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ABSTRACT

Does the Precision and Stability of Value-Added Estimates
of Teacher Performance Depend on the Types of Students
They Serve?

This paper investigates how the precision and stability of a teacher’s value-added estimate
relates to the characteristics of the teacher’s students. Using a large administrative data set
and a variety of teacher value-added estimators, it finds that the stability over time of teacher
value-added estimates can depend on the previous achievement level of a teacher’s
students. The differences are large in magnitude and statistically significant. The year-to-year
stability level of teacher value-added estimates are typically 25% to more than 50% larger for
teachers serving initially higher performing students compared to teachers with initially lower
performing students. In addition, some differences are detected even when the number of
student observations is artificially set to the same level and the data are pooled across two
years to compute teacher value-added. Finally, the paper offers a policy simulation which
demonstrates that teachers who face students with certain characteristics may be
differentially likely to be the recipient of sanctions in a high stakes policy based on value-
added estimates and more likely to see their estimates vary from year-to-year due to low
stability.
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1 Introduction

Teacher value-added estimates are increasingly being used in high stakes deci-
sions. Many districts are implementing merit pay programs or moving toward
making tenure decisions based at least partly on these measures. It is important to
understand the chances that a teacher will be misclassified in a way that may lead
to undeserved sanctions.

Misclassification rates depend on the precision of teacher effect estimates,
which is related to a number of factors. The first is the number of students a
teachers is paired with in the data. Teachers that can be matched with more stu-
dent observations will tend to have more precise teacher effect estimates.

Another factor that can affect the precision of a teacher effect estimate is the
error variance associated with students in the teacher’s classroom. If the error vari-
ance is large, perhaps because the model poorly explains the variation in achieve-
ment or because the achievement measures themselves poorly estimate the true
ability level of a student, then the precision of a teacher effect estimate will be
low.

A question that seems to have lacked much attention is whether the precision
varies by the characteristics of the students a teacher faces. Tracking of students
into classrooms and sorting of students across schools means that different teach-
ers may face classrooms that are quite different from one another. If it is found
that teachers serving certain groups of students have less reliable estimates of

value-added than other teachers serving other students, then all else the same,



the probability that a teacher is rated above or below a certain threshold will be
larger for teachers serving these groups. High stakes policies that reward or pe-
nalize teachers above or below a certain threshold will then, again all else the
same, impose sanctions or rewards on teachers serving these groups with a higher
likelihood.

There are some reasons for suspecting that the characteristics of students in a
classroom relates to the precision of teacher effect estimate. First, there could be a
relationship between the characteristics of a classroom and the number of students
linked to a teacher. This could be true because of a relationship between class size
and student characteristics, because of poor data management for schools serving
certain groups, or because of low experience levels for teachers serving certain
groups, which limit the number of years that can be used to estimate the teacher’s
value-added.

Also, heteroskedastic student level error can imply that teachers paired with
those students with large error variances may have less reliable teacher effect es-
timates. There is strong theoretical reason for supposing that the student level
error is heteroskedastic. Item response theory suggests that because test items are
typically targeted towards students in the center of the achievement distribution,
achievement tends to be measured less precisely for students in the tails. The het-
eroskedasticity is also quite substantial, and suggests that teachers paired with par-
ticularly high achieving or low achieving students may have less reliable teacher
effect estimates. In addition to heteroskedasticity caused by poor measurement,

it is also conceivable that the error variance for true achievement is different for



different students.

In the remainder of the paper, we test for heteroskedasticity in the student level
error term. In addition, year-to-year stability coefficients, which are very similar
to year-to-year correlations, using a variety of commonly used value added esti-
mators are computed for teachers serving different groups of students. Year to
year stability coefficients for teachers with students in the bottom quartile, top
quartile, and middle two quartiles in classroom level prior achievement are com-
pared to one another.

A test of the homoskedasticity assumption easily rejects. Also, large and sta-
tistically significant differences in the stability coefficients among sub groups of
teachers are detected, and the differences persist even after the number of student
observations for all teachers is artificially created to be the same and when two
years of data are used to compute value added. In many cases, the year-to-year
stability coefficients are 25 to more than 50% larger in size for teachers serving
initially higher achieving students compared to teachers serving lesser achieving
and disadvantaged students.

This finding has several implications. For practitioners implementing high
stakes accountability policies, teachers serving certain groups of students may be
unfairly targeted for positive or negative sanctions simply because of the com-
position of their classroom and the variability this creates for their estimates. In
this paper, we produce simulation evidence that bears this out. In addition, the
heteroskedasticity makes it important for researchers and practitioners to make

standard errors heteroskedasticity robust. Also, heteroskedasticity is a potential



source of bias for those using empirical Bayes value-added estimates, which as-

sume homoskedasticity.

2 Previous Literature

A few studies have examined the stability and precision of teacher effect esti-
mates. Aaronson et al. (2007) examined the stability of teacher effect estimates
using three years of data from the Chicago public school system. They find that
there is considerable inter-year movement of teachers into different quintiles of the
estimated teacher quality distribution, suggesting that teacher effect estimates are
somewhat unstable over time. They also find that teachers associated with smaller
number of student observations are more likely to be found in the extremes of the
estimated teacher quality distribution.

Koedel and Betts (2007) perform a similar analysis as Aaronson et al. (2007)
using two years of data from the San Diego public school system and also find
that there is considerable movement of teachers across quintiles.

McCaffrey et al. (2009) found year-to-year correlations in teacher value added
to be .2 to .5 for elementary school teachers and .3 to .7 for middle school teachers
using data from 5 county level school districts from the state of Florida from the
years 2000-2005. They find that averaging teacher effect estimates over multiple
years of data improves the year-to-year stability of the value-added measures.

This paper adds to the previous literature by specifically looking at whether the

stability of teacher effect estimates is related to the characteristics of the students



assigned to the teacher.

3 Data

The data come from an administrative data set in large and diverse anonymous
state. It consists of 2,985,208 student year observations from years 2001-2007
and grades 4-6. Student-teacher links are available for value-added estimation.
Also, basic student information, such as demographic, socio-economic, and spe-
cial education status, are available. Teacher information on experience is also
available. The data include vertically scaled achievement scores in reading and
math on a state criterion referenced test. The analysis will focus on value-added
for mathematics teachers.

We imposed some restrictions on the data in order to accurately identify the
parameters of interest. Students who cannot be linked with a teacher are dropped,
as are students linked to more than one teacher in a school year in the same sub-
ject. Students in schools with fewer than 20 students are dropped, and students
in classrooms with fewer than 12 students are dropped. Districts with fewer than
1000 students are dropped to avoid the inclusion of charter schools in the analy-
sis, which may employ a set of teachers who are somewhat different from those
typically found in public schools. Characteristics of the final data set are reported
in Table 1.

