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ABSTRACT 
 

Penalized Quantile Regression with Semiparametric Correlated 
Effects: Applications with Heterogeneous Preferences* 

 
This paper proposes new ℓ1-penalized quantile regression estimators for panel data, which 
explicitly allows for individual heterogeneity associated with covariates. We conduct Monte 
Carlo simulations to assess the small sample performance of the new estimators and provide 
comparisons of new and existing penalized estimators in terms of quadratic loss. We apply 
the techniques to two empirical studies. First, the new method is applied to the estimation of 
labor supply elasticities and we find evidence that positive substitution effects dominate 
negative wealth effects at the middle of the conditional distribution of hours. The overall effect 
tends to be larger at the lower tail, which suggests that changes in taxes have different 
effects across the response distribution. Second, we estimate consumer preferences for 
nutrients from a demand model using a large scanner dataset of household food purchases. 
We show that preferences for nutrients vary across the conditional distribution of expenditure 
and across genders, and emphasize the importance of fully capturing consumer hetero- 
geneity in demand modeling. Both applications highlight the importance of estimating 
individual heterogeneity when designing economic policy. 
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1. Introduction

The recent availability of Big Data opens up the possibility of devising targeted economic

policies that increase welfare by accounting for the broad individual heterogeneity in both

characteristics and outcomes. At the same time, the large datasets make it possible to

provide increased flexibility in the specification of econometric models. This paper provides

a simple new approach to the estimation of models with heterogeneous marginal effects in

panel data with time-invariant variables by allowing for a flexible specification of correlated

individual effects in a quantile regression setting.

There is a growing theoretical and empirical interest on the estimation of a quantile panel

data model, specially after Koenker (2004). For recent developments, see Abrevaya and Dahl

(2008), Graham, Hahn, and Powell (2009), Harding and Lamarche (2009, 2013), Lamarche

(2010), Galvao (2011), Canay (2012), Rosen (2012), Galvao, Lamarche and Lima (2013), and

Chernozhukov, Fernández-Val, Hahn and Newey (2013). Koenker (2004) proposes to jointly

estimate a vector of covariate effects and a vector of individual effects considering a class

of penalized quantile regression estimators. The method uses an ℓ1 penalty term to control

the bias and variance of the estimates of the covariate effects. Lamarche (2010) obtains the

minimum variance estimator in the class of ℓ1-penalized estimators under stochastic inde-

pendence between individual effects and covariates. While existing fixed effects approaches

might suffer from the incidental parameters problem, recent important developments in non-

separable models estimate the effect of independent variables on quantiles of the response

variable, conditional on time-varying variables. Chernozhukov, Fernández-Val, Hahn and

Newey (2013) offer identification and estimation results of quantile effects in nonseparable

models.

Consider the example of a labor supply model. Flexibility in specification and unobserved

heterogeneity play a fundamental role in the estimation of labor supply models (Burtless

and Hausman (1978), Hausman (1985), Blundell and Meghir (1986), Ziliak and Kniesner

(1999), Blundell and MaCurdy (1999)). However, most of the research on the subject used

maximum likelihood and instrumental variable methods. These approaches rely on strong

distributional assumptions and/or are limited to a conditional mean view of the relationship

among variables. Recent important attempts to provide a more flexible analysis includes non-

parametric approaches, but unobserved heterogeneity is assumed to be drawn from known

(Gaussian) distributions (see, e.g., van Soest, Das, and Gong (2002)) or is not accounted

for (see, e.g., Kumar (2012)). Quantile regression for panel data offers a flexible alterna-

tive approach to conditional mean analysis that is efficient under non-Gaussian conditions.
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However, neither the estimator of Koenker (2004) nor the penalized quantile regression esti-

mator of Lamarche (2010) is well suited for estimation of labor supply models. In empirical

labor supply specifications, wages are suspected to be endogenous because unobserved time-

invariant preferences for work may be correlated with latent factors affecting productivity

and hence wages (Blundell, MaCurdy and Meghir 2007).

The penalized quantile regression estimator can be extended to models with endogenous

individual effects. In this paper, we propose penalized estimators that can be easily applied

to a class of semiparametric models (Cai and Xiao (2012)) and parametric models (Abrevaya

and Dahl (2008)). As in Koenker (2004), the individual effects represent location shift

effects on the conditional quantiles of the response, and therefore, we avoid issues associated

with estimating a quantile regression model with additive error terms (Koenker and Hallock

(2000), Rosen (2012)). The estimation of these additional parameters increases the variability

of the estimates of the covariate effects, but shrinkage can be used to control the additional

variability. We use an ℓ1 penalty term (Tibshirani (1996), Donoho et al. (1998)) to shrink a

vector of individual effects and a tuning parameter λ to control the degree of this shrinkage.

We present necessary conditions for our method to reduce the variability of the estimate

of the slope parameter without sacrificing bias. The approach allows estimation of time-

invariant taste shifters and wealth effects in an empirical labor supply model, and it is not

more difficult to implement than other quantile regression panel data methods.

The penalized estimator proposed in this paper can be seen as a balanced compromise

between misspecification issues arising from the omission of individual heterogeneity and the

incidental parameters problem arising from leaving individual heterogeneity unrestricted in

a nonlinear panel model. As first pointed out by Neyman and Scott (1948) and recently

elaborated by Kato, Galvao and Montes-Rojas (2012), the estimation of individual effects in

a nonlinear panel data model leads to inconsistent estimates of the slope parameters. Kato,

Galvao and Montes-Rojas (2012) employs large T and N asymptotics offering restrictions

on the growth of T which are unusual in micro-econometric panels but serve as important

warning devices to practitioners. Under less general conditions, Graham, Hahn, and Powell

(2009) show that there is no incidental parameter problem in a non-differentiable panel data

model and Koenker (2004) and Galvao, Lamarche, Lima (2013) show empirical evidence that

the bias of the fixed effects estimator is small for moderate T . On the other hand, as in the

classical linear panel models described in detail in Hsiao (2003) and Baltagi (2008), ignoring

unobserved heterogeneity generally leads to inconsistent estimates of the slope parameters.

We show that the penalized estimator reduces the noise in the estimation of the individual

effects while controlling for individual heterogeneity.



4

This paper seeks to contribute the literature by comparing the new and existing ℓ1-penalized

quantile regression estimators in terms of quadratic loss. We first show that Koenker’s (2004)

estimator is the efficient estimator in the class of panel data quantile regression estimators.

However, the proposed approach has smaller asymptotic mean squared error than the penal-

ized estimator if the correlation between independent variables and latent individual factors

is not negligible. We also show that by choosing λ carefully, we can make the asymptotic

mean squared error of the estimator smaller than the asymptotic mean squared error of a

quantile regression estimator for the correlated effects model. This indicates that shrink-

ing individual effects potentially uncorrelated with independent variables is worthwhile. We

provide conditions under which the strictness of the penalization can be determined by min-

imizing mean squared error.

The next section presents the models and estimators. Section 3 derives the asymptotic mean

squared error of a proposed estimator and Section 4 offers Monte-Carlo evidence. In Section

5, we first show that an empirical quantile regression model of labor supply can be simply

motivated by allowing for heterogeneous preferences in the classical life-cycle framework of

consumption and labor supply. We then demonstrate how the penalized estimator can be

obtained and used to estimate quantile specific labor supply elasticities. We also provide

an additional empirical example which addresses the problem of estimating preference het-

erogeneity in consumer demand models using scanner datasets, where differences between

the preference distributions over product attributes vary by socio-demographics. Section 6

provides conclusions.

2. Models and Estimators

Let the data be observations {(yit,x′
it) : i = 1, ...N, t = 1, ...T} from a random coefficient

version of a quantile regression panel data model:

yit = x′
itβ(uit) + αi(uit)(2.1)

τ 7→ x′
itβ(τ) + αi(τ)(2.2)

where yit is the dependent variable, xit = (1, xit,2, ..., xit,p)
′ is the vector of independent

variables, the αi’s are unobservable time-invariant effects, uit|xit, αi ∼ U(0, 1) denotes a uni-

form distribution, and τ is the τ -th quantile of the conditional distribution of the response

variable. The right hand side of (2.2) is the conditional quantile function, QYit
(τ |xit, αi) =

inf{y : Pr(yit < y|xit, αi) ≥ τ} for all τ in (0, 1). The parameter β(τ)’s models the co-

variate effect providing an opportunity for investigating how time-variant observable factors
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influence the location, scale and shape of the conditional distribution of the response. For

simplicity, the model does not include time-invariant explanatory variables, which can be

easily incorporated as shown in Section 5. It is also assumed that the panel is balanced, with

observations (yit,x
′
it)

′ ∈ R× Rp for each of the N subjects over t = 1, . . . , T .

The model takes a semiparametric form because no parametric assumption is made on the

relationship between the vector of covariates xit and αi and the functional form of the

conditional distribution of the response variable is left unspecified. The unobserved variable

αi could be arbitrarily related to observable variables and unobservable variables:

(2.3) αi(xi, ui1, ai) = g(xi, ui1) + ai,

where g(·) is an unknown function with a certain degree of smoothness, the independent

variable xi = (x′
i1,x

′
i2, ...,x

′
iT )

′ and the individual effect ai is, by definition, uncorrelated

with the independent variables. We allow the variables αi and xit to be stochastically

dependent by considering the individual effect to be drawn from a conditional distribution

function with location g(τ,xi1, . . . ,xiT ).

It is important to note that (2.3) imposes a time-homogeneity condition similar to Assump-

tion 2 in Chernozhukov, Fernández-Val, Hahn and Newey (2013). The implication of this is

that the regressors are “strictly exogenous” with respect to ai. At the same time, it requires

that the conditional distribution of uit|xi, ai does not depend on t (e.g., the distribution of

ai, uit|xi is identical to the distribution of ai, ui1|xi).

Under a monotonicy condition assumed in equation (2.2), the model (2.1)-(2.3) represents a

more general version of several specifications recently proposed in the growing literature on

quantile panel data models. Consider for instance the following variations of interest in the

theoretical and empirical literature.

Example 1. If αi(xi, ui1, ai) = g(ui1) for all i and T = 1, then model (2.1) and (2.3)

becomes a semiparametric quantile regression model, yi1 = x
′
i1β(ui1) + g(ui1), similar to the

cross-sectional models investigated by He and Shi (1996) and Cai and Xiao (2012).

Example 2. Semiparametric models for longitudinal data are investigated in Wei and He

(2006) and Wei, Pere, Koenker and He (2006). Under the assumption that repeated mea-

surements are regularly observed over time, a version of their model arises by replacing xit,2
by yit−1 in equation (2.1) and xi by ti in equation (2.3). The conditional quantile function

is equal to:

QYit
(τ |ti, yit−1,xit) = g(τ, ti) + β2(τ)yit−1 + x

′
itβ−2(τ) + ai,

where β−2(τ) = (β1(τ), β3(τ), ..., βp(τ)) is a p− 1-dimensional vector.
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Example 3. If αi(xi, ui1, ai) is a known parametric function, the model can be seen within

the classical framework proposed by Chamberlain (1982) leading to a representation of en-

dogenous individual effects αi(τ,xi, ai) = x′
iγ(τ) + ai. Abrevaya and Dahl (2008) study

estimation of a quantile regression model under the assumption that equation (2.3) is equal

to x′
iγ(τ), and Koenker (2004), Lamarche (2010) and Canay (2011) study estimation of the

model under the assumption αi(τ) = αi for all i.

