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1. Introduction

Semiparametric two-step estimators are by now available for a wide range of econometric

applications. These estimators typically arise from a flexible model in which a finite-

dimensional parameter of interest can be characterized through a moment condition that

contains an unknown nuisance function. In a first step, the nuisance function is estimated

nonparametrically. In a second step, the parameter of interest is then estimated from an

empirical version of the moment condition, with the unknown nuisance function replaced

by its first step estimate. Semiparametric two-step estimators are important for empirical

research because they allow practitioners to remove many parametric restrictions, which

could potentially mask important features of the data, from their specifications.

The first order asymptotic properties of semiparametric two-step estimators have been

studied extensively (e.g. Newey, 1994; Newey and McFadden, 1994; Andrews, 1994; Chen,

Linton, and Van Keilegom, 2003; Ichimura and Lee, 2010), and are widely used to justify

large sample inference procedures. However, there is considerable evidence that first

order asymptotic distributions provide poor approximations to the sampling behavior of

semiparametric two-step estimators, at least for sample sizes typically encountered in

empirical practice (e.g. Linton, 1995; Robins and Ritov, 1997; Cattaneo, Crump, and

Jansson, 2013a). For instance, the standard first order approximation is invariant to the

nonparametric estimation technique used in the first step, yet point estimates can be very

sensitive to implementation details, such as the choice of smoothing parameters.

This discrepancy can be attributed to the fact that first order approximations are usu-

ally derived under strong smoothness conditions on the unknown nuisance function. Such

an approach allows treating certain terms in an expansion of the estimator as negligible

in an asymptotic sense (e.g. Robins and Ritov, 1997). However, in finite samples these

higher order terms could still be of substantial magnitude, and thus considerably affect

the properties of the final estimator. One way to address this issue would be to subtract

estimates of these terms from the final estimator, but this generally adds an undesirable

layer of complexity as higher order terms often depend on nonlinear transformations of

nonparametric objects (e.g. Linton, 1995).

In this paper, we consider a different approach, which involves constructing simple

alternative estimators for which higher order terms are small to begin with. We pro-

pose a new class of semiparametric two-step estimators that are based on a moment

condition with a particular structure: it depends on two unknown nuisance functions,

but still identifies the parameter of interest if either one of the two functions is replaced
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by some arbitrary value. Following the terminology in Robins, Rotnitzky, and van der

Laan (2000), we refer to such moment conditions as doubly robust (DR), and thus call

the corresponding estimators semiparametric doubly robust estimators (SDREs). DR mo-

ment conditions exist for many interesting parameters, including regression coefficients in

models with missing outcomes and/or covariates, average treatment effects in potential

outcome models with unconfounded assignment, and local average treatment effects in

instrumental variable models, amongst many others. Our estimators can thus be applied

in a wide range of empirical applications.

Our main contribution is to show that SDREs have attractive theoretical and practi-

cal properties relative to generic semiparametric two-step estimators based on a moment

condition without the DR property. We show that the special structure of DR moment

conditions, together with a certain orthogonality condition that is not restrictive in all

examples that we consider, removes the two largest second order terms in a traditional

expansion of the estimator. This effect occurs automatically, and does not require choos-

ing additional tuning parameters or involved numerical computations. As a consequence,

SDREs have smaller first order bias and second order variance, and are
√
n-consistent and

asymptotically normal under weaker conditions on the accuracy of the first step nonpara-

metric estimates. Moreover, their finite sample distribution can be better approximated

by classical first order asymptotics. Therefore any method for inference that is justified

by large sample theory, such as the usual confidence intervals or hypothesis tests, should

be more accurate in our case. In all examples that we consider in this paper, SDREs are

also semiparametrically efficient. They have thus clear advantages even relative to other

efficient estimators that are commonly used in such settings, such as Inverse Probability

Weighting (IPW) estimators in missing data and treatment effect models (e.g. Hirano,

Imbens, and Ridder, 2003; Firpo, 2007; Chen, Hong, and Tarozzi, 2008).

From a practitioner’s perspective, our results imply that SDREs are generally more

precise in finite samples than generic semiparametric estimators with the same asymp-

totic variance, and that their properties are less sensitive to the implementation of the

nonparametric first stage. Moreover, in settings with moderate dimensionality, they can

allow for rate-optimal choices of smoothing parameters (which are relatively easy to esti-

mate from the data), and do not require the use of bias reducing nonparametric estimators

(such as those based on higher order kernels, for instance). These are important advan-

tages that make SDREs attractive in applications. SDREs are also adaptive, in the sense

that by construction their asymptotic variance does not contain adjustment terms for

the nonparametric first step. This is a useful property, as it simplifies the calculation of

3



standard errors.

Our SDREs differ from the usual doubly robust procedures used widely in statis-

tics. See for example Robins, Rotnitzky, and Zhao (1994), Robins and Rotnitzky (1995),

Scharfstein, Rotnitzky, and Robins (1999), Robins and Rotnitzky (2001), Van der Laan

and Robins (2003) or Tan (2006), and Wooldridge (2007) or Graham, Pinto, and Egel

(2012) for applications in econometrics. These estimators employ fully parametric spec-

ifications of the two nuisance functions, and the role of the DR property is to ensure

consistency of the final estimator if at most one of these specifications is incorrect. In

this paper we impose no such parametric restrictions on nuisance functions when com-

puting our SDREs. Instead, we retain a fully nonparametric first stage.

Our paper is not the first to be concerned with improving the properties of semipara-

metric two-stage estimators. In very different contexts, Newey, Hsieh, and Robins (2004)

and Klein and Shen (2010) propose methods that do not exploit higher order differentia-

bility conditions to reduce the impact of the first stage smoothing bias on the properties of

certain two-step estimators. Cattaneo et al. (2013a) study a jackknife approach to remove

bias terms related to the variance of the first stage nonparametric problem in the specific

context of weighted average derivative estimation. Our paper complements these findings

in a general sense by showing that the use of doubly robust moment conditions achieves

both goals simultaneously. An alternative approach to improve inference, which we do

not consider in this paper, would be to derive “non-
√
n” asymptotic approximations.

Examples of such a strategy include Robins, Li, Tchetgen, and Van Der Vaart (2008),

who consider semiparametric inference in models with very high-dimensional functional

nuisance parameters, and Cattaneo, Crump, and Jansson (2013b), who study so-called

small bandwidth asymptotics for semiparametric estimators of density-weighted average

derivatives.

The remainder of this paper is structured as follows. In the next section, we present

the modeling framework and our estimation procedure, and give some concrete examples

of doubly robust moment conditions. In Section 3, the estimators’ asymptotics prop-

erties are studied. Section 4 applies our method to the estimation of treatment effects

under unconfoundedness. Section 5 shows evidence that SDREs have superior properties

compared to other methods in a simulation study. In Section 6, we apply our method to

study the effect of smoking on birth weight. Finally, Section 7 concludes. All proofs are

collected in the Appendix.
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2. Modeling Framework and Estimation Procedure

2.1. Doubly Robust Moment Conditions. We consider the problem of estimating

a parameter θo, contained in the interior of some compact parameter space Θ ⊂ Rdθ , in a

semiparametric model. The data consists of an i.i.d. sample {Zi}ni=1 from the distribution

of the random vector Z ∈ Rdz . We assume that one way to identify θo within the

semiparametric model is through a moment condition with two nuisance functions. That

is, there exists a known moment function ψ(·) taking values in Rdθ such that

Ψ(θ, po, qo) := E(ψ(Z, θ, po(U), qo(V ))) = 0 if and only if θ = θo, (2.1)

where po ∈ P and qo ∈ Q are unknown (but identified) functions, and U ∈ Rdp and

V ∈ Rdq are random subvectors of Z that might have common elements. We consider

settings where the moment condition (2.1) exhibits a particular structure. First, we

assume that

Ψ(θ, po, q) = 0 and Ψ(θ, p, qo) = 0 if and only if θ = θo (2.2)

for all functions q ∈ Q and p ∈ P . Following the terminology in Robins et al. (2000), we

refer to any moment condition that is of the form in (2.1) and satisfies the restriction (2.2)

as a doubly robust (DR) moment condition. Second, we assume that po(x) = E(Yp|Xp = x)

and qo(x) = E(Yq|Xq = x), where (Yp, Yq, Xp, Xq) ∈ R × R × Rdp × Rdq is a random

subvector of Z that might have common elements, and that

E((Yp − po(Xp))× (Yq − qo(Xq))|Xp, Xq) = 0. (2.3)

Equation (2.3) is an orthogonality condition, which ensures that one can construct non-

parametric estimates of po and qo that are asymptotically uncorrelated. In all applications

that we consider in this paper, this condition is implied by the assumptions made to iden-

tify the parameter of interest, and is thus not restrictive. We explain this point, and how

we exploit the property, in more detail below.

2.2. Examples. The conditions (2.2) and (2.3) are of course restrictive, but are jointly

satisfied in a wide range of models that are widely used in empirical practice. Before

discussing the specific form and implementation of the estimator, we now give a number

of examples of models where there exists a DR moment condition with nuisance param-

eters satisfying the orthogonality condition, all of which are known well in the literature.

These examples cover various parameters of interest in missing data and causal inference

models, which should illustrate the broad applicability of the methodology. Note that
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the moment function ψ, on which the DR moment condition is based, is the semipara-

metrically efficient influence function for the respective parameter of interest in all these

examples. This implies that the asymptotic variance of SDREs is equal to the respective

semiparametric efficiency bound in these settings (under suitable regularity conditions;

see Section 3).

Example 1 (Population Mean with Missing Data). Let X be a vector of covariates

that is always observed, and Y a scalar outcome variable that is observed if D = 1,

and unobserved if D = 0. The data consists of a sample from the distribution of Z =

(DY,X,D), and the parameter of interest is θo = E(Y ). Assume that the data are

missing at random (MAR), i.e. E(D|Y,X) = E(D|X) > 0 with probability 1, and define

the functions πo(x) = E(D|X = x) and µo(x) = E(Y |D = 1, X = x). Then Ψ(θ, π, µ) =

E(ψ(Z, θ, π(X), µ(X))) with

ψ(z, θ, π(x), µ(x)) =
d(y − µ(x))

π(x)
+ µ(x)− θ

is a DR moment condition for estimating θo. Moreover, because the MAR assumption

implies that µo(x) = E(Y |X = x), it follows from the law of iterated expectations that

E((D − πo(X))× (Y − µo(X))|X) = 0,

and thus the orthogonality condition holds.

Example 2 (Linear Regression with Missing Covariates). Let X = (X⊤
1 , X

⊤
2 )

⊤ be a

vector of covariates and Y a scalar outcome variable. Suppose that the covariates in X1

are only observed if D = 1 and unobserved if D = 0, whereas (Y,X2) are always observed.

The data thus consists of a sample from the distribution of Z = (Y,X1D,X2, D). Here we

consider the vector of coefficients θo from a linear regression of Y on X as the parameter

of interest. Define the functions πo(y, x2) = E(D|Y = y,X2 = x2) and µo(x2, θ) =

E(φ(Y,X, θ)|D = 1, X2 = x2) with φ(Y,X, θ) = (1, X⊤)⊤(Y − (1, X⊤)θ), and assume

that πo(Y,X2) > 0 with probability 1. Then Ψ(θ, π, µ) = E(ψ(Z, θ, π(Y,X2), µ(X))) with

ψ(z, θ, π(y, x2), µ(x)) =
d(φ(y, x, θ)− µ(x, θ))

π(y, x2)
+ µ(x, θ)

is a DR moment condition for estimating θo, and it is easy to verify that the orthogonality

condition holds.