The analysis presented later is done separately for 4th grade and 6th grade.

These restrictions eliminated about 31.2% of observations in 4th grade and 19% in 6th grade



This is done because the degree of tracking may be different in 6th grade from 4th
grade, which may cause differences in the year-to-year stability of value-added

estimates.

4 Model

The model of student achievement will be based on the education production func-
tion, which is laid out in , Todd and Wolpin (2003), Harris et al. (2011), and Guar-
ino et al. (2012), among other places. Student achievement is a function of past

achievement, current student and class inputs, along with a teacher effect.

Aigg = T+ MAjg—1t + )\214?9“,” + Xigtn

+Xigt72 + ﬂgtﬁ + Vigt (1)

with

_ alt
Vigt = Ci + €igt + €igt — M€ig—10 — A2y 1y

where A;y is student i’s test score in grade g and year t. 7; is a year specific

alt

intercept. Af'" , is the test score in the alternate subject, which in the analysis

presented below is the reading score. X, is a vector of student level covari-

The model shown includes a lagged score of the alternate subject, which isn’t necessary under
the assumptions typically made in deriving the regression model based on the education production
function. However, including this variable is common in practice, so we chose to include it as well.



Table 1: Summary statistics

4th Grade
Variable Mean  Std. Dev. Min. Max.
Math Scale Score 1543.377  240.699 581 2330
Reading Scale Score 1591.033  291.045 295 2638
Math Standardized Scale Score 0.103 0.947 -3.957 3.409
Reading Standardized Scale Score  0.105 0.928 -4.578 3.753
Black 0.208 0.406 0 1
Hispanic 0.224 0.417 0 1
Free and Reduced Price Lunch 0.486 0.5 0 1
Limited English Proficiency 0.173 0.378 0 |
Avg. Lag Math Score 1413.075 142.139 686.75 2066.737
Prop. FRL 0.496 0.28 0 1
Prop. LEP 0.17 0.213 0 1
Prop. Hispanic 0.218 0.245 0 1
Prop. Black 0.216 0.248 0 1
Students/Teacher 49.008 38.534 12 412
Teacher Years of Experience 8.902 8.887 0 47
# of Teachers 14,820
# of Schools 1,768
N 726,299
6th Grade
Variable Mean  Std. Dev. Min. Max.
Math Scale Score 1701.841  232.71 569 2492
Reading Scale Score 1704.809 294.454 539 2758
Math Standardized Scale Score 0.092 0.913 -4.163 3.354
Reading Standardized Scale Score ~ 0.071 0.928 -4.049 3.526
Black 0.224 0.417 0 1
Hispanic 0.223 0.416 0 1
Free and Reduced Price Lunch 0.476 0.499 0 1
Limited English Proficiency 0.174 0.379 0 1
Avg. Lag Math Score 1647.707  131.958 866 2097
Prop. FRL 0.496 0.259 0 1
Prop. LEP 0.172 0.205 0 1
Prop. Hispanic 0.214 0.234 0 1
Prop. Black 0.24 0.245 0 1
Students/Teacher 145.378  165.685 12 1036
Teacher Years of Experience 9.571 9.362 0 40
# of Teachers 05,323
# of Schools 796

N

773,849




ates including free and reduced price lunch and limited English proficiency status,
gender, and race. Xigt consists of class level covariates, including lagged achieve-
ment scores, class size, and demographic composition. T;g is a vector of teacher
indicators. The teacher effects are represented in the 3 vector. ¢; represents a stu-

dent fixed effect. ;4 represents an idiosyncratic error term affecting achievement.

alt

eig¢ 1s measurement error in the test scores with ej; representing the measurement

error in the alternate subject score.

4.1 Estimation Methods

Teacher effects were estimated using two commonly used value-added estimators.

The first is a dynamic OLS estimator (DOLS), which includes teacher indica-
tors in an OLS regression based on equation (1). The estimator is refered to as
dynamic because prior year achievement is controled for on the right hand side.
The coefficients on the teacher indicator variables are interpreted as the teacher
effects. We run our models using one year of data and again using two years of
data. Because the effects of class average covariates are not properly identified in
a teacher fixed effects regression with only one year of data, these variables are

dropped from the DOLS regressions. Additionally, when one year of data is used

We have studied two more estimators based on a gain score equation. One estimator based
on teacher fixed effects, and another based on empirical Bayes. The patterns for these two other
estimators are similar to those reported for DOLS and EB Lag.

This estimator was found to be the most robust of all the estimators evaluated in Guarino et
al. (2012)

We have tried a two step method that can identify the effect of class average covariates in a
teacher fixed effects regression as a sensitivity check, and the results are similar. First, using the
pooled data with multiple years, equation (1) is estimated using OLS with teacher fixed effects
included. Then, a residual is formed.

10



to estimate value-added, the year specific intercepts are dropped.

The second is an empirical Bayes estimator (EB Lag) which treats teacher ef-
fects as random. The estimator follows closely the approach laid out in Kane and
Staiger (2008). The parameters of the control variables are estimated in a first
stage using OLS, then unshrunken teacher effect estimates are formed by averag-
ing the residuals from the first stage among the students within a teacher’s class.
The shrinkage term is the ratio of the variance of persistent teacher effects to the
sum of the variances of persistent teacher effects, idiosyncratic classroom shocks,
and average of the individual student shocks. Teacher effects are interpreted as

the shrunken averaged residuals for each teacher.

5 Heteroskedastic Error

There is good reason to suspect that the error in the student achievement model is
heteroskedastic. We will present some basic theory suggesting that measurement
error in test scores is heteroskedastic. Also, we will offer some possible reasons

why the error variance of actual achievement may be heteroskedastic.

Wigt = Aigt —Te — 5\1/11:5;—11‘, - 5\2A%t_1t — Xigthh — Xigth2 — f(eIpeTigt)
= Tigtﬁ + @igt

which is then used in a second stage regression to form teacher effects using a sample based on
1 year of data.

It is common to treat the variance of the individual student shocks as uniform across the
population of students. In an effort to evaluate commonly used estimators, we also computed the
shrinkage term by using the same variance term for the student level shocks for all teachers. Under
heteroskedasticity, this shrinkage term would not be the shrinkage term used by the BLUP.