2.1. Estimation procedures

Our estimation approaches for model (2.1) and (2.3) serve as an intermediate class of pro-

cedures with good robustness of possible deviations from the classical correlated random

effects model and relatively more precise estimation of the parametric part of the quantile

regression model.

The estimation procedure for the model with flexible correlated effects proceeds in two steps;

see Cai and Xiao (2012), He and Shi (1996) and Tang, Wang, He and Zhu (2012) for a related

discussion. First, we express g(τ,xi) as a linear expansion of B-splines. Although other non-

parametric regression techniques can be used in a first stage, the linear formulation of the

B-splines yields a family of quantile functions that can be easily accommodated to a quantile

regression for panel data problem. We express,

(2.4) g(xi)
′γ(τ) ≈ b(xi1)

′γ1(τ) + b(xi2)
′γ2(τ) + ... + b(xiT )

′γT (τ),

where b(xij) = (b1(xij), . . . , bkn+h+1(xij))
′ is a B-spline basis function, kn is the number of

knots, h is the B-spline basis, and γ is the spline coefficient vector. We employ cubic B-spline

basis functions with k ∝ (NT )1/5 with knots selected as the empirical quartiles of xij. The

model becomes a linear quantile regression model in all coefficients and can be estimated

using the following estimator,

(2.5) min
β,γ,a∈B×G×A

J
∑

j=1

T
∑

t=1

N
∑

i=1

ωjρτj (yit − x′
itβ(τj)− ĝ(xi)

′γ(τj)− ai) + λPen(a),

where ρτj (u) = u(τj − I(u ≤ 0)) is the quantile loss function, ωj is a relative weight given to

the j-th quantile, J is the number of quantiles {τ1, τ2, ..., τJ} to be estimated, and λ is the

Tikhonov regularization parameter or tuning parameter. The function Pen(a) is a penalty

term that could be defined as ‖a− a∗‖1, where a∗ may be close to the unknown location of

the distribution. In equation (2.3), ai has zero mean by definition, so we made use of this
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information defining the penalty term as,

Pen(a) = ‖a‖1,

where ‖a‖1 is the standard ℓ1-norm defined as ‖a‖1 ≡
∑

i |ai|.

The estimation of the individual effects increases the variability of the estimator of the slope

parameter, but this penalty term that shrinks the fixed effects estimator of the ai’s toward

zero helps to reduce the inflation effect without sacrificing bias. When the a’s are exchange-

able and drawn from a conditional distribution function with location zero, shrinkage that

forces some individual specific effect estimates â’s to be zero does not impose bias and affects

the performance of the estimator of the parameter of interest β(τ ). There is an enormous

amount of work in statistics and lately in econometrics dealing with shrinkage in a wide

spectrum of problems (see, e.g., Koenker (2004), Horowitz and Lee (2007), Carrasco, Flo-

rens and Renault (2007), Chen (2007), Belloni and Chernozhukov (2011); see also Bickel and

Li (2006) for a survey in statistics).

Although flexibility in specification is naturally important, Euler equations obtained from

economic models are associated with practical choices. We now present a convenient strategy

to estimate a quantile model with endogenous individual effects. A practical formulation for

g(·) is to use a known parametric function of time-series averages or, alternatively, a vector

of covariates for each of the N subjects. A one-step estimator is obtained by solving the

following problem:

(2.6) min
β,γ,a∈B×G×A

J
∑

j=1

T
∑

t=1

N
∑

i=1

ωjρτj (yit − x′
itβ(τj)− x′

iγ(τj)− ai) + λ‖a‖1,

where as before ωj is a relative weight given to the j-th quantile. It has been argued that

the choice of the weights, ωj , and the associated quantiles τj , is somewhat analogous to the

choice of discretely weighted L-statistics (Koenker 2004). An alternative less efficient, yet

practical choice, is to ignore the potential gains and estimate models with equal weights

defined as ωj = J−1 for all j.

2.2. Inference and selection of the tuning parameter

The solutions of (2.5) and (2.6) are a family of estimates in which each estimate is in-

dexed by a parameter value of the tuning parameter, λ. Consider for example the argument

that minimizes (2.6). As shown in Section 5.1, the family of estimates associated with the

slope coefficients lies on a one-dimensional path of finite length in the J(p+ 1)-dimensional
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space of slope coefficients simultaneously estimated. Our goal however is to reduce the

computational burden and find a choice of λ, say λ∗, that is optimal with respect to a cri-

terion function. The tuning parameter can be selected by a modified AIC-type approach,

λ̂ = arg inf ‖û(τ, λ)‖1 + dfλ/(2NT ), where û(τ, λ) is the residual and dfλ is the number of

nonzero estimated parameters. Alternatively, the tuning parameter can be selected to min-

imize a quadratic loss function. Lamarche (2010) shows that the ℓ1 penalty function ‖a‖1
does achieve unbiasedness when the ai’s are drawn from zero-median distribution function,

proposing to find, λ̂ = arg inf {trΣβ}, where Σβ is the covariance matrix of the slope pa-

rameter. The empirical covariance matrix can be easily obtained given λ and B bootstrap

estimates {β̂∗(τ , λ), γ̂∗(τ , λ), â∗(λ)}. These bootstrap estimates are obtained sampling pairs

{(yi,xi) : i = 1, ..., N} with replacement.

3. Asymptotic Mean Squared Error

This section investigates the performance of ℓ1 estimators for panel data under large N ,

large T asymptotics. We restrict the analysis to the one-step estimator under the regularity

conditions stated in Koenker (2004) because they facilitate the comparison of the proposed

method with existing ℓ1-penalized methods. We compare the performance of three estima-

tors: the estimator that penalizes uncorrelated individual effects β̂(τ, λ), the estimator that

penalizes correlated individual effects β̃(τ, λ), and the quantile regression estimator for the

correlated random effects model β̂(τ, 0). The estimator β̃(τ, λ) is similar to the estimator

considered in Koenker (2004) when the location of the distribution of the iid αi’s is different

than zero, and β̂(τ , 0) is similar to the estimator considered in Abrevaya and Dahl (2008)

replacing the time effects by individual effects.

The appendix presents the assumptions and definitions associated with the main results of

this section. Nevertheless, we briefly introduce notation for convenience. Let H1, Σ1, J0,

J2, J3 be limiting positive definite matrices, L is a weighted orthogonal projection matrix of

independent variables X, and Φ and Υ denote diagonal matrices. Moreover, define A = J3,

C = J2, D = J−1
2 J0, B̃ = J−1

3 L′ΦL and B̂ = J−1
3 L′ΥL, and ζa, ζb̃, ζb̂, ζc, ζd the

corresponding positive eigenvalues of the matrices. Lastly, define s0,it = (E(sign(αi)xit))it
and S0 = s0s

′
0. The largest eigenvalue is defined as ζ̄So

= max{ζ1So
, . . . , ζpSo

}, and ζ̄ã and ζ̄b̃
are the corresponding eigenvalues.

THEOREM 1. Under the conditions provided in the Appendix, for λ ∈ (0,∞), the penalized

estimator that shrinks endogenous individual effects, β̃(τ, λ), and the penalized estimator that
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shrinks exogenous individual effects, β̂(τ, λ), have covariance matrices,

Avar(
√
NT (β̃(τ, λ)) = (H1 + λJ3)

−1(J0 + λ2J2)(H1 + λJ3)
−1,

Avar(
√
NT (β̂(τ, λ)) = (Σ1 + λJ3)

−1(J0 + λ2J2)(Σ1 + λJ3)
−1,

and Avar(β̃(τ, λ)) < Avar(β̂(τ, λ)). Also,

|Abias(β̃(τ, λ))| > |Abias(β̂(τ, λ))| = |Abias(β̂(τ, 0))| = 0.

The result could be interpreted in terms of asymptotic mean squared error (AMSE). Note

that although β̃(τ, λ) is asymptotically biased, it may have asymptotically significantly

smaller variance than the unbiased estimators β̂(τ, λ) and β̂(τ, 0).

COROLLARY 1. Under the conditions of Theorem 1, for λ ∈ (0,∞), the trace of the

asymptotic mean squared error of the penalized estimator that shrinks endogenous individual

effects β̃(τ, λ), and the penalized estimator that shrinks exogenous individual effects β̂(τ, λ)

are:

AMSE(β̃(τ, λ)) =

p
∑

i=1

ζ ic(ζ
i
d + λ2)

(ζ ia(ζ
i
b̃
+ λ))2

+
ζ̄So
λ2

(ζ̄a(ζ̄b̃ + λ))2

AMSE(β̂(τ, λ)) =

p
∑

i=1

ζ ic(ζ
i
d + λ2)

(ζ ia(ζ
i
b̂
+ λ))2

.

It is immediately apparent than for ζ̄So
sufficiently small,

AMSE(β̃(τ, λ)) ≤ AMSE(β̂(τ, λ)),

because ζ i
b̃
> ζ i

b̂
for all i by Weyl’s monotonicity principle of eigenvalues (Bhatia 1997),

but the inequality is reversed if the bias and the tuning parameter are large. For λ suffi-

ciently small, we have that AMSE(β̂(τ, λ)) ≤ AMSE(β̂(τ, 0)), suggesting that shrinking the

individual effects a’s is worthwhile.

It seems natural to consider choosing λ to minimize AMSE, which for the case of β̂(τ , λ)

implies choosing λ to minimize asymptotic variance. The primary objective is now to show

that the trace of the asymptotic covariance matrix of β̂(τ , λ) is convex in λ, therefore a

unique value of λ exists. In contrast, the variance of âi(λ), which is not derived in Theorem

1, is expected to tend monotonically to zero as λ tends to infinity.

The following result demonstrates that it is possible to obtain an optimal tuning parameter

defined as the minimizer of the trace of the asymptotic covariance matrix. Note that the
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selection of λ∗ is not sensitive to scale effects because we consider normalized asymptotic

variances Avar(β̂k(τ, λ))/Avar(β̂k(τ, 0)).

COROLLARY 2. Under the conditions of Theorem 1, there exists a unique variance min-

imizing parameter, λ∗ = argmin{tr(Σ1Σ
−1
0 Σ1)(Σ1 + λΣ3)

−1(Σ0 + λ2Σ2)(Σ1 + λΣ3)
−1}.

Standard arguments can be used to construct a “plug-in” estimator λ̂ that consistently es-

timates the optimal degree of shrinkage λ∗. The estimation of the asymptotic covariance

matrix can be accomplished by obtaining estimates of the conditional density f at the con-

ditional quantile ξ(τ) and the density of the individual effects g(0). The estimation of f(ξ(τ))

in iid and non-iid settings requires the use of standard quantile regression methods, consid-

ering the conditional quantile function evaluated at λ equal to zero, ξ(τ, 0). The interested

reader will find in Koenker (2005) detailed explanations on the existing approaches. In the

case of location-scale shift models, the estimation of g(0) can be performed considering a

sample of normalized individual effects estimates {â1(0), â2(0), ..., âN(0)} and classical kernel

methods, (1/(NhN))
∑N

i=1K(âi(0)/hN), where hN is a bandwidth and âi(0) is the “unpun-

ished” estimate of the individual effect ai. More general models can be estimated using the

bootstrap procedure described in Section 2.2.