Example 3 (Average Treatment Effects). Let Y (1) and Y (0) denote the potential out-

comes with and without taking some treatment, respectively, with D = 1 indicating
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participation in the treatment, and D = 0 indicating non-participation in the treat-

ment. Then the realized outcome is Y = Y (D). The data consist of a sample from

the distribution of Z = (Y,D,X), where X is some vector of covariates that are un-

affected by the treatment, and the parameter of interest is the Average Treatment

Effect (ATE) θo = E(Y (1)) − E(Y (0)). Define the functions πo(x) = E(D|X = x)

and µY
o (d, x) = E(Y |D = d,X = x), put µo(x) = (µY

o (1, x), µ
Y
o (0, x)), and assume

that 1 > E(D|Y (1), Y (0), X) = πo(X) > 0 with probability 1. Then Ψ(θ, π, µ) =

E(ψ(Z, θ, π(X), µ(X))) with

ψ(z, θ, π(x), µ(x)) =
d(y − µY (1, x))

π(x)
− (1− d)(y − µY (0, x))

1− π(x)
+ (µY (1, x)− µY (0, x))− θ

is a DR moment condition for estimating θo, and it is easy to verify that the orthogonality

condition holds.

Example 4 (Average Treatment Effect on the Treated). Consider the potential outcomes

setting introduced in the previous example, but now suppose that the parameter of inter-

est is θo = E(Y (1)|D = 1)−E(Y (0)|D = 1), the Average Treatment Effect on the Treated

(ATT). Define the functions πo(x) = E(D|X = x) and µo(x) = E(Y |D = 0, X = x), put

Πo = E(D), Πo > 0, and assume that E(D|Y (1), Y (0), X) = πo(X) < 1 with probability

1. Then Ψ(θ, π, µ) = E(ψ(Z, θ, π(X), µ(X))) with

ψ(z, θ, π(x), µ(x)) =
d(y − µ(x))

Πo

− π(x)

Πo

· (1− d)(y − µ(x))

1− π(x)
− θ

is a DR moment condition for estimating θo, and it is easy to verify that the orthogonality

condition holds.

Example 5 (Local Average Treatment Effects). Let Y (1) and Y (0) denote the potential

outcomes with and without taking some treatment, respectively, with D = 1 indicating

participation in the treatment, and D = 0 indicating non-participation in the treatment.

Furthermore, let D(1) and D(0) denote the potential participation decision given some

realization of a binary instrumental variable W ∈ {0, 1}. That is, the realized participa-

tion decision is D = D(W ) and the realized outcome is Y = Y (D) = Y (D(W )). The data

consist of a sample from the distribution of Z = (Y,D,W,X), where X is some vector

of covariates that are unaffected by the treatment and the instrument. Define the func-

tion πo(x) = E(W |X = x), and suppose that 1 > E(W |Y (1), Y (0), D(1), D(0), X) =

E(W |X) > 0 and P (D(1) ≥ D(0)|X) = 1 with probability 1. Under these con-

ditions, it is possible to identify the Local Average Treatment Effect (LATE) θo =

E(Y (1) − Y (0)|D(1) > D(0)), which serves as the parameter of interest in this ex-

ample. Also define the functions µD
o (w, x) = E(D|W = w,X = x) and µY

o (w, x) =
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E(Y |W = w,X = x), and put µo(x) = (µD
o (1, x), µ

D
o (0, x), µ

Y
o (1, x), µ

Y
o (0, x)). Then

Ψ(θ, π, µ) = E(ψ(Z, θ, π(X), µ(X))) with

ψ(z, θ, π(x), µ(x)) = ψA(z, π(x), µ(x))− θ · ψB(z, π(x), µ(x)),

where

ψA(z, π(x), µ(x)) =
w(y − µY (1, x))

π(x)
− (1− w)(y − µY (0, x))

1− π(x)
+ µY (1, x)− µY (0, x),

ψB(z, π(x), µ(x)) =
w(d− µD(1, x))

π(x)
− (1− w)(d− µD(0, x))

1− π(x)
+ µD(1, x)− µD(0, x),

is a DR moment condition for estimating θo, and it is easy to verify that the orthogonality

condition holds.

2.3. Semiparametric Estimation. Equation (2.2) implies that knowledge of either po

or qo suffices for identifying θo. In principle, one could therefore construct semiparametric

estimators of θo that only require an estimate of either po or qo, but not both. For example,

θo could be estimated by the value that sets a sample analogue of either Ψ(θ, po, q̄) or

Ψ(θ, p̄, qo) equal to zero, where p̄ ∈ P and q̄ ∈ Q are arbitrary known and fixed functions.

In this paper, we argue in favor of an estimator of θo that solves a direct sample analogue

of the doubly robust moment condition (2.1). That is, we consider the estimator θ̂ which

solves the equation

0 =
1

n

n∑
i=1

ψ(Zi, θ, p̂(Ui), q̂(Vi)), (2.4)

where p̂ and q̂ are suitable nonparametric estimates of po and qo, respectively. We refer to

such an estimator as a semiparametric doubly robust estimator (SDRE). We also define

the following quantities, which will be important for estimating the asymptotic variance

of the estimator θ̂:

Γ̂ =
1

n

n∑
i=1

∂ψ(Zi, θ̂, p̂(Ui), q̂(Vi))/∂θ

Ω̂ =
1

n

n∑
i=1

ψ(Zi, θ̂, p̂(Ui), q̂(Vi))ψ(Zi, θ̂, p̂(Ui), q̂(Vi))
⊤.

It remains to define suitable nonparametric estimates of po and qo. Recall that

we consider the case that po(x) = E(Yp|Xp = x) and qo(x) = E(Yq|Xq = x), where

(Yp, Yq, Xp, Xq) ∈ R × R × Rdp × Rdq is a random subvector of Z that might have

common elements. For simplicity, both Xp and Xq are assumed to be continuously
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distributed in the following.1 We propose to estimate both functions by local polyno-

mial regression of order lp and lq, respectively. This class of kernel-based smoothers has

been studied extensively by e.g. Fan (1993), Ruppert and Wand (1994) or Fan and Gij-

bels (1996). It is well-known to have attractive bias properties relative to the standard

Nadaraya-Watson estimator with higher-order kernels. In applications where the dimen-

sion of Xp and Xq is not too large (in a sense made precise below), we will work with

lp = lq = 1. Using the notation that λp(u) = [u1, u
2
1, . . . , u

lp
1 , . . . , udp , u

2
dp
, . . . , u

lp
dp
]⊤ and

λq(v) = [v1, v
2
1, . . . , v

lq
1 , . . . , vdq , v

2
dq
, . . . , v

lq
dq
]⊤, the “leave-i-out” local polynomial estima-

tors of po(Ui) and qo(Vi) are given by

p̂(Ui) = âp(Ui) and q̂(Vi) = âq(Vi),

respectively, where

(âp(Ui), b̂p(Ui)) = argmin
a,b

∑
j ̸=i

(
Yp,j − a− b⊤λp(Xp,j − Ui)

)2
Khp(Xp,j − Ui),

(âq(Vi), b̂q(Vi)) = argmin
a,b

∑
j ̸=i

(
Yq,j − a− b⊤λq(Xq,j − Vi)

)2
Khq(Xq,j − Vi).

Here Khp(u) =
∏dp

j=1K(uj/hp)/hp is a dp-dimensional product kernel built from the uni-

variate kernel function K, and hp is a one-dimensional bandwidth that tends to zero as the

sample size n tends to infinity, and Khq(v) and hq are defined similarly. Note that under

suitable regularity conditions (see e.g. Masry, 1996, or Appendix B) these estimators are

uniformly consistent, and satisfy

max
i=1,...,n

|p̂(Ui)− po(Ui)| = O(hlp+1
p ) +OP ((nh

dp
p / log n)

−1/2), (2.5)

max
i=1,...,n

|q̂(Vi)− qo(Vi)| = O(hlq+1
q ) +OP ((nh

dq
q / log n)

−1/2), (2.6)

where the terms on the right-hand side of each of the two previous equations correspond

to the order of the respective bias and stochastic part. Also note that it would be straight-

forward to employ more general estimators using a matrix of smoothing parameters that

is of dimension dp×dp or dq×dq, respectively, at the cost of a much more involved notation

(Ruppert and Wand, 1994). Moreover, using “leave-i-out” versions of the nonparametric

estimators is only necessary for the results we derive below in applications where either

U and Xp or V and Xq share some common elements.

1It would be straightforward to extend our results to other types of functions, including derivatives

of conditional expectation functions, density functions, and conditional expectation functions with mul-

tivariate outcome variables and/or discrete covariates.
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3. Asymptotic Theory

In this section, we study the theoretical properties of SDREs, and compare them to those

of generic semiparametric two-step estimators. To illustrate the nature of our results, we

begin by writing our estimator as

θ̂ − θo =
1

n

n∑
i=1

Γ−1
o ψ(Zi, θo, po(Ui), qo(Vi)) +Rn, (3.1)

where Γo = ∂E(ψ(Z, θ, po(U), qo(V )))/∂θ|θ=θo is assumed to have full rank. Without say-

ing anything about Rn, this representation is certainly without loss of generality. Note

that the first term on the right-hand side of (3.1) is a sample average of n i.i.d. mean

zero random vectors, and is thus asymptotically normal under standard conditions. Now

our contribution is two-fold. First, we show that (3.1) holds with Rn = oP (n
−1/2), which

implies that θ̂ is
√
n-consistent and asymptotically normal, under conditions that are

substantially weaker than those commonly employed in the literature on semiparametric

two-step estimation. In particular, the familiar requirement that the first stage nonpara-

metric estimation error and bias are op(n
−1/4) and o(n−1/2), respectively, in some suitable

norm is relaxed. Second, we derive an explicit expression for the rate at which Rn tends

to zero, and show that this rate is substantially faster than the one that can be achieved

by generic semiparametric two-step estimators. As a consequence, we can expect stan-

dard Gaussian approximations based on (3.1) to be more accurate in finite samples for

our SDREs.

3.1. The Structure of the Argument. Before formally stating our results, we give

a simplified explanation for how the particular structure of our model and correspond-

ing estimation procedure help us achieving them. We first provide some intuition for

why (3.1) holds with Rn = oP (n
−1/2) under weak conditions on the accuracy of the first

stage. Define

Tn,1 =
1

n

n∑
i=1

ψp(Zi)(p̂(Ui)− po(Ui)) +
1

n

n∑
i=1

ψq(Zi)(q̂(Vi)− qo(Vi)),

Tn,2,A =
1

n

n∑
i=1

ψpp(Zi)(p̂(Ui)− po(Ui))
2 +

1

n

n∑
i=1

ψqq(Zi)(q̂(Vi)− qo(Vi))
2 and

Tn,2,B =
1

n

n∑
i=1

ψpq(Zi)(p̂(Ui)− po(Ui))(q̂(Vi)− qo(Vi)),

where ψp(Zi) and ψpp(Zi) are the first and second derivative of ψ(Zi, θo, po(Ui), qo(Vi))

with respect to po(Ui), respectively, ψq(Zi) and ψqq(Zi) are defined analogously, and
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ψpq(Zi) is the partial cross derivative of ψ(Zi, θo, po(Ui), qo(Vi)) with respect to po(Ui)

and qo(Vi). The terms Tn,1 and Tn,2 = Tn,2,A+Tn,2,B are the linear and quadratic part, re-

spectively, of a standard expansion of the functional (p̂, q̂) 7→ n−1
∑n

i=1 ψ(Zi, p̂(Ui), q̂(Vi))

around (po, qo). Under a weak smoothness condition on the function ψ, it then holds that

Rn = O(Tn,1) +O(Tn,2,A) +O(Tn,2,B) +OP (∥p̂− po∥3∞) +OP (∥q̂ − qo∥3∞).

