomaw and Unruh, 1997; Suri and 
Chapman, 1997) estimated fixed effects models without presenting regression diagnostic tests. 
Stern (2002) estimated a decomposed EKC using a FGLS model. Suri and Chapman (1998), 
Aldy (2005), and Luzzati and Orsini (2005) obtained results employing the FGLS approach, 
in order to correct cross-sectional heteroscedasticity and serial correlation.  

Based on the literature, correlation and heteroscedasticity in panel-data models will cause the 
results to be biased and less efficient. Stata implements a test for serial correlation in the 
idiosyncratic errors of a linear panel-data model as discussed by Wooldridge (2002). Drukker 
(2003) presented simulation evidence that this test has good size and power properties in a 
reasonable sample size. When we applied the Wooldridge test for serial correlation, the null 
hypothesis of no first-order autocorrelation was rejected. The result showed that the 
computed value for the F-test (33.107) exceeds the critical F-value. 

The Woolridge test for serial correlation provides an alternative to the Wald test for models 
with the maximum likelihood method. As the Wald test requires fitting only one model (the 
unrestricted model), and it is computationally more attractive than likelihood-ratio testing. 
Hence, Wald test is used whenever feasible because the null-distribution of the LR test 
statistics is often more closely chi-squared distributed than the Wald test statistics are (Stata 
Quick Reference and Index, 2012).    
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Since iterated GLS with only heteroscedasticity generates the maximum likelihood 
parameters, we are able to calculate a LR test by comparing the estimation of a model fitted 
with panel-level heteroscedasticity and a model without heteroscedasticity. Based on the 
result, the null hypothesis is rejected. Therefore, the presence of heteroscedasticity is detected. 
The computed value for LR test (152.13) exceeds the critical chi-square value obtained from 
the F-table at the chosen level of significance. Thus, in the presence of heteroscedasticity and 
serial autocorrelation, we applied FGLS to estimate our models. FGLS is even asymptotically 
more efficient than OLS and other estimators (Wooldridge, 2002). 

 

4. Analysis of the Results 

4.1 Estimation results  

The estimation results for the models specified in eq. (4)-(6) are reported in Table 6.2 The 
share of coefficients, which was estimated with a high significance level (p < 0.01), is greater 
than 60 percent. If we consider a general significance of 0.05, it will even be more than 70 
percent. The variables used include: carbon dioxide per capita (CDECAP), GDP per capita 
(GDPCAP), contribution of renewable energy sources in total power generation (REGENP), 
number of energy patents (PTGCAP), number of ICT patents per million inhabitants 
(PTICAP), environmental tax per capita (EVTCAP), and time trend (TREND). All variables, 
trend excepted, have been considered in logarithmic values. The coefficient signs of to the 
variables renewable energy generation, energy patents, and environmental tax are, as 
expected, negative. The sign for the linear and square of energy patents is negative, but the 
second one is not significant.  

Table 6. Feasible Generalized Least Squares (FGLS) estimation result 

Variables  
Model 1 Model 2 Model 3 

Coeff. P>|z| Coeff. P>|z| Coeff. P>|z| 

lnGDP/P (LGDPCAP) -1.1481 0.000  -2.0142  0.000  -0.3272  0.328  

(lnGDP/P)2 (LGDPCAP2) 0.2078 0.000  0.3287  0.000  0.2897  0.000  

lnRen/TPG (REGENP)     -0.0213 0.102  -0.2662  0.001  

(lnRen/TPG)2     0.0210  0.000  0.0458  0.000  

lnPateng/P (PTGCAP)     -0.0103  0.000  -0.4070 0.000  

(lnPateng/P)2     -0.0031  0.003  -0.0032  0.191  

lnPatict/P (PTICAP)     0.0253  0.000  1.0393  0.000  

(lnPatict/P)2     -0.0054  0.000  -0.0011  0.409  

                                           
2 For matters of sensitivity analysis, two alternative models were also estimated: First, a model using 
environmental tax divided by fossil fuel consumption as a proxy for tax rate and, second, a normalized model 
with the mean of variables were also tested. In order to conserve spaces, the results are not reported here but are 
available upon request. 
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Variables  
Model 1 Model 2 Model 3 