4. Monte Carlo

This section reports the results of several simulation experiments designed to evaluate the

performance of the method in finite samples. First, we will briefly investigate the bias and

variance of the penalized estimator in models with endogenous individual effects. Second,

we will contrast the performance of the penalized quantile regression estimator for the cor-

related random effects model with classical least squares estimators and quantile regression

estimators. Finally, we will evaluate the efficiency of the penalized estimator relative to

existing approaches for panel data quantile regression.

4.1. Experiment designs and methods

We generate the dependent variable considering the following version of the model (2.1)-(2.3):

yit = β0 + β1xit + αi + (1 + δxit)uit,

xit = πµi + vit,

αi = g(γ0 + γ1xi1 + ...+ γTxiT ) + ai



11

The first three designs consider the location shift model δ = 0 and the last design assumes

a location-scale shift model with δ = 1:

Design 1: The function g(·) is assumed to be known and linear and uit is N (0, 1). The

variables µi, vit, and ai are iid Gaussian variables. The parameter of interest β1 is

assumed to be zero, the γ’s are 0.5/T representing the Mundlak-Chamberlain case,

and π is set to be 2.5.

Design 2: The function g(·) is nonlinear. We assume that g(·) = sin(·) and γt = 2π/T

for all t. This implies that αi = sin(2πx̄i)+ai where x̄i denotes the individual-specific

average of xit. The variables µi, vit, and ai are iid Gaussian variables.

Design 3: We maintain Design 1 with the exception of the distribution of the error

term uit that is now distributed as t-student with three degrees of freedom, t3.

Design 4: We reproduce the first design used in Canay (2011). The function g(·) is

assumed to be linear and γt = 2 for all t. The variable uit ∼ N (2, 1), ai ∼ N (0, 1)

and vit ∼ Beta(1, 1). The parameter β0 = −1 and the parameters β1 = π = 0.

In the next section, we employ several sample sizes N = {100, 500} and T = {2, 5, 12} and

compare the performance of the following estimators: (1) the ordinary least squares (OLS);

(2) the generalized least squares (GLS); (3) the pooled quantile regression estimator (QR);

(4) Koenker’s (2004) penalized quantile regression estimator for a model with fixed effects

that uses the optimal tuning parameter proposed in Lamarche (2010) (PFE); (5) Abrevaya

and Dahl’s (2008) quantile regression estimator for the correlated random effects model

(CQR); (6) Canay’s (2011) two-step fixed effects quantile regression estimator (2SQR); (7)

the semiparametric penalized quantile regression estimator (SQR) defined in equation (2.5);

and (8) two penalized quantile regression estimators for the linear parametric correlated

random effects model (PQRd and PQR), defined in equation (2.6). The estimator labelled

PQRd allows γ(τ)’s to vary by quantile, while PQR assumes that γt(τ) = γt for all τ . The

empirical evidence is based on 400 samples.

4.2. Results

We start reporting results on the performance of the penalized quantile regression estimator

in parametric and semiparametric models. Considering N = 100 and T = 5, Figure 4.1

report the bias and variance percentage change of PFE, PQR and SQR. The upper panels

present evidence of the performance of these three methods when the data is generated

according to Design 1 and the lower panels present evidence when the data is generated as

in Design 2. We see that the upper left panel shows that the PFE estimator is biased, and
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Figure 4.1. Small sample performance of penalized quantile regression esti-
mator for β1(0.5). The left panel shows the bias of the estimator and the right
panel shows the variance percentage change.

its bias starts to increase as we increase the harshness of the penalization. The right upper

panel reveals that (i) the variance of the estimator decreases first and then increases, and

(ii) there are significant differences in variance reduction. By carefully choosing λ to be 1,

the variance of the slope PQR estimator is reduced more than 30 percent, while the variance

of the PQR is reduced 2 percent.1

The PQR estimator is the efficient estimator in the class of penalized estimators for panel

data. As expected however the performance of this method is rather unsatisfactory in terms

1Additional evidence not reproduced here to save space showed that the variances of the estimators are

not influenced by the correlation between αi and xit, but as expected, the bias of the PFE estimator does.
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Estimators

N T Least Squares Quantile Regression

OLS GLS QR PFE CQR 2SQR SQR PQRd PQR

Design 1: τ = 0.50

100 2 Bias 0.458 0.390 0.457 0.407 -0.008 -0.011 -0.010 -0.009 -0.010

RMSE 0.460 0.392 0.460 0.410 0.140 0.096 0.106 0.115 0.107

100 12 Bias 0.424 0.150 0.423 0.140 0.002 0.002 0.002 0.002 0.002

RMSE 0.425 0.152 0.425 0.143 0.042 0.032 0.036 0.039 0.035

500 2 Bias 0.464 0.408 0.465 0.421 0.005 0.001 0.000 0.002 0.001

RMSE 0.465 0.408 0.465 0.422 0.063 0.041 0.047 0.053 0.047

500 12 Bias 0.440 0.180 0.441 0.165 -0.001 0.000 0.000 0.000 0.000

RMSE 0.441 0.180 0.441 0.166 0.018 0.014 0.015 0.016 0.015

Design 3: τ = 0.50

100 2 Bias 0.461 0.393 0.460 0.411 0.006 -0.007 0.000 0.001 0.001

RMSE 0.468 0.401 0.466 0.417 0.174 0.155 0.136 0.139 0.134

100 12 Bias 0.424 0.148 0.421 0.140 -0.001 -0.001 -0.001 -0.002 -0.001

RMSE 0.430 0.154 0.424 0.145 0.053 0.049 0.039 0.042 0.039

500 2 Bias 0.464 0.408 0.464 0.423 0.002 0.004 0.002 0.001 0.003

RMSE 0.466 0.409 0.465 0.424 0.073 0.070 0.057 0.063 0.058

500 12 Bias 0.439 0.179 0.439 0.170 -0.001 0.000 0.000 0.000 0.000

RMSE 0.439 0.180 0.439 0.171 0.024 0.022 0.018 0.020 0.018

Design 4: τ = 0.50

100 2 Bias 0.827 0.375 0.845 0.411 -0.021 -0.006 -0.013 -0.006 0.000

RMSE 1.761 0.894 1.854 1.001 0.779 0.537 0.591 0.590 0.572

100 12 Bias 0.818 0.071 0.818 0.050 -0.004 0.005 0.007 0.002 0.004

RMSE 1.651 0.211 1.669 0.217 0.238 0.189 0.190 0.192 0.190

500 2 Bias 1.011 0.505 1.011 0.518 -0.005 -0.013 -0.013 -0.012 -0.013

RMSE 2.040 1.032 2.053 1.067 0.352 0.243 0.265 0.273 0.262

500 12 Bias 0.924 0.075 0.934 0.045 0.001 -0.002 -0.002 -0.003 -0.002

RMSE 1.851 0.166 1.875 0.129 0.114 0.089 0.092 0.093 0.092

Design 4: τ = 0.25

100 2 Bias 1.757 1.075 1.440 0.674 0.161 0.336 0.135 0.166 0.154

RMSE 2.405 1.505 2.098 1.114 0.943 0.709 0.718 0.820 0.743

100 12 Bias 1.743 0.615 1.537 0.097 0.213 0.069 0.029 0.029 0.028

RMSE 2.321 0.831 2.077 0.249 0.390 0.218 0.214 0.209 0.215

500 2 Bias 2.034 1.271 1.738 0.840 0.176 0.316 0.143 0.099 0.140

RMSE 2.710 1.698 2.336 1.152 0.456 0.490 0.366 0.389 0.359

500 12 Bias 1.902 0.621 1.647 0.094 0.203 0.062 0.021 0.021 0.020

RMSE 2.524 0.827 2.191 0.160 0.296 0.126 0.104 0.106 0.104

Table 4.1. Small sample performance of the methods.
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Figure 4.2. Small sample performance of the penalized quantile regression
estimator PQR for γ.

of bias in models with endogenous individual effects. In contrast, PQR and SQR are un-

biased. It is interesting to see that the performance of the PQR estimator deteriorates

when g(·) is a non-linear function but the performance of the semi-parametric version of the

estimator remains essentially the same.

Figure 4.2 reports the bias and variance of the estimator of γ = (γ1, γ2, ..., γ5)
′ under Design

1. The figure shows that the bias of γ̂t is small for all t and λ. The figure also shows that the

variance tends to decrease as when increase λ reflecting potential significant improvements

in the performance of the estimator that penalizes exogenous individual effects.

Using Table 4.1, we expand the design of the experiment considering several sample sizes

N = {100, 500} and T = {2, 12}, and the random variables ai and uit to be distributed

as Gaussian and t-student with 3 degrees of freedom. The table also reports evidence of

the performance of the methods under Design 4. As expected, the performances of the

methods that ignore the correlation between the independent variable and the individual

effect are rather unsatisfactory. In all the variants of the model, the bias is significant even

for moderate T . Notice also that the estimators that address the endogeneity of the αi’s
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Asymptotic Theory Bootstrap

N T Design 1 Design 3 Design 1 Design 3

0.25 0.50 0.25 0.50 0.25 0.50 0.25 0.50

100 2 0.1467 0.1142 0.1872 0.1429 0.1414 0.1258 0.1795 0.1499

[ 0.9329 ] [ 0.7922 ] [ 0.8604 ] [ 0.8185 ] [ 0.8991 ] [ 0.8722 ] [ 0.8253 ] [ 0.8585 ]

100 12 0.0416 0.0377 0.0497 0.0407 0.0409 0.0384 0.0500 0.0412

[ 0.8437 ] [ 0.8644 ] [ 0.7947 ] [ 0.8038 ] [ 0.8292 ] [ 0.8794 ] [ 0.8056 ] [ 0.8020 ]

500 2 0.0656 0.0520 0.0865 0.0655 0.0629 0.0544 0.0834 0.0666

[ 0.9662 ] [ 0.8378 ] [ 0.9838 ] [ 0.8774 ] [ 0.9268 ] [ 0.8770 ] [ 0.9493 ] [ 0.8912 ]

500 12 0.0193 0.0169 0.0229 0.0192 0.0195 0.0167 0.0236 0.0195

[ 0.8862 ] [ 0.8646 ] [ 0.7753 ] [ 0.8504 ] [ 0.8980 ] [ 0.8572 ] [ 0.8017 ] [ 0.8642 ]

Table 4.2. Standard error and relative efficiency of CQR relative to PQR

(in brackets).

produce unbiased results. In the location-scale shift model at τ = 0.25, PQR and SQR

estimators offer the best overall performance related to existing methods.

The results presented in Table 4.1 might be sensitive to selecting the tuning parameter

λ = λ∗. In practice, the optimal degree of shrinkage is not known and therefore it has to be

estimated. We now briefly investigate the performance of PQR estimator considering two

ways of estimating λ∗: (i) estimated asymptotic covariance matrix and (ii) bootstrapped vari-

ance. Table 4.2 suggests that there are no important efficiency losses when the practitioner

estimates λ∗, at least in the models considered in this study. Second, the performance of the

two λ selection alternatives are satisfactory. Lastly, the PQR estimator seems to advance

the CQR estimator, offering considerable efficiency gains in all variants of the model.

5. Applications to models with heterogeneous preferences

This section illustrates the use of the panel data quantile regression approach that handles

the presence of potentially endogenous α’s in applications with heterogeneous preferences.

