[^0]
Children and Women's Participation Dynamics: Direct and Indirect Effects

Alexandru Voicu
Hielke Buddelmeyer

February 2003

Children and Women's Participation Dynamics: Direct and Indirect Effects

Alexandru Voicu
IZA Bonn
Hielke Buddelmeyer
IZA Bonn

Discussion Paper No. 729
February 2003
(revised: November 2003)

IZA
P.O. Box 7240

D-53072 Bonn
Germany
Tel.: +49-228-3894-0
Fax: +49-228-3894-210
Email: iza@iza.org

Abstract

This Discussion Paper is issued within the framework of IZA's research area Welfare State and Labor Market. Any opinions expressed here are those of the author(s) and not those of the institute. Research disseminated by IZA may include views on policy, but the institute itself takes no institutional policy positions.

The Institute for the Study of Labor (IZA) in Bonn is a local and virtual international research center and a place of communication between science, politics and business. IZA is an independent, nonprofit limited liability company (Gesellschaft mit beschränkter Haftung) supported by the Deutsche Post AG. The center is associated with the University of Bonn and offers a stimulating research environment through its research networks, research support, and visitors and doctoral programs. IZA engages in (i) original and internationally competitive research in all fields of labor economics, (ii) development of policy concepts, and (iii) dissemination of research results and concepts to the interested public. The current research program deals with (1) mobility and flexibility of labor, (2) internationalization of labor markets, (3) welfare state and labor market, (4) labor markets in transition countries, (5) the future of labor, (6) evaluation of labor market policies and projects and (7) general labor economics.

IZA Discussion Papers often represent preliminary work and are circulated to encourage discussion. Citation of such a paper should account for its provisional character. A revised version may be available on the IZA website (www.iza.org) or directly from the author.

ABSTRACT
 Children and Women's Participation Dynamics: Direct and Indirect Effects*

Children affect the after-birth labor force participation of women in two ways. Directly, the time spent in child-care reduces the labor market effort. Time spent out of the labor market while on maternity leave alters women's participation experience and indirectly affects subsequent participation behavior. This paper proposes a model that disentangles the direct and indirect effect of children on women's labor force participation, and evaluates their relative importance. Distinguishing these two effects is important for effective policy design. Participation decisions for three levels of labor market involvement are represented by a multivariate probit model. The estimation is performed using Markov chain Monte Carlo methods. The indirect effect is more important and grows with the length of the interruption. The direct effect wanes with the age of the child.

JEL Classification: C11, C15, J13, J22
Keywords: female labor supply, multivariate probit model, Gibbs sampler

Corresponding author:
Alexandru Voicu
IZA
P.O. Box 7240

D-53072 Bonn
Germany
Tel.: +49 2283894527
Fax: +49 2283894510
Email: voicu@iza.org

[^1]
1 Introduction

The eqects of children on women's labor force participation have often been studied in labor economics. The literature spans most of the last four decades and has paralleled the political debate which led to signi..cant changes in the structure of social policies regarding maternity and child care. The departing point was the recognition that children reduce women's labor supply and that the magnitude of this exect decreases with the age of the youngest child (for example, Mincer, 1962, Mincer and Polachek, 1974)¹. Initial cross-section evidence con..rmed this hypothesis. Further studies using short panel data indicated that women have a continuous labor supply. The majority either work for most of their active life or do not work at all, and participation in one period alters the participation probability in future periods (Heckman and Willis, 1977, Nakamura and Nakamura, 1985, Hyslop, 1999). When accounted for, this dependence signi..cantly changed the estimated exects of children on labor supply. Subsequent studies provided mixed evidence on the magnitude of the child exect. Nakamura and Nakamura $(1985,1994)$ found that, when controlling for previous period's labor supply, the exect of children on present labor supply disappears. Moreover, using additional information on labor supply of more distant past has no exect. Challenging their results, Duleep and Sanders (1994), found that children axect negatively the labor supply of women with strong labor market attachment. Despite con $\ddagger i c t i n g$ results, all studies underscored the importance of unobserved heterogeneity as a determinant of labor supply and of the exect of children on labor supply. The policy implication of an overriding eaect of unobserved heterogeneity on labor supply cannot be understated. If unobserved heterogeneity re \ddagger ects unobserved ability and dixerent preferences over family and career, time spent out of the market around birth will have little exect on subsequent employment probability. Hinting to a more complex process, Shapiro and M ott (1994) provide evidence that work attachment around birth is a good predictor of subsequent labor supply.

European literature was to a large extent driven by the institutional dixerences between the US and Western Europe, the dixerences among European countries, and the changes

[^2]in legislation regarding maternity and parental leave. The rich set social policies and institutional settings allowed the identi..cation and evaluation of the exects of a wide range of factors on women's labor supply around birth: the structure of the tax and bene.t system, the existence of day-care subsidies and availability of quality child care, the duration and replacement ratio of maternity and parental leaves, the organization of school day and availability of after-school care, the availability of part-time jobs, regulations regarding leaves for caring for sick children, etc. Gustafsson et al. (1996) provide a comprehensive comparison of social policies and their exect on women labor force participation in Great Britain, Germany, and Sweden. Changes in German legislation regarding maternity and parental leaves have been used by Ondrich, Spiess, and Young (1996) to assess the exect of length and level of maternal and parental bene..ts on the length of work interruptions.

This paper proposes a dixerent approach for estimating the exect of children on women's labor market behavior. Although many dixerent interpretations are possible we can classify them into two broad channels. The direct exect ${ }^{2}$ captures the reduced probability of working part time or full time for women with children. This exect is consistent with models where mother's market exort diminishes as the child-care time increases (Becker, 1985). The indirect exect operates through the exect of time out from the labor market, which is correlated with family structure. This exect could be interpreted in a model framework in which wages and participation depend on experience and job seniority. Interruptions axect these factors and will subsequently have an exect on labor market outcomes (e.g. Blau and Ferber, 1991). The relative importance of the direct and indirect exect have strong implications for the exects of maternity leave legislation. A strong indirect exect would have a larger impact in a system characterized by lengthy maternity leave periods.

We use panel data on the German labor market to investigate the dynamic patterns of labor market involvement of married women and analyze the exect of family structure number of children and age distribution - on women's labor market behavior. The empirical speci..cation allows us to disentangle the direct and indirect exect of children on mother's labor force participation. Participation decisions with three states of labor market involvement

[^3]- full time work, part-time work, and nonwork - are represented by a multivariate probit model with a general correlation structure. This model allows for a high degree of \ddagger exibility in modeling the dependence of decisions, both across choices and over time. It also avoids strong assumptions about preferences ${ }^{3}$.

Lately, two-state models of labor force participation have been estimated using maximum simulated likelihood (Hyslop, 1999). Due to the diф culty in estimation, threestate models have ben rarely used in empirical studies. However, the level of labor market involvement plays an important role in labor market dynamics. Studies analyzing transition matrices or using competing risks models show that past and current participation decisions are strongly correlated and part-time jobs rarely represents a ..rst step toward full-timejobs (for example, Blank, 1989 and 1994, for the US, and Giannelli, 1996, using German data). In this paper we use a Bayesian Markov Chain Monte Carlo (MCMC) method, introduced by Chib and G reenberg (1998), to estimate the multivariate probit mode. This method avoids the convergence problems that hamper the maximum likelihood estimation. By estimating a general correlation matrix rather than including random eaects or lagged dependent variables we control for the dependence of labor market decisions in a very \ddagger exible way. Implementing this approach is more costly for longer panels as the dimension of the parameter space rises very fast with the number of time periods ${ }^{4}$.

Consistent with previous studies, we ..nd that women's labor market histories display a remarkable continuity. The choice of labor market states is strongly persistent. For most individuals part-time employment does not constitute a state of transition toward full-time jobs. The direct eaect of children on women's labor supply is signi..cant and declines with the age of the child. The indirect exect is larger than the direct exect and increases with the length of the interruption. The choice of labor market states is persistent around birthrelated interruptions. Most women will return to their previous state. Those with high education, however, are relatively more likely to enter full-time time employment following birth interruptions, regardless of the prebirth state.

[^4]The remainder of the paper is structured as follows. Section 2 contains a theoretical background and a description of the data. The empirical speci..cation and the estimation method are presented in section 3. Section 4 gives the formal de..nition of the direct and indirect exects and describes the simulation strategy employed to calculate them. The discussion of the results, in section 5, and concluding remarks follow.

2 Theoretical background and data

The existing literature on women labor supply suggests two basic facts. First, children have a negative exect on women's labor supply. The exect fades away as children grow older. Many dixerent causes play a part. Women's physical capacity of performing market work is sharply diminished during the period surrounding birth; rearing children requires timeintensive care and is a taxing personal and family adjustment process. As children grow, caring for them requires less time and women ..nd better ways of dealing with the children and family needs. This exect can beformalized and studied using various models. The neoclassical labor supply theory assumes that individuals make employment decisions by comparing the utility of working with the utility of not working. The value of not working relative to working declines as the child ages (Mincer 1962, Heckman 1980, Leibowitz, K Ierman, and Waite 1992). In a job-search framework (M ortensen, 1986) the value of time in alternative (non-work) use can be assumed to vary with the number of children and their ages. The birth of the child will raise the value of time in alternative use and, through it, the reservation wage. As a result, the probability of employment will decline.

The second fact is that sequential employment decisions of women are correlated. As a result, labor market interruptions lower the employment probability in subsequent periods. Heckman and Willis (1977) have de.ned two sources of dependence: a) unobserved heterogeneity generated by dixerent preferences, and b) state dependence. There are multiple sources of state dependence. Human capital theory predicts that skills accumulated through experience raise the probability of working in the future. Fixed costs of entering the labor force (search costs, for example) make future participation more likely for individuals already
working. J ob matching models where employers and employees learn about the quality of the match induce state dependence even if investment in ..rm-speci..c human capital does not take place. Unobserved heterogeneity alone carries no strong implication of work interruptions. The presence of state dependence, however, is very important in studying the exect of fertility on labor supply. In the appropriate models, maternity-related work interruptions lead to lapses in the process of investment of human capital, and, possibly to depreciation of the human capital stock, search costs and information on the quality of the match may be lost. Longer interruptions are more detrimental in the human capital framework.

These two facts provide the optimal framework for studying the eaect of children on women's labor supply. They imply that a women's post-birth employment likelihood should be driven by the increased demand placed on mothers time by newborn children and by the length of the maternity-related work interruption. The .rst component should be fading with child's age. The second component should be stronger the longer the interruption, as implied by human capital investment models. In this paper we use the broad labels direct and indirect exects for these two mechanisms. The measures of the direct and the indirect exect depend on the events for which they are measured. In the next section we restrict ourselves to a set of events of interest and provide the strict de..nitions of the direct and indirect eaects for these particular events.