Coeff. P>|z| Coeff. P>|z| Coeff. P>|z| 

lnEvt/P (EVTCAP)     0.1230  0.000  -1.8355  0.000  

(lnEvt/P)2     -0.0415  0.000  -0.1779  0.000  

Trend (TREND)     0.0357 0.000  0.1850 0.000  

Trend2     -0.0024  0.000  -0.0019  0.000  

(lnGDP/P)(lnRen/TPG)         0.0986  0.000  

(lnGDP/P)(lnPateng/P)         0.1001  0.000  

(lnGDP/P)(lnPatict/P)         -0.2860  0.000  

(lnGDP/P)(lnEvt/P)         0.3762  0.000  

(lnGDP/P)Trend         -0.0474  0.000  

(lnRen/TPG)(lnPateng/P)         -0.0077  0.039  

(lnRen/TPG)(lnPatict/P)         0.0044  0.262  

(lnRen/TPG)(lnEvt/P)         -0.0178  0.389  

(lnRen/TPG)Trend         -0.0092  0.000  

(lnPateng/P)(lnPatict/P)         0.0037  0.255  

(lnPateng/P)(lnEvt/P)         -0.0901  0.000  

(lnPateng/P)Trend         0.0009  0.231  

(lnPatict/P)(lnEvt/P)         0.1994  0.000  

(lnPatict/P)Trend         -0.0024  0.002  

(lnEvt/P)Trend         0.0205  0.000  

Constant 3.6722  0.000  5.0564  0.000  -0.3071  0.625  

Number of observations 240 240 240 

Number of groups 15 15 15 

Time periods 16 16 16 

Wald chi-square 516.71  1389.29  2549.14  

Prob > chi-square 0.0000  0.0000  0.0000  

  

Considering the negative sign for the first order of GDP and positive sign for the second order, 
the relation between CO2 emissions and GDP shows a convex curve for the EU-15 countries. 
Regarding GDP, our result contrasts with early studies focused on the Environmental Kuznets 
Curve, which argued for the inverted U-shaped curve relationship between emission per 
capita and GDP per capita in developed countries. The U-shaped curve might be due to the 
fact that our sample consists of only advanced economies where all countries have reached 
the turning points and an additional increase in their welfare can be achieved only a higher 
environmental cost. The U-shaped curve relationship between environmental quality, level of 
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income, and other variables was tested and analyzed by several researchers (Shafik, 1992; 
Panayotou, 1993, 1997; Selden and Song, 1994; Torras and Boyce, 1998; Suri and Chapman, 
1998). Based on their findings, there may be a willingness to accept a weak level of 
environmental quality in the early stage of development, but a turning point will be achieved 
as the level of income increases.  

However, this concept was challenged recently by researchers, such as Harbaugh et al. (2002) 
and Millimet et al. (2003). Wagner (2008) claimed that the evidence of an inverted U-shaped 
relationship between carbon emission and GDP obtained with commonly used methods is 
entirely spurious because of several major econometric problems. In line with this approach, 
we cast doubt on the results achieved by previous research using a simple model formulation 
and use a conditional model including several control variables. As Dasgupta et al. (2004) 
pointed out, the less robust relationship between GDP and CO2 emissions caused some 
econometric critiques; therefore, this relationship is not robust as found by previous 
researchers. Moreover, the role of GDP growth in CO2 emission reduction could be affected 
by the governance related explanatory variables.  

Our estimation result shows an increase in decreasing rate of CO2 emissions in relation to the 
variables of energy patents and environmental tax. Furthermore, considering that we 
estimated our model from 1995 to 2010, and the financial crisis occurred within this period, 
the EU countries had to reduce expenditures for renewable energy, and coal-fueled power 
plants restarted operations because of the lower unit cost compared with imported crude oil 
and natural gas. In addition, the recession in the early 2000s should be taken into account. It 
was a downtrend in economic activity, which mainly happened in developed countries. The 
EU was affected by this recession from 2000 to 2002. Therefore, all indicators, including 
GDP, number of patents, taxes, and CO2 emissions could be affected by the recession in the 
early 2000s and the 2008 financial crisis. 