5.1. New evidence on the responsiveness of hours to wages

We first show that the empirical model could be motivated by a simple variation of the

neoclassical labor-supply model. Considering a sample from the British Household Panel

Survey (BHPS), we demonstrate that the approach produces similar results to the quantile

regression version of the fixed effects estimator, but it allows for identification of effects

associated with time-invariant taste shifters and demographic characteristics. Additionally,
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it allows us to estimate wealth effects of a parametric change in wages on hours worked. We

find evidence that positive substitution effects dominate negative wealth effects at several

quantiles of the conditional distribution of hours. The overall effect tends to be decreasing

across quantiles, which might be interpreted as suggesting that changes in taxes could have

different effects across the distribution of hours.

5.1.1. Model specification

Before turning to the discussion of the results, we briefly revisit the traditional life cycle

labor supply model (see, e.g., Blundell and MaCurdy 1999, Pistaferri 2003). It is standard

to write,

(5.1) ln(h) ≈ x′β + δ ln(w) + π ln(α),

where the parameter δ denotes the intertemporal substitution elasticity of labor supply and

the term π ln(α) denotes the marginal utility of wealth. This simple empirical labor supply

model (5.1) is motivated by the convenient additive separable utility function U(c, h; v) =

c− exp(x′β)h1+v, where c is consumption and v > 0 is a time-invariant, consumer-invariant

parameter. To obtain a life-cycle specification, one may assume that the marginal utility of

wealth is,

(5.2) π ln(αi0) = z
′
i0θ +

T
∑

s=0

γsE0{lnwis}+ ai,

where z is a vector of demographic characteristics that may include non-labor income, and,

by definition, the individual idiosyncratic term ai is orthogonal to the covariates.2 Notice

that for estimating (5.1)-(5.2), the practitioner requires information on consumers’ expected

wages.

We introduce a simple variation of the labor supply function that leads to a more flexible

empirical framework. We simply assume that the consumer solves the maximization of the

2Equation (5.2) assumes that each consumer knows her working life of Ti periods. The main empirical

concern of this theoretical restriction is that wages outside the sample period are not observed. We try

to accommodate this by considering the largest possible panel (e.g., we drop consumers for which we have

Ti less than 12 years). Another standard limitation is associated with measuring initial wealth. We will

estimate models for workers with and without investments at time 0, to evaluate the sensitivity of our main

conclusions. Alternatively, it is possible to assume quadratic equations in age for approximating the profiles

of wages and property income. For instance, E0{lnwis} = π0 + π1s + π2s
2 + uis (see, e.g., Blundell and

MaCurdy 1999).
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lifetime utility function U(c, h; v(u)), subject to an intertemporal budget constraint. The

function v(u) describes heterogeneity in preferences. Similar to before, assuming an interior

optimum, it is possible to obtain that,

(5.3) ln(h) ≈ x′β(u) + δ(u) ln(w) + π(u) ln(α),

where δ(u) = v(u)−1, β(u) = β/v(u), and π(u) = π/v(u). This simple way of introducing

heterogeneity in preferences does not require one to assume that the distribution function

for latent heterogeneity is known. Additionally, it relaxes the assumption that δ represents

a simple location-shift on the conditional distribution of hours. Therefore, we write,

(5.4) π(u) ln(αi0) = z
′
i0θ(u) +

T
∑

s=1

γs(u) lnwis + ai,

The model presented in equations (5.3) and (5.4) has the following random coefficient rep-

resentation,

ln(hit) = c′itψ(uit) + (δ(uit) + γt(uit)) lnwit +
∑

s 6=t

γs(uit) lnwis(5.5)

τ 7→ c′itψ(τ) + (δ(τ) + γt(τ)) lnwit +
∑

s 6=t

γs(τ) lnwis(5.6)

where unmeasured characteristics uit|cit, lnwi are uniformly distributed U(0, 1), and τ de-

notes the τ -th quantile of the conditional distribution of the logarithm of hours. The variable

cit = (x′
it, z

′
i, dit)

′ includes taste shifters, demographic characteristics and an indicator vari-

able dit for the individual effect ai, and ψ(τ) = (β(τ)′, θ(τ)′,a′)′.3

We estimate the panel data-quantile model (5.6) considering the method proposed above.

We restrict attention to the elasticity of labor supply with respect to a parametric change

in wages, which is a combination of substitution and wealth effects. We define the term

Γ(τ) =
∑

t γt(τ) as the wealth effect of a parametric shift in the wage profile at time 0,

and δ(τ) as the substitution elasticity at the τ -th quantile of the conditional distribution

of hours. The elasticities are quantile-specific allowing us to go beyond the standard wage

elasticity for the “representative” consumer.

3Notice that MaCurdy’s (1981) representation of the endogenous individual effects lies within the corre-

lated random effects framework, if time-variant variables excluding wages do not affect the marginal utility

of wealth. In terms of the model estimated in this section, this suggests that age should not be considered

in (5.4).
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Variables All workers Workers with zero Workers with positive

non-labor income non-labor income

(1) (2) (3)

Hours worked 36.749 38.650 36.232

(10.511) (13.044) (9.646)

Wage rate (in logs) 5.738 5.611 5.773

(0.679) (0.696) (0.670)

Age 39.403 37.456 39.933

(9.008) (8.583) (9.049)

Union member 0.634 0.651 0.629

(0.482) (0.477) (0.483)

Male worker 0.500 0.542 0.488

(0.500) (0.498) (0.500)

Intermediate qualifications 0.425 0.530 0.325

(0.494) (0.499) (0.469)

Advanced qualifications 0.490 0.325 0.534

(0.500) (0.469) (0.499)

Number of workers 388 83 305

Number of observations 4656 996 3660

Table 5.1. Descriptive statistics for the BHPS sample. The table presents

the sample mean and standard deviation (in parenthesis)

5.1.2. Data description

We use a sample of workers taken from the British Household Panel Survey (BHPS), which

is similar to other data used in previous labor supply studies (e.g., Panel Study of Income

Dynamics in the US). The sample includes N = 388 and T = 12 (Table 5.1). The period of

analysis is 1991-2002. The data contains observations on weekly hours worked, real wages,

demographic and socioeconomic characteristics including union membership in 1991, and

gender.4

We also include variables for the level of education of the worker, deviating from the tradi-

tional continuous years to schooling measure (Card 1999). Recently, Battistin and Sianesi

4The empirical literature, in general, and studies related with the BHPS, in particular, distinguish the

estimation of labor supply by gender. Although it is obviously possible to estimate the model presented in

(5.6) with a subsample of male workers, we include a variable indicating gender in the quantile regression

model. Addressing issues related to whether the individual works in the labor market is out of the scope of

this paper.
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Quantiles

0.10 0.50 0.90

QR FEQR PQR QR FEQR PQR QR FEQR PQR

Substitution 0.427 0.421 0.443 0.225 0.339 0.290 0.130 0.284 0.296

elasticity (δ) (0.036) (0.044) (0.048) (0.039) (0.041) (0.036) (0.032) (0.044) (0.044)

Union 0.027 -0.018 -0.008 -0.008 -0.031 -0.003

(0.033) (0.028) (0.020) (0.023) (0.029) (0.024)

Male 0.143 0.110 0.103 0.107 0.209 0.097

(0.042) (0.035) (0.016) (0.025) (0.030) (0.029)

Intermediate -0.046 -0.094 -0.074 -0.067 -0.047 -0.052

qualifications (0.060) (0.039) (0.028) (0.037) (0.054) (0.038)

Advanced -0.274 -0.203 -0.206 -0.175 -0.139 -0.149

qualifications (0.070) (0.055) (0.036) (0.047) (0.055) (0.048)

Wealth effect -0.176 -0.115 -0.140

(Γ) (0.069) (0.045) (0.048)

Wage elasticity 0.267 0.175 0.156

(δ + Γ) (0.053) (0.047) (0.048)

Table 5.2. Estimating a panel quantile labor supply model. QR refers to

quantile regression, FEQR is fixed effects quantile regression and PQR is the

penalized estimator for the linear correlated random effects model. The value

of the tuning parameter is 0.65.

(2011) argue that in UK the return to education does not increase linearly with each addi-

tional year of schooling, because there are other academic paths leading to different qualifi-

cations. To avoid biases introduced by misclassification, we construct indicators for whether

the worker has intermediate or advanced qualifications. The omitted category in the re-

gressions is ‘no qualifications’. While the level ‘no qualifications’ reflects dropping out of

school, ‘intermediate’ qualifications includes level 2 - O levels or their vocational equivalent.

The variable ‘advanced’ qualification is an indicator for high-school diploma, advanced and

higher City and Guilds and Royal Society of Arts, Ordinary and Higher National Diplomas,

university and postgraduate studies, and professional degrees.

5.1.3. Estimating quantile specific elasticities

We use Table 5.2 to compare results obtained from our method with standard quantile re-

gression methods. The PQR estimator uses a plug-in estimate λ̂ = 0.65 selected as discussed

in Section 3. We report results for the 0.10, 0.50 and 0.90 quantiles. The table presents esti-

mates of the elasticity parameter and the time invariant effects as a function of the quantiles

of the conditional distribution of hours.
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In this application, the classical fixed effects method (not reported in Table 5.2 to save

space) suggests a positive substitution elasticity between hours and wages of 0.43 percent.

However, the quantile approaches seem to provide additional information suggesting that

the location-shift model is inappropriate for the British data set. For instance, the quantile

regression version of the fixed effects estimator gives positive estimates ranging from 0.42

percent at the 0.1 quantile to 0.28 percent at the 0.9 quantile. Although the fixed effects

estimates might be unbiased, the table shows that time invariant effects are not identified.

In contrast, the penalized approach offers the possibility of estimating the effect of union

membership, gender, and educational attainment on the conditional distribution of hours

worked. While the effect of union membership is insignificant across the quantiles of the

conditional distribution, gender and the indicators for educational attainment are significant

at standard levels.

The PQR approach offers the possibility of estimating the main parameter of interest for

policy analysis, δ + Γ. At first glance, we see that the penalized estimates of δ are similar

to the fixed effects estimates. These estimates δ are positive, and they tend to decrease as

we increase the quantile τ . The estimated wealth effect is negative as expected, and tends

to be significant if we consider quantiles at the tails. Although the sign of the parameter

(δ + Γ) is unknown, we find evidence that suggests that the substitution effect dominates

the wealth effect among British workers. The implication is that a 10% increase in the wage

profile increases labor supply by approximately 2.7% at the 0.1 quantile and 1.6% at the 0.9

quantile.5

The results presented in Table 5.2 suggests that the wage elasticity of labor supply is positive

across quantiles, because the positive substitution effect dominates the negative wealth effect.

We briefly investigate the sensitivity of this result to the choice of λ. At the top of Figure

5.1, we plot estimates of the substitution effect, the wealth effect, and the overall effect at 25

equally spaced λ’s in the interval [0, 2]. While we see positive estimates for the elasticity of

substitution, we find negative estimates for the wealth effect. This evidence indicates that

the sign of the estimated elasticity δ̂ + Γ̂ does not appear to be related to the optimal value

of the tuning parameter. Notice that the point estimates do not seem to change dramatically

5Pistaferri (2003) finds that the conditional mean estimate of the substitution elasticity is 0.70 and the

conditional mean estimate of the wealth effect is −0.20. He uses a panel from the Bank of Italy Survey of

Household Income and Wealth and subjective expectations formed at the consumer level of aggregation. No-

tice that the availability of subjective expectations data would make possible to estimate (5.2). Although this

approach has several important advantages, it requires the use of information that typically the practitioner

does not have.
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Figure 5.1. Profile of the elasticities in terms of λ.
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as we increase λ, suggesting that the correlated effects framework provides a convenient way

to account for individual heterogeneity associated with the covariates.