11



5.1 Heteroskedastic Measurement Error

Item response theory is typically the foundation for estimating student achieve-
ment. A state achievement test is typically composed of 40-50 multiple choice
questions, or items. Each student can either answer a question correctly or incor-
rectly, and the probability of answering any individual question is assumed to be a
function of the item characteristics and the achievement level of the student. The
typical model of a correct response to an item assumes (See Reckase (2009) for

more details):

Prob(uij = Hai, bi, Ci, 9]) =c¢ + (1 — CJG(CLZ(QJ — bl)

where u;; represents an incorrect or correct response to item i by student j.
a; is a discrimination parameter, b; is a difficulty parameter, and c; is a guessing
parameter for item i. 0; is the achievement level of student j. Often, a logit
functional form is assumed for G(-), although the probit functional form is also
used. In the case of the logit form we have:

elai(05=b:))

Prob(uij = 1|az~,bi, G, 6)9) = ¢ + (1 — Cl)m

Parameters can then be estimated using maximum likelihood or alternatively
using a Bayesian estimation approach. To illustrate why heteroskedasticity ex-
ists, we will focus on maximum likelihood estimation. Lord (1980), under the

assumption that the answer to each test item by each respondent is independent

12



conditional on €, showed that the maximum likelihood estimate of 6 has a variance
of:

R -1
where n is the number of items. As can be seen, the variance would be minimized
with respect to 6 if §; — b; = 0 for all items, and as 6; — b; approaches 00 , the
variance grows large.

Since test items are often targeted toward students near the proficient level,
in the sense that 6; — b; is near O for these students, students in the lower and
upper tail often have noisy estimates of their ability. The intuition is that the test
is aimed at distinguishing between students near the proficiency cutoff, and so the
test offers little information for students near the top or bottom of the distribution.

Plots of the estimated standard deviation of the measurement error (SEM) on
the student’s test score level are shown below in Figure 1. The SEMs are on the
vertical axis and the student’s test score are on the horizontal axis for grades 3
through 6 for mathematics. The plots are from the 2006 State X Technical Report
on Test Characteristics. The measurement error variance is a function of the test
score level. Students in the extreme ranges of the test score distribution have a
measurement error variance that is substantially larger than in the center.

Also, it may be the case that some groups of students may be less likely to
answer all questions on the exam. As described in State X technical reports, test
scores are computed for all students who answer at least 6 questions in each of 2

sessions. Students who answer only a fraction of the total number of questions on

13



Figure 1: Standard Error of Measure Plots for Mathematics Grades 3- 6
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the exam will tend to have less precisely estimated test scores.

A prediction of the theory presented above is that the error variance will be
related to all variables that predict current achievement. This is because the vari-
ance of the measurement error is directly related to the current achievement of
the student, so all variables that influence the current achievement level of the
student should also be related to the measurement error variance. In the test of

heteroskedasticity that follow, this is the pattern that emerges.

5.2 Other Possible Causes of Heteroskedastic Student Level

Error

In addition to heteroskedasticity generated from measurement, it is possible that
other sources of heteroskedasticity exist. Little literature exists on this topic, but
there are many potential causes, and we can only speculate on what they may be.
Some groups of students, such as those with low prior year achievement, may have
more variation in unobserved factors such as motivation, classroom disruptions,
neighborhood effects, family effects, or learning disabilities. In addition, students
who perform pooly on tests may tend to leave many questions blank or guess at
answers, and thus their scores from test to test may be more variable.

In the following sections, we test for heteroskedasticity empirically, and look
for possible differences in the error variance among groups. This serves to demon-
strate that the theoretical worries are justified and can motivate some predictions

about how the precision of teacher effect estimates may depend on certain char-
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acteristics of the their students.

6 Testing for Heteroskedasticity

Under homoskedasticity:

E(U?g’ZiQ) = 0-1%

where Z;, are the covariates in the regression model. We implemented a sim-
ple test of the homoskedasticity assumption examining whether squared residuals
are related to student characteristics.

The first test simply grouped students into three groups: those with prior year
test scores in the bottom 25%, the middle 50%, and the top 25%. We then calcu-
lated the average squared residuals for each group of students. We used the resid-
uals from the DOLS regressions, which made use of teacher indicators. Results
are included in Table 2. One thing to note is that the average squared residuals
for the group of students in the bottom 25% in terms of prior year achievement
are much larger than those for the group of students in the top 25%. The average
squared residuals are around 45% larger for the bottom 25% compared with the
top 25% for 4th grade and more than twice as large for 6th grade, even though
under homoskedasticity, we would expect them to be similar. This is suggestive
that more unexplained variation exists for the group of students in the bottom 25%
of the prior year achievement score.

Next we regressed the squared residuals on the covariates as well as on their

16



Table 2: Average Squared Residuals for DOLS based on Subgroups of Prior Year
Class Average Achievement

Grade Overall Bottom 25% Middle 50% Top 25%

4th Grade 18644.722  28091.514 13665.164  19352.092
N 709302 174780 356821 177701

6th Grade 16395.069  29825.119 11574907  12670.438
N 723292 179894 357843 185555

squares and cubes. Results for grades 4 and 6 are reported in Table 3. We found
that several of the variables including the lagged test scores, as well as the indica-
tors for the student being African-American, free and reduced priced lunch, and
limited English proficiency status were statistically significant predictors at the
10% level.

Since the precision and stability of a teacher’s value-added measure depends in
part on how much unexplained variation there is in the student’s test scores, as will
be explained below, this suggests that teachers paired with large numbers of dis-
advantaged or low achieving students may have less precise teacher value-added
estimates. In the following sections, we will present evidence of this. Specifi-
cally, we will show that teachers of these types of students tend to have less stable
teacher effect estimates over time.

In addition to the regressions presented in table 3, we performed the traditional

Breusch-Pagan test, using fitted values, for heteroskedasticity separately for grade
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Table 3: Tests for Heteroskedasticity

Grade 4 Grade 6
VARIABLES DOLS Squared Residuals DOLS Squared Residuals
Math Lag Score -91.60%%** -176.5%%*
(5.357) (15.28)
Math Lag Score Squared 0.00705* 0.00709
(0.00396) (0.00939)
Math Lag Score Cubed 1.05e-05%**%* 1.57e-05%*%*
(9.45e-07) (1.90e-06)
Reading Lag Score -45.776%%* -55.68%**
(2.772) (5.663)
Reading Lag Score Squared 0.0161%** 0.0173%%%*
(0.00195) (0.00341)
Reading Lag Score Cubed 0.79¢e-07 -8.73e-07
(4.43e-07) (6.65¢-07)
Black 293.8% 473.6%*
177.3) (205.2)
Hispanic -265.9* -272.0*
(154.7) (159.8)
FRL 540.6%#%* 1,104
(114.9) (120.3)
LEP 1,249%%% 711.8%%%
(190.7) (183.3)
Female -1,436%** -2,609%%*
(97.34) (114.0)
Class Size -54.90 41.06%*
(35.78) (19.59)
Class Size Squared 1.124 -0.720%**
(0.724) (0.266)
Class Size Cubed -0.00426 0.00300%**
(0.00307) (0.000923)
Teacher Experience 63.93 -210.4%*
(86.67) (107.4)
Teacher Experience Squared -0.758 23.46
(15.24) (18.33)
Teacher Experience Cubed -0.228 -1.205
(.975) (1.168)
Constant 134,184%** 262,361
(2,472) (8,485)
Observations 709,302 723,292
R? 0.050 0.079
Joint Test 886.6 862.4
p-value 0 0

Standard errors clustered at school level in parentheses
**% p<0.01, ** p<0.05, * p<0.1
Joint Test refers to F test statistic that all coefficients equal to 0

18



4 and 6 and using the DOLS estimators. The test easily rejects the null hypothesis
that the error is homoskedastic, with p-values for all grades and estimators less

than .0001.

7 Evidence of Differences in Classroom Composi-
tions

For there to be differences in the stability or the precision of teacher effect es-
timates due to student level heteroskedastic error, it is necessary for variation in
classroom compositions to exist. For particular districts or states with little varia-
tion in classroom composition, it is unlikely that there will be large differences in
the stability and precision of estimates due to heteroskedasticity. Also, there are
some variables, such as gender, in which there may be a relationship with the error
variance, but don’t impact the precision and stability of teacher effect estimates,
since there is little variation across classrooms with respect to the variables.

To show that there is variation in classroom composition with respect to cer-
tain variables across the state, we included a set of summary statistics in the mid-
dle panels of table 1 on classroom characteristics, which show that classrooms
vary in their characteristics along a number of dimensions. The average past year
math score of students in a class ranges from a score of 686.75 to 2066.737 for
grade 4 and 866 to 2097 for grade 6. The interval between classrooms 2 stan-
dard deviations above the mean and 2 standard deviations below the mean is

[1128.797,1697.353] for grade 4 and [1383.791,1911.623] for grade 6. Addi-
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tionally, the proportion free and reduced priced lunch, limited English proficiency

status, Hispanic, and African-American variables all range from O to 1.

8 Effects of Heteroskedastic Student Level Error on

Precision of Teacher Value-Added Estimates

8.1 Simple Model of Heteroskedasticity

This model is designed to show, in the simplest case, how heteroskedasticity in
the student level error can produce heteroskedasticity in teacher effect estimates.
In the model there are two types of students and two teachers that students can be
assigned to. The student types differ in the size of the student’s error variance.

The achievement equation model is:

Ai =Ty + T + €

where A; is the achievement level of student i, 7 and 7} are teacher assign-
ment indicator variables for the two teachers, teacher O and teacher 1, 5y and (3
are teacher effects for teacher O and teacher 1, and ¢; is an error term assumed to
be independent of teacher assignment.

Let the variable S; indicate which of the two student types the student belongs

20



to and vy < vy.

Var(e;)) =wg if S;=0
VCL’I“(Q’) = U1 Zf Sl =1
Vo < U1

In this simple case, an OLS estimate of the teacher effect for teacher k pro-

duces:

~1
B’“ — b = < ZﬁilTin ) ( Zz]il Tyi€i >

Ei\il Thi€i
N,

where €, is the average error for the students that teacher k receives and Vy, is
the number of student observations for teacher k.

Let’s suppose that each teacher has some students from S=0 and some from
S=1. And also that teacher O tends to get more students from group 0, and teacher
1 tends to get more students from group 1.

We can use the Central Limit Theorem for inference. According to Greene
(2008) (pg 1051, Lindeberg-Feller Central Limit Theorem with Unequal Vari-

ances) a central limit theorem result is possible as long as the random variables
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are independent with finite means and finite positive variances. Also, the average

variance, ~ (S"% 02 ), where N}, is the number of students for teacher k, must
’ Nk =1 €ik/? k ”

not be dominated by any single term in the sum and this average variance must

2

converge to a finite constant, o7

as the number of students per teacher goes to

infinity.

1
_2 . 2
o, = lim F( E o)

Np—o00 k P

Assume that all of those conditions hold. In that case,

\/Nk(ﬁk — Br) N Normal(0, 61)
and

A o

Avar(fy) ~ =%

In this simple example the average variance, 562k, for teacher 1 will tend to
be larger than teacher 0, since they have more students from S=1. Therefore the
asymptotic variance of the teacher effect estimate for teacher 1 will tend to be

larger.

8.2 Including other Covariates in Achievement Model

Adding in covariates along with the teacher indicator variables complicates the

result. In this case the achievement model is:
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Ai =T000 + T + Xiy + €

where X is a vector of covariates.
A well known result (see Wooldridge (2010)), is that the OLS estimate of the

teacher fixed effect for teacher k is:

Be—Be = Ar—Xire — br

= & — Xe(re — 1)

where A, and X, are the class averages of achievement and the covariates,

and A is the fixed effects estimator of ~. It’s straight forward to show that

Avar(@k) ~ -+ X Avar(Yre) X,

=2
€

C]rv—: will tend to be larger for teacher 1 than teacher 0. However, because of the
additional terms in the Avar(ﬁk), it is not theoretically clear which teacher will
have the less precise teacher effect estimate when the relationships between the
covariates and the student types are unknown. Ultimately, whether teacher effect
estimates are less precise for some teachers is an empirical question. The impor-

tant point is that it is possible for some teachers to have less precise estimates due

to student characteristics, so it is worthwhile to check whether that is the case.
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9 Inter-year Stability of Teacher Effect Estimates
by Class Characteristics

Imprecision of teacher effect estimates has some important implications, espe-
cially for policies that use teacher value-added estimates to make inferences about
teacher quality.

The precision of a teacher effect estimate will affect how well that estimate
can predict the true teacher effect. If the estimated teacher effect is quite noisy,
then the estimate will tend to poorly predict the true teacher effect. This section
explains how examining the year to year stability of value-added estimates can
reveal important information about the measures for those intending to use them
for high stakes policies. The year to year stability is calculated by regressing the
value-added measure in year ¢ on a value-added measure in a previous year. We
calculate seperate stability coefficients for teachers with classrooms in the bot-
tom 25%, middle 50%, and top 25% in terms of their students incoming average
achievement. Those wishing to skip the technical details may move on to the next
section.