Germany oxers the appropriate environment for studying theexect of children on women's labor force participation and assessing the relative importance of the direct and indirect exect ${ }^{5}$. The parental leave and bene.t policies are among the most generous among the industrialized countries. The prevailing institutional settings are based on a bread-winner ideology. The tax system bene.ts one-earner families. There is very little full-day care, but high quality part-day care, subsidized by local government, is available. School day is organized assuming that the parent will help with the heavy school homework children are supposed to carry out in the afternoon. Components of maternal leave and bene..t policy include: special protection against dismissal during pregnancy and 4 months after delivery;

[^5]an 8 wedk period after birth during which mothers are not allowed to work; a protected maternity leave which, including the 8 weeks immediately following birth, lasts for 36 months; child rearing bene.t for parents not involved in full-time work, independent of the previous employment status, for a period of 24 months.

Generous policies induce mothers to drop out of the labor market for a longer period of time. As a result, the factors in \ddagger uencing the indirect exect are likely to play an important role. Not surprisingly, it has been showed that even among women who work prior to giving birth, the incidence of returning to market work in Germany is lower than in countries with less generous social policies.

We use data from ..ve waves of the German Socio-Economic Panel (GSOEP), for the years 1994 to 1998. We restrict ourselves to a balanced panel of all women between the ages of 25 and 65 who are either married or cohabitating ${ }^{6}$. This results in 2,576 individuals or 12,880 person-year observations. Table 1 contains descriptive statistics for the variables of interest and the sample distribution across levels of labor market involvement, for the ..rst wave (changes over time are not signi..cant). A pproximately half the women in the sample work and when they work they are about twice as likely to work full-time than part-time. We specify three educational classes representing the highest general education level completed - high, medium, and low. They correspond to the International Standard Classi..cation of Education (ISCED). Low education includes pre-primary, primary and lower secondary education. Medium education represents upper secondary education. High education represents tertiary education. The number of children in four age categories captures the number of children and the age distribution.

Table 2 shows the relationship between the age of the youngest child and the level of labor market involvement by education and age category. The results are consistent with previous ..ndings. Women with children work less than those without children. Having a young child drastically reduces the probability of working. The probability of working increases with the age of the youngest child. The age of the youngest child axects the level of labor market involvement dixerently across levels of education. For all levels of education, the incidence

[^6]of part-time increases when children approach school age. As children grow up, women with higher education return to levels of labor market involvement prevailing for women without children. Fewer women with medium and low education return to full-time jobs when the children grow up.

Changes in the level of labor market involvement around birth are shown in table 2a. We restrict our attention to women with one child and comparethe distribution across labor market states before and after birth. Birth drastically reduces the probability of working, which remains low for the ..rst two years after birth and recovers slowly thereafter. Full-time and part-time display dixerent dynamics. The probability of working full-time constantly increases with the age of the child. The probability of working part-time reaches its highest levels between ages 3 and 9 and then declines slowly. Overall, the presence of one child appears to permanently change the distribution across levels of labor market involvement. The probability of working and the probability of holding full-time jobs never recovers to the pre-birth levels. The probability of working part-time remains for a long period above the pre-birth level.

This preliminary evidence underscores the strong and persistent exect of children on women's labor market behavior. There is a large cross-sectional variation in the likelihood of returning to work after birth which plays an important role in the identi..cation of the direct and indirect exects. Full-time and part time display dixerent post-birth dynamics making it important to distinguish between these two states.

Raw transition dynamics are captured in the ..ve transition matrices in table 2 b , indicating movements between labor states from one wave to the next and from the ..rst wave to the end of the sample ${ }^{7}$. All three states of labor market involvement display a remarkable degree of persistence. Consistent with previous ..ndings, part-time appears to be the least persistent state. To some extent, part-time appears to play the stepping-stone role between nonwork

[^7]and full-time employment. Consistently, the transitions from nonwork to part-time are more intense than those from nonwork to full-time, and transitions from part-time to full-time are stronger than those from nonwork to full-time.

3 Empirical speci..cation

The main goal of this paper is to disentangle the direct and indirect exects of children on women's level of labor market involvement. Our empirical strategy entails several components. First, we choose a speci..cation for the cost of raising children. Second, we construct a model of labor market decisions which explicitly accounts for the dependence of sequential decisions and allows three levels of labor market involvement. Finally, simulations scenarios of dixerent family composition and labor market histories are used to measure the direct and indirect exects of children on a set of events of interest. The dependence of sequential decisions allows us to separate the exect of time out of the market and direct exect of children.

The measurement of the direct and indirect exect relies on using an appropriate representation of the cost of raising children. The cost of raising children depends on the number of children and children's age distribution. Speci..cations previously used were based on the age of the youngest child, the number of children, or the number of children in certain age categories. The latter speci..cation, also employed in this paper, provides a more precise description of the age distribution. We follow Hyslop (1999) in de..ning the following age categories; $[0,3),[3,6),[6,17)$, and $[17, .$.$) . This speci..cation has the advantage of separating$ pre-school and school-age children. It further breaks the pre-school age in two categories that are generally associated with dixerent care needs.

The level of labor market involvement plays and important role in labor market dynamics. There is abundant evidence that women maintain a remarkably stable level of labor market involvement. Part-time work represents a qualitatively dixerent state: it is less persistent than full-time work and nonwork; for dixerent categories of individuals, it represents an alternative to full-time work or to nonwork; it rarely becomes a stepping-stone into full-employment for women who have been absent from the labor market. Changes in the number of children and
children＇s ages are major determinants of changes in labor market status．Part－time may play an important role in returning to the market after birth．It is therefore important to include part－time in a study about the exect of children on women＇s labor supply．

We use a random utility model to represent individual labor market experiences in this three－dimensional state space．In this setting individuals choose，every time period，among three alternative states：full time，part time or not employed．Let the utility associated with each state be denoted by $Z_{i t}^{f t}, Z_{i t}^{p t}$ ，and $Z_{i t}^{n w}$ ，respectively．The utility levels in each state are a function of personal characteristics and household composition．For each state，$Z_{i t}^{\text {＠t }}$ ，we specify the following utility function

$$
\begin{aligned}
& Z_{i t}^{せ t}=\alpha^{\mathbb{4}}+\beta_{1}^{\mathbb{4}} \propto \mathrm{A} \mathrm{ge}_{i t}+\beta_{2}^{\mathbb{4}} \propto \mathrm{A} \mathrm{ge}_{i t}^{2}+\beta_{3}^{\mathbb{4}} \propto \mathrm{A} \mathrm{ge}_{i t}^{3}+ \\
& +\beta_{4}^{\text {dit }} \propto I\left(\mathrm{Educ}_{i t}\right)+\beta_{5}^{\mathbb{4}} \propto I\left(\mathrm{Educ}_{i t}\right)+\beta_{6}^{\mathbb{4}} \propto \log \left(\text { NonWagelnc }_{i t}\right)+ \\
& +\beta{ }_{7}^{\text {đ } \propto} \log \left(\text { SpouseW age }_{i t}\right)+\beta_{8}^{\text {\#U }} \propto I\left(\text { SpouseP articitation }_{i t}\right)+ \\
& +\beta_{9}^{\text {đ }} \propto \mathrm{Kids} 0-2_{i t}+\beta_{10}^{\text {đ }} \propto \mathrm{Kids} 3-5_{i t}+\beta_{11}^{\text {đ }} \propto \mathrm{Kids} 6-17_{i t}+\beta_{12}^{\text {\& }} \propto \mathrm{Kids}>17_{i t}+u_{i t}^{\not せ}
\end{aligned}
$$

where $I(\Phi$ represents the indicator function．The subscript i indicates individuals and sub－ script t indicates time period．The double dot superscript represents the dixerent applicable labor market states．

The exect of age on the utility of a given level of labor market involvement is captured by a polynomial component of degree three．We control for the leved of education ${ }^{8}$ ，non－wage income，and spouse＇s labor market participation and wage．The variables KidsX－Y represent the number of children with ages within the respective ranges．

Models of multiple individual decisions fall in one of the following three categories：dif－ ferent decisions are made by the same individual at a given time，the same decision is made sequentially，or several dixerent decisions are repeated over time．If several dixerent decisions are observed over time the number of dependencies that need to be modelled becomes large． The estimation by maximum likelihood becomes increasingly di cult，as higher level multiple

[^8]integrals have to be evaluated within each step of the maximization routine. The solution generally involves the use of random exects to model the dependence across sequential decisions. The main drawback of this approach is that it imposes a constant correlation between sequential decisions. When the multivariate logit model is used to model contemporary decisions, it imposes the additional restriction that the random utilities corresponding to each choice are independent.

We assume that, every time period, individuals draw realizations of the three latent variables from a known joint distribution given by:

$$
\begin{aligned}
Z_{i t}^{f t} & =X_{i} \beta_{t}^{f t}+u_{i t}^{f t} \\
Z_{i t}^{p t} & =X_{i} \beta_{t}^{p t}+u_{i t}^{p t} \\
Z_{i t}^{n w} & =X_{i} \beta_{t}^{n w}+u_{i t}^{n w}
\end{aligned}
$$

where $u_{i t}^{f t}, u_{i t}^{p t}$, and $u_{i t}^{n w}$ have a joint multivariate normal distribution. The dimension of the distribution is $3 T$, where T is the number of waves in the panel. Let $u_{i t}=u_{i t}^{f t} \mathrm{j} u_{i t}^{p t} u_{i t}^{n w}$. $E\left[u_{i t}\right]=0, u_{i t}$ are independent over i and it has a corredation structure over t given by a general $3 T x 3 T$ correlation matrix. The number of free elements in the correlation matrix is $3 T(3 T \mathbf{i} 1) / 2$.

The state choice is rep resented by a set of binary variables de..ned in the following way:

$$
\begin{aligned}
y_{i t}^{f t} & =1 \text { if } Z_{i t}^{f t}>0, Z_{i t}^{p t}<0, \text { and } Z_{i t}^{n w}<0 \\
y_{i t}^{p t} & =1 \text { if } Z_{i t}^{p t}>0, Z_{i t}^{f t}<0, \text { and } Z_{i t}^{n w}<0 \\
y_{i t}^{n w} & =1 \text { if } Z_{i t}^{n w}>0, Z_{i t}^{f t}<0, \text { and } Z_{i t}^{p t}<0
\end{aligned}
$$

Let $y_{i t}=\left[y_{i t}^{f t} \mathrm{j} y_{i t}^{p t} \mathrm{j} y_{i t}^{n w}\right], y_{i}=\left[y_{i 1} \mathrm{j} y_{i 2} \mathrm{j} \ldots \mathrm{j} y_{i T}\right], y=\left[y_{1} \mathrm{j} y_{2} \mathrm{j} \ldots \mathrm{j} y_{n}\right]$ and, similarly, $Z_{i t}=\left[Z_{i t}^{f t} \mathrm{j} Z_{i t}^{p t} \mathrm{j} Z_{i t}^{n w}\right], Z_{i}=$ $\left[Z_{i 1} \mathrm{j} Z_{i 2} \mathrm{j} \ldots \mathrm{j} Z_{i T}\right], Z=\left[Z_{1} \mathrm{j} Z_{2} \mathrm{j} \mathrm{j} . \mathrm{j} Z_{n}\right]$.