5.1.4. Non-labor income and hours

This section briefly investigates how asset income affects the allocation of hours. Based on the

information provided by the BHPS, we define non-labor income as income from rents, savings

and investment in the last year. We then re-estimate the model 5.6 splitting the sample in

two subsamples. While the middle panels in Figure 5.1 present results based on a sample of

workers with zero non-labor income, the panels at the bottom of the figure present results

based on a sample of workers with positive non-labor income6. We note that the levels and

shape of the estimated substitution effects do not change dramatically across samples, but

the estimated wealth effects tend to be different across samples. While the wealth effects are

close to zero and insignificant at standard levels among workers with zero non-labor income,

the wealth effects are relatively large and significant among workers with positive non-labor

income. Therefore, the evidence suggests that workers with zero non-labor income tend to

be more sensitive to changes in wages than workers with positive non-labor income. Figure

5.1 also shows that the quantile specific elasticities provide a more informative analysis.

The evidence could be interpreted as suggesting that while underemployed workers may be

willing to offer more hours than the average worker given a one percent increase in wages,

overemployed workers would like to offer fewer hours than the average worker.

5.2. Heterogeneous nutrition preferences

In the US obesity rates have increased at alarming rates over the last few decades. Given

the comorbity of obesity with other chronic illnesses, such as diabetes and heart disease,

and the financial strain it imposes on the health care system, obesity is considered to be

one of the main public health concerns of our time. Numerous programs such as the First

Lady’s “Let’s Move” campaign aim to address the challenge of obesity. Designing policies

to address obesity is complex problem that requires us to tailor interventions to account for

heterogeneous preferences and demographics.

6The second sample labeled ‘zero non-labor income’ considers workers without income from rents, savings

and investments; the last sample labeled ‘positive non-labor income’ include workers with nonzero income

from rents, savings, and investments.
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In this example we explore how preferences for nutrients vary by gender. In a recent report

the CDC7 estimates that while 35.7% of US adults are now obese, substantial differences ex-

ist across genders and age groups. Over the last decade obesity rates for men increased from

27.5% to 35.5%, while obesity rates for women have not varied significantly in recent years

and are currently at 35.8%. This section applies our method to quantifying preferences for

nutrition by gender. Understanding the heterogeneity in preferences is of major policy inter-

est as it helps us design better policies by accounting for their distributional impact. In the

US context and in the face of rising obesity a variety of policies such as food taxes/subsidies,

changes in the Supplemental Nutrition Assistance Program (SNAP), or portion restrictions

are being considered, all of which will change the nutritional composition of a household’s

food consumption basket.

The consumption model described below allows us to quantify the differences in preferences

for nutrients across sub-populations. Dubois, Griffith, and Nevo (2013) use this framework

to show that there are substantial differences across countries. We adapt this model to ex-

plore if differences in preferences between socio-demographic groups exist at different levels

of expenditure. We model a household’s food purchase decision, where each household can

choose among N different food products. Each product k is characterized by a set of D

product attributes. Each product is identified at the UPC level. A typical American super-

market sells about 50, 000 different products. Thus, while D is large, the number of product

attributes C which are salient to the average consumer is typically very small. We focus

on attributes which relate to the underlying nutrients that a consumer may look for on the

product label, such as calories, fat, salt, sugar, cholesterol, protein and carbohydrates. Each

unit of good k contains κk = {κk,1, . . . ,κkC}′ units of the underlying product attributes.8

We assume that household i with income Ii chooses a bundle of goods xi and a numeraire

good xi0 so as to maximize utility conditional on household attributes µi and subject to

a budget constraint. We follow Dubois, Griffith, and Nevo (2013) and assume that the

household derives utility from both the goods purchased and the underlying quantities zi of

the nutrients purchased through the purchase of the goods xi. We normalize the price of the

numeraire good to 1. Denote by pi the prices faced by household i over the set of products

7See Ogden, Carroll, Kit, and Flegal (2012) for more details.
8Note that we do not require the underlying product attributes to be mutually exclusive. For example

Peanut Butter has 188 total calories per serving; 145 of those calories come from fat. The total amount of

fat in the serving is 16.1 grams.
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available for purchase. Thus,

(5.7) max
xi0,xi

U(xi0,xi, zi, µi), s.t. xi0 + p
′
ixi = Ii,

where zik = κ′
kxi, denotes a home production function which converts products into nutrients

(cooking). This model generalizes the Muellbauer (1974) model of household production,

which assumes that household i purchases goods xi but only derives utility from the product

attributes zi, and which generates a standard hedonic model. By allowing the household

to derive utility from both products and attributes we are relying on insights from the

modern Industrial Organization literature, which shows that households exhibit preferences

over products.

Given the large number of choices D faced by the typical household, it would be impractical

to estimate a disaggregated demand system. It is thus common to aggregate products

into mutually exclusive groups such as milk products, meat products, etc. Harding and

Lovenheim (2013) then estimate a structural Quadratic Almost Ideal Demand System on the

aggregate set of products, which allows for the identification of a detailed substitution matrix.

In the context of the current application, we wish to estimate the preference heterogeneity

in the demand for nutrients and follow the more parametric approach of Dubois, Griffith

and Nevo (2013) by choosing a utility which imposes stronger restrictions on the pattern

of substitution between products. While this substantially limits the nature of the price

elasticities, it possesses the attractive feature of weak separability, which leads to a convenient

aggregation over products as shown below.

In particular we let:

(5.8) U(xi0,xi, zi, µi) = exp(xi0)

(

D
∑

k=1

fik(xik)

)µi C
∏

c=1

hic(zic),

where µi denotes the set of household specific model parameters. We further assume that

fik(xik) = λikx
θi
ik and hic(zic) = exp(βczic). After substituting for the budget constraint and

the home production function the household maximizes the following log utility function:

(5.9) logU(xi0,xi, zi, µi, λi, θi, βc) = Ii−
D
∑

k=1

pikxik+µi log

(

D
∑

k=1

λikx
θi
ik

)

+

C
∑

c=1

βc

D
∑

k=1

κkcxik,

where κkc are known and observed by both the household and the econometrician. The

parameters βc measure the average contribution of a nutrient to the utility function. The



25

first order condition for good k is given by:

(5.10) pik = µiθi
λikx

θi−1
ik

∑D
k=1 λikx

θi
ik

+

C
∑

c=1

βcκkc.

We can express this first order condition in terms of the expenditure for good k to obtain:

(5.11) pikxik = µiθi
λikx

θi
ik

∑N
k=1 λikx

θi
ik

+
C
∑

c=1

βcκkcxik.

Note that we can now aggregate this expression over all (or a subset) of the products to

obtain relationship between total expenditure Ei and nutrients:

(5.12) Ei = µiθi +

C
∑

c=1

βczic.

In practice we observe a household making repeated purchases and we can estimate this

model using the following panel data empirical specification:

(5.13) Eit = αi +

C
∑

c=1

βczitc + ǫit,

where γt is a time indicator capturing the impact of macroeconomic factors on food purchases

and ǫit is an iid error term uncorrelated with the RHS variables, capturing the random

variation in consumer preferences. Furthermore we assume that the household specific effect

αi can be written as follows:

(5.14) αi = g(zi) +w
′
iδ + ai,

where g(·) is an unknown function capturing household specific nutrition effects, wi is a

vector of time invariant household demographics and ai is a household specific random effect,

uncorrelated with the RHS variables.

We estimate this model using the following quantile representation,

Eit =

C
∑

c=1

βc(uit)zitc + g(zi, uit) +w
′
iδ(uit) + ai(5.15)

τ 7→
C
∑

c=1

βc(τ)zitc + g(zi, τ) +w
′
iδ(τ) + ai(5.16)

where unmeasured characteristics conditional on observables are uniformly distributed U(0, 1),
and τ denotes the τ -th quantile of the conditional distribution of food expenditure.
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Variables All consumers Female consumers Male consumers

(1) (2) (3)

Total Expenditure 120.328 119.887 121.311

(77.954) (77.558) (78.821)

Total fat (grams consumed per month) 17.406 17.383 17.456

(14.338) (14.297) (14.429)

Salt (miligrams consumed per month) 818.066 822.313 808.605

(1173.582) (1233.129) (1028.525)

Sugar (grams consumed per month) 30.111 30.200 29.915

(23.609) (23.916) (22.910)

Cholesterol (grams consumed per month) 46.541 46.705 46.176

(42.987) (42.764) (43.479)

Protein (grams consumed per month) 13.852 13.668 14.262

(23.351) (24.363) (20.914)

Carbohydrates (grams consumed per month) 64.023 64.068 63.924

(46.093) (46.989) (44.032)

Black 0.117 0.128 0.093

(0.322) (0.334) (0.291)

Income higher than $70K 0.146 0.123 0.197

(0.353) (0.329) (0.398)

College education 0.475 0.450 0.530

(0.499) (0.497) (0.499)

Number of consumers 9,165 6,326 2,839

Number of observations 109,980 75,912 34,068

Table 5.3. Descriptive statistics for the Nielsen HomeScan sample of single

households in 2010. The table presents the sample mean and standard deviation

(in parenthesis).

5.2.1. Data description

We use a subset of the data introduced in Harding and Lovenheim (2013), which draws

on a large panel of household food purchases from the Nielsen Homescan database. The

data records all purchases at the UPC level for a large sample of nationally representative

households. Purchases are made in a variety of supermarkets and grocery stores and are

meant for at home consumption. Each purchased product is uniquely identified through its

Universal Product Code (UPC), a barcode, which is scanned at the point of sale. Nielsen

requires all participating households to re-scan each purchased product at home. Each week

the scanned data together with the receipts are transmitted to Nielsen where the data is

combined and verified against store sale information. As a result the data contains accurate

measures of the price and quantity of each purchased product.
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For each household Nielsen collects detailed demographic information for the head of house-

hold using a yearly survey. The data includes the gender, race, income and education of the

head of household.

While providing detailed information on each transaction, the Nielsen data does not record

the nutritional content of every product. Harding and Lovenheim (2013) merge the trans-

action level data at the UPC level with detailed nutrition databases obtained from Gladson

and FoodEssentials, which contain the exact nutrition panel of each product.

In this paper we restrict attention to single person households (Table 5.3). The sample

includes 6326 female consumers and 2839 male consumers observed during 12 months in

2010. In the empirical analysis, we focus on six of the most essential (and salient) nutrients

consumed per month: total fat, salt, sugar, cholesterol, protein, and carbohydrates.

5.2.2. Empirical results

In this analysis, we explore how preferences for nutrients vary across gender. Our quantile

regression framework allows us to additionally investigate the extent to which gender differ-

ences are uniform over the conditional distribution of expenditure. In Table 5.4, we report

the estimated coefficients for the QR, FEQR and SQR models for females. The profile of

the asymptotic variance of the SQR suggests a value of λ = 1.21. We explore the results

further in Figures 5.2 and 5.3. Each subfigure plots the estimated coefficient for a covariate

of interest for each of the 0.1, 0.5, and 0.9 quantiles across a range of shrinkage parameters

λ. In Figure 5.2 we report the estimated preferences for females, while Figure 5.3 reports

the difference between the estimated coefficients for females and males.