Clearly, the two “cubic” remainder terms in this equation are both oP (n
−1/2) even if

the two first-stage nonparametric estimation errors are uniformly only oP (n
−1/6). For a

generic semiparametric two-step estimator, however, the remaining “linear” and “quadratic”

terms would not be oP (n
−1/2) if the nonparametric component converges that slowly.

The advantage of working with a DR moment condition is that its particular structure

substantially improves the rate at with the linear and quadratic terms converge to zero.

To see this, first note that the DR property (2.2) implies that

∂k

∂t
Ψ(θo, po + tp̄, qo)|t=0 =

∂k

∂t
Ψ(θo, po, qo + tq̄)|t=0 = 0 (3.2)

for k = 1, 2 and all functions p̄ and q̄ such that po + tp̄ ∈ P and qo + tq̄ ∈ Q for all t ∈ R
with |t| sufficiently small. Now write the the first summand in the definition of Tn,1 as

Ψp
n[p̂ − po], where the operator Ψp

n is defined as Ψp
n[p̄] = n−1

∑n
i=1 ψ

p(Zi)p̄(Ui) for any

fixed function p̄. Clearly, we have that Ψp
n[p̄]

p→ ∂Ψ(θo, po + tp̄, qo)/∂t|t=0 = 0 for all p̄.

This explains why the term Ψp
n[p̂ − po] converges to zero at rate faster-than-usual rate:

not only does the argument of the operator tend to zero, but by (3.2) also the operator

itself. An analogous reasoning applies to all components of Tn,1 and Tn,2,A. This property

is specific to SDREs, and does not hold for generic semiparametric estimators.

The term Tn,2,B involves a different argument. After some calculations, one finds that

the leading terms in a stochastic expansion of this quantity are equal to a constant times

the product of the smoothing bias terms of the estimators of po and qo, and to a term that

is proportional to the asymptotic covariance between the estimation errors of p̂ and q̂.

Due to the orthogonality condition (2.3), however, this asymptotic covariance is exactly

equal to zero. In order to obtain the desired rate for Tn,2,B, it thus suffices that the

product of the bias terms is uniformly o(n−1/2).

3.2. Assumptions. We now state the assumptions that allow us to formalize the above

arguments.

Assumption 1. (i) the random vectors U and V are continuously distributed with com-

pact support IU and IV , respectively (ii) supu E(|Yp|c|Xp = u) <∞ and supv E(|Yq|c|Xq =

11



v) < ∞ for some constant c > 2, (iii) the random vectors Xp and Xq are continuously

distributed with support Ip ⊇ IU and Iq ⊇ IV , respectively (iv) the corresponding den-

sity functions fp and fq are bounded with bounded first order derivatives, and satisfy

infu∈IU fp(u) ≥ δ and infv∈IV fq(v) ≥ δ for some constant δ > 0, (v) the functions po and

qo are (lp + 1) and (lq + 1) times continuously differentiable, respectively.

Assumption 2. The kernel function K is twice continuously differentiable, and satisfies

the following conditions:
∫
K(u)du = 1,

∫
uK(u)du = 0 and

∫
|u2K(u)|du < ∞, and

K(u) = 0 for u not contained in some compact set, say [−1, 1].

Assumption 3. The function ψ(z, θ, p(u), q(v)) is (i) continuously differentiable with

respect to θ, (ii) three times continuously differentiable with respect to (p(u), q(v)), with

derivatives that are uniformly bounded, (iii) such that the matrix Ωo := E(ψo(Z)ψo(Z)
⊤)

is finite, where ψo(Z) = ψ(Z, θo, po(U), qo(V )), (iv) such that sup ∥∂θψ(Z, θ, p(U), q(V ))−
∂θψ(Z, θ, po(U), qo(V ))∥ = oP (1), where the supremum is taken over the (θ, p, q) in some

open neighborhood of (θo, po, qo), and (v) such that Γ = E(∂θψ(Z, θo, po(U), qo(V ))) has

full rank.

Assumption 4. The bandwidth sequences hp and hq satisfy the following conditions

as n → ∞: (i) nh
2(lp+1)
p h

2(lq+1)
q → 0, (ii) nh

6(lp+1)
p → 0, (iii) nh

6(lq+1)
q → 0, (iv)

n2h
3dp
p / log(n)3 → ∞, and (v) n2h

3dq
q / log(n)3 → ∞.

Assumption 1 collects smoothness conditions that are standard in the context of non-

parametric regression. The restrictions on the kernel function K in Assumption 2 could

be weakened to allow for kernels with unbounded support. Parts (i)-(ii) of Assump-

tion 3 impose some weak smoothness restrictions on the function ψ, which are needed

to justify a quadratic expansion. At the cost of a more involved theoretical argument,

these assumptions could be relaxed by imposing smoothness conditions on the population

functional Ψ instead (cf. Chen et al., 2003). Assumption 3(iii) ensures that the leading

term in (3.1) satisfies a central limit theorem, and Assumption 3(iv)–(v) are standard

smoothness and invertability conditions. Finally, Assumption 4 imposes restrictions on

the rate at which the bandwidths hp and hq tend to zero that depend on the number of

derivatives of the unknown regression functions and the dimension of the covariates.

3.3. Asymptotic Normality. Our first main result is concerned with the asymptotic

normality of SDREs under the conditions that we just imposed.

Theorem 1. Under Assumption 1–4, equation (3.1) holds with Rn = oP (n
−1/2). More-

over, we have that
√
n(θ̂ − θo)

d→ N(0,Γ−1
o ΩoΓ

−1
o ), and that Γ̂−1Ω̂Γ̂−1 p→ Γ−1

o ΩoΓ
−1
o .
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Theorem 1 shows that our SDRE is asymptotically linear, which immediately implies

its
√
n-consistency and asymptotic normality. The asymptotic variance is of the usual

sandwich form, and the theorem establishes consistency of a simple sample analogue

variance estimator. Taken together, these results can be used to justify various large

sample inference procedures, such as e.g. the construction of confidence regions for θo.

The theorem also shows that SDREs are adaptive, in the sense that their asymptotic

variance does not contain an adjustment term for the use of first-step nonparametric

estimates. This is a property SDREs share with all semiparametric estimators that take

the form of a sample analogue of an influence function in the corresponding model (e.g.

Newey, 1994). It also implies that SDREs are semiparametrically efficient if the DR

moment condition is based on the respective efficient influence function. This is the case

for all examples that we listed in Section 2.2.

Theorem 1 differs from other asymptotic normality results for semiparametric two-step

estimators (e.g. Newey, 1994; Newey and McFadden, 1994; Chen et al., 2003; Ichimura

and Lee, 2010), because it only imposes relatively weak conditions on the accuracy of the

nonparametric first stage estimates. In particular, the bandwidth restrictions in Assump-

tion 4 allow the smoothing bias from estimating either po or qo to be go to zero as slow

as o(n−1/6) as long as the product of the two bias terms is o(n−1/2), and only require the

respective stochastic parts to be oP (n
−1/6); see also (2.5)–(2.6). In contrast, for a generic

estimator to be asymptotically normal, the first stage nonparametric estimation error

and bias typically have to be op(n
−1/4) and o(n−1/2), respectively, in some suitable norm.

Another way to interpret this difference is that SDREs require less stringent smoothness

conditions on the nuisance functions, which is very important in higher dimensional set-

tings. For example, it is easily verified that if dp ≤ 5 and dq ≤ 5, there exist bandwidths

hp and hq such that Assumption 4 is satisfied even if lp = lq = 1. For a generic estimator

that uses an estimate of, say, po to be asymptotically normal one typically cannot allow

for lp = 1 if dp > 1. SDREs can thus achieve the same first order asymptotic proper-

ties as generic semiparametric estimators with lower order local polynomials in the first

stage. This is very important in empirical practice: while higher order local polynomial

regression leads to estimates with small asymptotic bias, it is also well-known to have

poor finite sample properties.

We also remark that in lower dimensional settings the range of bandwidths that is per-

mitted by Assumption 4 includes the values that minimize the Integrated Mean Squared

Error (IMSE) for estimating po and qo, respectively. In contrast, a generic semipara-

metric estimator would not be asymptotically normal with such a choice. While these
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bandwidths do not have any optimality properties for estimating θo, they have the practi-

cal advantage that they can be estimated from the data via least-squares cross validation.

For many SDREs, there thus exist an objective and feasible data-driven bandwidth selec-

tion method that does not rely on preliminary estimates of the nonparametric component.

This might be important, since the lack of such a method is one of the major obstacles

for applying semiparametric estimators in practice.

3.4. Higher Order Properties. We can strengthen the first part of Theorem 1 by

deriving an explicit expression for the rate at which the remainder Rn in the linear

representation (3.1) tends to zero. To simplify the exposition, we only state such a result

for the case that the arguments of po and qo have the same dimension, that is dp = dq ≡ d,

and that the same bandwidth and order of the local polynomial are used to estimate these

two functions, that is lp = lq ≡ l and hp = hq ≡ h. Similar results could be established

in more general settings.

Corollary 1. Under Assumption 1– 4 and the above restrictions, we have that Tn,1 +

Tn,2 = OP (h
4l) + OP (n

−1h−d/2); and the bandwidth that minimizes the order of the sum

of these two terms satisfies h ∝ n−2/(8l+d). Moreover, with this choice of bandwidth

equation (3.1) holds with Rn = OP (n
−8l/(8l+d)).

Again, Corollary 1 documents a substantial advantage of SDREs relative to generic

semiparametric two-step estimators. For the latter, arguments analogous to those in

Linton (1995), Ichimura and Linton (2005) or Cattaneo et al. (2013a) show that the sum

of the “linear” and the “quadratic” term in an analogous expansion would generally only

be OP (h
2l) + OP (n

−1h−d), where the two summands corresponds to the orders of the

first-stage smoothing bias and variance, respectively.2 A linear representation analogous

to (3.1) could thus at best be obtained with Rn = OP (n
−2l/(2l+d)), which is slower than

the rate we get for SDREs. For the simple case with d = l = 1, for example, a generic

semiparametric estimator differs from its asymptotically linear representation by a term

that is at least OP (n
−2/3), whereas for our SDREs the difference can be as small as

OP (n
−8/9). As a consequence, we can expect standard Gaussian approximations based

on linear representations like (3.1) to be more accurate in finite samples for our SDREs.

It is common practice to approximate the first-order bias and second-order variance

of semiparametric two-step estimators by the mean and variance of the leading terms in

2For a generic semiparametric estimator that is linear in the nonparametric component better rates

could be obtained, because in this case the “quadratic” term is exactly equal to zero.
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a quadratic expansion (Linton, 1995). Corollary 1 therefore implies a reduction of both

quantities for SDREs relative to generic semiparametric estimators. Moreover, a careful

inspection of the proof of Corollary 1 shows that the term of order n−1h−d/2 is actually

mean zero, whereas for a generic estimator the term of order n−1h−d is not (Linton, 1995;

Cattaneo et al., 2013a). This means that the amount of bias reduction that is achieved

by using an SDRE is even bigger than what is immediately apparent from the corollary.

4. Application to Estimation of Treatment Effects

In this section, we apply our theory to the problem of estimating the causal effect of a

binary treatment on some outcome variable of interest. See Imbens (2004) and Imbens

and Wooldridge (2009) for excellent surveys of the extensive literature on this topic.