This structure closely resembles that of a multivariate probit model. The major dixerence
is that the vector y is restricted to a subset of all possible combinations of values. Any time period, an individual can be in one, and only one, state. This means that, in any time period, only three combinations of values are feasible out of a total of eight ${ }^{9}$. This induces an additional truncation for the joint distribution of Z_{i}. Not only is the distribution of each component restricted by the value of the corresponding discrete dependent variable, but the joint distribution is further truncated to the space of feasible combinations for the components of y_{i}. To estimate this model, we use an extension of the Markov chain Monte Carlo algorithm introduced by Chib and Greenberg (1998), which deals speci..cally with this additional truncation. The algorithm is presented in the appendix. Predictions made on the basis of the results are adjusted to account for this additional truncation.

The random utility moded does not impose strong assumptions on individual preferences. It does not impose an a priori ordering of choices and allows part-time to be modelled as a qualitatively dimerent state. The truncated multivariate probit model we use in this paper allows for a general correlation structure, both across choices and over time. In this respect it is the most general framework we are aware of. We do not explicitly distinguish between state dependence and unobserved heterogeneity. However, in this framework, the exect of past status on the present decision can be estimated using simple conditional probabilities. This approach is more general than the usual method of using lagged dependent variables in the present decision. It does not suppress the dependence beyond the immediate past status and allows for a more general dependence than the simple linear relationship between the past status and the expected value of the current latent dependent variable.

In a cross-sectional study with this speci..cation, identi..cation of the exect of children in a given age category would come from comparing women with dixerent number of children in the respective category. As a result, the coed cients of the children variables measure the total exect including both the cost of raising the child at that point in time and the consequences on labor market interruptions while raising the child up to that age. Pane data allow the modelling of the dependence of sequential labor force participation decisions. The exect

[^9]of employment in the previous years is observed and accounted for by the dependence in sequential decisions. In addition, if one observes the history of labor force participation decisions, the variation in post-birth employment decisions can be used to identify the direct and indirect exect.

4 Direct and indirect exects

The computation of the direct and indirect exects is based on simulation scenarios with several distinct components. First, in all our simulation scenarios, we assume that the labor market state in wave 1 is full-time. This assumption has two implications. It reduces the scope and the confounding exect of unobserved heterogeneity in studying subsequent labor market outcomes. Secondly, it in \ddagger uences the magnitudes of the direct and indirect exects as well as the eaects of other personal characteristics on labor market decisions. Past labor market status in \ddagger uences present decisions in a way determined by the estimated correlation between sequential decisions. The nonlinearity of the normal CDF implies that the exect of personal characteristics will be dixerent for dixerent labor market histories.

The values chosen for the personal characteristics allow us to construct age pro..les for the probabilities of any event of interest. Results are compared across educational levels.

Personal characteristics	Values used in simulation
A ge	$25,27, \ldots 65$ (19 values)
Education	Low, Medium, High
Non-wage income	0
Spouse's wage	median
Spouse's LM status	working

Measuring the direct and the indirect eaect of children rests on generating the appropriate fertility history. It is important to note that children enter this model in a particular way. A child born in a given year will change the variables that describe the number of children and the age distribution in all subsequent years. Two processes happen simultaneously: labor market decisions axect labor market history, and children grow older. To describe the
dynamics of the direct and indirect exects, we need to simulate both a case where the child ages naturally, and a case where age is held constant. We use the following scenarios:

Scenario	W avel		Wave2		Wave3		Wave4		Wave5	
	No.	A ge	No.	Age	No.	Age	No.	Age	No.	A ge
1	0	-	0	-	0	-	0	-	0	-
2	0	-	1	0-2	1	0-2	1	0-2	1	3-5
3	0	-	1	0-2	1	0-2	1	0-2	1	0-2

These scenarios allow us to calculate the exect of one child born in wave 2 on labor market behavior. To keep the exposition simple we do not extend the present analysis to subsequent children ${ }^{10}$. We also restrict our attention to the exect of children on the probability of working full-time after birth. A similar strategy can be applied if the labor market state prior to birth is dixerent or for dixerent post-birth destinations.

Let $F T_{x}$ and $N W_{x}$ denote working full-time and nonwork in wave x, respectively. In wave 2 , there is no indirect exect $(I E)$ as no time has been taken out of the labor market. The total exect (TE) is computed by comparing the probability of working full-time in wave 2 conditional on having worked full-time in wave 1 for a person with a child age $0-2\left(\mathrm{~K}_{0} \mathrm{i}_{2}\right)$ in wave 2 and a person with no children (noK).

$$
T E_{2}=D E_{2}=\operatorname{Pr}\left(F T_{2} \mathrm{j} F T_{1}, \mathrm{~K}_{0-2}\right) \mathrm{i} \operatorname{Pr}\left(F T_{2} \mathrm{j} F T_{1}, \text { noK }\right)
$$

In waves 3 and 4, the reference point will be the person who did not have a child (scenario 1) and always worked full-time. The total exect will measure the distance between this reference point and a person that had a child in wave 2 (scenario 2) and did not work ever since. The direct eaect is the impact of a child aged $0-2$ on the probability of working fulltime, conditional on al ways having worked full-time. The indirect exect measures the impact of not returning to work after giving birth. With $t=3,4$, the total, direct, and indirect

[^10]exects are:
\[

$$
\begin{aligned}
T E_{t} & =\operatorname{Pr}\left(F T_{t} \mathrm{j} F T_{1}, F T_{2}, \ldots, F T_{t \mathrm{i} 1}, \operatorname{noK}\right) \mathrm{i} \operatorname{Pr}\left(F T_{t} \mathrm{j} F T_{1}, N W_{2}, \ldots, N W_{t_{\mathrm{i} 1}}, \mathrm{~K}_{0-2}\right) \\
D E_{t} & =\operatorname{Pr}\left(F T_{t} \mathrm{j} F T_{1}, F T_{2}, \ldots ., F T_{t_{\mathrm{i} 1}}, \operatorname{noK}\right) \mathrm{i} \operatorname{Pr}\left(F T_{t} \mathrm{j} F T_{1}, F T_{2}, \ldots ., F T_{t \mathrm{i}}, \mathrm{~K}_{0-2}\right) \\
I E_{t} & =\operatorname{Pr}\left(F T_{t} \mathrm{j} F T_{1}, F T_{2}, \ldots ., F T_{t_{\mathrm{i}} 1}, \mathrm{~K}_{0-2}\right) \mathrm{i} \operatorname{Pr}\left(F T_{t} \mathrm{j} F T_{1}, N W_{2}, \ldots ., N W_{t \mathrm{i} 1}, \mathrm{~K}_{0-2}\right)
\end{aligned}
$$
\]

In wave 5, a child born in wave 2 will move to the age category 3-5. W ith the total, direct, and indirect exects de..ned as before, the age change has a potential confounding exect ${ }^{11}$. It is no longer possible to compare the indirect exects across waves to infer the exect of the additional year out of the labor market because the dixerence compounds the exect of the age change. At the same time, the change in age category is not su申 cient for an inference about the variation of the direct exect with child's age. A ny comparison based on successive waves will be axected by the dixerent histories.

To solve these two problems (inference about the changes of the indirect exect with time out of the market and the direct exect with child's age) in wave 5 we use scenario 3 - child of constant age - as a counterfactual. Let $T E_{5}, D E_{5}$ and $I E_{5}$ represent the total, direct and indirect exect in wave 5 with the child in the correct age category (replacing $K_{0 ;} 2$ with $K_{3 i} 5$ in the above formula). The constant age counterfactual, represented by $\overline{T E}_{5}, \overline{D E}_{5}$ and $\overline{I E}_{5}$, is then computed by a direct application of the above formula restricting the age to the 0-2 category, represented by $\mathrm{K}_{\mathrm{o}} 2$.

Using these intermediary results, we can compute the change in the direct exect when the age of the child changes.

$$
\nmid D E=\overline{D E}_{5} \mathrm{i} \quad D E_{5}
$$

Note that the probabilities are calculated conditional on the same work history. The change in the indirect exect for one extra year out of the market (from 2 to 3 years) can be

[^11]calculated as
$$
\$ I E=\overline{I E}_{5} \mathrm{i} \quad I E_{4}
$$

The probabilities are conditional on having one child in age category 0-2.
Under weak assumptions, the model yields predictions consistent with the relevant theoretical models. Controlling for previous employment history, the direct exect of children on employment probability decreases with children's ages. Holding children's ages constant, the indirect eaect grows with time spent non-working. Constant-age changes of the indirect exect can be calculated in two situations. Between waves 3 and 4, the child born in wave 2 remains in the age category $0-2$. After conveniently grouping terms the change in the indirect exect is

$$
\begin{aligned}
I E_{4} \mathrm{i} I E_{3}= & {\left[\operatorname{Pr}\left(F T_{4} \mathrm{j} F T_{1}, F T_{2}, F T_{3}, \mathrm{~K}_{0-2}\right) \mathrm{i} \operatorname{Pr}\left(F T_{3} \mathrm{j} F T_{1}, F T_{2}, \mathrm{~K}_{0-2}\right)\right]+} \\
& +\left[\operatorname{Pr}\left(F T_{3} \mathrm{j} F T_{1}, N W_{2}, \mathrm{~K}_{0-2}\right) \mathrm{i} \operatorname{Pr}\left(F T_{4} \mathrm{j} F T_{1}, N W_{2}, N W_{3}, \mathrm{~K}_{0-2}\right)\right]
\end{aligned}
$$

The terms in square brackets on the right-hand side of the equation are both positive if the utilities of working full-time and non-working are, respectively, positively correlated over time and if they are negatively correlated to each other. We do expect this to be the case given previous ..ndings which show that the choice of labor market involvement levels is persistent. We expect the indirect exect to increase with time out of the labor market. Between waves 4 and 5 the age category changes from 0-2 to 3-5. A fter grouping terms, the change in the indirect eaect is de.ned as

$$
\begin{aligned}
I E_{5} \mathrm{i} I E_{4}= & {\left[\operatorname{Pr}\left(F T_{5} \mathrm{j} F T_{1}, F T_{2}, F T_{3}, F T_{4}, \mathrm{~K}_{3-5}\right) \mathrm{i} \operatorname{Pr}\left(F T_{4} \mathrm{j} F T_{1}, F T_{2}, F T_{3}, \mathrm{~K}_{0-2}\right)\right]+} \\
& +\left[\operatorname{Pr}\left(F T_{4} \mathrm{j} F T_{1}, N W_{2}, N W_{3}, \mathrm{~K}_{0-2}\right) \mathrm{i} \operatorname{Pr}\left(F T_{5} \mathrm{j} F T_{1}, N W_{2}, N W_{3}, N W_{4}, \mathrm{~K}_{3-5}\right)\right]
\end{aligned}
$$

The ..rst term in square brackets is positive if full-time is a persistent state (positive
autocorrelation) and if the exect of children declines with age - both hypotheses are reasonable. The sign of the second term is ambiguous, as one extra nonworking year reduces the probability of working full-time, while an older child will increase it. The two exects can be further separated by rewriting the second term:

$$
\begin{aligned}
& \operatorname{Pr}\left(F T_{4} \mathrm{j} F T_{1}, N W_{2}, N W_{3}, \mathrm{~K}_{0-2}\right) \mathrm{i} \operatorname{Pr}\left(F T_{5} \mathrm{j} F T_{1}, N W_{2}, N W_{3}, N W_{4}, \mathrm{~K}_{3-5}\right) \\
= & {\left[\operatorname{Pr}\left(F T_{\mathrm{j}} \mathrm{j} F T_{1}, N W_{2}, N W_{3}, \mathrm{~K}_{0-2}\right) \mathrm{i} \operatorname{Pr}\left(F T_{5} \mathrm{j} F T_{1}, N W_{2}, N W_{3}, N W_{4}, \mathrm{~K}_{0-2}\right)\right]+} \\
& +\left[\operatorname{Pr}\left(F T_{5} \mathrm{j} F T_{1}, N W_{2}, N W_{3}, N W_{4}, \mathrm{~K}_{0-2}\right) \mathrm{i} \operatorname{Pr}\left(F T_{5} \mathrm{j} F T_{1}, N W_{2}, N W_{3}, N W_{4}, \mathrm{~K}_{3-5}\right)\right]
\end{aligned}
$$

The ..rst term is the age-constant change in the indirect exect $\$ I E$ and is positive if the utility of working full-time is negatively correlated with the utility of not working. The second term is negative if older children reduce the utility of working full-time by less. W hich of the two opposite exects will dominate depends on other personal characteristics. Hence the change in the indirect exect can assume positive or negative values across individuals with dixerent ages, education levels, and family characteristics.

The change in the direct exect can be calculated comparing the direct exects in waves 4 and 5. Conveniently grouping terms we get

$$
\begin{aligned}
D E_{5} \mathrm{i} D E_{4}= & {\left[\operatorname{Pr}\left(F T_{5} \mathrm{j} F T_{1}, F T_{2}, F T_{3}, F T_{4}, \mathrm{noK}\right) \mathrm{i} \operatorname{Pr}\left(F T_{4} \mathrm{j} F T_{1}, F T_{2}, F T_{3}, \text { noK }\right)\right]+} \\
& +\left[\operatorname{Pr}\left(F T_{4} \mathrm{j} F T_{1}, F T_{2}, F T_{3}, \mathrm{~K}_{0-2}\right) \mathrm{i} \operatorname{Pr}\left(F T_{5} j F T_{1}, F T_{2}, F T_{3}, F T_{4}, \mathrm{~K}_{3-5}\right)\right]
\end{aligned}
$$

The ..rst term is unambiguously positive as one extra year worked full-time will increase the probability of working full-time. The second term is negative because both the extra year worked full-time and older children increases the probability of working full-time. We rewrite the second term as

$$
\begin{aligned}
& \operatorname{Pr}\left(F T_{4} \mathrm{j} F T_{1}, F T_{2}, F T_{3}, \mathrm{~K}_{0-2}\right) \mathrm{i} \operatorname{Pr}\left(F T_{5} \mathrm{j} F T_{1}, F T_{2}, F T_{3}, F T_{4}, \mathrm{~K}_{3-5}\right) \\
= & {\left[\operatorname{Pr}\left(F T_{4} \mathrm{j} F T_{1}, F T_{2}, F T_{3}, \mathrm{~K}_{0-2}\right) \mathrm{i} \operatorname{Pr}\left(F T_{5} \mathrm{j} F T_{1}, F T_{2}, F T_{3}, F T_{4}, \mathrm{~K}_{0-2}\right)\right]+} \\
& +\left[\operatorname{Pr}\left(F T_{5} \mathrm{j} F T_{1}, F T_{2}, F T_{3}, F T_{4}, \mathrm{~K}_{0-2}\right) \mathrm{i} \operatorname{Pr}\left(F T_{5} \mathrm{j} F T_{1}, F T_{2}, F T_{3}, F T_{4}, \mathrm{~K}_{3-5}\right)\right]
\end{aligned}
$$

The ..rst part is the age constant change in the direct exect and it is negative. The second term is the exect of a change in the child's age keeping history constant $\ddagger D E$ which is also negative if older children raise the utility of working full-time.

Alternative measures for the total, direct, and indirect exects can be constructed using estimated conditional probabilities. The measures we propose, however, have two important properties. First, the conditional probabilities used have familiar interpretations - they are similar to survival and hazard rates used extensively in empirical analysis of labor market histories. Second, the decomposition of the total exect in direct and indirect exect is an accounting identity. Alternative measures we considered -for example, based on Taylor series approximation applied to the total eaect - did not share this property and appeared less intuitive.

5 Findings and discussion

5.1 General considerations

For each parameter, we report the moments of the posterior distribution, the numerical standard error of the estimated mean (which accounts for dependence of successive draws) and evaluate the convergence of the MCMC algorithm. We estimate six sets of slope coed cients - for every labor market state, we estimate one set of coed cients for the ..rst wave, β_{0}, and a second set, β_{1}, for the subsequent waves - and the free elements of the correlation matrix. Tables 3, 4, and 5 report the posterior means, posterior standard deviation (PSTD), numerical standard errors (NSE), and scale reduction factors (R) for the three levels of labor market involvement. The values of R very close to 1 indicate convergence. Table 6 reports
the posterior means for the correlation coed cients.
Coed cient estimates measure the exect of the independent variables on the values of the utility functions associated with the three labor market states. A ge has near-linear exects on the three utilities for the age range of interest. Younger women are more likely to work full-time. Higher education raises the utility of working full-time and lowers the utilities associate with part-time work and no work. Spouse's wage has a negative exect on the utility of a full-time job and positive eaects on the utility of part-time and non-working. Spouse's participation and wage have opposite signs on utilities associated with all three states. The utility of working full-time increases for low levels of spouse's wage and falls below the leved corresponding to a non-working husband as the wage increases. The exects on part-time and non-working are reversed. The presence of children reduces the utility of working full-time; the exect is smaller for older children. At the same time children increase the utility of not working. The exect on the utility of working part-time is the most interesting. Very young children reduce the utility of working part-time. Older children make part-time more desirable. The maximum is attained for school-age children. It seems that women prefer to take part-time jobs when children go to school. This is consistent with our expectations given the lack of after-school care and the structure of the school day.

The correlation matrix (Table 6) provides a very rich description of the stochastic process driving labor market histories. The diagonal blocks describe the autocorrelation of the three utility functions. The correlation coeq cients in these blocks are high and decline with the length of the time interval. This indicates the presence of unobserved heterogeneity (the limit of the correlation coed cients) and autocorrelated error terms. Using only random exects would not have been appropriate. The strongest persistence is displayed by full-time and non-work states. The lower correlation coed cients of part-time indicate that, while still persistent, part-time has a dixerent nature (dixerent type of employment). The magnitudes of the blocks ow the diagonal underscore this ..nding.

The elements of the ox-diagonal blocks are all negative. The shape of the blocks over time is similar - the diagonal elements are stronger, the ow-diagonal elements fade with the time interval. This shows that the dependence is based on something else in addition to
unobserved heterogeneity. The sharpness of this shape is indicative of the degree to which the negative correl ation is driven by unobserved heterogeneity. The shape of the correlation matrix is consistent with a stochastic process characterized by negatively correlated statespeci..c random exects and a multivariate normal $A R(1)$ process, for example. Part-time is closer than full-time to non-work. The negative correlation between full-time and non-work is stronger than between part-time and non-work.

After having estimated the parameters of the mode, we compute the probabilities for all possible labor market histories ${ }^{12}$. The probabilities are evaluated at one hundred points chosen randomly from the thinned posterior distribution of the parameters. We use these probabilities to construct high posterior density intervals (HPD) of life cycle pro..les for selected events. The graphs of the life cycle pro..les provide a much clearer understanding of the results and subsequent discussion is entirely based on them.

5.2 The role of part-time employment

The estimated correlation matrix shows that choice of part-time is remarkably stable, albeit least stable among the three states of labor market involvement. Its stability implies that part-time is unlikely to represent a bridge form nonworking to full-time employment. To formally assess the role of part-time we compare the probabilities of full-time and part-time employment for individuals who have moved from non-working to part-time jobs. This comparison should indicate whether part-time jobs are stepping stones to full-time employment and, if so, what are the categories of individuals more likely to experience this transitions.

Figures 1 to 4 compare the probabilities of working full-time and part-time conditional on not working in wave 1 and gradually longer periods of part-time employment. Following one non-working year, the probability of working full-time is larger for all ages and categories of education (..gure 1). Part-time represents a stepping stone for young women with high education and is more an absorbing state for older and lower educated women. Conditional on having worked part-time for one year, young highly educated women are just as likely to

[^12]move to full-time jobs as they are to remain in the part-time jobs (..gure 2). The probability of remaining in a part-time job is higher for older women with high education and for women of all ages with medium and low education. Longer part-time spells lower the probability of moving to a full-time job for all ages and categories of education (..gures 3 and 4).

The birth of a child represents one of the strongest determinants of changes in the level of labor market involvement. Following birth, the time costs of child care may increase the attractiveness of part-time employment. The coed cient estimates in table 4 showed that having a child older than 3 increases the utility of part-time employment. We investigate the role of part-time during the period following birth by comparing full-time and parttime probabilities conditioning on a child being born in wave 2 and non-employment in wave 2. The state in the ..rst wave is alternatively assumed full-time, part-time, and nonemployment. Figures 5 to 7 plot the age pro..les conditional on full-time employment in wave 1 and increasingly longer periods of unemployment following birth. Figure 8 assumes nonemployment in wave 1 and compares full-time and part-time probabilities following 3 more non-working years. Finally, ..gures 9 to 11 condition on part-time in wave 1 and increasingly longer periods of non-employment following birth.

The state of labor market involvement to which a woman returns after birth strongly depends on the state occupied before birth. If employed full-time before birth, full-time remains the more important destination regardless of the length of time spent out of the market, age or education (..gures 5 to 7). Women who worked part-time before birth are more likely to return to part-time jobs, for all categories of education and ages (..gures 9 to 11). The dixerence is higher for lower educated women. If not employed before birth, women with higher education are just as likely to start full-time or part-time jobs while women with lower levels of education have a higher probability of starting part-time jobs (..gure 8).