First, consider the results for female shoppers. We find that higher food expenditures are

associated with stronger preferences for fat, salt, sugar, and protein. These nutrients are

highly correlated with taste and the richer a product is in these nutrients the more likely it

is to be appealing to a consumer. In contrast, cholesterol and carbohydrates are generally

associated with health hazards and have no direct impact on taste. As a result we see that

high expenditure households prefer these nutrients less than low expenditure households,

which may be indicative of avoidance behavior. Popular culture places a lot of emphasis on

diets aimed at avoiding cholesterol and carbohydrates. It is also important to stress that the

differences between the estimates for the extreme quantiles and the median reveal substan-

tial preference heterogeneity across the conditional expenditure distribution which varies by

nutrient. For instance, the effect of protein is negative and significant at the 0.1 quantile,

while positive and significant at the 0.9 quantile. Furthermore, our approach allows us to
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Quantiles

0.10 0.50 0.90

QR FEQR SQR QR FEQR SQR QR FEQR SQR

Total fat 1.204 1.175 1.144 1.216 1.170 1.173 1.229 1.273 1.291

(0.038) (0.048) (0.034) (0.028) (0.071) (0.081) (0.058) (0.085) (0.081)

Salt 0.003 0.002 0.002 0.003 0.003 0.003 0.005 0.004 0.004

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.001)

Sugar 0.245 0.179 0.165 0.439 0.357 0.362 0.707 0.554 0.551

(0.024) (0.038) (0.036) (0.021) (0.032) (0.034) (0.044) (0.050) (0.057)

Cholesterol 0.091 0.177 0.175 -0.045 0.061 0.064 -0.145 0.008 0.007

(0.011) (0.020) (0.019) (0.010) (0.027) (0.030) (0.016) (0.020) (0.024)

Protein -0.013 -0.120 -0.115 2.761 1.856 1.842 5.134 2.960 3.020

(0.110) (0.049) (0.058) (0.138) (0.393) (0.435) (0.222) (0.317) (0.337)

Carbohydrates 0.414 0.552 0.542 0.356 0.437 0.438 0.331 0.388 0.406

(0.017) (0.025) (0.022) (0.019) (0.039) (0.044) (0.033) (0.042) (0.038)

Black -5.305 -6.135 -6.717 -4.700 -8.570 -3.893

(0.427) (1.058) (0.410) (1.493) (0.884) (1.922)

High income 6.368 7.134 13.990 12.915 22.152 20.305

(0.561) (1.581) (0.539) (1.865) (0.974) (2.198)

College education 3.218 3.979 6.421 5.761 10.707 8.468

(0.319) (1.089) (0.316) (1.350) (0.653) (1.691)

Table 5.4. Estimating a panel quantile demand model for females. QR

refers to quantile regression, FEQR is fixed effects quantile regression and SQR

is the penalized estimator for the semiparametric correlated random effects

model. The value of the tuning parameter is 1.21.

estimate directly the impact of the demographics on food expenditure. We find that being

African-American is associated with a negative impact on overall food expenditures, while

households with incomes above $70,000 and with a College education are associated with

higher expenditures on food. These effects become more pronounced across the expendi-

ture distribution. Note that the results of the SQR model are quantitatively very similar to

those of the FEQR model, but substantially different than the QR results. This re-inforces

the importance of controlling for unobserved heterogeneity. However, our approach also has

the advantage of enabling us to derive the impact of the observable demographics on food

expenditures.

Figure 5.3 reveals that these preferences also differ substantially between males and females.

We find that for individuals at the lower tail of the conditional expenditure distribution,

females have stronger preferences for fat than males, while the opposite is true for salt and



29

0.5 1.0 1.5 2.0

1.
15

1.
20

1.
25

1.
30

λ

to
ta

l f
at 0.1 quantile

0.5 quantile
0.9 quantile

0.5 1.0 1.5 2.0
0.

00
25

0.
00

30
0.

00
35

0.
00

40

λ

sa
lt 0.1 quantile

0.5 quantile
0.9 quantile

0.5 1.0 1.5 2.0

0.
2

0.
3

0.
4

0.
5

λ

su
ga

r

0.1 quantile
0.5 quantile
0.9 quantile

0.5 1.0 1.5 2.0

0.
00

0.
05

0.
10

0.
15

λ

ch
ol

es
te

ro
l

0.1 quantile
0.5 quantile
0.9 quantile

0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

λ

pr
ot

ei
n 0.1 quantile

0.5 quantile
0.9 quantile

0.5 1.0 1.5 2.0

0.
40

0.
45

0.
50

0.
55

λ

C
ar

bs 0.1 quantile
0.5 quantile
0.9 quantile

0.5 1.0 1.5 2.0

−
6.

5
−

6.
0

−
5.

5
−

5.
0

−
4.

5
−

4.
0

−
3.

5

λ

ra
ce

0.1 quantile
0.5 quantile
0.9 quantile

0.5 1.0 1.5 2.0

8
10

12
14

16
18

20

λ

H
ig

h 
In

co
m

e

0.1 quantile
0.5 quantile
0.9 quantile

0.5 1.0 1.5 2.0

4
5

6
7

8

λ

C
ol

le
ge 0.1 quantile

0.5 quantile
0.9 quantile

Figure 5.2. Profile of preferences for female consumers.
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Figure 5.3. Profile of preferences by gender in terms of λ.

sugar. Furthermore, females have stronger preferences for protein at the upper quantiles of

the distribution, while males prefer protein at the lower quantiles. The reverse appears to

be true for cholesterol. This analysis reveals consumer preferences to be extremely hetero-

geneous and cautions against the use of demand models assuming homogeneous preferences.

From an econometric perspective it is also important to note the role played by the shrinkage

parameter λ. In general we would expect the estimated coefficients on the covariates of

interest to be fairly comparable across different degrees of shrinkage. By construction, the

procedure shrinks the individual effects towards zero and if the model is well specified we

would not expect changes in λ to affect the values of the estimated coefficients at each

quantile. If on the other hand, the distribution of the individual effects is non-zero this

indicates that the model retains additional unobserved variables with non-zero mean, which
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are correlated with the covariates and are not captured by the flexible function g(·). Our

estimates appear to indicate that while the model appears to fit the data well, there is

the possibility of additional endogeneity not fully captured by the model specification as

indicated by the estimates of the preferences for carbohydrates.

6. Conclusions

This paper investigates simple ℓ1-penalized approaches to the estimation of marginal effects

in panel data models with time-invariant variables by allowing for a flexible specification of

correlated individual effects in a quantile regression setting. The approaches offer a balanced

compromise between misspecification issues arising from the omission of individual hetero-

geneity and the incidental parameters problem arising from leaving individual heterogeneity

unrestricted in a nonlinear panel model. We provide two empirical applications illustrating

the practical implementation and use of the proposed methods.

In the first application, we study the responsiveness of hours to wages using BHPS data. The

proposed method offers the possibility of estimating the main parameter of interest for policy

analysis, the wage elasticity of labor supply, while allowing for heterogeneity in preferences.

The findings show that: (i) positive substitution effects dominate negative wealth effects

at several quantiles of the conditional distribution of hours; (ii) the overall positive effect

of an increase in wages on hours tends to decrease across quantiles; (iii) wealth effects are

small among workers having zero non-labor income, but they significantly affect workers

with positive non-labor income.

In the second application we estimate consumer preferences for nutrients from a semi-

structural demand model using a large scanner dataset of household food purchases. We

show that preferences for nutrients vary across the conditional distribution of expenditure

and across genders and emphasize the importance of fully capturing consumer heterogeneity

in demand modeling and policy evaluation.
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Appendix A. Technical Appendix

A.1. Some useful lemmas

LEMMA 1. Let a p×p matrix F = (B+λI)−1A−1C(D+λ2I)(B+λI)−1A−1, where A,

B, C, and D are p× p positive definite matrices with eigenvalues ζa, ζb, ζc, and ζd. Then,

the trace of F is equal to,

trF =

p
∑

i=1

ζ ic(ζ
i
d + λ2)

(ζ ia(ζ
i
b + λ))2

.

Proof. We consider a spectral decomposition for the matrices A, B, C, and D. The matrix

A = UaΛaU
′
a, where U is an orthogonal matrix, and Λ is a diagonal matrix that contains

the characteristic roots of matrix A, with a typical element ζ ia for i = 1, . . . , p. The trace of

F is then,

trF = tr{(B + λI)−1A−1C(D + λ2I)(B + λI)−1A−1}
= tr{(UbΛbU

′
b + λI)−1(UaΛaU

′
a)

−1UcΛcU
′
c(UdΛdU

′
d + λ2I)(UbΛbU

′
b + λI)−1(UaΛaU

′
a)

−1}
= tr{U ′

b(Λb + λI)−1UbU
′
aΛ

−1
a UaU

′
cΛcUcU

′
d(Λd + λ2I)UdU

′
b(Λb + λI)−1UbU

′
aΛ

−1
a Ua}

= tr
{

(Λb + λI)−1Λ−1
a Λc(Λd + λ2I)(Λb + λI)−1Λ−1

a

}

=

p
∑

i=1

ζ ic(ζ
i
d + λ2)

(ζ ia(ζ
i
b + λ))2

.

where the fourth equality holds because the trABA = trAAB and U ′U = I. �

LEMMA 2. Let Υ = (I − Λ)Φ and PΥ = (Z ′ΥZ)−1Z ′Υ. Then the weighted projection

matrices PΦ and PΥ achieve the same transformation.
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Proof. Write PΥX = (Z ′ΥZ)−1Z ′ΥX. Dividing and multiplying PΥX by T and using

the fact that TI = ZZ ′,

PΥX = (Z ′(I −Λ)ZZ ′ΦZ)−1Z ′(I −Λ)ZZ ′ΦX

= (Z ′ΦZ)−1(Z ′(I −Λ)Z)−1Z ′(I −Λ)ZZ ′ΦX = (Z ′ΦZ)−1Z ′ΦX = PΦX.

�

A.2. Assumptions and sketch of the proofs

This paper employs the following regularity conditions:

ASSUMPTION 1. The variables yit are independent with conditional distribution FYit
, and

continuous densities fit uniformly bounded away from 0 and ∞, with bounded derivatives f ′
it,

at the points ξit(τj) for j = 1, . . . , J , t = 1, . . . , T and i = 1, . . . , N .

ASSUMPTION 2. The random variables ai are identically, and independently distributed

with unconditional distribution function Fa with median zero, and continuous densities fa
uniformly bounded away from 0 and ∞, with bounded derivatives f ′

a, for i = 1, . . . , N .

ASSUMPTION 3. There exist positive definite matrices Σ0, Σ1, Σ2, and Σ3 such that

Σ0 = lim
T→∞
N→∞

1

TN







Ω11X
′W ′

1W1X . . . Ω1JX
′W ′

1WJX
...

. . .
...

Ω1JX
′W ′

JW1X . . . ΩJJX
′W ′

JWJX







Σ1 = lim
T→∞
N→∞

1

TN







ω1X
′W ′

1Υ1W1X . . . 0
...

. . .
...

0 . . . ωJX
′W ′

JΥJWJX







Σ2 = lim
T→∞
N→∞

Ωm

TN







X ′P ′
1P1X . . . X ′P ′

1PJX
...

. . .
...