Our result shows a concave formation between carbon emissions per capita (CDECAP) as 
dependent variable and GDP per capita (GDPCAP) and the share of renewable energy 
sources in total power generation (REGENP). It defines a decrease in the decreasing rate of 
carbon emissions regarding GDP and renewable energy in the EU-15.  

The results in Table 6 also showed a convex formation between carbon emissions per capita 
(CDECAP), the number of ICT patents per million inhabitants (PTICAP), and technological 
change over time (TREND). Therefore, the results showed a decrease in the increasing rate of 
carbon emissions in relation to ICT patents and technological change over time. Furthermore, 
there is a convex formation between carbon emission per capita (CDECAP), energy patent 
applications per million inhabitants (PTGCAP), and environmental tax per capita (EVTCAP). 
The results showed an increase in the decreasing rate of carbon emissions in relation to the 
variables of energy patents and environmental tax.  

ICT patents showed relevant positive and negative effects on CO2 emissions in different ways: 
The positive effects were increased electronic wastes, and the negative effects were improved 
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energy efficiency. The impact of ICT on emissions was closely related to energy consumption 
(Hilty et al., 2006). The main increase in effects was caused by freight transport and ICT’s 
demand for electricity in manufacturing and the disposal of hardware. Energy saving is made 
by virtual goods, ICT-supported management and ICT-supported control of the production 
process. Regarding the relationship between ICT patents and CO2 emissions, the results 
showed higher ICT patent growth with lower emission increases over time. Our findings are 
consistent with Romm et al. (2002), which argued that recent reductions in energy intensity 
were related to IT growth which were less energy intensive and increased efficiency in every 
other sectors of the economy.  

The results showed that carbon emission is reduced through power generated by renewable 
energy sources. There is an extensive literature regarding the potential of carbon saving using 
renewable energy technologies. However, the reductions made by renewable energy 
enhancement have been decreased from 1995 to 2010 in the EU-15. The employment trend in 
renewable energy has been affected worldwide by global recession, policy changes, and 
overcapacities in the wind and solar supply chains (Martinot and Sawin, 2012). Therefore, the 
decreasing rates in the effectiveness of renewable energy could be explained by the reduction 
in the growth rate of renewable energy deployment. 

Based on the findings, the impact of environmental tax on carbon emission has increased 
over time. This is consistent with the results obtained by Alfsen et al. (1995) regarding the 
sizable effects of carbon tax on emissions in Western Europe. They indicated that external 
benefits, such as reduction in health damage, damage to nature, and road traffic, are 
associated with carbon and energy taxes. Our findings are also consistent with Brännlund and 
Nordström (2004), who studied the effects of CO2 tax in Sweden. They found that demand 
for all fossil fuel-related goods was decreasing because of the CO2 tax. 

The number of patents of energy technology for mitigation or adaptation to climate change 
had a similar impact on carbon emission compared with environmental tax. This is consistent 
with Popp (2001, 2005), who argued that it is important to consider the role of technological 
innovation in considering solutions to long-term environmental problems, such as energy 
consumption and climate change. Furthermore, according to Nordhaus (2002), it is expected 
that energy saving and energy efficiency induced innovation would lead to a reduction in 
carbon intensity per unit of output, but the cumulative effect might be larger in the long term.  

Time trend showed a decreasing rate of carbon emission per capita. It indicated that the 
growth rate of carbon emission is reduced over time. The amount of CO2 is increasing; 
because the amount of production and consumption is increasing. However, the rate is 
decreasing because of the effects of technological change, productivity, and energy use 
efficiency. This finding is consistent with Popp (2005), who investigated the gradual process 
of the diffusion and adoption of new technologies. It is also consistent with the implications 
of energy efficiency technologies for climate policy, as discussed by Jaffe et al. (2001, 2003).  
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4.2 Elasticities of GDP, renewable energy generation, patents and environmental tax 

These elasticities measure the percentage change in emissions caused by a percent change in 
each variable. The derivative of eq. 6, presented in Table 6, with respect to the determinants 
of CO2 emission, called elasticities are calculated as:  

(10)  tXXYE jtk kitjkjjititjit β+β+β=∂∂ ∑ lnln/ln   

Although the parameters in the translog function do not have a direct interpretation, they 
show the formation of a relationship between dependent and explanatory variables. In 
addition to this, we can easily calculate the elasticity of carbon emission with respect to GDP, 
renewable energy generation and environmental tax.  

The elasticity of carbon emission for EU-15 countries over the period of 1995-2010 is 
calculated as 0.238, -0.165, and 0.267 for GDP (GDPCAP), renewable energy generation 
(REGENP), and environmental tax (EVTCAP), respectively. 

The results showed that the elasticity for each variable is affected by the other variables 
because of the interactive parameters. Therefore, elasticity is positive for environmental tax, 
whereas its coefficient is negative and strongly significant in our model. Generally, we face 
this situation when the translog function is applied. If model 1 were to be employed to 
estimate the relation, we could have expected a negative sign for the variables. However, this 
did not occur in the translog function because of the interaction relationship between the 
explanatory variables. The advantage of the translog function, compared with the other 
models, is its ability to evaluate these interactions representing complementarity and 
substitution between the variables.  

In addition to interaction effects, the positive sign of environmental tax could be explained by 
the level of tax and its impact on consumer revenue. The EU-15 countries are considered 
developed countries, and their GDP per capita is relatively high. Therefore, the tax rate 
should be high enough to cause a sensitive reduction in energy consumption. This finding is 
consistent with Pearce (1991), who showed that a reduction in carbon emission may not be 
achieved unless the related elasticities are known with acceptable certainty. Moreover, 
Howarth (2006) pointed out that private consumption generates negative externality from 
increasing standard of living. Hence, we can argue that environmental tax has a negative 
effect on carbon emission indirectly by making an incentive to enhance renewable energy 
development or to create technological innovation. Tax revenues can cause an increase in 
household energy consumption through the revenue recycling effect, in which public 
revenues are used to reduce the tax rate on income and thereby provide increased transfer 
payments to households.  

 

4.3 Elasticities of technological change  

Regarding the elasticity of CO2 emissions in relation to energy and patent applications, the 
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results showed that ICT and technology patents and trends were -0.0249, 0.005, and -0.002 
respectively. Our findings are consistent with the literature regarding the links between 
environmental regulation, innovation and technological change (Lanjouw and Mody 1996; 
Buonanno et al., 2003; Popp, 2006). The elasticities showed that energy patent applications 
that adopted climate change mitigation caused a reduction of 0.02 percent in carbon 
emissions per capita for an increase of 1.0 percent in the number of patents per one million 
inhabitants. Elasticity for trend, assumed as technological change, implies a negative, small 
impact on carbon emissions. The elasticity of ICT patents was positive and small, around 
0.01, which can be considered an effective parameter in climate change mitigation. This 
result is consistent with Fuchs (2008), and confirms that ICT sector emits less CO2 compared 
with average sector of the total economy. Fuchs indicated that the ICT sector constitutes a 
small portion of total value added and the most dominant economic activity in modern 
industrialized economies is fossil fuel combustion. The elasticities confirm this viewpoint, 
and the numbers vary across the countries. 

 

4.4 Variations in elasticities over time 

The variation in elasticities of CO2 emissions per capita in the EU-15 countries over time are 
presented in Table 7. The time trend shows that effectiveness of renewable energy generation, 
innovation, and technological change on carbon emission reduction has improved steadily. 
There is a negative elasticity for GDP from 2001 to 2002, which could be explained by the 
recessions in Europe in the early 2000s. 

Table 7. CO2 elasticities in the EU-15 countries over 1995-2010 

Year GDPCAP REGNEP PTGCAP PTICAP EVTCAP TREND 

1995 0.6171  -0.1133  -0.0173  0.0010  0.0740  0.0284  

1996 0.5471  -0.1220  -0.0204  0.0077  0.1045  0.0251  

1997 0.3783  -0.1300  -0.0226  0.0160  0.1530  0.0225  

1998 0.3058  -0.1301  -0.0241  0.0190  0.1997  0.0178  

1999 0.1929  -0.1443  -0.0244  0.0214  0.2539  0.0146  

2000 0.0436  -0.1569  -0.0234  0.0219  0.2779  0.0122  

2001 -0.0370  -0.1697  -0.0243  0.0241  0.3014  0.0092  

2002 -0.0195  -0.1920  -0.0237  0.0214  0.3074  0.0062  

2003 0.1044  -0.1845  -0.0235  0.0083  0.3322  -0.0025  

2004 0.2021  -0.1784  -0.0258  0.0025  0.3301  -0.0095  

2005 0.1798  -0.1850  -0.0269  0.0010  0.3396  -0.0139  

2006 0.2031  -0.1854  -0.0281  -0.0043  0.3320  -0.0195  

2007 0.3039  -0.1830  -0.0272  -0.0165  0.3267  -0.0265  

2008 0.3250  -0.1794  -0.0274  -0.0224  0.3337  -0.0325  
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Year GDPCAP REGNEP PTGCAP PTICAP EVTCAP TREND 

2009 0.2090  -0.1906  -0.0303  -0.0107  0.3233  -0.0335  

2010 0.2558  -0.1920  -0.0286  -0.0063  0.2792  -0.0356  

Mean 0.2382  -0.1648  -0.0249  0.0053  0.2668  -0.0023  

Std dev 0.1793  0.0277  0.0033  0.0147  0.0869  0.0223  

 

The results showed that the elasticity of carbon emission per capita for tax has an upward 
trend, which is consistent with previous findings about the effects of environmental tax, 
interaction, and revenue recycling. The general trend of elasticities for renewable energy, 
energy patents, ICT patents, and trend steadily shows increased effectiveness in climate 
change mitigation (not reported here). In both models, the sign of environmental tax elasticity 
is negative. However, the sign of renewable energy is positive in the model where all 
variables are normalized with their sample mean. 

 

4.5 Variation in elasticities by country 

Table 8 presents the elasticities of CO2 emission per capita to GDP per capita (GDPCAP), 
share of electricity generated by renewable energy (REGNEP), energy patents application 
(PTGCAP) and ICT patents per one million inhabitants (PTICAP), environmental tax per 
capita (EVTCAP), and trend (TREND) in the EU-15 from 1995 to 2010 by country. The 
elasticities vary across countries, which can be explained by different demography, geography, 
economic structure, and policies of the member countries.  

Table 8. CO2 elasticities in the EU-15 by country 

Country GDPCAP REGNEP PTGCAP PTICAP EVTCAP TREND 

Austria 0.3186  -0.0187  -0.0178  -0.0373  0.3358  -0.0228  

Belgium -0.1164  -0.3010  0.0187  -0.0697  0.4787  0.0042  

Germany 0.8316  -0.2425  -0.2009  0.3898  -0.3302  0.0389  

Denmark 0.7046  -0.1485  -0.0666  0.0620  0.0807  -0.0032  

Spain 0.1419  -0.1556  0.0161  -0.0659  0.1926  -0.0033  

Finland -0.0791  -0.0948  -0.0275  0.0048  0.5251  -0.0127  

France -0.0662  -0.1719  0.0119  -0.0721  0.4778  -0.0092  

Greece 0.2423  -0.2387  -0.0001  -0.0090  -0.0552  0.0150  

Ireland 0.2294  -0.2107  0.0123  -0.0728  0.4247  -0.0066  

Italy 0.2449  -0.1474  -0.0217  0.0054  0.1975  -0.0014  

Luxembourg 1.0530  -0.0381  -0.0156  -0.0822  0.2663  -0.0322  

Netherlands 0.0437  -0.2401  -0.0327  0.0270  0.4054  0.0041  

Portugal 0.4437  -0.1417  -0.0286  0.0463  -0.2309  0.0122  
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Country GDPCAP REGNEP PTGCAP PTICAP EVTCAP TREND 

Sweden 0.1644  -0.0433  -0.0281  -0.0128  0.4528  -0.0205  

UK -0.5830  -0.2787  0.0075  -0.0346  0.7806  0.0023  

Mean 0.2382  -0.1648  -0.0249  0.0053  0.2668  -0.0023  

Std dev 0.4078  0.0883  0.0541  0.1158  0.2996  0.0172  

 

4.6 Policy implication of the results for developing countries 

Our findings could be used by countries that attempt to develop eco-cities, such as Dongtan 
City in China and Masdar City in the UAE. Masdar City is supposed to rely entirely on solar 
energy and other renewable energy sources. Because of the wide range of strategies in 
different countries, which we have already analyzed, there is a good opportunity for the UAE 
government to take advantage of our findings to formulate policies to promote renewable 
energy in Masdar City. It is possible for the government to apply efficient energy policies at 
the starting point. The buildings of Masdar City are going to utilize energy-efficient 
construction material (Premalatha et al., 2013). Targets must be set and policies should be 
formulated to achieve these targets. For example, although European countries applied feed-
in-tariff (FIT) policies to develop renewable energy sources, they are now trying to build a 
harmonized market for renewable energy.  

Al-Amir and Abu-Hijleh (2013) investigated the strategies used in different countries, in 
order to determine the best practical policy to apply in the UAE. As we pointed out, it is 
necessary to consider the effects of different variables on carbon emission reduction and the 
effects of their interactions. In other words, we should use a top-down approach to design a 
policy for climate change mitigation. We can then apply a bottom-up approach to select 
competitive technology in order to achieve the target. According to Al-Amir and Abu-Hijleh, 
a combination of FIT, RPS, and tax incentive policies should be applied by the government. 
Based on our findings, all elasticities should be known and reliable, in order to formulate an 
effective policy. A tax policy will not be effective, if it does not set taxes high enough to 
provide incentives to eliminate fossil-fuels products.  

 

5. Summary, Conclusion and Policy Recommendation 

In this study, we evaluated the impact of renewable energy development on carbon emission 
reduction. We also investigated the effectiveness of innovation in energy technologies for 
reducing carbon emissions, ICT technologies, and environmental taxes applied to encourage 
renewable energy development. Environmental tax was considered in the model, in order to 
evaluate the effects of market regulation. Several scholars have applied different 
methodologies to examine the relationship between energy consumption and economic 
growth in individual and groups of countries with respect to governmental energy policies. 
The relationship between carbon emissions and economic growth has been studied by many 
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researchers using the Environmental Kuznets Curve. These studies analyzed variables, such 
as population, inequality, trade, and openness. Most results showed that environmental 
quality would be promoted after a certain level of economic growth is achieved. Therefore, 
developed countries with a high level of GDP per capita would promote environmental 
quality.  

Recently, this idea has been challenged by theoretical and econometric critiques. Recent 
studies have shown that the methodology used by previous researchers was not appropriate to 
estimate this relationship. Moreover, the important role of governance-related variables was 
neglected. Our contribution to the literature is to add electricity generated by renewable 
energy sources, innovation in energy technology patent, ICT, and environmental tax to the 
model. All these variables are considered governance-related, either directly or indirectly. 
Environmental tax applied by governments is an example of the direct effect of governance. 
On the other hand, carbon emission is indirectly affected by governmental policy through 
technological innovation and renewable energy generation. Furthermore, we applied the 
FGLS method to estimate the model, in order to avoid major econometric problems.   

In contrast to previous research, we found that economic growth might not lead to promoting 
environmental quality. The results showed a positive relation between carbon emission and 
GDP per capita in the EU-15, which are considered developed countries. Previous research 
found a negative relation between these variables. In popular myths about the effects of ICT 
technological innovation and environmental tax, both factors negatively affect carbon 
emission. However, our results showed that the impact of ICT differs across countries based 
on their structure. Environmental tax had a negative and strong effect on carbon emission by 
itself but the positive elasticity showed that its negative effect becomes positive because of 
high income and revenue recycling effects of tax policy. 

In summary, we consider that the role of governmental policymaking is more important than 
economic growth. Renewable energy sources have been promoted in the EU-15 because of 
governmental supporting mechanisms and subsidies. Environmental tax policy and tightened 
standards could lead to more patents. Therefore, carbon emission will be more affected by 
governmental-related parameters than by achieving a certain level of economic development. 
This result could be important for the climate change policies of developing countries. In 
other words, it is not necessary to obtain a high level of economic growth, in order to enhance 
a country’s environmental quality. Developing countries are able to achieve this target 
through appropriate policy making by their governments. Hence, developing countries could 
achieve high levels of environmental quality before achieving high levels of GDP per capita.  
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