5.3 Direct and indirect exects

The goal of the empirical analysis is threfold: evaluate the direct and indirect exects in each wave following the child birth; analyze how the direct exect changes with child's age; analyze how the indirect exect changes with time out of the labor market. Direct and indirect eaects,
as de..ned in the previous section, are represented as distances between high posterior density (HPD) intervals of age pro..les for the appropriate conditional probabilities. The change in age category in wave 5 and the simulation scenario in which age is held constant are used to evaluate the change in the direct exect with the child's age and the change in the indirect exect with the number of non-working years.

There is no indirect exect in wave 2, as no time out of the market has yet been taken. Conditional on working full-time in wave 1, the dixerence between the age pro..les of working full-time and non-working represents the direct axect of having a child in wave 2 (..gure 12). The direct exect is smaller for women with higher education levels. Opportunity costs of taking time out of the labor market are higher for women with higher education, fewer drop out of full-time employment for longer periods of time.

In waves 3 and 4, the direct exect measures the exect of a child age $0-2$ on full-time probability, conditional on complete full-time history following birth. The distance between the uppermost two HPD intervals gives the age pro..le of the direct exect (..gures 13 and 14). The indirect exect measures the dixerence in full-time probability given by a nonworking spell following birth - the distance between the bottom two HPD intervals. In both waves the direct exect is smaller than the indirect exect. The direct exect is larger for lower levels of education. Lower levels of education reduce the value of the latent variable and, due to the nonlinearity of the normal CDF, allow for larger exects of children.

How does the indirect exect changes with the length of the non-working time? A comparison of waves 3 and 4 indicates the indirect exect is larger for longer nonworking spells following birth. An extension of this comparison to wave 5 is hampered by the fact that the age category of the child changes in this wave. We use a simulation scenario in which the age category is held constant (..gure 15) to overcome this problem. Holding age category constant, the indirect exect further increases with the time spent out of the labor market.

The change in the age category also allows us to assess how the direct exect changes with child's age. Again a comparison between waves 4 and 5 would be inappropriate. In addition to the change in age, the direct eaects are dixerent because they are calculated for dixerent post-birth work histories. One extra year worked full-time increases the probability
of working full-time in the next period, thus blurring the exect of age. The simulation scenario in which age category is held constant provides again the solution. A comparison of ..gures 15 and 16 allows inference on the exect of age holding post-birth work history constant. The direct exect unambiguously declines with the age of the child. In wave 5 , with a child age $3-5$, the direct exect all but disappears (..gure 16). Holding age constant, the direct exect is signi..cant (..gure 15). The relationship is robust across levels of education and age.

6 Conclusions

Children axect the after-birth labor force participation of women in two ways. Directly, the time spent in child-care reduces the labor market exort. This channel encompasses, for example, diminished physical capacity during the period surrounding birth, time-intensive child care, and availability of (axordable) day care. The time spent out of the labor market while on maternity leave alters women's participation experience and, thus, indirectly axects subsequent participation behavior. If labor force participation depends on experience and job seniority, interruptions will axect future labor market participation.

This paper proposes a model that disentangles the direct and indirect exect of children on women's labor force participation, and evaluates their relative importance. Participation decisions for three levels of labor market involvement - employed full-time, employed parttime, not employed - are represented by a multivariate probit model with a general correlation structure. The model allows for a high degree of \ddagger exibility in modeling the dependence of sequential decisions. Theestimation is performed using M arkov chain Monte C arlo methods.

We found strong exects of children on women labor market behavior. The indirect exect of children, trough time out of the labor market, is stronger than the direct exect. Consistent with predictions of relevant theoretical models, our results indicate that the indirect exect grows with the length of the interruption and is larger for women with higher levels of education. We found a substantial direct eaect of having children. In line with previous results, we found that the direct exect rapidly declines as the age of the child increases. The direct exect is larger for women with lower levels of education.

Consistent with the existing literature, we found that the level of labor market involvement is strongly persistent. Part-time work represents a bridge to full-time employment only for young, highly educated women. Following birth, women are likely to return to the level of labor market involvement prevailing pre birth. In general, part-time is more attractive to women with lower level of education.

Other personal characteristics play an important role in women's labor market behavior. Age has near-linear exects on the utilities associated with the three levels of labor market involvement. Younger women are more likely to work full-time. Higher education raises the utility of working full-time and lowers the utilities associate with part-time work and no work. Spouse's wage has a negative exect on the utility of a full-time job and positive eaects on the utility of part-time and non-working. Spouse's participation and wage have opposite signs on utilities associated with all three states. The utility of working full-time increases for low levels of spouse's wage and falls bellow the level corresponding to a non-working husband as the wage increases. The exects on part time and non-working are reversed.

The results regarding the indirect exect are important from a policy perspective. The size of the indirect eaect, its relative importance, and its behavior as a function of interruption length provide a useful basis for eф cient policy design. The length of the protected maternity leave strongly axects the length of post-birth work interruptions. A large indirect exect associated with a long maternity leave will signi..cantly reduce women's likelihood of returning to work after birth. Existing empirical evidence of lower return to market work in countries with more generous social policies supports this implication.

7 Bibliography

Becker, Gary S., "Human C apital, Exort and the Sexual Division of Labor"J ournal of Labor Economi cs, 3, suppl., 33-58, 1985.

Blank, Rebecca M ., " T he Role of Part-Time W ork in Women's L abor M arket Choices over Time." The American Economic Revi ew, P apers and Proceedings, 79, 295:299, 1989.

Blank, Rebecca M., "The dynamics of part-time." NBER working paper, No. 4911.

Blau, Francine D. and Marianne A. Ferber, "Career Plans and Expectations of Young Women and M en: The Earnings Gap and Labor Force Participation", J ournal of Human Resources, 26(4), 581-607, 1991.

Boeri, Tito and Flinn, Christopher J., "Returns to Mobility in the Transition to a Market Economy." J ournal of Comparative Economics, 27, 4-32, 1999.

Brooks, Stephen P. and Gelman, A ndrew, "General Methods for M onitoring Convergence of Iterative Simulations." J ournal of Computational and Graphical Statistics, 7, 434-455, 1998.

Chib, Siddhartha, and Grenberg, Edward, "A nalysis of Multivariate Probit M odels." Biometrika, 85, 347-361, 1998.

Chintagunta, Pradeep K. "Estimating a Multinomial Probit M odel of Brand Choice Using the M ethod of Simulated M oments." M arketing Science, 386-407, 1992.

Damkmeyer, B en, "Long-run opportunity-cost of children according to education of mother in the Netherlands." J ournal of P opulation E conomics, 9, 349-361, 1996.

Dulep, Harriet O. and Seth Sanders, "E mpirical Regularities Across Cultures. The E pect of Children on Woman's Work." The J ournal of Human Resources, 29, 328-347,1994.

Gelman, Andrew and Rubin, Donald F., "I nference form Iterative Simulations Using Multiple Sequences" (with discussion). Statistical Science, 7, 457-511, 1992.

Geweke, J ohn, "Bayesian Inference in E conometric M odels Using M onte Carlo Integration." E conometrica, 57,1317-1340, 1989.

Geweke, John, "E $¢$ cient Simulation from the Multivariate Normal and Student-T Distributions Subject to Linear Constraints." In E. K eramidas and S. K aufman, Eds., Computing Science and Statistics: Proceedings of the 23rd Symposium on the Interface, 571-578. Fairfax Station, VA: Interface F oundation of N orth A merican, 1991.

Geweke, J ohn, "Evaluating the A ccuracy of Sampling-Based Approaches to the Calculation of Posterior Moments." In J.M. Bernardo, J.O. Berger, A.P. David, and A.F.M. Smith Eds., B ayesian Statistics, Vol. 4, 169-193, 1992.

Giannelli, Gianna C., "Women's Transitions in the Labor Market: A Competing Risks A nalysis on German Panel Data." J ournal of Population Economics, 9, 287-300, 1996.

Gustafsson, Siv S., Cecile M.M.P. Wetzels, J an Dirk Vlasblom, Shirley Dex, " Women's Labor Force Transitions in Connection with Childbirth: A Pane Data Comparison between Germany, Sweden, and Great Britain." J ournal of Population E conomics, 9, 223-246, 1996.

Hajivassiliou, Vassilis A., "Smooth Simulation Estimation of Pand Data LDV Models" Department of Economics, Yale University, 1990.

Heckman, James J., "Sample Selection Bias as a Speci..cation Error: An Application to Estimation of Female Labor Supply Functions." In James Smith ed. ,Female Labor Supply, 206-248, Princeton University Press, Princeton, NJ, 1980.

Heckman, J ames J. and R obert J. Willis, "A B eta-logistic M odel for the A nalysis of Sequential Labor Force Participation by M arried Women." The J ournal of Political Economy, 85, 27-58, 1977.

Hotz, J oseph, and Robert Miller, "An Empirical A nalysis of Life CycleF ertility and Female Labor Supply", Econometrica, 50, 91-118, 1988

Hyslop, Dean, "State Dependence, Serial Correlation and Heterogeneity in Intertemporal Labor Force Participation of Married Women." E conometrica, 67, 1255-1294, 1999.

Keane, Michael P., "A Computationally Practical Simulation Estimator for Panel Data." E conometrica, 62, 95-116, 1994.

Leibowitz, A rleen, J acob A. K lerman, and Linda Waite, "E mployment of New M others and Child Care Choice: Dixerences by Children's A ge." J ournal of Human Resources, 27, 112-123, 1992.

Mincer, J acob, "Labor Force Participation of Married Women." In H.G. Lewis ed. A spects of Labor Economics, 63-105, Princeton University Press, Princeton, NJ, 1962.

Mincer, J acob and Solomon Polacheck, "Family Investments in Human Capital: Earnings of Women." J ournal of Political E conomy, 82, Part II: S76-S108.

Mo屯t, Robert, "Life Cycle Pro..les of Fertility, Labor Supply, and Wages of Married Women", Review of Economic Studies, 1984.

Mortensen, Dale T., "J ob Search and Labor M arket A nanlysis." In: O. A shenfelter and R. Layard, eds., Handbook in Iabor economics (North-Holland, Amsterdam), 849-919, 1986.

Nakamura, Alice and Masao Nakamura, "Predicting Female Labor Supply. Exects of Children and Recent Work Experience." The J ournal of Human Resources, 29, 304-327, 1994.

Nakamura, Alice and Masao Nakamura, "Dynamic Models of the Labor Force Behavior of M arried Women which Can B eEstimated Using Limited A mounts of P ast Information." J ournal of E conometrics, 27, 273-298,1985.

Rousseeuw, P. and G. Molenberghs, "T he Shape of the Correlation Matrix," American Statistician, 48, 276-279, 1994.

Shorrocks, A nthony F., "T he M easurement of M obility." E conometrica 46, 1013-1024, 1978.

Tanner, M artin A., and Wong, Wing Hung, "The Calculation of Posterior Distributions by Data Augmentation." J ournal of the American Statistical A ssociation, 82, 528-549,1987.

Wagner, Gert, Richard V. Burkhauser, and Friederike B heringer, "The English Language Public Use File of the German Socio-Economic Panel", J ournal of Human Resources, 28(2), 429-434, 1993

Appendix

De..ne

$$
\begin{aligned}
& B_{i t}^{f t}=(0,1) £(\mathrm{i} 1,0] £(\mathrm{i} 1,0] \\
& B_{i t}^{p t}=(\mathrm{i} 1,0] £(0,1) £(\mathrm{i} 1,0] \\
& B_{i t}^{n w}=(\mathrm{i} 1,0] £(\mathrm{i} 1,0] £(0,1)
\end{aligned}
$$

Every time period, the set of possible values that form $Z_{i t}$ is given by

$$
B_{i t}=B_{i t}^{f t}\left[B _ { i t } ^ { p t } \left[B_{i t}^{n w}\right.\right.
$$

For individual i, the set of all feasible values of Z_{i} is $B_{i}=B_{i 1} £ B_{i 2} £ \ldots £ B_{i T}$
Using Bayes formula, the joint posterior distribution of the parameters, conditional on data, is

$$
\pi(\beta, \sigma \mathrm{j} y)_{-} \pi(\beta, \sigma) \operatorname{pr}(y \mathrm{j} \beta, \S) \quad \beta 2 R^{k}, \sigma 2 C
$$

where $\pi(\beta, \sigma)$ is the prior distribution of β and σ, and $\operatorname{pr}(y \mathrm{j} \beta, \S)={ }_{i} \operatorname{pr}\left(y_{i} \mathrm{j} \beta, \S\right)$ is the likelihood function. C is a convex solid body in the hypercube [i 1, 1] (Rousseeuw and M olenberghs, 1994). The shape of C is given by the following two conditions:

1. Each correlation coed cient lies in the interval [i 1,1 .
2. The correlation matrix § is positive de..nite. Since § is symmetric, this condition reduces to $\operatorname{det}(\S)>0$.

The method proposed by Chib and Greenberg (1998) uses the data augmentation algorithm of Tanner and Wong (1987). Instead of using the posterior distribution in this form, we use the joint posterior of both parameters and latent variables, $\pi\left(\beta, \sigma, Z_{1}, \ldots, Z_{n} \mathrm{j} y\right)$.

$$
\pi(\beta, \sigma, Z \mathrm{j} y)_{-} \pi(\beta, \sigma) f(Z \mathrm{j} \beta, \S) \operatorname{pr}(y \mathrm{j} Z, \beta, \sigma)
$$

Conditional on Z_{i}, we have $\operatorname{pr}\left(y_{i} Z_{i}, \beta, \sigma\right)=I\left(Z_{i} 2 B_{i}\right)$. The posterior distribution becomes

$$
\pi(\beta, \sigma, Z \mathrm{j} y)_{-} \pi(\beta, \sigma)_{i}^{\mathrm{Y}} f\left(Z_{i} \mathrm{j} \beta, \S\right) I\left(Z_{i} 2 B_{i}\right)
$$

where

$$
f\left(Z_{i} \mathrm{j} \beta, \S\right)_{-} \mathrm{j}_{\mathrm{j}} \mathrm{j}^{\frac{1}{2}} \exp \quad \mathrm{i} \frac{1}{2}\left(Z_{i} \mathrm{i} \quad X_{i} \beta\right)^{0} \S{ }^{\mathrm{i} 1}\left(Z_{i} \mathrm{i} \quad X_{i} \beta\right)^{3 / 4} I(\sigma 2 C)
$$

Regarding the latent variable as a parameter, we sample from the conditional distributions:
${ }^{2}$ Conditional distribution of Z_{i}

$$
\left[Z_{i} \mathrm{j} y_{i}, \beta, \S\right]_{-} \phi_{T}\left(Z_{i} \mathrm{j} X_{i} \beta, \S\right)_{i}^{\mathrm{Y}} \mathrm{f} I\left(z_{i t}>0\right) I\left(y_{i t}=1\right)+I\left(z_{i t} \cdot 0\right) I\left(y_{i t}=0\right) \mathrm{g}
$$

To draw from a truncated normal distribution, we used the method proposed by Geweke (1991), which consists of running a Gibbs sub-chain with T steps within the main Gibbs sampler cycle.

2 Conditional Distribution of β

We assume prior independence between β and σ. The prior distribution of β is a k -variate normal distribution $\pi(\beta)=\phi_{k}{ }^{\mathbf{i}} \beta \mathbf{j} \beta_{0}, B \dot{b}{ }^{1}{ }^{\Phi}$. Conditional distribution is

$$
[\beta \mathrm{j} Z, \S] » N_{k}^{3} \beta \mathrm{j} \hat{\beta}, B^{\mathrm{i}}{ }^{\prime}
$$

where

$$
\widehat{\beta}=B^{\mathrm{i}^{1}} \quad B_{0} \beta_{0}+{ }_{i=1}^{\mathrm{X}^{n}} X_{i}^{\ell} \xi^{i}{ }^{1} Z_{i}
$$

and

$$
B=B_{0}+{ }_{i=1}^{X_{i}^{n}} X_{i}^{0}{ }^{\circ}{ }^{1} X_{i}
$$

2 Conditional Distribution of σ

$$
\begin{array}{ll}
\pi(\sigma \mathrm{j} Z, \beta) \quad \pi(\sigma) f(Z \mathrm{j} \beta, \S) \\
f(Z \mathrm{j} \beta, \S) & -\quad \mathrm{j} \mathrm{j}^{\frac{n}{2}} \exp \mathrm{i} \frac{1}{2} \operatorname{tr}\left(Z^{\alpha} \mathrm{i} \not \subset\right)^{0} \S \mathrm{i}^{1}\left(Z^{\alpha} \mathrm{i} \uparrow\right)^{3 / 4} I(\sigma 2 C)
\end{array}
$$

where $Z^{\mathbb{\alpha}}=\left(Z_{1}, \ldots, Z_{n}\right)$ and $\Phi=\left(X_{1} \beta, \ldots, X_{n} \beta\right)$. Prior distribution of σ is a normal distribution truncated at C

$$
\pi(\sigma) / \phi_{p}{ }_{\sigma}^{\mathrm{i}}{\mathrm{j} \sigma_{0}, G_{\mathrm{b}}{ }^{1}{ }^{\Phi} \quad \sigma 2 C}
$$

where p is the number of free parameters in the correlation matrix. To draw from this distribution we use a M etropol is-H astings step within the Gibbs sampler.

Convergence of the chain is assessed using the method proposed by Gelman and Rubin (1992) with the modi..ed correction factor proposed by Brooks and Gelman (1998). One preliminary run of 15000 iterations, with OLS coed cients as starting values, was used to construct starting values for three independent chains. The starting values were extreme values chosen form thep osterior distribution of the coed cients. Thethree independent chains, each with 15000 iterations and the initial run, were used to compute the scale reduction factor. We also evaluated the convergence criterion proposed by Geweke(1992) based on a single chain, which uses spectral density estimates of the series. B oth criteria indicated that the chain converges fast to the stationary distribution.

We follow Chib and Greenberg (1998) in setting the parameters of the algorithm. The prior distribution of β is multivariate normal with a mean vector of 0 and a variance matrix of 100 times the identity matrix. The prior distribution of the elements of the correlation matrix is multivariate normal with a mean vector of 0 and a variance matrix equal to 10 times the identity matrix. The proposal density used to generate candidate values in the MH step is $q^{\mathbf{i}} \phi \mathbf{j} \sigma_{i}^{k}{ }^{\text {¢ }}=s{ }^{\text {风 }}{ }^{\mathbf{i}}{ }_{\phi} \mathbf{i} \sigma_{i}^{k}{ }^{\$}$ where g is the standard normal distribution and s is the step size. We use a step size $s=1 /{ }^{\mathrm{P}} \bar{N}$.

	Mean	St. dev.	M inimum	Maximum
	41.90	10.16	25	61
Age	0.18			
High E ducation	0.57			
Medium Education	0.25			
Low Education	5.70	2.37	0	11.96
Ln(monthly non-wage HH Income)	5.95	3.44	0	10.09
Ln(monthly spouse's income from work)	0.75			
Fraction with working spouse	0.08	0.30	0	2
No. of children aged [0,3)	0.14	0.37	0	2
No. of children aged [3,6)	0.61	0.87	0	5
No. of children aged [6,17)	0.41	0.73	0	5
No. of children aged [17,.)	0.37			
Fraction working FT	0.16			
Fraction working PT	0.47			
Fraction not working				

Table 1. Characteristics of the sample in wave 1. High, Medium, and Low Education correspond to the International Standard Classi..cation of Education (ISCED). ISCED codes 0-2, 3, and 5-7 represent pre-primary, primary, and lower secondary education (Low), (upper) secondary education (M edium), and tertiary education (High), respectively.

	$\text { Obs. } \quad \mathrm{FT} \stackrel{\text { Age 25-35 }}{\mathrm{PT}} \mathrm{NW}$				Obs.	$\begin{gathered} \text { Age } 35-45 \\ \text { PT } \end{gathered}$			$\text { Obs. } \quad \mathrm{FT}^{\text {Age 45-5 }}{ }^{\text {PT }} \text { NW }$				Obs.	$\text { FT } \begin{gathered} \text { Age } 55-65 \\ \text { PT } \end{gathered}$		
High Education Total	506	0.49	0.16	0.35	1000	0.60	0.17	0.23	531	0.68	0.13	0.19	293	0.35	0.07	0.58
No children	140	0.64	0.16	0.21	107	0.81	0.09	0.09	198	0.68	0.12	0.20	207	0.33	0.08	0.58
Youngest child $[0,3)$	103	0.06	0.10	0.84	41	0.20	0.10	0.71	0				0			
Youngest child $[3,6)$	110	0.43	0.22	0.35	109	0.26	0.24	0.50	1	1.00	0	0	0			
Youngest child $[6,17)$	151	0.68	0.17	0.15	635	0.62	0.19	0.20	105	0.60	0.15	0.25	2	0	0	1.00
Youngest child [17,.)	2	0.50	0	0.50	108	0.81	0.06	0.13	227	0.71	0.12	0.17	84	0.39	0.04	0.57
Medium Education Total	1919	0.34	0.14	0.52	2306	0.34	0.23	0.43	1744	0.37	0.23	0.40	1341	0.18	0.09	0.72
No children	449	0.79	0.05	0.16	273	0.64	0.16	0.20	732	0.47	0.20	0.33	1021	0.19	0.09	0.72
Youngest child $[0,3)$	472	0.03	0.05	0.91	90	0.07	0.03	0.90	3	0.33	0	0.67	0	-	-	
Youngest child $[3,6)$	469	0.14	0.23	0.63	214	0.10	0.22	0.68	15	0	0.27	0.73	0	-	-	
Youngest child $[6,17)$	527	0.42	0.21	0.37	1436	0.31	0.26	0.43	313	0.18	0.34	0.48	12	0.33	0.17	0.50
Youngest child [17,.)	2	0.50	0	0.50	293	0.46	0.24	0.31	681	0.35	0.21	0.44	308	0.13	0.12	0.75
Low Education Total	469	0.24	0.16	0.60	751	0.30	0.17	0.53	1015	0.27	0.17	0.56	1005	0.11	0.12	0.76
No children	67	0.67	0.10	0.22	68	0.40	0.09	0.51	320	0.36	0.14	0.50	559	0.12	0.08	0.81
Youngest child $[0,3)$	95	0.09	0.06	0.84	30	0	0	1.00	3	0	0	1.00	0			-
Youngest child [3,6)	138	0.17	0.13	0.70	68	0.13	0.18	0.69	2	0	0	1.00	0	-		-
Youngest child $[6,17)$	169	0.21	0.25	0.53	462	0.28	0.19	0.52	212	0.22	0.13	0.65	29	0.07	0.24	0.69
Youngest child [17,.)	0	-	-	-	123	0.46	0.16	0.37	478	0.24	0.20	0.56	417	0.11	0.18	0.71

Table 2. Mean incidence of full time work, part time work, and non employment by education and family structure. Waves 1-5 combined. High, M edium and Low Education correspond to the International Standard Classi..cation of Education (ISCED). ISCED codes 0-2, 3, and 5-7 represent pre-primary, primary, and lower secondary education (Low), (upper) secondary education (Medium), and tertiary education (High), respectively.

LM status	Participation Rate				No. of women		
	TOTAL	FT	PT	FT	PT	NW	
before birth	0.753	0.694	0.059	118	10	42	
when child's age is							
$[0,1)$	0.188	0.188	-	3	0	13	
$[1,2)$	0.067	0.040	0.027	3	2	70	
$[2,3)$	0.253	0.096	0.157	8	13	62	
$[3,4)$	0.427	0.160	0.267	12	20	43	
$[4,5)$	0.500	0.213	0.288	17	23	40	
$[5,6)$	0.583	0.310	0.274	26	23	35	
$[6,7)$	0.571	0.286	0.286	26	26	39	
$[7,8)$	0.653	0.388	0.265	38	26	34	
$[8,9)$	0.645	0.364	0.282	40	31	39	
$[9,10)$	0.619	0.398	0.221	45	25	43	
$[10,11)$	0.693	0.447	0.246	51	28	35	
$[11,12)$	0.656	0.459	0.197	56	24	42	
$[12,13)$	0.686	0.455	0.231	55	28	38	
$[13,14)$	0.713	0.451	0.262	55	32	35	
$[14,15)$	0.691	0.493	0.199	67	27	42	
$[15,16)$	0.687	0.553	0.133	83	20	47	

Table 2a. Sample consists of all women with exactly one child by wave 5.

LF Status		Wave 2			Total
		FT	PT	NW	
Wave 1	FT	82%	5%	13%	955
	PT	12%	70%	18%	412
	NW	7%	8%	85%	1209
Total		914	433	1229	2576

LF Status		Wave 3			Total
		FT	PT	NW	
Wave 2	FT	82%	4%	14%	914
	PT	9%	72%	19%	433
	NW	5%	7%	88%	1229
Total		852	439	1285	2576

LF Status		Wave 4			Total
Wave 3		FT	PT	NW	
	FT	83%	6%	11%	852
	NW	9%	72%	20%	439
		7%	87%	1285	
		828	453	1295	2576

LF Status		Wave 5			Total
		FT	PT	NW	
Wave 4	FT	85%	4%	11%	828
	PT	12%	72%	16%	453
	NW	5%	5%	90%	1295
Total		816	428	1332	2576

LF Status		Wave 5			Total
		FT	PT	NW	
Wave 1	FT	67%	7%	26%	955
	PW	17%	52%	31%	412
	NW	9%	12%	79%	1209
Total		816	428	1332	2576

Table 2b. Raw transition dynamics represented by wave to wave transition matrices between full time (FT), part time (PT), and non-employment (NW) states.

Full Time β_{0}	R	mean	NSE	popstd
constant	1.000544	6.4253	0.0236	2.5300
age	1.000479	-0.4199	0.0017	0.1904
age ${ }^{2}$	1.000461	1.1140	0.0040	0.4600
age ${ }^{3}$	1.000444	-0.1004	0.0003	0.0359
educl	1.000222	-0.6903	0.0005	0.0785
educ2	1.000361	-0.8505	0.0008	0.0952
nwinc	1.000379	-0.0171	0.0001	0.0121
spwage	1.000770	-0.3521	0.0008	0.0601
sppart	1.000986	2.6586	0.0068	0.4735
kids03	1.001367	-1.6203	0.0023	0.1797
kids36	1.000371	-0.5797	0.0008	0.0909
kids617	1.000479	-0.3463	0.0004	0.0433
kids>17	1.001547	-0.0835	0.0008	0.0440
Full Time β_{1}	R	mean	NSE	popstd
constant	1.000394	5.9918	0.0153	1.8529
age	1.000562	-0.4075	0.0013	0.1323
age ${ }^{2}$	1.000726	1.1308	0.0035	0.3054
age ${ }^{3}$	1.000912	-0.1058	0.0003	0.0229
educl	1.000110	-0.7295	0.0003	0.0524
educ2	1.000170	-0.9361	0.0003	0.0634
nwinc	1.001037	-0.0063	0.0001	0.0068
spwage	1.000454	-0.2882	0.0003	0.0306
sppart	1.000377	2.2040	0.0021	0.2393
kids03	1.001237	-1.3086	0.0011	0.0908
kids36	1.001041	-0.8425	0.0009	0.0603
kids617	1.000699	-0.3963	0.0003	0.0280
kids >17	1.000047	-0.1410	0.0001	0.0286

Table 3. Results from the posterior density draws. Full time parameters. Educ1, educ2, and educ3 correspond to low (ISCED 0-2), medium (ISCED 3), and highly educated (ISCED 5-7), respectively. The variables nwinc, spwage, and sppart indicate household non labor income (logs), spouse's income from wages (logs), and a dummy indicator for spouse's participation. The 'kids' variables indicate the number of children in the various age groups.

Part time β_{0}	R	mean	NSE	popstd
constant	1.000902	-4.1925	0.0373	2.9101
age	1.000807	0.1457	0.0026	0.2167
age	1.000706	-0.2068	0.0058	0.5198
age	1.000633	0.0057	0.0004	0.0403
educ1	1.000020	0.1964	0.0004	0.0903
educ2	1.000198	0.0539	0.0007	0.1084
nwinc	1.000312	0.0283	0.0001	0.0142
spwage	1.000344	0.1558	0.0006	0.0771
sppart	1.000385	-1.1619	0.0048	0.6167
kids03	1.001303	-0.5874	0.0025	0.1534
kids36	1.000277	0.0308	0.0007	0.0936
kids617	1.000751	0.0444	0.0005	0.0454
kids >17	1.000747	0.0370	0.0006	0.0484
Part time β_{1}	R	mean	NSE	popstd
constant	1.000143	3.2490	0.0112	1.9300
age	1.000085	-0.3707	0.0006	0.1372
age 2	1.000073	0.9930	0.0013	0.3156
age	1.000080	-0.0856	0.0001	0.0235
educ1	1.000277	0.1871	0.0003	0.0536
educ2	1.000032	0.1037	0.0001	0.0648
nwinc	1.000765	0.0108	0.0001	0.0074
spwage	1.000795	0.1912	0.0005	0.0397
Sppart	1.000732	-1.4752	0.0037	0.3168
kids03	1.002922	-0.6561	0.0018	0.0875
kids36	1.000631	0.0258	0.0006	0.0537
kids617	1.000372	0.0555	0.0002	0.0276
kids >17	1.000155	0.0186	0.0001	0.0301

Table 4. Results from the posterior density draws. Part time parameters. E duc1, educ2, and educ3 correspond to low (ISCED 0-2), medium (ISCED 3), and highly educated (ISCED 5-7), respectively. The variables nwinc, spwage, and sppart indicate household non labor income (logs), spouse's income from wages (logs), and a dummy indicator for spouse's participation. The 'kids' variables indicate the number of children in the various age groups.

Not-working β_{0}	R	mean	NSE	popstd
constant	1.000805	-4.1852	0.0301	2.4185
age	1.000888	0.2853	0.0024	0.1819
age	1.000938	-0.8831	0.0060	0.4390
age	1.000972	0.0886	0.0005	0.0342
educ1	1.000203	0.5431	0.0005	0.0782
educ2	1.000250	0.7811	0.0007	0.0925
nwinc	1.000156	-0.0056	0.0001	0.0115
spwage	1.000229	0.2068	0.0004	0.0568
sppart	1.000251	-1.6081	0.0033	0.4496
kids03	1.001568	1.6230	0.0022	0.1280
kids36	1.000694	0.5091	0.0009	0.0789
kids617	1.000167	0.2926	0.0002	0.0398
kids>17	1.000411	0.0605	0.0004	0.0416
Not-working β_{1}		R	mean	NSE
constant	1.000547	-7.5203	0.0154	1.7870
age	1.000732	0.5275	0.0014	0.1272
age 2	1.000902	-1.4703	0.0036	0.2926
age	1.001073	0.1356	0.0003	0.0218
educ1	1.000608	0.5781	0.0006	0.0533
educ2	1.000429	0.7896	0.0006	0.0631
nwinc	1.001075	-0.0068	0.0001	0.0064
spwage	1.001221	0.1416	0.0005	0.0303
Sppart	1.001331	-1.1150	0.0039	0.2385
kids03	1.000751	1.5051	0.0009	0.0760
kids36	1.001634	0.6897	0.0009	0.0506
kids617	1.001866	0.3182	0.0005	0.0267
kids >17	1.000250	0.1144	0.0002	0.0279

Table 5. Results from the posterior density draws. Non-work parameters. Educ1, educ2, and educ3 correspond to low (ISCED 0-2), medium (ISCED 3), and highly educated (ISCED 5-7), respectively. The variables nwinc, spwage, and sppart indicate household non labor income (logs), spouse's income from wages (logs), and a dummy indicator for spouse's participation. The 'kids' variables indicate the number of children in the various age groups.

Table 6. Posterior means for the correataion coed cients. Wave $1-5$ correspond to 1994 - 1998,

		Full Time		Part Time		Not-Working	
Education	Age Group	Predicted	Observed	Predicted	Observed	Predicted	Observed
educ0	$25-30$	0.724	0.492	0.020	0.138	0.256	0.369
educ0	$30-35$	0.643	0.507	0.032	0.189	0.325	0.303
educ0	$35-40$	0.727	0.585	0.041	0.160	0.232	0.255
educ0	$40-45$	0.851	0.716	0.034	0.122	0.114	0.162
educ0	$45-50$	0.865	0.687	0.031	0.138	0.103	0.174
educ0	$50-55$	0.706	0.584	0.030	0.149	0.264	0.267
educ0	$55+$	0.225	0.210	0.016	0.060	0.759	0.730
educ1	$25-30$	0.364	0.365	0.038	0.115	0.598	0.520
educ1	$30-35$	0.296	0.317	0.055	0.199	0.649	0.484
educ1	$35-40$	0.371	0.330	0.075	0.212	0.553	0.458
educ1	$40-45$	0.448	0.386	0.089	0.291	0.463	0.323
educ1	$45-50$	0.474	0.359	0.080	0.232	0.446	0.409
educ1	$50-55$	0.204	0.314	0.047	0.171	0.749	0.514
educ1	$55+$	0.037	0.145	0.013	0.063	0.950	0.792
educ2	$25-30$	0.206	0.259	0.030	0.141	0.764	0.600
educ2	$30-35$	0.152	0.231	0.038	0.172	0.810	0.597
educ2	$35-40$	0.221	0.314	0.055	0.195	0.725	0.491
educ2	$40-45$	0.321	0.261	0.065	0.152	0.614	0.586
educ2	$45-50$	0.288	0.327	0.059	0.156	0.654	0.517
educ2	$50-55$	0.111	0.205	0.029	0.168	0.861	0.626
educ2	$55+$	0.017	0.094	0.007	0.113	0.976	0.793

Table 7. Mean fraction of women not working, working full time, or working part time, for dixerent age groups and education levels. The category educ0 indicates highly educated (ISCED5-7), educl indicates medium educated (ISCED 3), and educ2 indicates low educated (ISCED 0-2).

Figure 1. Comparing probability of full-time and part-time employment in wave 2 conditional on non-working in wave 1.

Figure 2. Comparing probability of full-time and part-time employment in wave 3 conditional on non-working in wave 1 and part-time in wave 2.

Figure 3. Comparing probability of full-time and part-time employment in wave 4 conditional on non-working in wave 1 and part-time in wave 2 and 3.

Figure 4. Comparing probability of full-time and part-time employment in wave 5 conditional on non-working in wave 1 and part-time in wave 2,3 and 4.

Figure 5. Comparing probability of full-time and part-time employment in wave 3. Probabilities are calculated conditional on full-time in wave 1 , having a child 0-2 in wave 2 , and non-work in wave 2.
high education

low education

medium education

LEGEND

P $($ PTJIFTTNW2) max

Figure 6. Comparing probability of full-time and part-time employment in wave 4 conditional on an extra year non-working in wave 3. Probabilities are calculated conditional on full-time in wave 1 , having a child $0-2$ in wave 2 , and non-work in wave 2.

Figure 7. Comparing probability of full-time and part-time employment in wave 5 conditional on two extra years non-working in wave 3 and 4 . The child is in catagory 3-5. Probabilities are calculated conditional on full-time in wave 1 , having a child $0-2$ in wave 2 , and non-work in wave 2.
high education

low education

medium education

LEGEND

P(FT5IFT1NW2NW3NW4) max

Figure 8. Comparing probability of full-time and part-time employment in wave 5 conditional on two extra years non-working in wave 3 and 4 . The child is in catagory 3-5. Probabilities are calculated conditional on non-working in wave 1 , having a child 0-2 in wave 2 , and non-work in wave 2.
high education

low education

medium education

LECEND

P(FT5INW1NW2NW3NW4) max
$\bar{P}\langle F \bar{T} 5 \mathbb{N} \bar{W} \overline{1} N W \overline{2} \bar{N} W \overline{3} \bar{N} \bar{W} 4)^{-} \mathrm{min}$

Figure 9. Comparing probability of full-time and part-time employment in wave 3. Probabilities are calculated conditional on part-time in wave 1, having a child $0-2$ in wave 2 , and non-work in wave 2.
high education

low education

medium education

LEGEND

P(fTIIPTINW2) max

$\bar{P}(\bar{P} \bar{T} \bar{j} \bar{P} \bar{T} \overline{1} \bar{W} 2)$ min

Figure 10. Comparing probability of full-time and part-time employment in wave 4 conditional on an extra year non-working in wave 3 . Probabilities are calculated conditional on part-time in wave 1 , having a child $0-2$ in wave 2 , and non-work in wave 2.

Figure 11. Comparing probability of full-time and part-time employment in wave 5 conditional on two extra years non-working in wave 3 and 4 . The child is in age catagory 3-5. Probabilities are calculated conditional on part-time in wave 1 , having a child 0-2 in wave 2 , and non-work in wave 2.
high education

low education

medium education

LECEND

P(FT5IPT1NW2NW3NW4) max

Figure 12. Direct exect in wave 2. Probabilities are calculated conditional on full-time employment in wave 1.

Figure 13. Direct and indirect exects in wave 3. Probabilities are calculated conditional on full-time employment in wave 1.

Figure 14. Direct and indirect exects in wave 4. Probabilities are calculated conditional on full-time employment in wave 1.

Figure 15. Direct and indirect exects in wave 5 , age of the child held constant. Probabilities are calculated conditional on full-time employment in wave 1.

Figure 16. Direct and indirect exects in wave 5, child in age catagory 3-5. Probabilities are calculated conditional on full-time employment in wave 1.

IZA Discussion Papers

No.	Author(s)	Title	Area	Date
715	E. Fehr U. Fischbacher B. von Rosenbladt J. Schupp G. G. Wagner	A Nation-Wide Laboratory Examining Trust and Trustworthiness by Integrating Behavioral Experiments into Representative Surveys	7	02/03
716	M. Rosholm L. Skipper	Is Labour Market Training a Curse for the Unemployed? Evidence from a Social Experiment	6	02/03
717	A. Hijzen H. Görg R. C. Hine	International Fragmentation and Relative Wages in the UK	2	02/03
718	E. Schlicht	Consistency in Organization	1	02/03
719	J. Albrecht P. Gautier S. Vroman	Equilibrium Directed Search with Multiple Applications	3	02/03
720	T. Palokangas	Labour Market Regulation, ProductivityImproving R\&D and Endogenous Growth	3	02/03
721	H. Battu M. Mwale Y. Zenou	Do Oppositional Identities Reduce Employment for Ethnic Minorities?	1	02/03
722	C. K. Spiess F. Büchel G. G. Wagner	Children's School Placement in Germany: Does Kindergarten Attendance Matter?	6	02/03
723	M. Coles B. Petrongolo	A Test between Unemployment Theories Using Matching Data	3	02/03
724	J. T. Addison R. Bailey W. S. Siebert	The Impact of Deunionisation on Earnings Dispersion Revisited	2	02/03
725	S. Habermalz	An Examination of Sheepskin Effects Over Time	1	02/03
726	S. Habermalz	Job Matching and the Returns to Educational Signals	1	02/03
727	M. Raiser M. Schaffer J. Schuchardt	Benchmarking Structural Change in Transition	4	02/03
728	M. Lechner J. A. Smith	What is the Value Added by Caseworkers?	6	02/03
729	A. Voicu H. Buddelmeyer	Children and Women's Participation Dynamics: Direct and Indirect Effects	3	02/03

An updated list of IZA Discussion Papers is available on the center's homepage www.iza.org.

[^0]: IZA DP No. 729

[^1]: * We wish to thank Arthur van Soest, Ken Troske, and participants in the Second IZA/SOLE Transatlantic Meeting of Labor Economists, 2003, The North American Econometric Society Meeting, 2003, and IZA seminar for their helpful insights and suggestions.

[^2]: ${ }^{1}$ E arly empirical evidence was provided by Hotz and Miller (1988), Heckman and Willis (1975), or Mọ t (1984).

[^3]: ${ }^{2}$ D ankmeyer (1996) uses the terms direct and indirect exect in the sense of opportunity costs of having children and computes their value.

[^4]: ${ }^{3}$ In contrast, the multinomial logit or probit model assumes that individual's preferences are de..ned over entire lab or market histories (e.g. Chintagunta, 1992).
 ${ }^{4} W$ ith M states and T periods, the number of free correlations to estimate is $M * T(M * T-1) / 2$.

[^5]: ${ }^{5} \mathrm{~T}$ he relative importance of the direct and indirect exects of children on women's labor supply is strongly in¥uenced by institutional settings. Since we are not controlling for the institutional setting, the ..ndings can be extrapolated only with caution to labor markets characterized by contrasting social policies.

[^6]: ${ }^{6}$ For a good discussion on the GSOEP data in general see for instance the paper by Wagner, B urkhauser and Behringer (1993).

[^7]: ${ }^{7}$ Shorrocks (1978) de.nes $\frac{\left(n_{\mathrm{i}} \operatorname{trace}(P)\right)}{\left(n_{i} 1\right)}$ as a measure of mobility, where n is the number of states and P is the transition probability matrix. This measure is naturally bounded between 0 (immobility) and 1 (perfect mobility). We ..nd year to year transitions to have a mobility measure of 0.3 . W hen looking at the transitions from the beginning (wave 1) to the end (wave 5) we ..nd a mobility measure of 0.5 . For comparison, B oeri and Flinn (1999) ..nd a measure of 0.2 for occupational mobility in Italy during the mid to late nineties, when looking at quarterly transitions and classifying nine occupation categories.

[^8]: ${ }^{8}$ T he variables Educ0，Educ1 and Educ2 represent high，medium and low education，respectively．

[^9]: ${ }^{9}$ To see this point, let $y_{i t}^{f t}, y_{i t}^{p t}$ and $y_{i t}^{n t}$ take on only two possible values, being 0 or 1 . This generates $2^{3}=8$ possible combinations of $\left(y_{i t}^{f t}, y_{i t}^{p t}, y_{i t}^{n t}\right)$. H owever, only ($1,0,0$), ($0,1,0$) and ($0,0,1$) are feasible.

[^10]: ${ }^{10} \mathrm{~T}$ his extension is straightforward and one interesting aspect deserves attention. Theempirical speci..cation we propose assumes that for a given age category, the exect of children on the utility is linear in the number of children. This linear relationship translates into a non-linear exect on the probability of a given event, due to the non-linearity of the normal CDF function. In particular, the eaect of a new born child on the probability of working full-time is likely to be smaller for women who already have a child.

[^11]: ${ }^{11} O$ ne should note that, due to the way we constructed the children variables, the age category of a child does not change between waves 2 and 4 .

[^12]: ${ }^{12}$ In a ...ve-period three-state model, there are $3^{5}=243$ possible histories. The probability of a complete history is the cumulative distribution function (CDF) of a multivariate normal distribution. To calculate the normal CDFs, we use the GHK smooth recursive simulator (Geweke, 1989; H ajivassiliou, 1990; and K eane, 1994).