X ′P ′
JP1X . . . X ′P ′

JPJX







Σ3 = lim
T→∞
N→∞

1

NT







X ′P ′
1ΨP1X . . . 0
...

. . .
...

0 . . . X ′P ′
JΨPJX







where Ωkl = ωk(τk∧τl−τkτl)ωl and Ωm = τm(1−τm) for the median τm;Wj = I−ZPj, Pj =

(Z ′ΥjZ)−1Z ′Υj, Υj = Φj(I−Λj), Φj = diag(fit(ξit(τj))), Λj = diag(x′
i(D

′Z ′ΦjZD)−1Φijxi),
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Ψ = diag(fa(0)), and

X =













x′
11

x′
12
...

x′
NT













;D =













x′
11 x′

12 ... x′
1T

x′
21 x′

22 ... x′
2T

...
...

. . .
...

x′
N1 x′

N2 ... x′
NT













;Z =













1 0 ... 0

1 0 ... 0
...

...
. . .

...

0 0 ... 1













.

ASSUMPTION 4. max||xit||/
√
TN → 0.

ASSUMPTION 5. There exists a constant c > 0 such that N c/T → 0.

ASSUMPTION 6. The shrinkage parameter λT/
√
T → λ ≥ 0.

Proof of Theorem 1. Let

VNT (δ) =
J
∑

j=1

T
∑

t=1

N
∑

i=1

ωjρτj (yit − ξit(τj)− δ0i/
√
T − x′

itδ1(τj)/
√
NT − x′

iδ2(τj)/
√
N)

−ρτj (yit − ξit(τj)) + λT

N
∑

i=1

ρτm(ai + δ0i/
√
T )− ρτm(ai)

where τm is the median quantile and ξit(τj) = x
′
itβ(τj)+x

′
iγ(τj)+ai is the conditional quantile

function. We overcome the difficulty associated with infinite dimensional vectors by concen-

trating out the δ2t’s and δ0i’s effects into the objective function. For any (∆0i,∆1,∆2) > 0,

sup ||k(δ0i, δ1, δ2)− k(0, 0, 0)− E(k(δ0i, δ1, δ2)− k(0, 0, 0))|| = op(1), where,

kt(δ0i, δ1, δ2) = − 1√
N

J
∑

j=1

N
∑

i=1

ωjxiψτj

(

yit −
δ0i√
T

− x′
it

δ1(τj)√
TN

− x′
i

δ2(τj)√
N

− ξit(τj)

)

with ψτj (u) = τj − I(u < 0). Taking expectation and expanding k(·) under condition 1, we

obtain

E((kt(δ0i, δ1, δ2))− kt(0, 0, 0))) =

= E

(

− 1√
N

J
∑

j=1

N
∑

i=1

ωjxi

(

ψτj

(

yit −
δ0i√
T

− x′
it

δ1(τj)√
TN

− x′
i

δ2(τj)√
N

− ξit(τj)

)

− ψτj (yit − ξit(τj)

)

)

= − 1√
N

J
∑

j=1

N
∑

i=1

ωjxi

(

Fit

(

ξit(τj) +
δ0i√
T

+ x′
it

δ1(τj)√
TN

+ x′
i

δ2(τj)√
N

)

− τj

)

= − 1√
N

J
∑

j=1

N
∑

i=1

ωjfit(ξit(τj))xi

(

δ0i√
T

+ x′
it

δ1(τj)√
TN

+ x′
i

δ2(τj)√
N

)

+ op(1)
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Optimality of the δ̂2t’s implies that kt(δ0i, δ1, δ2) = o(N−1), and thus E(kt(δ0i, δ1, δ2) −
kt(0, 0, 0)) = kt(0, 0, 0). This last expression can be written as,

1√
N

J
∑

j=1

N
∑

i=1

ωjxifit(ξit(τj))

(

δ0i√
T

+ x′
it

δ1(τj)√
TN

+ x′
i

δ2(τj)√
N

)

=
1√
N

J
∑

j=1

N
∑

i=1

ωjxiψτj (yit − ξit(τj))

Solving for δ2,

δ̂2(τj)√
N

= −h−1
jit

[

J
∑

j=1

N
∑

i=1

ωjx̌ij

(

δ0i√
T

+ x′
it

δ1(τj)√
TN

)

+
J
∑

j=1

N
∑

i=1

ωjxiψτj (yit − ξit(τj))

]

+
RNt√
N

where hjit =
∑

j

∑

i ωjxix̌
′
ij, x̌ij = (fit(ξit(τj))xit)itj and R is the remainder term. Substi-

tuting the δ̂2t’s, we denote

k(δ0i, δ1) = − 1√
T

J
∑

j=1

T
∑

t=1

ωjψτj

(

yit −
δ0i√
T

− x′
it

δ1(τj)√
TN

− x′
i

δ̂2(τj)√
N

− ξit(τj)

)

+2
λT√
T
ψτm

(

ai +
δ0i√
T

)

Taking expectation and expanding as above, we obtain under conditions 1-2,

E((k(δ0i, δ1))− k(0, 0))) =

= E

(

− 1√
T

J
∑

j=1

T
∑

t=1

ωj(ψτj (yit −
δ0i√
T

− x′
it

δ1(τj)√
TN

− x′
i

δ̂2(τj)√
N

− ξit(τj)) + 2
λT√
T
ψτm

(

ai +
δ0i√
T

)

+
1√
T

J
∑

j=1

T
∑

t=1

ωjψτj (yit − ξit(τj))− 2
λT√
T
ψτm(ai)

)

= − 1√
T

J
∑

j=1

T
∑

t=1

ωj

(

Fit

(

ξit(τj) +
δ0i√
T

+ x′
it

δ1(τj)√
TN

+ x′
i

δ̂2(τj)√
N

)

− τj

)

+ 2
λT√
T

(

Fa

(

− δ0i√
T

)

− 1

2

)

= − 1√
T

J
∑

j=1

T
∑

t=1

ωjfit(ξit(τj))

(

δ0i√
T

+ x′
it

δ1(τj)√
TN

+ x′
i

δ̂2(τj)√
N

)

− 2
λT√
T
fa(0)

δ0i√
T

+ op(1)

= − 1√
T

J
∑

j=1

T
∑

t=1

ωjfit(ξit(τj))

(

δ0i√
T

+ x′
it

δ1(τj)√
TN

− x′
ih

−1
jit

J
∑

j=1

N
∑

i=1

ωjx̌ij

(

δ0i√
T

+ x′
it

δ1(τj)√
TN

)

−x′
ih

−1
jit

J
∑

j=1

N
∑

i=1

ωjxiψτj (yit − ξit(τj)) + x
′
i

RNt√
N

)

− 2
λT√
T
fa(0)

δ0i√
T

+ op(1)

= − 1√
T

J
∑

j=1

T
∑

t=1

ωjfit(ξit(τj))

((

witj
δ0i√
T

+ µjitx
′
it

δ1(τj)√
TN

)

− x′
ih

−1
jitωjxiψτj (yit − ξit(τj)) + x

′
i

RNt√
N

)
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where µjit = 1−x′
ih

−1
jit x̌ij, fi = T−1

∑J
j=1

∑T
t=1 ωjfit(ξit(τj)), and witj = µitj+f

−1
i λT/

√
Tfa(0).

Optimality of the δ̂0i’s implies that k(δ0i, δ1) = o(T−1), and thus E(k(δ0i, δ1) − k(0, 0)) =

k(0, 0). Therefore,

1√
T

J
∑

j=1

T
∑

t=1

ωjfitwitj
δ0i√
T

+
1√
T

J
∑

j=1

T
∑

t=1

ωjfitµjitx
′
it

δ1(τj)√
TN

=
1√
T

J
∑

j=1

T
∑

t=1

ωjfitµitjψτj (yit − ξit(τj)) + 2
λT√
T
ψτm(ai)−

1√
T

J
∑

j=1

T
∑

t=1

ωjfitx
′
i

RNt√
N

+
RT i√
T

The asymptotic (Bahadur) representation of the individual specific effect relates to the slope

parameter in the following way,

δ̂0i√
T

= −f−1
ji

[

1

T

J
∑

j=1

T
∑

t=1

ωjfit(ξit(τj))µitjx
′
it

]

δ1(τj)√
TN

+ f−1
ji

(

1

T

J
∑

j=1

T
∑

t=1

ωjfitµitjψτj (yit − ξit(τj))

+2
λT√
T

ψτm(ai)√
T

− 1

T

J
∑

j=1

T
∑

t=1

ωjfitx
′
i

RNt√
N

)

+
RT i√
T

= −
J
∑

j=1

x̃it(τj)
′δ1(τj)√
TN

+ rit,

where fji = T−1
∑

j

∑

t ωjfitwitj and x̃it =
∑

t ωjfitµitjx
′
it/Tfi. The term rit includes the

last four terms of the right hand side of the Bahadur presentation of the individual effects.

By Lemma 1 in Lamarche (2010), the terms involving rit converge to zero when δ̂0i/
√
T is

inserted in the objective function. This requires T growing faster than N , which is satisfied

for some values of c in Assumption 5 (See Kato, Galvao and Montes-Rojas (2012) for rates

of convergence under fairly general conditions).

We now replace the asymptotic representation of the individual specific effect in the objective

function, and decompose the equation in four terms defined as,

V
(1)
TN(δ1) = −

J
∑

j=1

T
∑

t=1

N
∑

i=1

ωj(x
′
it − x̃i(τj)

′)(δ1(τj)/
√
NT )ψτj (yit − ξit(τj))

V
(2)
TN(δ1) =

J
∑

j=1

T
∑

t=1

N
∑

i=1

ωj

∫ vitj,TN

0

(I(yit − ξit(τj) ≤ s)− I(yit − ξit(τj) ≤ 0))ds

V
(3)
TN(δ1) = −λT

J
∑

j=1

N
∑

i=1

x̃i(τj)
′(δ1(τj)/

√
NT )ψτm(ai)

V
(4)
TN(δ1) = λT

N
∑

i=1

∫ x̃′
iδ1/

√
TN

0

(I(ai ≤ s)− I(ai ≤ 0))ds
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with vitj,TN = (x′
it− x̃i(τj)

′)δ1(τj)/
√
TN . The first term is asymptotically Gaussian. By the

Lindeberg-Feller Central Limit Theorem, and conditions 3-4,

V
(1)
TN(δ1) = − 1√

TN

J
∑

j=1

T
∑

t=1

N
∑

i=1

ωj(x
′
it − x̃i(τj)

′)δ1(τj)ψτj (yit − ξit(τj)) −δ′1B

The second term converges in probability to a quadratic term in δ1,

EV
(2)
TN (δ1) =

1

2TN

J
∑

j=1

T
∑

t=1

N
∑

i=1

ωjfit(ξit(τj))((x
′
it − x̃i(τj)

′)δ1(τj))
2 + o(1) → 1

2
δ′1Σ1δ1

The variance of V
(2)
TN(δ1) converges to zero by condition 4. Similarly, by the Lindeberg-

Feller Central Limit Theorem, the Slutsky Theorem, and conditions 3-4, the third term is

asymptotically Gaussian,

V
(3)
TN(δ1) = − λT√

T

1√
N

J
∑

j=1

N
∑

i=1

x̃i(τj)
′δ1(τj)ψτm(ai) −λδ′1C,

where C is a Gaussian vector independent of B with covariance Σ2. The last last term has

a quadratic contribution,

E

(

V
(4)
TN(δ1)

)

=
λT
2TN

N
∑

i=1

fa(0)(x̃
′
iδ1)

2 + o(1) → 1

2
λδ′1Σ3δ1

It follows that VTN(δ1) is convex and V0(δ1) has a unique minimum, and then argmin(VTN(δ1(τ))) 

argmin(V0(δ1(τ))). Therefore,
√
NT (β̂(τ, λ)− β(τ)) (Σ1 + λΣ3)

−1(B+ λC).