4.1. Model and Parameters of Interest. We now provide a more detailed descrip-

tion of the model used in Examples 3 and 4. Following Rubin (1974), we define treatment

effects in terms of potential outcomes. Let Y (1) and Y (0) denote the potential outcomes

with and without taking some treatment, respectively, with D = 1 indicating partici-

pation in the treatment, and D = 0 indicating non-participation in the treatment. We

observe the realized outcome Y = Y (D), but never the pair (Y (1), Y (0)). The data

consist of a sample from the distribution of Z = (Y,D,X), where X is some vector

of covariates that are unaffected by the treatment. We write Πo = E(D), denote the

propensity score by πo(x) = E(D|X = x), and define the conditional expectation func-

tion µY
o (d, x) = E(Y |D = d,X = x). We focus on the Population Average Treatment

Effect (ATE)

τo = E(Y (1)− Y (0))

and the Average Treatment Effect on the Treated (ATT)

γo = E(Y (1)− Y (0)|D = 1)

as our parameters of interest. Since we observe either Y (1) or Y (0), but never both,

we have to impose further restrictions on the mechanism that selects individuals into

treatment to achieve identification. Here we maintain the assumptions that the selection

mechanism is “unconfounded” and satisfies a “strict overlap” condition. Unconfound-

edness means that conditional on the observed covariates, the treatment indicator is

independent of the potential outcomes, i.e. (Y (1), Y (0))⊥D|X (Rosenbaum and Rubin,

1983). This condition is sometimes also referred to as selection on observables (Heckman
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and Robb, 1985). Strict overlap means that the propensity score is bounded away from

zero and one, i.e. P (π < πo(X) < π) = 1 for π > 0 and π < 1. This condition is impor-

tant to ensure that the semiparametric efficiency bounds for estimating our parameters

of interest are finite (Khan and Tamer, 2010). Hahn (1998) derived the semiparametric

efficiency bounds for estimating the ATE and the ATT in this setting (under some ad-

ditional smoothness conditions on the model). That is, he showed that the asymptotic

variance of any regular estimator of the ATE and ATT is bounded from below by

V ∗
ate = E

(
σ2(1, X)

πo(X)
+

σ2(0, X)

1− πo(X)
+ (µY

o (1, X)− µY
o (0, X)− τo)

2

)
and

V ∗
att = E

(
πo(X)

Π2
o

(
σ2(1, X) +

πo(X)σ2(0, X)

1− πo(X)
+ (µY

o (1, X)− µY
o (0, X)− γo)

2

))
,

respectively, where σ2(d, x) = Var(Y |D = d,X = x). Semiparametric two-step esti-

mators that achieve these bounds have been studied by Heckman, Ichimura, and Todd

(1997), Heckman, Ichimura, Smith, and Todd (1998), Hahn (1998), Hirano et al. (2003)

or Imbens, Newey, and Ridder (2005), among others.

Doubly robust estimators of treatment effect parameters that impose additional para-

metric restrictions on nuisance functions have been studied by Robins et al. (1994), Robins

and Rotnitzky (1995), Rotnitzky, Robins, and Scharfstein (1998) and Scharfstein et al.

(1999), among others, and are widely used in applied work. Cattaneo (2010) proposed

an estimator of the ATE that has the same structure as our SDRE, but did not formally

show the favorable properties of this approach relative to other estimators.

4.2. Estimating the Average Treatment Effect for the Population. We now

use the methodology developed in Section 2–3 to study a SDRE of the ATE τo =

E(Y (1) − Y (0)). Straightforward calculations show that under unconfoundedness we

can characterize τo through the moment condition

E(ψate(Z, τo, πo(X), µo(X))) = 0,

where µo(x) = (µY
o (1, x), µ

Y
o (0, x)) and

ψate(z, τ, π(x), µ(x)) =
d(y − µY (1, x))

π(x)
− (1− d)(y − µY (0, x))

1− π(x)
+ (µY (1, x)− µY (0, x))− τ

is the efficient influence function for estimating τo (Hahn, 1998). It is also easily verified

that the above moment condition is doubly robust, and that the orthogonality condition

holds because of unconfoundedness. Given nonparametric estimates of the propensity
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score πo and the regression function µY
o , we estimate the ATE by the value that sets a

sample version of this moment condition equal to zero. This leads to the estimator

τ̂DR =
1

n

n∑
i=1

(
Di(Yi − µ̂Y (1, Xi))

π̂(Xi)
− (1−Di)(Yi − µ̂Y (0, Xi))

1− π̂(Xi)
+ (µ̂Y (1, Xi)− µ̂Y (0, Xi))

)
.

Since we can anticipate the asymptotic variance of τ̂DR to be E(ψate(Z, τo, πo(X), µo(X))2)

from Theorem 1, we can also already define the corresponding estimator as follows:

V̂ ∗
ate =

1

n

n∑
i=1

ψate(Zi, τ̂DR, π̂o(Xi), µ̂o(Xi))
2.

We define π̂ as the lπ-th order “leave-i-out” local polynomial Probit estimator of πo(x)

using the bandwidth hπ, and µ̂
Y (d, x) as the usual lµth order “leave-i-out” local polyno-

mial estimator of µY
o (d, x) using a bandwidth hµ. That is, using the notation that λπ(x) =

[x1, x
2
1, . . . , x

lπ
1 , . . . , xdX , x

2
dX
, . . . , xlπdX ]

⊤ and λµ(x) = [x1, x
2
1, . . . , x

lµ
1 , . . . , xdX , x

2
dX
, . . . , x

lµ
dX
]⊤,

we define

π̂(Xi) = Φ(âπ(Xi)) and µ̂(d,Xi) = âµ(d,Xi),

respectively, where

(âπ(Xi), b̂π(Xi)) = argmin
a,b

∑
j ̸=i

(
Dj − Φ(a− b⊤λπ(Xj −Xi))

)2
Khπ(Xj −Xi),

(âµ(d,Xi), b̂µ(d,Xi)) = argmin
a,b

∑
j ̸=i

I{Dj = d}
(
Yj − a− b⊤λµ(Xj −Xi)

)2
Khµ(Xj −Xi),

and Φ(·) is the CDF of the standard normal distribution. Note that we slightly deviate

from the general theory presented in Section 2 by using a local polynomial Probit esti-

mator for the propensity score instead of a standard local polynomial smoother. This

ensures that the estimator of πo is bounded between 0 and 1, and should improve the

finite-sample properties of the procedure. This choice has no impact on our asymptotic

analysis, as it is well known from the work of e.g. Fan, Heckman, and Wand (1995), Hall,

Wolff, and Yao (1999) or Gozalo and Linton (2000) that the asymptotic bias of the local

polynomial Probit estimator is of the same order of magnitude as that of the usual local

polynomial estimator uniformly over the covariates’ support, and that the two estimators

have the same stochastic behavior.

To study the asymptotic properties of the SDRE τ̂DR, we impose the following as-

sumptions, which essentially restate the content of Assumption 1 using the notation of

the present treatment effects setting.
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Assumption 5. (i) The random vector X is continuously distributed with compact sup-

port IX , (ii) the corresponding density function fX is bounded with bounded first-order

derivatives, and satisfies infx∈IX fX(x) ≥ δ for some constant δ > 0, and (iii) the function

πo(x) is (lπ + 1) times continuously differentiable.

Assumption 6. (i) For any d ∈ {0, 1}, the random vector X is continuously distributed

conditional on D = d with compact support IX , (ii) the corresponding density functions

fX|d are bounded with bounded first-order derivatives, and satisfy infx∈IX fX|d(x) ≥ δ for

some constant δ > 0 and any d ∈ {0, 1}, (iii) supx∈Ix,d∈{0,1} E(|Y |c|X = x,D = d) < ∞
for some constant c > 2 and any d ∈ {0, 1} (iv) the function µo(d, x) is (lµ + 1) times

continuously differentiable with respect to its second argument for any d ∈ {0, 1}.

The following Theorem establishes the asymptotic properties of the SDRE τ̂DR.

Theorem 2. Suppose Assumption 5–6 hold, and that Assumption 2–4 hold with (lp, dp, hp) =

(lπ, dX , hπ) and (lq, dq, hq) = (lµ, dX , hµ). Then the following holds:

i) τ̂DR
p→ τo, and

√
n(τ̂DR−τo)

d→ N(0, V ∗
ate), and thus τ̂DR achieves the semiparametric

efficiency bound for estimating τo.

ii) If the conditions of the theorem are satisfied with lπ = lµ ≡ l and hπ ∝ hµ ∝
n−2/(8l+dX), then τ̂DR − τo = n−1

∑n
i=1 ψate(Zi, τo, πo(Xi), µo(Xi)) +OP (n

−8l/(8l+dX)).

iii) V̂ ∗
ate

p→ V ∗
ate.

Theorem 3 shows that the semiparametric DR estimator τ̂DR enjoys the same efficiency

property as e.g. the Inverse Probability Weighting estimator of Hirano et al. (2003), which

is based on the moment condition τo = E(DY/πo(X) + (1 − D)Y/(1 − πo(X))), or the

Regression estimator of Imbens et al. (2005), which is based on the moment condition

τo = E(µY
o (1, X) − µY

o (0, X)). However, following the discussion after Theorem 1, the

SDRE has a number of theoretical and practical advantages relative to kernel-based

versions of these estimators,3 that make it preferable to be used in practice.

Remark 1 (Selection of Tuning Parameters). Implementing the estimator τ̂DR requires

choosing two types of tuning parameters for the nonparametric estimation step: the

bandwidths and the order of the local polynomials. We recommend using lπ = lµ = 1 as

3Both Hirano et al. (2003) and Imbens et al. (2005) consider series estimation in the first stage, and

thus their results are not directly comparable to ours. See Ichimura and Linton (2005) for an analysis

of the Inverse Probability Weighting estimator when the propensity score is estimated via local linear

regression.
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long as dX ≤ 5, as such a choice is compatible with the asymptotic theory and local linear

regression estimators are well-known to have superior small-sample properties relative to

higher order local polynomial smoothers. If dX ≤ 3, our theory also allows choosing the

bandwidths that minimize a least-squares cross validation criterion, i.e. using

hπ = argmin
h

n∑
i=1

(Di − π̂(Xi))
2 and hµ = argmin

h

n∑
i=1

(Yi − µ̂Y (Di, Xi))
2.

As pointed out above, such a choice has no particular optimality properties for estimating

τo, but it has the advantage of being objective, data-driven, and easily implementable.

4.3. Estimating the Average Treatment Effect for the Treated. In this sec-

tion, we consider semiparametric DR estimation of the Average Treatment Effect for the

Treated γ0 = E(Y (1)−Y (0)|D = 1). Again, straightforward calculations show that under

unconfoundedness we can characterize γo through the moment condition

E(ψatt(Z, τate, πo(x), µ
Y
o (0, x),Πo) = 0,

where

ψatt(z, γ, π(x), µ
Y (0, x),Π) =

d(y − µY (0, x))

Π
− π(x)

Π
· (1− d)(y − µY (0, x))

1− π(x)
− γ.

It is also easily verified that this moment condition is doubly robust with respect to the

two nuisance functions, and that the orthogonality condition holds because of uncon-

foundedness. Given the same nonparametric estimators of the propensity score πo and

the regression function µY
o we defined above, and setting Π̂ =

∑n
i=1Di/N , the SDRE of

the ATT is given by the value that sets a sample version of this moment condition equal

to zero, namely

γ̂DR =
1

n

n∑
i=1

(
Di(Yi − µ̂Y (0, Xi))

Π̂
− π̂(Xi)

Π̂
· (1−Di)(Yi − µ̂Y (0, Xi))

1− π̂(Xi)

)
.

Since from Theorem 1 we can anticipate the form of the asymptotic variance of γ̂DR, we

can also already define its estimator as follows:

V̂ ∗
att =

1

n

n∑
i=1

ψatt(Zi, γ̂DR, π̂o(Xi), µ̂
Y
o (0, Xi), Π̂)

2.

The following Theorem establishes the estimator’s asymptotic properties.

Theorem 3. Suppose Assumption 5–6 hold, and that Assumption 2–4 hold with (lp, dp, hp) =

(lπ, dX , hπ) and (lq, dq, hq) = (lµ, dX , hµ). Then
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i) γ̂DR
p→ γo, and

√
n(γ̂DR−γo)

d→ N(0, V ∗
att), and thus γ̂DR achieves the semiparametric

efficiency bound γo in the absence of knowledge of the propensity score.

ii) If the conditions of the theorem are satisfied with lπ = lµ ≡ l and hπ ∝ hµ ∝
n−2/(8l+dX), then γ̂DR−γo = n−1

∑n
i=1 ψatt(Zi, γo, πo(Xi), µ

Y
o (0, Xi),Πo)+oP (n

−8l/(8l+dX)).

iii) V̂ ∗
att

p→ V ∗
att.

The discussion after Theorem 3 applies analogously to the result in Theorem 4. The

SDRE of the ATT is not only semiparametrically efficient, but its properties also compare

favorably to those of other efficient estimators that use only a nonparametric estimate

of either the propensity score πo(·) (e.g. Hirano et al., 2003) or the regression function

µY
o (0, ·) (e.g. Imbens et al., 2005).

5. Monte Carlo

In this section, we illustrate the finite sample properties of SDREs through a small scale

Monte Carlo experiment, and compare them to those of other semiparametric two-step

estimators. We consider the simple missing data model presented in Example 1 above:

the covariate X is uniformly distributed on the interval [0, 1], the outcome variable Y is

normally distributed with mean µo(X) = (3X − 1)2 and variance 1, and the missingness

indicatorD is generated as a Bernoulli random variable with mean πo(X) = 1−.2×µo(X).

Our parameter of interest is θo = E(Y ) = 1, and the semiparametric variance bound for

estimating this parameter is V ∗ ≈ 2.632. We study the sample size n = 200, and set the

number of replications to 5,000. We consider three estimators of θo = E(Y ), namely the

semiparametric doubly robust one based on a sample analogue of the efficient influence

function (DR), inverse probability weighting (IPW), and a regression-based estimator

(REG):

θ̂DR =
1

n

n∑
i=1

(
Di(Yi − µ̂(Xi))

π̂(Xi)
+ µ̂(Xi)

)
θ̂IPW =

1

n

n∑
i=1

DiYi
π̂(Xi)

θ̂REG =
1

n

n∑
i=1

µ̂(Xi).

We define π̂ as the “leave-i-out” local linear Probit estimator of πo(x) using the bandwidth

h ∈ {.1, .15, . . . , .6}, and µ̂(x) as the “leave-i-out” local linear estimator of µo(x) using a
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bandwidth g ∈ {.035, .05, . . . , .185}. The construction of these nonparametric estimators

is analogous to that described in Section 4. We also consider nominal (1− α) confidence

intervals of the usual form

CI1−α
j =

[
θ̂j ± Φ−1(1− α/2)(V̂j/n)

1/2
]

with Φ−1(α) the α quantile of the standard normal distribution and

V̂j =
1

n

n∑
i=1

(
Di(Yi − µ̂(Xi))

π̂(Xi)
+ µ̂(Xi)− θ̂j

)2

an estimate of the asymptotic variance, for j ∈ {DR, IPW,REG}.

Our simulation results generally confirm the predictions of our asymptotic theory. In

Figure 1, we plot the Mean Squared Error (MSE), the (absolute) bias, and the variance

of the IPW estimator as a function of the bandwidth h, and compare the results to those

of DR estimators using various values of the bandwidth g. In Figure 2, we plot the same

three quantities for the REG estimator as a function of the bandwidth g, and compare

the results to those of DR estimators using various values of the bandwidth h. Clearly,

the bias of both IPW and REG varies substantially with the respective bandwidth. To

a lesser extend, this applies also to the variances of the two estimators, especially in the

case of IPW. As a consequence, the MSE shows strong dependence on the bandwidth in

both cases. It is minimized for h = .4 and g = .05, respectively, but these values would be

very difficult to determine by some rule of thumb in an empirical application.4 Moreover,

in both cases the minimum is much larger than the asymptotic variance V ∗ ≈ 2.632 that

it is supposed to achieve.

For the DR estimators, we observe that those using one of the two smallest band-

widths, i.e. either h = .1 or g = .035, exhibit somewhat different behavior from the

remaining ones. For DR estimators using h > .1 and g > .035, the MSE, bias and vari-

ance are all very similar, and exhibit only little variation with respect to the bandwidth.

The variance of these DR estimators is substantially lower than that of IPW, and broadly

similar to that of REG (with some minor gains for larger values of g). The variance is

also very close to the semiparametric efficiency bound V ∗ ≈ 2.632. These DR estimators

also have very little bias for all bandwidth choices. DR estimators that use either h = .1

or g = .035, the two smallest bandwidth values, have somewhat higher variance than

4To give some point of reference, in this setting the average bandwidth values selected by least squares

cross validation are equal to about .1 for both the propensity score and the regression function. Our

graphs show that both IPW and REG do not perform well with such a choice of bandwidth.

21



0.1 0.2 0.3 0.4 0.5 0.6

3.0

3.5

4.0

4.5

n × MSE

Bandwidth h

0.1 0.2 0.3 0.4 0.5 0.6

0.0

0.2

0.4

0.6

0.8

n × BIAS

Bandwidth h

0.1 0.2 0.3 0.4 0.5 0.6

3.0

3.5

4.0

n × VARIANCE

Bandwidth h

Figure 1: Simulation results: MSE, absolute bias and variance of the IPW estimator for various

values of h (bold solid line), compared to results for the DR estimator with bandwidth g equal

to .035 (short-dashed line), .065 (dotted line), .095 (dot-dashed line), .125 (long dashed line),

.155 (long dashed dotted line), and .185 (thin solid line).
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Figure 2: Simulation results: MSE, absolute bias and variance of the REG estimator for various

values of g (bold solid line), compared to results for the DR estimator with bandwidth h equal

to .1 (short-dashed line), .2 (dotted line), .3 (dot-dashed line), .4 (long dashed line), .5 (long

dashed dotted line), and .6 (thin solid line).

those using larger bandwidths, but are also essentially unbiased. As a consequence, they

still compare favorably to both IPW and REG in terms of MSE.

We also compute the empirical coverage probabilities of the confidence intervals CI0.95j

for j ∈ {DR, IPW,REG}, using again various bandwidths for estimating the nonpara-

22



Table 1: Simulation Results: Empirical coverage probability of nominal 95% confidence intervals

based on either the DR, IPW or REG estimator, for various bandwidth values.

DR g / h .1 .2 .3 .4 .5 .6

.035 0.948 0.947 0.946 0.945 0.942 0.941

.065 0.951 0.949 0.949 0.949 0.948 0.948

.095 0.954 0.953 0.952 0.951 0.950 0.949

.125 0.952 0.953 0.950 0.949 0.948 0.947

.155 0.952 0.950 0.950 0.948 0.947 0.946

.185 0.952 0.950 0.949 0.950 0.946 0.943

IPW g / h .1 .2 .3 .4 .5 .6

.035 0.920 0.936 0.933 0.930 0.922 0.913

.065 0.912 0.933 0.926 0.930 0.920 0.907

.095 0.909 0.930 0.926 0.928 0.917 0.905

.125 0.908 0.928 0.926 0.927 0.915 0.902

.155 0.909 0.927 0.927 0.926 0.917 0.902

.185 0.910 0.928 0.928 0.927 0.916 0.901

REG g / h .1 .2 .3 .4 .5 .6

.035 0.949 0.946 0.945 0.943 0.941 0.941

.065 0.942 0.939 0.941 0.940 0.937 0.937

.095 0.935 0.932 0.933 0.930 0.928 0.926

.125 0.909 0.909 0.907 0.904 0.903 0.900

.155 0.883 0.881 0.878 0.877 0.870 0.868

.185 0.875 0.869 0.869 0.865 0.861 0.855

metric components. Results are reported in Table 1. Note that computing a confidence

interval for θo based on the IPW estimator requires an estimate of µo, and similarly a

confidence interval based on the REG estimator requires and estimate of πo. Therefore

all confidence intervals vary with respect to both bandwidth parameters. Our results

show that the coverage probability of DR-based confidence intervals is extremely close to

its nominal value for all combinations of bandwidths we consider. IPW-based confidence

intervals exhibit slight under-coverage all values of the two bandwidth. REG-based confi-

dence intervals have good coverage properties for g = .035 and increasing under-coverage

for larger values of g, irrespective of the choice of h.
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6. Empirical Application

In order to investigate the relative performance of SDREs using actual data, we conduct

a small-scale study on the effect of maternal smoking during pregnancy on birth weight.

We use the same dataset as in Almond, Chay, and Lee (2005) who study the economic

costs of low birth weight using several non-experimental techniques. That same dataset

was also used in a recent paper by Cattaneo (2010), who exploits the fact that mothers

report their daily smoking intensity to apply his semiparametric method of estimation of

multi-valued treatment effects.

The original data is a very rich database of 497,139 singleton births that took place in

Pennsylvania between 1989 and 1991. As we are using the data for illustration purposes

only, we randomly selected 5,000 observations from the original data and kept a few

covariates in order to decrease the complexity. Also, to have a relatively homogeneous

sample, we only kept non-hispanic mothers who consumed no alcohol during pregnancy,

and who were in the 14–38 age range. In our sample, both parents also have at least 8

years of schooling. After applying these filters, we ended up with 4,317 observations.

Our treatment variable is a dummy variable that equals one if the mother smoked

during pregnancy and zero otherwise, whereas our response variable is birth weight mea-

sured in grams. The covariates are mother’s age and a dummy for being married, as those

are in our sample the most important ‘determinants’ of both smoking during pregnancy

and birth weight.5 In Table 2, we report some summary statistics for the variables we

use in this section.

Our parameter of interest is the Average Treatment Effect on the Treated (ATT).

Almond et al. (2005) found a strong negative effect of about 200 to 250 grams of ma-

5The reasoning for using that particular sample and maintaining these few covariates is the following.

A quick inspection of data revealed bunching on father’s and mother’s education at 0, and that was

mostly likely caused by misreporting, especially for father’s information. We then dropped all births in

which parents have less than 8 years of schooling. A multiple regression of treatment dummy on all other

covariates revealed that maternal alcohol consumption, mother being hispanic and being married were

important determinants of smoking habits, along with a few others variables. However, given that there

were only few expecting mothers that were hispanic or had alcohol consumption habits, we dropped them

from our data and re-ran the same regression but separately for the subsamples of married and unmarried

mothers. We dropped all regressors with t-statistics below 2 in at least one subsample regression. We

ended up with four covariates. We then ran a regression of birth weight on the treatment dummy and

the remaining five regressors. Beyond the treatment dummy, only the dummy for being married and

mother’s age were significant at the 10% level, and those were the variables we kept in our analysis.
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Table 2: Summary Statistics: Means and Standard Deviations (in paranthesis)

Overall Smoker Non-Smoker Diff. T-Stat

Smoker 0.17 - - - -

(0.38) - - - -

Birth weight 3377.82 3164.65 3421.50 -256.85 -11.16

(576.29) (562.46) (569.39)

Mother Married 0.25 0.45 0,21 0.25 14.30

(0.43) (0.50) (0.41)

Mother’s Age 26.76 25.34 27.05 -1.71 -8.05

(5.27) (5.1) (5.26)

Num. Obs. 4317 734 3583 - -

ternal smoking on birth weight using both subclassification on the propensity score and

regression adjusted methods to estimate the ATT. For both (i) the conditional expec-

tation of birth weight given covariates for the non-smoking mothers, µY
o (0, x), and (ii)

the probability of smoking given covariates (the propensity-score), πo(x), they used para-

metric specifications. We estimate both functions nonparametrically, using local linear

regression for (i) and local linear probit regression for (ii). In both cases we apply the

leave-i-out version of the estimator, as discussed previously in subsections 4.2 and 4.3,

and used Gaussian kernels. Given that we have a continuous variable, mother’s age, and

a binary one, the dummy for being married, we therefore divided the sample between

married and single mothers and estimated (i) and (ii) for each subsample. We then used

those estimates to calculate the semiparametric doubly robust (DR), regression-based

(REG) and inverse probability weighting (IPW) estimators. Following previous notation,

these estimators are defined as

γ̂DR =
1

n

n∑
i=1

(
Di(Yi − µ̂Y (0, Xi))

Π̂
− π̂(Xi)

Π̂
· (1−Di)(Yi − µ̂Y (0, Xi))

1− π̂(Xi)

)
,

γ̂IPW =
1

n

n∑
i=1

(
DiYi

Π̂
− π̂(Xi)

Π̂
· (1−Di)Yi
1− π̂(Xi)

)
,

and

γ̂REG =
1

n

n∑
i=1

(
Di(Yi − µ̂Y (0, Xi))

Π̂

)
.

We used the cross-validation criterion presented in subsection 4.2 to select a baseline

bandwidth for our kernel estimators. For object (i), the conditional expectation, the

baseline bandwidth, g∗, was 2.1 standard deviations of mother’s age, whereas for object
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Table 3: Point estimates of ATT of maternal smoking on birth weight (in grams) using DR,

IPW or REG estimators, for various bandwidth values (multiples of baseline bandwidth)

DR g / h 0.1 0.5 0.75 1 1.33 2 10

0.1 -178.7 -208.2 -207.8 -207.8 -207.7 -207.6 -207.5

0.5 -173.8 -206.3 -205.1 -204.7 -204.4 -204.1 -203.9

0.75 -173.5 -206.1 -204.9 -204.4 -203.9 -203.3 -202.7

1 -173.1 -206.0 -204.8 -204.2 -203.7 -202.9 -202.0

1.33 -172.8 -206.0 -204.7 -204.1 -203.5 -202.7 -201.5

2 -172.6 -206.0 -204.6 -204.1 -203.4 -202.5 -201.1

10 -172.4 -205.9 -204.6 -204.0 -203.4 -202.3 -200.8

IPW h 0.1 0.5 0.75 1 1.33 2 10

-457.5 -201.8 -182.0 -163.4 -153.8 -162.6 -206.0

REG g 0.1 0.5 0.75 1 1.33 2 10

-207.4 -198.8 -199.1 -199.8 -200.4 -200.4 -201.3

(ii), the propensity-score, the baseline bandwidth, h∗, was 0.81 standard deviation of

mother’s age. Results are presented for seven choices of bandwidths: 1/10, 1/2, 3/4, 1,

4/3, 2, and 10 times the respective baseline bandwidth.

In Table 3 we report ATT point estimates. For different choices of bandwidths, the

results range from 198.8 to 207.4 for the REG estimator, from 153.8 to 457.5 for the

IPW estimator and from 172.4 to 208.2 for the DR estimator. However, if we fix g, the

bandwidth for (i), at g∗ and let h assume different values, DR estimates range from 173.1

to 206, whereas IPW estimates vary from 153.8 to 457.5. And if we fix h, the bandwidth

for (ii), at h∗ and let g assume different values, DR estimates range from 204.0 to 207.8,

whereas REG estimates vary from 198.8 to 207.4. In both cases, we can see that the DR

estimator is much less sensitive to the choice of the bandwidth relative to the other two

estimators. Finally, note that when fixing one bandwidth at any value, not only at the

baseline, DR estimates always have the smallest range of variation as a function of the

other bandwidth.

Even though REG and IPW point estimates do not vary with h and g, respectively,

their standard errors do. To see this, note that for each of the three estimators one has

to compute the respective estimate of asymptotic variance

V̂ ∗
att,j =

1

n

n∑
i=1

ψatt(Zi, γ̂j, π̂(Xi), µ̂
Y (0, Xi), Π̂)

2,

where j = DR, IPW, REG. One can see that the estimator of the asymptotic variance
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does depend on estimates of both µY
o (0, x) and πo(x) and because standard errors are

simply se(γ̂j) = (V̂ ∗
att,j/n)

1/2 they will thus depend on the choice of first-stage smoothing

parameters. In Table 4 we report 90% confidence intervals for γo based on the usual first

order asymptotic approximation for each one of these three estimators. Specifically, they

are calculated using the formula

CI0.9j =
[
γ̂j ± Φ−1(0.95)se (γ̂j)

]
.

Results from Table 4 point out that there is very little variation in terms of CI’s width.

In fact, if we fix g, the bandwidth for (i), at g∗ and let h assume different values, width

of DR confidence intervals ranges from 82.1 to 153.9, width of IPW confidence intervals

varies from 82.1 to 154.5 and width of REG confidence intervals varies from 82.1 to 153.9.

In all three cases, the longest confidence intervals result from using the extremely small

bandwidth h = h∗/10. On the other hand, if we fix h, the bandwidth for (ii), at h∗ and

let g assume different values, the width of confidence intervals based on DR, IPW and

REG presents the same range values from 82.2 to 82.5. A similar pattern occurs for fixing

g and h separately at any fixed value.

These results show that even though point estimates do depend on the choice of

estimator and smoothing parameters, standard errors seem to be much more stable as

they do not vary much with the type of estimator. The only occasion we obtain very high

values for standard errors is when substantially undersmoothing the propensity-score. In

that case, if we use h = h∗/10, then standard errors will be almost as twice the value

obtained using all other bandwidth values considered. It seems that when using such a

small bandwidth the estimated propensity score becomes close to one in some regions

of the covariate space, which in turn gives very large weight to some observations when

calculating IPW and DR.

7. Conclusions

Semiparametric two-step estimation based on a doubly robust moment condition is a

highly promising methodological approach in a wide range of empirically relevant mod-

els, including many applications that involve missing data or the evaluation of treatment

effects. Our results suggest that SDREs have favorable properties relative to other semi-

parametric estimators that are currently widely used in such settings, such as e.g. Inverse

Probability Weighting, and should thus be of particular interest to practitioners in these

areas. From a more theoretical point of view, we have shown that SDREs are generally
√
n-consistent and asymptotically normal under weaker conditions on the smoothness of
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the nuisance functions, or, equivalently, on the accuracy of the first step nonparametric

estimates, than those commonly used in the literature on semiparametric estimation. As

a consequence, the stochastic behavior of SDREs can be better approximated by classical

first-order asymptotics. We view these results as an important contribution to a recent

literature that aims at improving the accuracy of inference in semiparametric models (e.g.

Robins et al., 2008; Cattaneo et al., 2013a,b).

A. Proofs of Main Results

A.1. Proof of Theorem 1. To prove the first statement, note that it follows from the

differentiability of ψ with respect to θ and the definition of θ̂ that

θ̂ − θo = Γn(θ
∗, p̂, q̂)−1 1

n

n∑
i=1

ψ(Ziθo, p̂(Ui), q̂(Vi))

for some intermediate value θ∗ between θo and θ̂, and Γn(θ, p, q) =
∑n

i=1 ∂ψ(Ziθ, p̂(Ui), q̂(Vi))/∂θ.

It also follows from standard arguments that Γn(θ
∗, p̂, q̂) = Γo + oP (1). Next, we consider an

expansion of the term n−1
∑n

i=1 ψ(Ziθo, p̂(Ui), q̂(Vi)). Using the notation that

ψp(Zi) = ∂ψ(Zi, t, qo(Vi))/∂t|t=po(Ui),

ψpp(Zi) = ∂2ψ(Zi, t, qo(Vi))/∂t|t=po(Ui),

ψq(Zi) = ∂ψ(Zi, po(Ui), t)/∂t|t=qo(Vi),

ψqq(Zi) = ∂2ψ(Zi, po(Ui), t)/∂t|t=qo(Vi),

ψpq(Zi) = ∂2ψ(Zi, t1, t2)/∂t1∂t2|t1=po(Ui),t2=qo(Vi),

we find that by Assumption 3 we have that

1

n

n∑
i=1

ψ(Ziθo, p̂(Ui), q̂(Vi))−
1

n

n∑
i=1

ψ(Ziθo, po(Ui), qo(Vi))

=
1

n

n∑
i=1

ψp(Zi)(p̂(Ui)− po(Ui)) +
1

n

n∑
i=1

ψq(Zi)(q̂(Vi)− qo(Vi))

+
1

n

n∑
i=1

ψpp
i (p̂(Ui)− po(Ui))

2 +
1

n

n∑
i=1

ψqq
i (q̂(Vi)− qo(Vi))

2

+
1

n

n∑
i=1

ψpq(Zi)(p̂(Ui)− po(Ui))(q̂(Vi)− qo(Vi))

+OP (∥p̂− po∥3∞) +OP (∥q̂ − qo∥3∞).

By Lemma 2(i) and Assumption 4, the two “cubic” remainder terms are both of the order

oP (n
−1/2). In Lemma 4–6 below, we show that the remaining five terms on the right hand side

of the previous equation are also all of the order oP (n
−1/2) under the conditions of the theorem.
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This completes the proof of the first statement of the theorem. The asymptotic normality result

then follows from a simple application of the Central Limit Theorem. The proof of consistency

of the variance estimator is standard, and thus omitted.

A.2. Proof of Corollary 1. Following the proofs of Lemma 4–6 below, we find that Tn,1 +

Tn,2 = O(h4l)+OP (n
−1h−d/2) under the conditions of the corollary. The remainder of the result

then follows from the convergence rate of the “cubic” remainder terms; see e.g. Lemma 2(i).

A.3. Proof of Theorem 2 and 3. These two results can be shown using the same arguments

as for the proof of Theorem 1. .

B. Auxiliary Results

In this section, we collect a number of auxiliary results that are used to prove our main theorems.

The results in Sections B.1 and B.2 are minor variations of existing ones and are mainly stated

for completeness. The result in Section B.3 is simple to obtain and stated separately again

mainly for convenience. Section B.4 contains a number of important and original lemma that

form the basis for our proof of Theorem 1.

B.1. Rates of Convergence of U-Statistics. For a real-valued function φn(x1, . . . , xk)

and an i.i.d. sample {Xi}ni=1 of size n > k, the term

Un =
(n− k)!

n!

∑
s∈S(n,k)

φn(Xs1 , . . . , Xsk)

is called a kth order U-statistic with kernel function φn, where the summation is over the set

S(n, k) of all n!/(n−k)! permutations (s1, . . . , sk) of size k of the elements of the set {1, 2, . . . , n}.
Without loss of generality, the kernel function φn can be assumed to be symmetric in its k

arguments. In this case, the U-statistic has the equivalent representation

Un =

(
n

k

)−1 ∑
s∈C(n,k)

φn(Xs1 , . . . , Xsk),

where the summation is over the set C(n, k) of all
(
n
k

)
combinations (s1, . . . , sk) of k of the

elements of the set {1, 2, . . . , n} such that s1 < . . . < sk. For a symmetric kernel function φn

and 1 ≤ c ≤ k, we also define the quantities

φn,c(x1, . . . , xc) = E(φn(x1, . . . , xc, Xc+1, . . . , Xk) and

ρn,c = Var(φn,c(X1, . . . , Xc))
1/2.

If ρn,c = 0 for all c ≤ c∗, we say that the kernel function φn is c∗th order degenerate. With this

notation, we give the following result about the rate of convergence of a kth order U-statistic

with a kernel function that potentially depends on the sample size n.
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Lemma 1. Suppose that Un is a kth order U-statistic with symmetric, possibly sample size

dependent kernel function φn, and that ρn,k <∞. Then

Un − E(Un) = OP

(
k∑

c=1

ρn,c

nc/2

)
.

In particular, if the kernel φn is c∗th order degenerate, then

Un = OP

(
k∑

c=c∗+1

ρn,c

nc/2

)
.

Proof. The result follows from explicitly calculating the variance of Un (see e.g. Van der Vaart,

1998), and an application of Chebyscheff’s inequality.

B.2. Stochastic Expansion of the Local Polynomial Estimator. In this section, we

state a particular stochastic expansion of the local polynomial regression estimators p̂ and q̂.

This is a minor variation of results given in e.g. Masry (1996) or Kong, Linton, and Xia (2010).

For simplicity, we state the result only for the former of the two estimators, but it applies

analogously to the latter by replacing p with q in the following at every occurrence. To state

the expansion, we define the following quantities:

w(u) = (1, u1, ..., u
lp
1 , u2, ..., u

lp
2 , . . . , udp , ..., u

lp
dp
)⊤

wj(u) = w((Xp,j − u)/hp)·

Mp,n(u) =
1

n

n∑
j ̸=i

wj(u)wj(u)
⊤Khp(Xp,j − u),

Np,n(u) = E(wj(u)wj(u)
⊤Khp(Xp,j − u)),

ηp,n,j(u) = wj(u)wj(u)
⊤Khp(Xp,j − u)− E(wj(u)wj(u)

⊤Khp(Xp,j − u)).

To better understand this notation, note that for the simple case that lp = 0, i.e. when

p̂ is the Nadaraya-Watson estimator, we have that wj(u) = 1, that the term Mp,n(u) =

n−1
∑n

i=1Khp(Xp,i − u) is the usual Rosenblatt-Parzen density estimator, that Np,n(u) =

E(Khp(Xp,i − u)) is its expectation, and that ηp,n,i(u) = Khp(Xp,i − u) − E(Khp(Xp,i − u))

is a mean zero stochastic term with variance of the order O(h
−dp
p ). Also note that with this

notation we can write the estimator p̂(Ui) as

p̂(Ui) =
1

n− 1

∑
j ̸=i

e⊤1 Mp,n(Ui)
−1wj(Ui)Khp(Xp,j − Ui)Yp,j ,
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where e1 denotes the (1+lpdp)-vector whose first component is equal to one and whose remaining

components are equal to zero. We also introduce the following quantities:

Bp,n(Ui) = e⊤1 Np,n(Ui)
−1E(wj(Ui)Khp(Xp,j − Ui)(po(Xp,j)− po(Ui))|Ui)

Sp,n(Ui) =
1

n

∑
j ̸=i

e⊤1 Np,n(Ui)
−1wj(Ui)Khp(Xp,j − Ui)εp,j

Rp,n(Ui) =
1

n

∑
j ̸=i

e⊤1

 1

n

∑
l ̸=i

ηp,n,l(Ui)

Np,n(Ui)
−2wj(Ui)Khp(Xp,j − Ui)εp,j

We refer to these three terms as the bias, and the first- and second-order stochastic terms,

respectively. Here εp,j = Yp,j −po(Xp,j) is the nonparametric regression residual, which satisfies

E(εp,j |Xp,j) = 0 by construction. To get an intuition for the behavior of the two stochastic

terms, it is again instructive to consider simple case that lp = 0, for which

Sp,n(Ui) =
1

nf̄p,n(Ui)

∑
j ̸=i

Khp(Xp,j − Ui)εp,j and

Rp,n(Ui) =
1

nf̄p,n(Ui)2

 1

n

∑
l ̸=i

(Khp(Xp,l − Ui)− f̄p,n(Ui))

∑
j ̸=i

Khp(Xp,j − Ui)εp,j

with E(Khp(Xp,j − u)) = f̄p,n(u). With this notation, we obtain the following result.

Lemma 2. Under Assumptions 1–2, the following statements hold:

(i) For uneven lp ≥ 1 the bias Bp,n satisfies

max
i∈{1,...,n}

|Bp,n(Ui)| = OP (h
lp+1
p ),

and the first- and second-order stochastic terms satisfy

max
i∈{1,...,n}

|Sp,n(Ui)| = OP ((nh
dp
p / log n)

−1/2) and max
i∈{1,...,n}

|Rp,n(Ui)| = OP ((nh
dp
p / log n)

−1).

(ii) For any lp ≥ 0, we have that

max
i∈{1,...,n}

|p̂(Ui)− po(Ui)−Bp,n(Ui)− Sp,n(Ui)−Rp,n(Ui)| = OP ((nh
dp
p / log n)

−3/2).

(iii) For ∥ · ∥ a matrix norm, we have that

max
i∈{1,...,n}

∥n−1
∑
j ̸=i

ηp,n,j(Ui)∥ = OP ((nh
dp
p / log n)

−1/2).

Proof. The proof follows from well-known arguments in e.g. Masry (1996) or Kong et al. (2010).
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B.3. Functional Derivatives of DR moment conditions. In this section, we formally

prove a result about the functional derivatives of DR moment conditions. Using the notation

introduced in the proof of Theorem 1, we obtain the following result.

Lemma 3. If the function ψ satisfies the Double Robustness Property in (2.2), and Assump-

tion 3 holds, then E(ψp(Z)p̄(U)) = E(ψpp(Z)p̄(U)) = E(ψq(Z)q̄(U)) = E(ψqq(Z)q̄(U)) = 0 for

all functions p̄ and q̄ such that po + tp̄ ∈ P and qo + tq̄ ∈ Q for any t ∈ R with |t| sufficiently

small.

Proof. The proof is similar for all four cases, and thus we only consider the first one. By

dominated convergence, we have that

E(ψp(Z)p̄(U)) = lim
t→0

Ψ(θo, po + tp̄, qo)−Ψ(θo, po, qo)

t
= 0

where the last equality follows since the numerator is equal to zero by the DR property.

B.4. Further Helpful Results. In this subsection, we derive a number of intermediate

results used in proof of Theorem 1.

Lemma 4. Under Assumption 1–4, the following statements hold:

(i)
1

n

n∑
i=1

ψp(Zi)(p̂(Ui)− po(Ui)) = oP (n
−1/2),

(ii)
1

n

n∑
i=1

ψq(Zi)(q̂(Vi)− qo(Vi)) = oP (n
−1/2).

Proof. We only show the first statement, as the proof for the second one is fully analogous.

From Lemma 2 and Assumption 4, it follows that

1

n

n∑
i=1

ψp(Zi)(p̂(Ui)− po(Ui)) =
1

n

n∑
i=1

ψp(Zi)(Bp,n(Ui) + Sp,n(Ui) +Rp,n(Ui))

+OP (log(n)
3/2n−3/2h

−3dp/2
p ),

and since the second term on the right-hand side of the previous equation is of the order

oP (n
−1/2) by Assumption 4, it suffices to study the first term. As a first step, we find that

1

n

n∑
i=1

ψp(Zi)Bp,n(Ui) = E(ψp(Zi)Bp,n(Ui)) +OP (h
lp+1
p n−1/2)

= OP (h
lp+1
p n−1/2),

where the first equality follows from Chebyscheff’s inequality, and the second equality follows

from Lemma 2 and the fact that by Lemma 3 we have that E(ψp(Zi)Bp,n(Ui)) = 0. Next,

consider the term

1

n

n∑
i=1

ψp(Zi)Sp,n(Ui) =
1

n2

∑
i

∑
j ̸=i

ψp(Zi)e
⊤
1 Np,n(Ui)

−1wj(Ui)Khp(Xp,j − Ui)εp,i.
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This is a second order U-Statistic (up to a bounded, multiplicative term), and since by Lemma 3

we have that E(ψp(Zi)e
⊤
1 Np,n(Ui)

−1wj(Ui)Khp(Xp,j − Ui)|Xp,j) = 0, its kernel is first-order

degenerate. It then follows from Lemma 1 and some simple variance calculations that

1

n

n∑
i=1

ψp(Zi)Sp,n(Ui) = OP (n
−1h

−dp/2
p ).

Finally, we consider the term

1

n

n∑
i=1

ψp(Zi)Rp,n(Ui) = Tn,1 + Tn,2,

where

Tn,1 =
1

n3

∑
i

∑
j ̸=i

ψp(Zi)e
⊤
1 ηp,n,j(Ui)Nn(u)

−2wj(Ui)Khp(Xp,j − Ui)εp,j and

Tn,2 =
1

n3

∑
i

∑
j ̸=i

∑
l ̸=i,j

ψp(Zi)e
⊤
1 ηp,n,j(Ui)Nn(Ui)

−2wl(Ui)Khp(Xp,l − Ui)εp,l.

Using Lemma 3, one can see that Tn,2 is equal to a third-order U-Statistic (up to a bounded,

multiplicative term) with second-order degenerate kernel, and thus

Tn,2 = OP (n
−3/2h

−dp
p )

by Lemma 1 and some simple variance calculations. On the other hand, the term Tn,1 is equal

to n−1 times a second order U-statistic (up to a bounded, multiplicative term), with first-order

degenerate kernel, and thus

Tn,1 = n−1 ·OP (n
−1h

−3dp/2
p )) = n−1/2h

−dp/2
p OP (Tn,2).

The statement of the lemma thus follows if hp → 0 and n2h
3dp
p → ∞ as n → ∞, which holds

by Assumption 4. This completes our proof.

Remark 2. Without the DR property, the term n−1
∑n

i=1 ψ
p(Zi)Bp,n(Ui) in the above proof

would be of the larger order O(h
lp+1
p ), which is the usual order of the bias due to smoothing

the nonparametric component. This illustrates how the DR property of the moment conditions

acts like a bias correction device (see also Remark 3 below).

Lemma 5. Under Assumption 1–4, the following statements hold:

(i)
1

n

n∑
i=1

ψpp(Zi)(p̂(Ui)− po(Ui))
2 = oP (n

−1/2),

(ii)
1

n

n∑
i=1

ψqq(Zi)(q̂(Vi)− qo(Vi))
2 = oP (n

−1/2).
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Proof. We only show the first statement, as the second statement is conceptually similar to

establish. Note that by Lemma 2 we have that

(p̂(u)− po(u))
2 =

6∑
k=1

Tn,k(u) +OP

( log(n)

nh
dp
p

)3/2
(OP (h

lp+1
p ) +OP

(
log(n)

nhp

))
,

where Tn,1(u) = Bp,n(u)
2, Tn,2(u) = Sp,n(u)

2, Tn,3(u) = Rp,n(u)
2, Tn,4(u) = 2Bp,n(u)Sp,n(u),

Tn,5(u) = 2Bp,n(u)Rp,n(u), and Tn,6(u) = 2Sp,n(u)Rp,n(u). Since the second term on the right-

hand side of the previous equation is of the order oP (n
−1/2) by Assumption 4, it suffices to show

that we have that n−1
∑n

i=1 ψ
pp(Zi)Tn,k(Ui) = oP (n

−1/2) for k ∈ {1, . . . , 6}. Our proof proceeds

by obtaining sharp bounds on n−1
∑n

i=1 ψ
pp(Zi)Tn,k(Ui) for k ∈ {1, 2, 4, 5} using Lemmas 3

and 1, and crude bounds for k ∈ {3, 6} simply using the uniform rates derived in Lemma 2.

First, for k = 1 we find that

1

n

n∑
i=1

ψpp(Zi)Tn,1(Ui) = E(ψpp(Zi)Bp,n(Ui)
2) +OP (n

−1/2h
2lp+2
p ) = OP (n

−1/2h
2lp+2
p )

because E(ψpp(Zi)Bp,n(Ui)
2) = 0 by Lemma 3. Second, for k = 2 we can write

1

n

n∑
i=1

ψpp(Zi)Tn,2(Ui) = Tn,2,A + Tn,2,B

where

Tn,2,A =
1

n3

∑
i

∑
j ̸=i

ψpp(Zi)(e
⊤
1 Np,n(Ui)

−1wj(Ui))
2Khp(Xp,j − Ui)

2ε2p,j

Tn,2,B =
1

n3

∑
i

∑
j ̸=i

∑
l ̸=i,j

ψpp(Zi)e
⊤
1 Np,n(Ui)

−1wj(Ui)Khp(Xp,j − Ui)εp,j

· e⊤1 Np,n(Ui)
−1wl(Ui)Khp(Xp,l − Ui)εp,l

Using Lemma 3, one can see that Tn,2,B is equal to a third-order U-Statistic with a second-order

degenerate kernel function (up to a bounded, multiplicative term), and thus

Tn,2,B = OP (n
−3/2h

−dp
p ).

On the other hand, the term Tn,2,A is (again, up to a bounded, multiplicative term) equal to

n−1 times a second order U-statistic with first-order degenerate kernel function, and thus

Tn,2,A = n−1OP (n
−1h

−3dp/2
p ) = OP (n

−2h
−3dp/2
p ).

Third, for k = 4 we use again Lemma 3 and Lemma 1 to show that

1

n

n∑
i=1

ψp(Zi)Tn,4(Ui) =
1

n2

n∑
i=1

∑
j ̸=i

ψpp(Zi)Bp,n(Ui)e
⊤
1 Np,n(Ui)

−1wj(Ui)Khp(Xp,j − Ui)εp,j

= OP (n
−1h

−dp/2
p ) ·O(h

lp+1
p ),
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where the last equality follows from the fact that n−1
∑n

i=1 ψ
p(Zi)Tn,4(Ui) is (again, up to a

bounded, multiplicative term) equal to a second order U-statistic with first-order degenerate

kernel function. Fourth, for k = 5, we can argue as in the final step of the proof of Lemma 4 to

show that

1

n

n∑
i=1

ψpp(Zi)Tn,5(Ui) = OP (n
−3/2h

−dp
p h

lp+1
p )

Finally, we obtain a number of crude bounds based on uniform rates in Lemma 2:

1

n

n∑
i=1

ψpp(Zi)Tn,3(Ui) = OP (∥Rp,n∥2∞) = OP (log(n)
2n−2h

−2dp
p )

1

n

n∑
i=1

ψpp(Zi)Tn,6(Ui) = OP (∥Rp,n∥∞) ·OP (∥Sp,n∥∞) = OP (log(n)
3/2n−3/2h

−3dp/2
p )

The statement of the lemma thus follows if hp → 0 and n2h
3dp
p / log(n)3 → ∞ as n→ ∞, which

holds by Assumption 4. This completes our proof.

Remark 3. Without the DR property, the term Tn,2,B in the above proof would be (up to a

bounded, multiplicative term) equal to a third-order U-Statistic with a first-order degenerate

kernel function (instead of a second order one). In this case, we would find that

Tn,2,B = OP (n
−1h

−dp
p ) +OP (n

−3/2h
−dp
p ) = OP (n

−1h
−dp
p ).

On the other hand, in the absence of the DR property, the term Tn,2,A would be (up to a

bounded, multiplicative term) equal to a n−1 times a second-order U-Statistic with a non-

degenerate kernel function, and thus we would have

Tn,2,A = O(n−1h
−dp
p ) +OP (n

−3/2h−dp) +OP (n
−2h−2dp) = O(h−dp/n).

In fact, the leading terms of an expansion of the sum Tn,2,A + Tn,2,B are thus a pure bias term

of order n−1h
−dp
p , and a mean zero random variable that is multiplied by n−1h

−dp
p . These

terms are analogous to the “degrees of freedom bias” in Ichimura and Linton (2005), and the

“nonlinearity bias” or “curse of dimensionality bias” in Cattaneo et al. (2013a). In our context,

the DR property of the moment conditions removes both the deterministic and the stochastic

term of order n−1h
−dp
p , which illustrates how the structure of the latter acts like a bias correction

method and should reduce some finite-sample variance.

Lemma 6. Under Assumption 1–4, the following statement holds:

1

n

n∑
i=1

ψpq(Zi)(p̂(Ui)− po(Ui))(q̂(Vi)− qo(Vi)) = oP (n
−1/2).
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Proof. By Lemma 2, one can see that uniformly over (u, v) we have that

(p̂(u)− po(u))(q̂(v)− qo(v)) =

9∑
k=1

Tn,k(u, v) +OP

( log(n)

nh
dp
p

)3/2
(OP (h

lq+1
q ) +OP

(
log(n)

nh
dq
q

))

+OP

( log(n)

nh
dq
q

)3/2
(OP (h

lp+1
p ) +OP

(
log(n)

nh
dp
p

))

where Tn,1(u, v) = Bp,n(u)Bq,n(v), Tn,2(u, v) = Bp,n(u)Sq,n(v), Tn,3(u, v) = Bp,n(u)Rq,n(v),

Tn,4(u, v) = Sp,n(u)Bq,n(v), Tn,5(u, v) = Sp,n(u)Sq,n(v), Tn,6(u, v) = Sp,n(u)Rq,n(v), Tn,7(u, v) =

Rp,n(u)Bq,n(v), Tn,8(u, v) = Rp,n(u)Sq,n(v), and Tn,9(u, v) = Rp,n(u)Rq,n(v). Since the last two

terms on the right-hand side of the previous equation are easily of the order oP (n
−1/2) by As-

sumption 4, it suffices to show that for any for k ∈ {1, . . . , 9} we have that n−1
∑n

i=1 ψ
pp(Zi)Tn,k(Ui, Vi) =

oP (n
−1/2). As in the proof of Lemma 5, we proceed by obtaining sharp bounds on n−1

∑n
i=1 ψ

pp(Zi)Tn,k(Ui)

for k ∈ {1, . . . , 5, 7} using Lemma 1– 3, and crude bounds for k ∈ {6, 8, 9} simply using the

uniform rates derived in Lemma 2. First, arguing as in the proof of Lemma 4 and 5 above, we

find that

1

n

n∑
i=1

ψpp(Zi)Tn,1(Ui, Vi) = E(ψpq(Zi)Bp,n(Ui)Bq,n(Vi)) +OP (n
−1/2h

lp+1
p h

lq+1
q ) = OP (h

lp+1
p h

lq+1
q ),

where the last equation follows from the fact that E(ψpq(Zi)Bp,n(Ui)Bq,n(Vi)) = O(h
lp+1
p h

lq+1
q ).

Second, for k = 2 we consider the term

1

n

∑
i

ψpq(Zi)Tn,2(Ui, Vi) =
1

n2

∑
i

∑
j ̸=i

ψpq(Zi)Bp,n(Ui)e
⊤
1 Np,n(Vi)

−1wj(Vi)Khq(Xq,j − Vi)εq,j .

This term is (up to a bounded, multiplicative term) equal to a second-order U-Statistic with

non-degenerate kernel function. It thus follows from Lemma 1 and some variance calculations

that

1

n

∑
i

ψpq(Zi)Tn,2(Ui, Vi) = OP (n
−1/2h

lp+1
p ) +OP (n

−1h
−dq/2
q h

lp+1
p )

Using the same argument, we also find that

1

n

∑
i

ψpq(Zi)Tn,4(Ui, Vi) = OP (n
−1/2h

lq+1
q ) +OP (n

−1h
−dp/2
p h

lq+1
q ).

For k = 3, we can argue as in the final step of the proof of Lemma 4 to show that

1

n

n∑
i=1

ψpp(Zi)Tn,3(Ui, Vi) = OP (n
−1h

−dq/2
q h

lp+1
p ) +OP (n

−3/2h
−dq
q h

lp+1
p ),

and for the same reason we find that

1

n

n∑
i=1

ψpp(Zi)Tn,7(Ui, Vi) = OP (n
−1h

−dp/2
p h

lq+1
q ) +OP (n

−3/2h
−dp
p h

lq+1
q ).
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Next, we consider the case k = 5. Here we can write

1

n

∑
i

ψpq(Zi)Tn,5(Ui, Vi) = Tn,5,A + Tn,5,B,

where

Tn,5,A =
1

n3

∑
i

∑
j ̸=i

ψpq(Zi)(e
⊤
1 Np,n(Ui)

−1wp,j(Ui)Khp(Xp,j − Ui)εp,j)

· (e⊤1 Nq,hq(Vi)
−1wq,j(Vi)Khq(Xq,j − Vi)εq,j),

Tn,5,B =
1

n3

∑
i

∑
j ̸=i

∑
l ̸=i,j

ψpq(Zi)e
⊤
1 Np,n(Ui)

−1wj(Ui)Khp(Xp,j − Ui)εp,j

· e⊤1 Nq,hq(Vi)
−1wl(Vi)Khq(Xq,l − Vi)εq,l.

One can easily see that Tn,5,B is equal to a third-order U-Statistic (up to a bounded, multiplica-

tive term) with first-order degenerate kernel, and thus

Tn,5,B = OP (n
−1) +OP (n

−3/2h
−dp/2
p h

−dq/2
q )

by Lemma 1 and some straightforward variance calculations. To derive the order of the term

Tn,5,A, we exploit the orthogonality condition (2.3), which implies that E(εpεq|Xp, Xq) = 0.

Clearly, Tn,5,A is equal to n−1 times a second order U-statistic (up to a bounded, multiplicative

term), and because of (2.3) the kernel of this U-Statistic is first-order degenerate. We thus find

that

Tn,5,A = n−1 ·OP (n
−1h

−dp/2
p h

−dq/2
q ) = n−1/2OP (Tn,5,B).

by Lemma 1 and a simple variance calculation. Finally, we obtain a number of crude bounds

based on uniform rates in Lemma 2 for the following terms:

1

n

n∑
i=1

ψpp(Zi)Tn,6(Ui) = OP (∥Sp,n∥∞) ·OP (∥Rq,n∥∞) = OP (log(n)
5/2n−5/2h

−dp
p h

−3dq/2
q )

1

n

n∑
i=1

ψpp(Zi)Tn,8(Ui) = OP (∥Rp,n∥∞) ·OP (∥Sq,n∥∞) = OP (log(n)
5/2n−5/2h

−dq
q h

−3dp/2
p )

1

n

n∑
i=1

ψpp(Zi)Tn,9(Ui) = OP (∥Rp,n∥∞) ·OP (∥Rq,n∥∞) = OP (log(n)
3n−3h

−3dp/2
p h

−3dq/2
q )

The statement of the Lemma then follows from Assumption 4. This completes our proof.

Remark 4. The derivation of the order of the term Tn,5,A is the only step in our proof that

requires the orthogonality condition (2.3). Without this condition, the kernel of the respec-

tive U-Statistic would be non-degenerate, and in general we would only find that Tn,5,A =

OP (n
−1max{h−dp

p , h
−dq
q }).If the joint distribution of (U, V ) and (Xp, Xq) has full support, one

can show without invoking the orthogonality condition (2.3) that

Tn,5,A = n−1 · (OP (1) +OP (n
−1/2) +OP (n

−1h
−dp/2
p h

−dq/2
q ) = OP (n

−1) + n−1/2OP (Tn,5,B),
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which is sufficient for our purposes. However, such a support condition does not hold in any

of the examples we consider in this paper, as it rules out that Xp and Xq or U and V have

common elements.
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