Following McCaffrey et al. (2009), we can model a teacher effect estimate for

teacher j in year t as:

Bjt = B + Ot + vje

where Bjt is the teacher effect estimate, 3; is the persistent component of the
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teacher effect, 0;; is a transitory teacher effect that may have to do with a special
relationship a teacher has with a class or some temporary change in a teacher’s
ability to teach, and vj; is an error term due to sampling variation. The variance of
v;; will be related to the number of student observations used to estimate a teacher
effect and the error variance associated with the students in the particular teacher’s
class.

An important coefficient for predicting the persistent component of the teacher
effect using an estimated teacher effect, which is essentially what a policy to deny
tenure to teachers based on value added scores would be doing, is the stability
coefficient, as termed by McCaffrey et al. (2009). The stability coefficient for

teacher j is:

2
93

2 2 2
o + O'ejt + avjt

Sj:

Note that the stability depends on the variance of the error term v;;.
Assuming that the expectation of 3; conditional on Bjt is linear and that 3},

6+, and v;; are uncorrelated , then:

If the conditional expectation function isn’t linear, then the algebra shown works for the linear
projection, which is the minimum mean squared error predictor among linear functions of the
estimated teacher effect

This essentially implies that the teacher effect estimates are unbiased. There is some empirical
support for this assumption at least for the DOLS and EB Lag estimators. Kane and Staiger
(2008), Kane et al. (2013), and Chetty et al. (2011) both find that similar value-added estimators
are relatively unbiased. If the estimates are biased, then we are effectively evaluating the stability
of reduced form coefficients and not the causal effects of teachers on achievement. The estimators
evaluated are commonly used in practice and conceivably will be used as the basis for high stakes
policies, so it still may be of interest to know how they vary from year-to-year.
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. Cov(Bit, B;) » o3 . .
E(Bi18:) = o + e i LA YAy + =+ S8,
(BilBje) = Var(ﬁjt) Bjt =« 0% I O-gjt i O_gjt Bt = Bt

and then also assuming that 6, and v;; are mean zero, we get:
EBilB5) = (1 = Sj)ps; + 5B

where 115, is the mean of 3;. So the weight that B}t receives in predicting
B; is related to the stability coefficient. If the stability coefficient is small, then
the estimated teacher effect receives little weight in the conditional expectation
function and is of little use in predicting f;.

The stability coefficient can be estimated by an OLS regression of current
year teacher value-added estimates on past year estimates of teacher value-added
and a constant. This does impose the additional assumption that the variances of
¢;; and v;; are constant over time and that the transitory teacher effect and error
terms are uncorrelated over time. In that case the OLS estimates are estimating
the population parameter:

Cov(Bji_1, Bj1) %

B T2 102 to2 =9
Var(ﬁjtfl) 98; T 0051 T Ovjy

Since the variance of the teacher effect estimates tends to be constant over
time, the regression coefficient is nearly identical to the inter-year correlation co-

efficient.
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The stability coefficient will be estimated for different subgroups of teachers
based on the characteristics of the students a teacher receives. Specifically, the
stability will be computed for teachers that received classes in the bottom 25%,
middle 50% and top 25% of classroom average prior test score in both years ¢
and ¢t — 1. If the variance of vj, differs across subgroups of teachers, then the
stability and the degree to which the estimate predicts the true teacher effect will
also differ.

Another ratio may be of interest. Following McCaffrey et al. (2009) once
again, the reliability of a teacher effect estimate, denoted as 124, is:

ag + O'gjt

gt —

oh+op, +o

It may be of interest to know how much a teacher affected student learning in
a given year. This may be the case in a merit pay system, for instance. In this
case, we would be interested in the expected value of 3; + 0;; conditional on the

estimated teacher effect in year t. Using similar assumptions as before:

E(B; + 0;u/65¢) = (1 — Rj)ug + RjuBj

Under an additional assumption that variance of 3; and 6;; do not vary across
subgroups, then the stability of teacher value added estimates will be proportional
to the reliability. This is simply because:

B 0?3 + agjt

Rjt - 2

93

S;
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9.1 Brief Overview of the Analysis

Given that there may be differences in the degree of tracking or sorting in elemen-
tary and middle schools, the analysis is done separately by grade. Additionally,
since it may be that teachers of certain types of classrooms are less experienced,
and this may affect the year-to-year stability of the teacher’s value-added estimate,
the teacher’s level of experience is controlled for in the regressions by creating
seperate dummy variable for each possible year of experience and including each
of those variables in the regressions.

The estimates for the different subgroups were computed by an OLS regres-
sion of the current year value-added estimate on the lagged teacher value-added
estimate interacted with a subgroup indicator variable, a subgroup specific in-
tercept, and an indicator for the teacher’s level of experience. The regression

equation is:

3 3
Bjt = Z ag1{subgroup;; = g} + ZVgﬁjt—ﬂ{SUbgmUPjt =g}

9=1 9=1

M
+ Z G- H{experjy =1} + oju
=1

where Bﬁ is teacher j’s value added estimate in year t, subgroup;, is a variable
indicating the teacher’s subgroup, and exper;; is the teacher’s experience level.
The ~y, parameters are the parameters of interest in the analysis. One way to think

about them is as a group specific autoregressive coefficient for a teacher’s value-
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added score, and they are quite similar to group specific year-to-year correlations
in value-added.

The advantage of the regression based approach over calculating year-to-year
correlations is that it is much easier to calculate test statistics using conventional
regression software. In the following sections, we will test whether the year-to-
year stability of teacher value-added estimates for different subgroups are statisti-
cally different from one another.

The analysis is also repeated for each grade with the number of student obser-
vations artificially set to be equal. Since the precision of estimates for a teacher
depends on both the number of student observations and the degree of variation
in the student level error, it is of interest to identify the separate effects of these
two sources of variability in teacher effect estimates. In order to make the number
of student observations equal for all teachers, first all teachers with less than 12
student observations were dropped. Then for those teachers with more than 12
student observations, students are randomly dropped from the classroom until the
the number of student observations is 12 for all teachers . To give an example,
suppose a teacher has 20 students in a class, then 8 of the students are randomly
dropped, so that the teacher’s value-added estimate is based on the scores of only
12 students.

First, results will be reported in which all teacher effects are estimated using

only one year of data. Then, the analysis will be reported using two years of

We have also done the analysis where the number of observations is set to 15 and 20, and the
general patterns reported are the same.
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data for each teacher. When two years of data are used to compute value-added
the groupings into bottom 25%, middle 50%, and top 25% are based on the two
year average of prior year test score within the teacher’s classrooms. This then
averages over the same sample of students used to compute the two year value-
added measures.

In the case of the estimates based on two years of data, the teacher effect
estimate for year t will be estimated using years ¢ and ¢ — 1. The stabilities are
computed by regressing the value-added estimate for year ¢ on year ¢ — 2. This is
done so that the years in which teacher effects are estimated do not overlap, which

will avoid sampling variation or class level shocks affecting both estimates.

10 Results on the Stability of Teacher Effect Esti-
mates by Subgroup

The inter-year stabilities for subgroups of teachers based on the average past year
score of the students in the class are reported below. We perform separate tests
for whether the estimates for the middle 50% and top 25% statistically differ from
the bottom 25%. Also, a joint test that the estimates for the middle 50% and top
25% are both statistically different from the bottom 25% is reported.

Although there is variation in what is statistically significant across grades

We have also examined whether the inter-year stability differs when classrooms are grouped
according to proportion free-and-reduced price lunch, proportion Hispanic, and proportion
African-American. We found that teachers in classrooms with high proportions of minority and
low-income students also have lower inter-year stabilities. Results are available upon request.
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and estimators, a few patterns do emerge. The stability ratio tends to be highest
for teachers facing classrooms in the middle 50% and top 25% in average lagged
score compared to teachers in the bottom 25%. The stability ratio is typically 25
to over 50% larger for teachers with classrooms in the middle 50 and top 25%.
This pattern is true even after the number of student observations is fixed at 12

and in some cases when 2 years of data are used to compute value-added.

10.1 DOLS Stabilities

Tables 4 shows the results for the DOLS estimator. Results for 4th grade and 6th
grade are shown separately. The left panels show the DOLS teacher value-added
estimates when the data is based on only one year of data. The right panel are
based on estimates with two years of data. Within each panel, results labeled
“Unrestricted Obs” are based on teacher value-added estimates that use all the
available student observations in a year. Results labeled “12 Student Obs” are
based on only 12 randomly chosen student observations in each year. For the two
year results, the results reported under the “12 Student Obs” column are based on
12*2=24 student observations. Standard errors are clustered at the school level
. A “+” symbol indicates that the middle 50% (or top 25% as the case may be)

coefficient is statistically different from the bottom 25% at the 5% level.

We have also tried clustering at the teacher level, but the school level standard errors were
more conservative, so we chose to report those.
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Table 4: Estimates of Year to Year Stability for DOLS by Subgroups of Class
Achievement

DOLS 4th grade
1 Year of Data 2 Years of Data
Unrestricted Obs 12 Student Obs | Unrestricted Obs 12 Student Obs

Bottom 25% 0.359%%** 0.308%%** 0.5571%*=* 0.465%**

(0.0277) (0.0266) (0.0437) (0.0449)
Middle 50% 0.483%#**4 0.392%**4 0.646%** 0.578%**4

(0.0181) (0.0180) (0.0325) (0.0315)
Top 25% 0.555%**4 0.471%%*4 0.730%**4 0.660%**+

(0.0255) (0.0246) (0.0495) (0.0485)
Observations 8,124 7,650 2,735 2,527
R? 0.227 0.165 0.357 0.298
Joint Test 14.70 10.14 3.677 4.436
p-value 4.81e-07 4.27e-05 0.0257 0.0121

DOLS 6th grade

1 Year of Data 2 Years of Data
Unrestricted Obs 12 Student Obs | Unrestricted Obs 12 Student Obs

Bottom 25% 0.534 %% 0.356%** 0.812%%** 0.574 %%

(0.0452) (0.0476) (0.0588) (0.0756)
Middle 50% 0.619%** 0.40Q7 *** 0.717%%** 0.560%**

(0.0209) (0.0247) (0.0447) (0.0485)
Top 25% 0.665%**+ 0.479%%*4 0.711%%** 0.575%%*

(0.0263) (0.0310) (0.0403) (0.0508)
Observations 4,290 3,772 1,506 1,359
R? 0.481 0.288 0.642 0.445
Joint Test 3.684 3.233 1.193 0.0274
p-value 0.0256 0.0401 0.304 0.973

All regressions include lagged math and ELA test scores, indicators for Black, Hispanic, free and reduced
price lunch, limited english proficiency, female, and year dummies. Standard errors clustered at school level

in parentheses
*** p<0.01, ** p<0.05, * p<0.1
+ Indicates value statistically different from Bottom 25% at 5% level
Joint Test: F-test statistic that Middle 50 % and Top 25 % coefficients different from Bottom 25%
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10.1.1 4th Grade Results

In 4th grade, the stability for teachers with classes in the bottom 25% of prior year
achievement is .359, and the stabilities for the middle 50% and top 25% are .483
and .555 respectively when the number of student observations is unrestricted.
The coefficients for the middle 50% and top 25% statistically differ from the coef-
ficient for the bottom 25% at the 5% level. The patterns are quite similar once the
number of student observations is fixed at 12, although predictably the estimates
are somewhat smaller, since in the unrestricted case each teacher’s value-added
estimate is based on at least 12 observations. The stability for the bottom 25% is
.308 while the stabilities for middle and top are .392 and .471 respectively and are
statistically different from the bottom. Additionally, in both the unrestricted and
restricted to 12 observations cases, the joint test that both the middle 50% and top
25% coefficients differ from the bottom rejects comfortably at the 5% level.

For the cases in which two years of data are used, the stability is calculated
using four years of data. The teacher effect estimate in year ¢, which uses data
from year ¢ and ¢t — 1, is regressed on the teacher effect estimate from year ¢t — 2,
which uses years ¢t — 2 and ¢ — 3. For a teacher to be included in one of the quartile
groupings, the teacher had to have a two-year average prior year achievement
score in that quartile range for years ¢ and ¢ — 2. This dramatically reduced the
sample of teachers available to compare.

When two years of data are used to estimate teacher value-added in 4th grade
the stability for teachers with classes in the bottom 25% increase to .551 and to

.646 and .730 for the middle and top, respectively, in the unrestricted observations
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case. The difference between the coefficients for the top and bottom is statistically
significant at the 5% level. The point estimate for the middle 50% is larger than
the bottom 25%, but the difference between the two is not statistically significant
at the 5% level. The joint test that top or the middle coefficient differs from the
bottom is significant at the 5% level. When the number of student observations
per year is fixed at 12, the point estimates in the case of the middle and top are
larger than the bottom, and both are statistically different from the bottom. The

joint test that either the middle or top is different from the bottom also rejects.

10.1.2 6th Grade Results

The results for 6th grade are broadly similar to 4th grade using one year of data.
With one year of data and unrestricted observations the stabilities tend to be higher
than in 4th grade. This is likely due to 6th grade teachers having more student
observations per year. In this case, the stabilities are .534, .619, and .665 for the
bottom, middle, and top respectively. The tests for whether the top stabilities are
different from the bottom rejects, while the test for the middle 50% does not. The
joint test also rejects. When 12 student observations are used, the stabilities are
.356, .401, and .479, respectively, for the bottom, middle, and top. Once again the
test that the top and bottom differ and the joint test rejects, while the test that the
middle differs from the bottom does not.

In the case of two years of data, none of the estimates statistically differ from
one another in either the case of unrestricted observations or the case restricted to

12 student observations.
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10.2 EB Lag Stabilities

The results for the empirical Bayes estimates can be found in Table 5 and are
quite similar to those for the DOLS estimates. One difference between the em-
pirical Bayes and DOLS specifications is that the regressions corresponding to
the empirical Bayes estimates include classroom aggregates of the individual co-
variates, since this is often one of the justifications for using this approach over
DOLS.

In the case of one year of data and 4th grade, the stability estimates are .361,
483, and .551 for the bottom 25%, middle 50%, and top 25%, respectively, in the
unrestricted observations case. In the case where the number of student observa-
tions is set to 12, the stability estimates are .309, .391, and .461 respectively. In
both cases, the middle 50% and top 25% estimates are statistically significantly
different from the bottom 25%. The estimates are very similar to the DOLS case.

In the two year case in 4th grade, the pattern is again fairly similar to the
DOLS results. When the number of observations is unrestricted, only the top and
bottom 25% stabilities are statistically from one another. The p-value of the joint
test i1s .0511, however. When the number of observations is restricted to 12, the
estimates are .476, .584, and .657, respectively. The difference between the top
25% and bottom 25% coefficients is statistically at the 5% level. The joint test
rejects at the 5% level as well.

In 6th grade with one year of data, the only statistically significant difference

We have also included class aggregates in the DOLS regressions, and the results do not change
much. Estimates of the class level aggregates were identified for DOLS using the two step ap-
proach described previously.
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Table 5: Estimates of Year to Year Stability for EB Lag by Subgroups of Class
Achievement

EB Lag 4th grade
1 Year of Data 2 Years of Data
Unrestricted Obs 12 Student Obs | Unrestricted Obs 12 Student Obs

Bottom 25% 0.36]*%*:* 0.309%%:* 0.571%%:* 0.476%**

(0.0278) (0.0269) (0.0445) (0.0459)
Middle 50% 0.483%**4 0.39] ***4 0.659%%#:* 0.584 %%

(0.0183) (0.0180) (0.0341) (0.0318)
Top 25% 0.557] ***4 0.461***4 0.733%%*4 0.657***4

(0.0254) (0.0246) (0.0497) (0.0491)
Observations 8,124 7,650 2,735 2,527
R? 0.220 0.157 0.352 0.291
Joint Test 13.80 8.813 2.985 3.697
p-value 1.16e-06 0.000158 0.0511 0.0252

EB Lag 6th grade
1 Year of Data 2 Years of Data
Unrestricted Obs 12 Student Obs | Unrestricted Obs 12 Student Obs

Bottom 25% 0.548%%** 0.354%%:* 0.814%%:* 0.583%%*

(0.0433) (0.0482) (0.0497) (0.0702)
Middle 50% 0.614%%** 0.385%*:* 0.717%%* 0.55] ***

(0.0199) (0.0247) (0.0432) (0.0481)
Top 25% 0.650%**4 0.457%%* 0.714%%* 0.56] ***

(0.0267) (0.0318) (0.0405) (0.0529)
Observations 4,290 3,772 1,506 1,359
R? 0.437 0.224 0.610 0.387
Joint Test 2.492 2.402 1.558 0.0715
p-value 0.0835 0.0913 0.212 0.931

All regressions include lagged math and ELA test scores, indicators for Black, Hispanic, free and reduced
price lunch, limited english proficiency, female, class averages of all preceding varianbles, class size, a

quadratic function of experience, and year dummies. Standard errors clustered at school level in parentheses.
*** p<0.01, ** p<0.05, * p<0.1
+ Indicates value statistically different from Bottom 25% at 5% level
Joint Test: F-test statistic that Middle 50 % and Top 25 % coefficients different from Bottom 25%
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at the 5% level is between the top 25% and bottom 25% in the unrestricted case,
with point estimates of .650 for the top and .548 for the bottom. In the case of 2

years of data, no statistically significant differences are detected.

11 Sensitivity Checks

We performed a number of sensitivity checks. All of them support the conclusion
that differences exist in the inter-year stabilities across sub-groups.

We performed the analysis using English language arts scores and found sim-
ilar patterns as mathematics. The teachers assigned to students in the bottom 25%
tended to have less stable value-added scores from year to year. One thing inter-
esting to note is that English language arts value-added scores tended to be less
stable from year-to-year overall compared to mathematics. This finding is consis-
tent with the findings reported in the MET project reports.

Since it conceivable that teachers of students with low average prior achieve-
ment scores are inexperienced and inexperienced teachers also have lower inter-
year stabilities, the analysis was repeated dropping all teachers with less than 5
years of experience. However, the teacher’s experience was controlled for in the
regression of the teacher’s current value-added score on their prior value-added
score specifically to account for this issue, and the patterns described above were
very similar to those seen in this sensitivity check as expected.

As an additional sensitivity check, we repeated the analysis with school dum-

mies. We were still able to detect statistically significant differences in inter-year
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stabilities across sub-groups.

We tried estimating the empirical Bayes estimates using an alternate estima-
tor. In the alternate estimator, we estimated the model parameters using a mixed
effects estimator that treated the teacher effects as random. These results were
very similar to the empirical Bayes approach outlined above that was based on the
approach taken in Kane and Staiger (2008).

Also, we used twice lagged reading and math scores as instruments for the
once lagged reading and math scores to help account for measurement error in
these variables as another sensitivity check. Again, statistically significant differ-
ences were found in the stabilities across sub-groups.

Finally, we performed the analysis separately for the six largest school districts
in the state. The general patterns held. In a majority of the cases, the stability
coefficient was estimated to be the smallest in the case of the bottom 25%. In
no case was the stability coefficient of the middle 50% or top 25% statistically
significantly smaller than the bottom 25%. In some districts, the teachers with
classrooms in the middle 50% had the largest year-to-year stability, while in others
the top 25% had the largest year-to-year stability. In one case the year to year
stability of the bottom 25% was the largest, but it wasn’t statistically significantly
so. The estimates were quite noisy when the sample was separated in this way, so
itis not clear whether this reflected real differences across districts or not. It seems
possible that in different context the group of teachers that has the largest year-
to-year stability could differ. However, our main takeaway is that some groups of

teachers have less stable value added estimates from year-to-year.
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Tables for all of these sensitivity checks are available upon request.

12 High Stakes Policy Simulation

There is an increasing push to use value-added estimates for high stakes decisions
such as tenure or merit pay bonuses. Since the precision and stability of a teacher’s
value-added estimate is related to the makeup of the teacher’s class, it may be
the case that the teachers serving certain groups of students may be more likely
receive a sanction or bonus.

In order to examine this, we produced a simulation in which high stakes deci-
sions are made based upon value-added scores, and teachers differ in the stability
of their value-added estimates. We base the stability level of the measure of value-
added on the results we found in the previous sections. Each teacher is ranked and
flagged if they are in the bottom or top 10% according to their teacher value-added
score. We then calculate the proportion of teachers associated with each stability
level that are labeled as either in the bottom or top 10%.

The simulation consists of 300 teachers and 3 stability levels. 100 teachers are
assigned to each stability level. The true teacher effects are normally distributed
and have a mean of 0 and a variance of 1. The “estimated” teacher effects have
estimation error added that is normally distributed with mean 0, and the variance
depends on the stability level of the teacher.

Two sets of stability levels were chosen. The first corresponds to the DOLS

estimates in 4th grade with 12 student observations and one year of data, with
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stabilities of .308, .392, and .471. The second corresponds to the DOLS estimates
in 4th grade with 12 student observations and 2 years of data, with stability levels
of .465, .578, and .660.

We calculate the average proportion of teachers associated with each stability
level over the 5000 reps. Results are included in Table 6. The results from the
simulation using the DOLS estimates in 4th grade with 12 student observations
and one year of data can be found in the upper panel. For teachers associated with
the stability of .308, which was the stability associated with teachers of classrooms
in the bottom 25% in the analysis above, the proportion found in the bottom or top
10% was .249. When the stability level was .392 the proportion dropped to .195,
and when the stability went to .471, the proportion fell to .156. This last drop was
nearly a 10 percentage point change from the lowest stability. The results using
two years of data show a similar pattern and can be found in the bottom panel.
Teachers associated with the lowest stability have a proportion of .243. Teachers
associated with stabilities of .578 and .660, which were associated with students
in the middle 50% and top 25%, respectively, were found in the bottom or top
10% of the estimated teacher quality distribution at a proportion of .193 and .164
respectively. This represents an almost 8 percentage point drop for the latter.

The simulation results indicate that the differences in stability levels found in
this analysis can have a large impact on the likelihood that a teacher finds his or

herself in the top or bottom of the estimated teacher quality distribution.
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Table 6: High Stakes Policy Simulation

Simulation 1: DOLS Stability, 4th Grade, 12 Student Obs, 1 year of Data

Stability Error Variance of Proportion Found in Bottom or Top 10%
VAM Estimate

.308 2.247 249

392 1.551 195

471 1.123 156

Simulation 2: DOLS Stability, 4th Grade, 12 Student Obs, 2 years of Data

Stability Error Variance of Proportion Found in Bottom or Top 10%
VAM Estimate

465 1.151 243

578 730 193

.660 515 164

Simulations results are based on 5000 Monte Carlo repetitions. There are 100 teachers per type. True teacher
effects are distributed Normal(0,1). Error in the value-added measures is normally distributed with mean 0
and a variance listed in the “Error Variance of VAM Estimate” column.
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13 Conclusion

This paper provides evidence that the variability and stability of teacher effect
estimates depends on the characteristics of a teacher’s class. Policies to deny
tenure to teachers and policies designed to reward teacher performance in a given
year, which are based on teacher value-added estimates, may differentially impact
teachers with certain types of students.

The relationship between the stability of estimates and the classroom charac-
teristics of students extends beyond the number of student observations. There is a
strong theoretical reason for suspecting that a student’s error term is heteroskedas-
tic and statistical tests bear this out. As a consequence of this and student tracking
and sorting into schools, teachers will serve different groups of students and have
differences in the precision of their teacher effect estimates as a result. The dif-
ferences in the stability ratios are large in magnitude and statistically significant
even after fixing the number of student observations to a constant.

Also, some evidence is presented that the relationships remain even as more
observations are added. When two years of data are used, there still exist statisti-
cally significant and large differences for different subgroups of teachers.

The heteroskedasticity is likely due in part to heteroskedastic measurement
error variance. Assuming the item response model is correct, heteroskedastic
measurement error is a direct result of the maximum likelihood estimation pro-
cedure which produces estimates of the achievement level of each student. The

patterns that teachers of students with lagged achievement scores in the middle of
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the achievement distribution tend to have the highest inter-year stabilities is con-
sistent with heteroskedasticity caused by the measurement error, although teach-
ers with students in the top 25% also tend to have more stable estimates. One
reason the top and bottom may be different is that there may be greater potential
for guessing or item non-response for students at the bottom of the distribution. It
may be possible to reduce the heteroskedasticity by improving measurement. Fu-
ture work will hopefully explore how much of the heteroskedasticity is attributable
to measurement.

Heteroskedastic student level error also has other implications for researchers
and policymakers. Empirical Bayes estimators are commonly computed assuming
homoskedastic student level error. This assumption does not seem to be true, and
since there are large differences in stability ratios that appear to be driven by het-
eroskedasticity, the violation of this assumption may impact the teacher rankings
that are created using the empirical Bayes estimators. Allowing heteroskedasticity
in the student level error should be done if possible.

Additionally, it is quite common for standard errors and the corresponding
confidence intervals to be based on a homoskedasticity assumptions. It is im-
portant that the confidence intervals accurately reflect imprecision caused by all
sources of variability, not just the number of student observations, so standard
errors should at least be made heteroskedasticity robust. This is particularly im-

portant since the teacher value-added estimates are being made publicly available

Ballou et al. (2004) assume homoskedasticity in computing standard errors, as does the value-
added estimator employed by the NYC school district
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in some school districts.

It is important to understand the limitations of any measure of performance.
The analysis presented here does suggest that for all subgroups value-added mea-
sures do have positive inter-year stabilities, so information can be gathered for all
subgroups of teachers. However, teachers of certain groups of students will tend
to have less precise and less stable teacher value-added estimates. As a result of
this, it is the opinion of the authors that care should be used in evaluating teachers
using value-added estimators and value-added estimates should not be used as the

sole basis of any high stakes policy involving teachers.
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