The penalized estimator converges to a Gaussian random variable with mean zero and co-

variance Avar(
√
NT (β̂(τ, λ)) = (Σ1 + λΣ3)

−1(Σ0 + λ2Σ2)(Σ1 + λΣ3)
−1.

We now derive the distribution of β̃(τ). Consider the following objective function for the

penalized estimator that shrinks endogenous αi’s as,

VNT (η) =
T
∑

t=1

N
∑

i=1

ρτ

(

yit − κit(τ)−
η0i√
T

− x′
it

η1(τ)√
NT

)

−ρτ (yit−κit(τ))+λT
N
∑

i=1

ρτ

(

αi +
η0i√
T

)

−ρτ (αi)

where τ is the median quantile and κit(τ) = x
′
itβ(τ)+αi is the conditional quantile function.

Without loss of generality, we consider the location si = x′
iγ in a neighborhood of 0. For

any (∆0i,∆1) > 0,

sup
|η0i|<∆0, ||η1||<∆1

||v(η0i,η1)− v(0, 0)− E(v(η0i,η1)− v(0, 0))|| = op(1)
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where,

v(η0i,η1) = − 1√
T

T
∑

t=1

ψτ

(

yit −
η0i√
T

− x′
it

η1(τ)√
TN

− κit(τ)

)

+ 2
λT√
T
ψτ

(

αi +
η0i√
T

)

Taking expectation and expanding the function v as in Theorem 1, we obtain

E((v(η0i,η1))− v(0, 0))) =

= E

(

− 1√
T

T
∑

t=1

(ψτ

(

yit −
η0i√
T

− x′
it

η1(τ)√
TN

− κit(τ)

)

+ 2
λT√
T
ψτ

(

αi +
η0i√
T

)

+
1√
T

T
∑

t=1

ψτ (yit − κit(τ))− 2
λT√
T
ψτ (αi)

)

= − 1√
T

T
∑

t=1

(

Fit

(

κit(τ) +
η0i√
T

+ x′
it

η1(τ)√
TN

)

− τ

)

+ 2
λT√
T

(

τ − Fa

(

− η0i√
T

))

= − 1√
T

T
∑

t=1

fit(κit(τ))

(

η0i√
T

+ x′
it

η1(τ)√
TN

)

− λT√
T
fa(si)

η0i√
T

+ o(1)

Optimality of the η̂0i’s implies that v(η0i,η1) = o(T−1), and thus E(v(η0i,η1) − v(0, 0)) =

v(0, 0). Letting fi = T−1
∑T

t=1 fit(κit(τ)) + λT/
√
Tfa(si)/

√
T , we find that

η̂0i√
T

= −(Tfi)
−1

T
∑

t=1

fit(κit(τ))x
′
it

η1(τ)√
TN

+ r̃it ≈ −ẋ′
i

η1(τ)√
TN

where ẋi =
∑

t fit(κit(τ))xit/Tfi. By Koenker’s (2004) Theorem 1 and Lamarche’s (2010)

Lemma 1, the components of r̃ are asymptotically negligible. Therefore, we replace η̂0i/
√
T

in the objective function, and we decompose the function in four parts:

V
(1)
TN(η1(τ)) = −

T
∑

t=1

N
∑

i=1

(x′
it − ẋ′

i)(η1(τ)/
√
NT )ψτ (yit − κit(τ))

V
(2)
TN(η1(τ)) =

T
∑

t=1

N
∑

i=1

∫ vit,TN

0

(I(yit − κit(τ) ≤ s)− I(yit − κit(τ) ≤ 0))ds

V
(3)
TN(η1(τ)) = −λT

N
∑

i=1

ẋ′
i

(

η1(τ)/
√
NT

)

sgn(αi)

V
(4)
TN(η1(τ)) = λT

N
∑

i=1

∫ ẋ′
i

η1(τ)√
TN

0

(I(αi ≤ s)− I(αi ≤ 0))ds
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with vit,TN = (x′
it − ẋ′

i)η1(τ)/
√
TN . The first term is asymptotically Gaussian,

V
(1)
TN(η1(τ)) = − 1√

TN

T
∑

t=1

N
∑

i=1

(x′
it − ẋ′

i)η1(τ)ψτ (yit − κit(τ)) −η1(τ)′B

where B is a Gaussian vector with covarianceH0. The second term converges in probability

to a quadratic term in η1(τ),

EV
(2)
TN (η1(τ)) =

1

2TN

T
∑

t=1

N
∑

i=1

fit(κit(τ))((x
′
it − ẋ′

i)H1(τ))
2 + o(1) → 1

2
η1(τ)

′H1η1(τ)

The last two terms of VTN(η1(τ)) represents a decomposition of the stochastic penalty term.

The third term is also asymptotically Gaussian,

V
(3)
TN(η1(τ)) = − λT√

T

1√
N

N
∑

i=1

ẋ′
iη1(τ)sgn(αi) −λη1(τ)′C

where C is a Gaussian vector independent of B with covarianceH2. Lastly, the fourth term

V
(4)
TN(η1(τ)) is asymptotically quadratic in η1(τ),

EV
(4)
TN (η1(τ)) =

λT
2TN

N
∑

i=1

fa(si)(ẋ
′
iη1(τ))

2 + o(1) → 1

2
λη1(τ)

′H3η1(τ)

Since VTN(η1(τ)) is convex and V0(η1(τ)) has a unique minimum, it follows that argmin(VTN(•)) 
argmin(V0(•)). The penalized estimator converges to a Gaussian random variable with mean

(H1+λH3)
−1λEC and covariance Avar(

√
NT (β̃(τ, λ)) = (H1+λH3)

−1(H0+λ
2H2)(H1+

λH3)
−1. Theorem 1 shows that

√
NT (β̂(τ, λ)−β(τ)) converges in distribution to a Gaussian

random variable with mean zero and covariance Avar(
√
NT (β̂(τ, λ)) = (Σ1 + λΣ3)

−1(Σ0 +

λ2Σ2)(Σ1+λΣ3)
−1. Lastly, we need to show that Avar(

√
NT (β̃(τ, λ)) < Avar(

√
NT (β̂(τ, λ)).

Lemma 2 implies that PΥXo is equal to PΦXo, we have thatH0 = Σ0 = J0,H2 = Σ2 = J2,

and H3 = Σ3 = J3. Notice that the conditional density of αi at the median is equal to the

unconditional density of ai at zero. Therefore, the asymptotic relative efficiency between

β̃(τ, λ) and β̂(τ, λ) is determined by

H1 −Σ1 = L′ΦL−R′ΥR = L′(Φ−Υ)L

= L′ΦΛL = ||L||2
ΦΛ

> 0,

with the inequality indicating that H1 − Σ1 is positive definite and implying that the as-

ymptotic variance of the penalized estimator β̃(τ, λ) is smaller than the asymptotic variance

of β̂(τ, λ) for all λ’s in R+. �
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Proof of Corollary 1. Theorem 1 implies that the asymptotic mean squared error (AMSE)

of β̂(τ, λ) is,

trAMSE(β̂(τ, λ)) = tr
{

(Σ1 + λΣ3)
−1(Σ0 + λ2Σ2)(Σ1 + λΣ3)

−1
}

.(A.1)

By Theorem 1, we can write A.1 as,

trAMSE(β̂(τ, λ)) = tr
{

(Σ1 + λJ3)
−1(J0 + λ2J2)(Σ1 + λJ3)

−1
}

= tr
{

(J−1
3 Σ1 + λI)−1J−1

3 J2(J
−1
2 J0 + λ2I)(J−1

3 Σ1 + λI)−1J−1
3

}

= tr
{

(B̂ + λI)−1A−1C(D + λ2I)(B + λI)−1A−1
}

.

where A = J3, B̂ = J−1
3 Σ1, C = J2, and D = C−1J0. By Lemma 1,

trAMSE(β̂(τ, λ)) =

p
∑

i=1

ζ ic(ζ
i
d + λ2)

(ζ ia(ζ
i
b̂
+ λ))2

.

Moreover, by Theorem 1, we write the AMSE of β̃(τ, λ) as,

trAMSE(β̃(τ, λ)) = tr
{

(H1 + λJ3)
−1(J0 + λ2J2)(H1 + λJ3)

−1
}

+tr
{

λ2((H1 + λJ3)
−1So(H1 + λJ3)

−1
}

= tr
{

(J−1
3 H1 + λI)−1J−1

3 J2(J
−1
2 J0 + λ2I)(J−1

3 H1 + λI)−1J−1
3

}

+tr
{

λ2((J−1
3 H1 + λI)−1J−1

3 So(J
−1
3 H1 + λI)−1J−1

3

}

= tr
{

(B̃ + λI)−1A−1C(D + λ2I)(B̃ + λI)−1A−1
}

+tr
{

λ2(B̃ + λI)−1A−1So((B̃ + λI)−1A−1)′
}

where A = J3, B̃ = J−1
3 H1, C = J2, and D = C−1J0. By Lemma 1,

trAMSE(β̃(τ, λ)) =

p
∑

i=1

ζ ic(ζ
i
d + λ2)

(ζ ia(ζ
i
b̃
+ λ))2

+
ζ̄So
λ2

(ζ̄a(ζ̄b̃ + λ))2
.

�

Proof of Corollary 2. The trace of the normalized asymptotic covariance matrix of the pe-

nalized estimator is,

trAVar(β̂(τ, λ)) = tr{(Σ1Σ
−1
0 Σ1)(Σ1 + λΣ3)

−1(Σ0 + λ2Σ2)(Σ1 + λΣ3)
−1}

= tr
{

AB−1A(D + λI)−1C−1E(F + λ2I)(D + λI)−1C−1
}

,
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where the matrices A = Σ1, B = Σ0, C = Σ3, D = C−1A, E = Σ2 and F = E−1B.

Replacing the matrices by their spectral decomposition, we have that,

trAVar(β̂(τ, λ)) = tr{UaΛaU
′
a(UbΛbU

′
b)

−1UaΛaU
′
a(UdΛdU

′
d + λI)−1(UcΛcU

′
c)

−1

UeΛeU
′
e(UfΛfU

′
f + λ2I)(UdΛdU

′
d + λI)−1(UcΛcU

′
c)

−1}
= tr{ΛaΛ

−1
b Λa(Λd + λI)−1Λ−1

c Λe(Λf + λ2I)(Λd + λI)−1Λ−1
c }

=

p
∑

i=1

(ζ ia)
2ζ ie(ζ

i
f + λ2)

ζ ib(ζ
i
c(ζ

i
d + λ))2

=

p
∑

i=1

π(λ)i

We now have a simple optimization problem as a function of λ, with positive eigenvalues ζ ik
for all i, k. It then follows that the trace of the normalized asymptotic covariance matrix

has a unique minimizer λ∗ such that, trAVar(β̂(τ, λ∗)) < trAVar(β̂(τ, λ)). �


