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equilibrium in which vacancies post a common wage. When workers apply to only one 
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1 Introduction

In this paper, we construct an equilibrium model of directed search in a
large labor market in which unemployed workers make multiple job applica-
tions. What we mean by equilibrium directed search is a matching process
in which job seekers, observing the wages posted at all vacancies, send their
applications to the vacancies that they find most attractive. At the same
time, each vacancy, when it chooses its wage posting, takes into account that
its posted wage influences the number of applicants it can expect to attract.
We assume that each unemployed worker makes a fixed number of appli-
cations, a. Each vacancy (among those receiving applications) then chooses
one applicant to whom it offers its job. When a > 1, there is a possibility
that more than one vacancy will want to hire the same worker. In this case,
we assume that the vacancies in question compete for this worker’s services.
The introduction of multiple applications adds realism to the directed search
model, and, in addition, can affect the efficiency properties of equilibrium.
In the benchmark competitive search equilibrium model of directed search
(Moen 1997 or the extended version in Mortensen and Wright 2002), equi-
librium is constrained Pareto efficient. We show that changing the basic
directed search model to allow workers to make more than one application
results in equilibria that are not constrained efficient. This means there is
a role for labor market policy in the directed search framework.

When a = 1, our model is essentially the limiting version of Burdett, Shi,
and Wright (2001) (hereafter BSW) translated to a labor market setting.
BSW derive a unique symmetric equilibrium in which (in the labor market
version) all vacancies post a wage between zero (the monopsony wage) and
one (the competitive wage). The value of this common posted wage depends
on the number of unemployed, u, and the number of vacancies, v, in the
market. Letting u, v →∞ with v/u = θ, the equilibrium posted wage is an
increasing function of θ. BSW do not consider normative questions. Moen’s
result is that in a large labor market, directed search implements what
he calls competitive search equilibrium. Competitive search equilibrium
is constrained efficient in the following sense. Assume there is a cost per
vacancy created. A social planner would choose a level of vacancy creation
— or, in a large labor market, a level of labor market tightness, θ, — to trade
off the cost of vacancy creation against the benefit of making it easier for
workers to match in an optimal fashion. Moen shows that the θ the social
planner would choose is the same as the one that arises in competitive search
equilibrium. (Shimer 1995 independently derives a similar result.) Using
a different approach, we also show that equilibrium in a directed search
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model is constrained efficient in a large labor market when a = 1. More
importantly, however, we show that if each worker makes a finite number of
multiple applications, that is, if a ∈ {2, ..., A}, then equilibrium in a directed
search model is not constrained efficient. Specifically, too many vacancies
are posted (θ is too high) in free-entry equilibrium relative to the constrained
efficient level. Equivalently, vacancies pay the workers who take their jobs
too low a wage on average.

Our model is also related to Julien, Kennes, and King (2000) (hereafter
JKK). JKK assume that each unemployed worker posts a minimum wage
at which he or she is willing to work, i.e., a “reserve wage,” and that each
vacancy, observing all posted reserve wages, then makes an offer to one
worker. If more than one vacancy wants to hire the same worker, then, as
in our model, there is ex post competition for that worker’s services. This
is equivalent to a model in which each worker applies to every vacancy, i.e.,
a = v, sending the same reserve wage in each application. Each vacancy
then chooses one worker at random to whom it offers a job. If a worker
has more than one offer, then there is competition for his or her services.
In a finite labor market, JKK show that the unique, symmetric equilibrium
reserve wage lies between the monopsony and competitive levels. There is
thus equilibrium wage dispersion in their model. Those workers who receive
only one offer are employed at the reserve wage, while those who receive
multiple offers are employed at the competitive wage. In the limiting labor
market version of JKK, the symmetric equilibrium reserve wage converges
to zero, and free-entry equilibrium is again constrained efficient.

In our model, when a ∈ {2, ..., A}, all vacancies post the monopsony wage
in the unique symmetric equilibrium. As in JKK, this leads to equilibrium
wage dispersion. Some workers (those who receive exactly one offer) are
employed at the monopsony wage, and some workers (those who receive
multiple offers) have their wages bid up to the competitive level. The key
difference between our model and both BSW and JKK, however, is that
free-entry equilibrium is inefficient. When a ∈ {2, ..., A}, there is excessive
vacancy creation.

The outline of the rest of the paper is as follows. In the next section, we
derive our basic positive results in a single-period framework. Specifically,
treating θ as given, we derive the matching function and the symmetric
equilibrium posted wage. In Section 3, we endogenize θ by allowing for free
entry of vacancies. This lets us compare the free-entry equilibrium level of θ
to the constrained efficient level (the two values of θ are the same when a = 1,
different when a ∈ {2, ..., A}, and the same once again as a→∞). In Section
4, we present a steady-state version of our model for the case of a ∈ {2, .., A}.
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The key to the steady-state analysis is that a worker who receives only one
offer in the current period has the option to reject that offer in favor of
waiting for a future period in which more than one vacancy bids for his or
her services. Allowing for free entry of vacancies, this leads to a tractable
model in which labor market tightness and the equilibrium wage distribution
are determined simultaneously. The normative results that we derived in
the single-period model continue to hold in the steady-state setting. In
Section 5, we consider three extensions. Specifically, (i) we allow workers to
choose how many applications to make, (ii) we relax the assumption that
each vacancy can consider only one worker’s application, and (iii) we allow
vacancies to follow strategies that rule out Bertrand competition. These
extensions, while of interest in their own right, also serve as robustness
checks — our basic result that the free-entry equilibrium value of θ is too
high when a ∈ {2, ..., A} continues to hold. Finally, we conclude in Section
6.

2 The Basic Model

We consider a game played by u homogeneous unemployed workers and (the
owners of) v homogeneous vacancies. This game has several stages:

1. Each vacancy posts a wage.

2. Each unemployed worker observes all posted wages and then submits
a applications with no more than one application going to any one
vacancy.

3. Each vacancy that receives at least 1 application randomly selects one
to process. Any excess applications are returned as rejections.

4. A vacancy with a processed application offers the applicant the posted
wage. If more than one vacancy makes an offer to a particular worker,
then those vacancies bid against one another for that worker’s services.

5. A worker with one offer can accept or reject that offer. A worker with
more than one offer can accept one of the offers or reject all of them.

Workers who fail to match with a vacancy and vacancies that fail to match
with a worker receive payoffs of zero. The payoff for a worker who matches
with a vacancy is w, where w is the wage that he or she is paid. A vacancy
that hires a worker at a wage of w receives a payoff of 1−w.
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This is a model of directed search in the sense that workers observe
all wage postings and direct their applications to vacancies with attractive
wages and/or where relatively little competition is expected. We assume
that vacancies cannot pay less than their posted wages. If they could, this
would not be a model of directed search.

Before we analyze this game, some comments on the underlying assump-
tions are in order. First, we are treating a as a parameter of the search
technology; that is, the number of applications is taken as given. In general,
a ∈ {1, 2, ..., A}. Second, we assume that it takes a period for a vacancy to
process an application. This is why vacancies return excess applications as
rejections. This processing-time assumption captures the idea that when
workers apply for several jobs at the same time, firms can waste time and
effort pursuing applicants who ultimately go elsewhere. Finally, we assume
that two or more vacancies that select the same applicant engage in ex post
Bertrand competition for that worker. This means that workers who receive
more than one offer have their wages bid up to w = 1, the competitive
wage. In Section 5, we consider the implications of relaxing each of these
assumptions. We show that endogenizing a, allowing vacancies to process
more than one application, and allowing vacancies that are competing for
an applicant to pursue a different tie-breaking strategy do not reverse our
main results.

We consider symmetric equilibria in which all vacancies post the same
wage and all workers use the same strategy to direct their applications. We
do this in a large labor market in which we let u, v → ∞ with v/u = θ
keeping a ∈ {1, 2, ..., A} fixed. We show that for each (θ, a) combination
there is a unique symmetric equilibrium and we derive the corresponding
equilibrium matching probability and posted wage. Assuming (for the mo-
ment) the existence of a symmetric equilibrium, we begin with the matching
probability.

LetM(u, v; a) be the expected number of matches in a labor market with
u unemployed workers and v vacancies when each unemployed worker sub-

mits a applications. Then m(θ;a) = lim
u,v→∞,v/u=θ

M(u, v; a)

u
is the matching

probability for an unemployed worker in a large labor market.

Proposition 1 Let u, v → ∞ with v/u = θ and a ∈ {1, ..., A} fixed. The
probability that a worker finds a job converges to

m(θ;a) = 1− (1− θ

a
(1− e−a/θ))a. (1)
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The proof is given in Albrecht et. al. (2004); see also Philip (2003).
In Appendix A, we sketch the idea of the proof to clarify the relationship
between our matching probability and the finite-market matching functions
presented in BSW (the standard urn-ball matching function) and JKK (the
urn-ball matching function with the roles of u and v reversed).

For use below, we note the following properties of m(θ;a):
(i) m(θ;a) is increasing and concave in θ,

lim
θ→0

m(θ;a) = 0, and lim
θ→∞

m(θ;a) = 1;

(ii)
m(θ; a)

θ
is decreasing in θ, 1

lim
θ→0

m(θ;a)

θ
= 1, and lim

θ→∞
m(θ;a)

θ
= 0.

The effect of a on m(θ;a) is less clearcut. Treating a as a continu-

ous variable, we find that ma(θ; a) ≷ 0 as
a

1− q

∂q

∂a
− ln(1 − q) ≷ 0 where

q =
θ

a
(1− e−a/θ). For moderately large values of θ (θ > 1

2 , approximately),

m(θ;a) first increases and then decreases with a. This nonmonotonicity re-
flects the double coordination problem that arises when workers apply to
more than one but not all vacancies. The first coordination problem is the
standard one associated with urn-ball matching, namely, that some vacan-
cies can receive applications from more than one worker, while others receive
none. With multiple applications, there is a second coordination problem,
this time among vacancies. When workers apply for more than one job at
a time, some workers can receive offers from more than one vacancy, while
others receive none. Ultimately, a worker can only take one job, and the
vacancies that “lose the race” for a worker will have wasted time and ef-
fort while considering his or her application. The matching function derived
in BSW captures only the urn-ball friction, while the one derived in JKK
captures only the multiple-application friction. Our matching probability
incorporates both these frictions, and the interaction between these two
frictions provides new insights.

Proposition 1 and its implications are only interesting if a symmetric
equilibrium exists. We now turn to the existence question.

1 Interestingly,
m(θ; a)

θ
is not convex in θ, as can be seen immediately by considering

the case of a = 1. The properties of m(θ; a) and
m(θ; a)

θ
given in (i) and (ii) are the

minimal ones required for our normative results in Sections 3 and 4 below.
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Proposition 2 Consider a large labor market in which u, v → ∞ with
v/u = θ. There is a unique symmetric equilibrium to the wage-posting game.
When a = 1, all vacancies post a wage of

w(θ; 1) =
e−1/θ

θ(1− e−1/θ)
. (2)

When a ∈ {2, ..., A}, w(θ;a) = 0, and the fraction of wages paid that are
equal to one is

γ(θ;a) =
1− (1− θ

a(1− e−a/θ))a − θ(1− e−a/θ)(1− θ
a(1− e−a/θ))a−1

1− (1− θ
a(1− e−a/θ))a

.

(3)

The proof is given in Appendix B. The basic idea is as follows. To
prove the existence of a symmetric equilibrium, we show that w(θ; 1) has
the property that if all vacancies, with the possible exception of a “potential
deviant,” post that wage, then it is also in the interest of the deviant to
post that wage. When a ∈ {2, ..., A}, then no matter what the common
wage posted by other vacancies, it is always in the interest of the deviant to
undercut that common wage. This forces the wage down to the monopsony
level, which in our single-period model is w = 0.

The equilibrium wage for the case of a = 1 is equal to one minus the
price given in Proposition 3 in BSW — again with the appropriate notational
change. The tradeoff that leads to a well-behaved equilibrium wage, w ∈
(0, 1), when a = 1 is the standard one in equilibrium search theory. To see
this, note that the profit for a deviant (D) from offering w0 rather than the
common posted wage, w, can be written as:

π(w0;w) = (1−w0)P [D gets at least one application]P [selected applicant has no other offer],

where the third term vanishes in the a = 1 case. As any particular vacancy
increases its posted wage, holding the wages posted at other vacancies con-
stant, the profit that this vacancy generates conditional on attracting an
applicant, (1 − w0), decreases. At the same time, however, the probability
that it will attract at least one applicant also increases. This tradeoff varies
smoothly with θ; so the equilibrium wage varies smoothly between zero and
one. Thus, as emphasized in BSW (p. 1069), there is a sense in which
frictions “smooth” the operation of the labor market.

When a ∈ {2, ..., A}, no matter what the value of θ, the posted wage
collapses to the monopsony level (as in Diamond (1971)). The intuition for
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this result is based on the change in the tradeoff underlying equilibrium wage
determination. The profit for the deviant vacancy conditional on hiring a
worker, (1 − w0), decreases as in the a = 1 case. The probability that D
attracts at least one applicant also increases, but not as much as in the
a = 1 case. This is the key to the result, since the third term is unaffected
by changes in w0. The reason that this probability increases less when a = 2
or more is that w0 > w is relatively less attractive to workers than when
a = 1. In the a = 1 case, receiving w0 means doing better than at any other
vacancy. When a = 2 or more, the worker has the possibility of multiple
offers and receiving the competitive wage. When w0 > w, the probability of
multiple offers is lower when applying to D than to the nondeviants since
D is relatively more attractive. This effect is absent in the a = 1 case so
applying to the deviant is less attractive when a = 2 or more. This explains
why the equilibrium wage is lower than when a = 1. Essentially, the cost of
increasing the posted wage is the same as in the case of a = 1; the expected
benefit is lower. The reason the equilibrium wage is driven to the monopsony
level is that posting a wage w0 < w is always attractive. First, as in the
a = 1 case, it raises the profit earned if the applicant is hired at w0. Second,
it decreases the probability of attracting at least one applicant, but at a
decreasing rate. This is the consequence of the benefit of multiple offers
to workers. Applying to the deviant and being offered this job implies a
lower wage if this is the only offer and the competitive wage if the worker
receives multiple offers. Since the probability of receiving multiple offers is
higher when applying to D (since its wage is otherwise less attractive), the
probability of getting the competitive wage is greater. As the common wage
falls, the cost of applying to the deviant remains the same, but this latter
benefit rises. Thus, the decrease in the probability of the deviant getting at
least one application is reduced as the common wage falls and it is always
profitable to undercut the common wage.

Interestingly, when a ∈ {2, ..., A}, the equilibrium outcome in our di-
rected search model is the same as the outcome one would find in a random
search model in which workers make multiple applications and vacancies
engage in Bertrand competition when their candidates have multiple offers.
If workers do not observe posted wages, they apply at random to a va-
cancies in symmetric equilibrium, and the matching rate is the same as in
our model. In addition, vacancies pay the monopsony wage in this random
search model, unless a worker has multiple offers, in which case Bertrand
competition drives the wage to the competitive level. Thus, allowing for
multiple applications erases the difference between directed and random
search in terms of outcomes in contrast to the case of a = 1. To the best
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of our knowledge, no random search model with multiple applications and
Bertrand competition exists in the literature, but it would be straightfor-
ward to construct such a model. Postel-Vinay and Robin (2002) is the most
closely related model. In their model, wage offers arrive at Poisson rates to
both the unemployed and the employed. If a worker who is already employed
receives another offer, then that worker’s current employer and prospective
new employer engage in Bertrand competition for his or her services. In the
homogeneous worker/homogeneous firm version of their model, this leads to
a two-point distribution of wages paid, namely, the monopsony wage and
the competitive wage, as in our model.

Finally, despite the fact that the posted equilibrium wage in our model
is zero when a ∈ {2, ..., A}, there is still a sense in which “the wage” varies
smoothly with θ. The expected fraction of wages paid that are equal to one,
γ(θ;a), has the following properties:
(i) γ(θ; a) is increasing in θ and in a;
(ii) lim

θ→0
γ(θ; a) = 0 and lim

θ→∞
γ(θ; a) = 1.

The fact that γ is increasing in θ is exactly as one would expect — as the
labor market gets tighter, the chance that an individual worker gets multiple
offers increases. To understand why γ is also increasing in a, it is important
to remember that γ(θ;a) is the expected wage for those workers who match
with a vacancy; in particular, those workers who fail to match are not treated
as receiving a wage of zero. Finally, defining γ(θ) = lim

a→∞γ(θ; a), we can show

γ(θ) =
1− e−θ − θe−θ

1− e−θ
. (4)

This is the expected wage in a large labor market when each worker sends
out an arbitrarily large number of applications.

3 Efficiency

We now turn to the question of constrained efficiency. The result suggested
by the efficiency of competitive search equilibrium holds in our setting when
a = 1; however, when workers make a fixed number of multiple applications,
this result breaks down.

Suppose vacancies are set up at the beginning of the period and that each
vacancy is created at cost cv. The efficient level of labor market tightness2

2 In a finite labor market with u given, the social planner chooses v to maximize
M(u, v; a) − cv, i.e., expected output (equal to the expected number of matches since
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is determined as the solution to

max
θ>0

m(θ;a)− cvθ.

The first-order condition for this maximization is

cv =mθ(θ
∗; a). (5)

The equilibrium level of labor market tightness is determined by free entry.
When a = 1, this means

cv =
m(θ∗∗; 1)

θ∗∗
(1−w(θ∗∗; 1)), (6)

whereas for a ∈ {2, ..., A}, the condition is

cv =
m(θ∗∗; a)

θ∗∗
(1− γ(θ∗∗; a)). (7)

Equations (6) and (7) reflect the condition that entry (vacancy creation)
occurs up to the point that the cost of vacancy creation is just offset by
the value of owning a vacancy. This value equals the probability of hiring
a worker times the expected surplus generated by a hire — equal to 1 minus
the posted wage when a = 1 and to 1 minus the expected wage when a ∈
{2, ..., A}.

Note that θ∗ denotes the constrained Pareto efficient level of labor market
tightness and θ∗∗ denotes the equilibrium level of labor market tightness. At
issue is the relationship between θ∗ and θ∗∗.

Proposition 3 Let u, v → ∞ with v/u = θ and a ∈ {1, ..., A} fixed. For
a = 1, θ∗ = θ∗∗. For a ∈ {2, ..., A}, θ∗∗ > θ∗.

Proof. Differentiating equation (1) with respect to θ gives

mθ(θ; a) = (1− θ

a
(1− e−a/θ))a−1(1− e−a/θ − a

θ
e−a/θ). (8)

For the case of a = 1, substituting this into equation (5) gives an implicit
expression for θ∗,

cv = 1− e−1/θ
∗ − 1

θ∗
e−1/θ

∗
.

each match produces an output of 1) minus the vacancy creation costs. Dividing the
maximand by u and letting u, v →∞ with v/u = θ gives the maximand in the text.
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Using equations (1) and (2) in equation (6) gives an implicit expression for
θ∗∗,

m(θ∗∗; 1)
θ∗∗

(1−w(θ∗∗; 1)) = 1− e−1/θ
∗∗ − 1

θ∗∗
e−1/θ

∗∗
.

Thus, equations (5) and (6) imply θ∗ = θ∗∗ when a = 1.
When a ∈ {2, ..., A}, equation (8) implies that θ∗ solves

cv = (1− θ∗

a
(1− e−a/θ

∗
))a−1(1− e−a/θ

∗ − a

θ∗
e−a/θ

∗
), (9)

whereas, using equations (1) and (3), θ∗∗ (equation 7) solves

cv = (1− θ∗∗

a
(1− e−a/θ

∗∗
))a−1(1− e−a/θ

∗∗
). (10)

The right-hand sides of both (9) and (10) are decreasing in θ. Since the
right-hand side of (10) is greater than that of (9) for all θ > 0, it follows
that θ∗∗ > θ∗.

Posting a vacancy has the standard congestion and thick-market effects
in our model — adding one more vacancy makes it more difficult for the in-
cumbent vacancies to find workers but makes it easier for the unemployed
to generate offers. A striking result of the competitive search equilibrium
literature is that adding one more vacancy causes the wage to adjust in such
a way as to balance these external effects correctly. One way to interpret
this result is that competition leads to a wage that is the one that would sat-
isfy the Hosios (1990) condition in a Nash bargaining model. Equivalently,
one can say (Moen, 1997, p. 387) that the competitive search equilibrium
wage has the property that the marginal rate of substitution between labor
market tightness and the wage is the same for vacancies as for workers. The
first part of Proposition 3 shows that this result holds when one uses an ex-
plicit urn-ball (a = 1) microfoundation for the matching function. However,
when workers make multiple applications, the result that θ∗∗ > θ∗ indicates
that the equilibrium level of vacancy creation is too high. Equivalently, the
equilibrium expected wage is below the level that would be indicated by the
Hosios condition. The effects of the marginal vacancy are more complicated
with multiple applications than in the urn-ball model. Adding one more
vacancy makes it less likely that each incumbent vacancy attracts any appli-
cants but, conditional on attracting an applicant, makes it more likely that
the incumbent vacancy “wins the race” for that applicant. Adding another
vacancy to the market puts upward pressure on the (expected) wage but not
to the extent required to achieve the efficient level of entry.

10



It is interesting to note that the equilibrium outcome is again Pareto
efficient when we let a→∞. To see this, note that

m(θ) = lim
a→∞m(θ;a) = 1− e−θ

and

γ(θ) = lim
a→∞γ(θ;a) =

1− e−θ − θe−θ

1− e−θ

and substitute these into the efficiency and equilibrium conditions. This
result is Proposition 2.5 in JKK.

In a companion paper, Julien, Kennes, and King (2002) show that equi-
librium in a finite labor market with a = v is also constrained efficient if
one assumes a particular wage determination mechanism; namely, vacancies
offering jobs to workers who have no other offers receive all of the surplus
(w = 0) but vacancies offering jobs to workers who do have other offers re-
ceive none of the surplus (w = 1). Julien, Kennes, and King (2002) interpret
this result in terms of what they call the Mortensen rule (Mortensen 1982)
— that efficiency in matching is attained if the “initiator” of the match gets
the total surplus. By mimicking our proof of Proposition 2, we can show
that this assumed wage determination mechanism is in fact the symmetric
equilibrium outcome in a directed search model with wage posting when
a = v in a finite labor market.

The intuition for why we find constrained efficiency with a = 1 and
as a → ∞ but not with a fixed, finite number of multiple applications is
that with a = 1 and as a → ∞, only one coordination problem affects
the operation of the labor market, whereas with a fixed a ∈ {2, ..., A}, the
urn-ball and the multiple applications coordination problems operate simul-
taneously. Adjusting the wage can only solve one coordination problem at a
time. Specifically, the social planner opens vacancies as long as the marginal
benefit exceeds cv, while the market opens vacancies as long as the average
benefit exceeds cv. When a = 1, the average benefit of a vacancy equals the
marginal benefit. When a ∈ {2, ..., A}, the average benefit exceeds the mar-
ginal benefit. Each additional vacancy increases the number of matches by
reducing the first coordination friction, the one that workers impose on each
other, but at the same time it increases the second coordination friction, the
one that vacancies impose on each other. Both the market and the social
planner internalize the first effect, but the second effect is not internalized
by the market. When workers apply to all vacancies, the first coordination
friction is absent, but the second coordination friction reaches a maximum.
In this special case, the average benefit of a vacancy once again equals the
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marginal benefit. This case can be viewed as one in which each vacancy
randomly applies to one worker. As noted above, as a→∞, the matching
function becomes m(θ) = 1− e−θ. The average benefit is the total number
of workers who receive exactly one offer divided by the total number of va-
cancies, m(θ)

θ (1− γ(θ)), which is identical to the RHS of equation (7). In
the limit as a→∞, this is e−θ, which is also mθ(θ).3

4 Steady State

We now turn to steady-state analysis for a labor market with directed search
and multiple applications. We work with the limiting case in which u, v →∞
with v/u = θ and a ∈ {2, ..., A} fixed. Since only the ratio of v to u matters
in the limiting case, we normalize the labor force to 1; thus, u is interpreted
as the unemployment rate.

In steady-state, workers flow into employment with probabililty m(θ; a)
per period. We assume that matches break up exogenously with probability
δ, giving the countervailing flow back into unemployment. Similarly, jobs

move from vacant to filled with probability
m(θ; a)

θ
and back again with

probability δ. Steady-state analysis thus allows us to endogenize vacancies
and unemployment. More importantly, moving to the steady state means
that those unemployed who fail to find an acceptable job in the current
period can wait and apply again in the future. In the case of a = 1, this is
not particularly interesting since, in equilibrium, there is no gain to waiting.
However, with multiple applications, the ability of the unemployed to hold
out for a situation in which vacancies engage in Bertrand competition for
their services, albeit at the cost of delay, implies a positive reservation wage.
This leads to a simple and appealing model in which labor market tightness
and the reservation wage are simultaneously determined. On the one hand,
the lower is the reservation wage of the unemployed, the more vacancies
firms want to create. On the other, as the labor market becomes tighter,
i.e., as θ increases, the unemployed respond by increasing their reservation
wage.

3The intuition for constrained efficiency in a large labor market when a = 1 is quite
different from the intuition for the finite labor market case when a = v. In the former,
constrained efficiency is a result of competition, and competition requires a labor market
sufficiently large that individual vacancies have negligible market power. When a = v,
constrained efficiency is a result of perfect monopoly power — the entire surplus goes to
the vacancy if there is no competition for the applicant it selects and to the worker if he
or she winds up having the monopoly power. The monopoly intuition does not require
that the labor market be large.
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The analysis proceeds as follows. Suppose the unemployed set a reser-
vation wage R. With multiple applications, the wage-posting problem for a
vacancy is qualitatively the same as in the one-period game. Whatever com-
mon wage might be posted at other vacancies, each individual vacancy has
the incentive to undercut. In the one-period game, this implies a monopsony
wage of w = 0; in the steady state, this same mechanism implies a dynamic
monopsony wage of w = R.4 To avoid complicated dynamics, we assume
that a vacancy that fails to hire its candidate in period t cannot carry its
queue of remaining applicants (if any) over to the next period. Similarly,
workers start with a new application round in each period, i.e., their earlier
applications are no longer on file.5 This implies that the probability that an
unemployed worker finds a job in any period and the probability that he or
she is hired at the competitive wage, conditional on finding a job, are the
same as in the single-period model; i.e., equations (1) and (3) for m(θ; a)
and γ(θ;a) continue to apply.

We begin by examining the value functions for jobs and for workers. A
job can be in one of three states — vacant, filled paying the competitive wage,
and filled paying R. Let V, J(1), and J(R) be the corresponding values. The
value of a vacancy is

V = −cv+ 1

1 + r
{m(θ;a)

θ
[γ(θ; a)J(1)+(1−γ(θ;a))J(R)]+(1−m(θ;a)

θ
)V }.

Maintaining a vacancy entails a cost cv, which is incurred at the start of
each period. Moving to the end of the period, and thus discounting at

rate r, the vacancy has hired a worker with probability
m(θ;a)

θ
. With

probability γ(θ;a), the worker who was hired had his or her wage bid up
to the competitive level, thus implying a value of J(1). With probability
1 − γ(θ; a) the worker was hired at w = R, thus implying a value of J(R).

Finally, with probability 1 − m(θ;a)

θ
, the vacancy failed to hire, in which

case the value V is retained.
Free entry implies V = 0 so the analysis for vacancies remains the same;

that is, free entry turns the dynamic game into one that is essentially static

4We restrict our attention to stationary strategies (as do JKK in their dynamic exten-
sion). That is, we rule out reputation mechanisms that might avert bidding wars. Since
any two vacancies that might consider avoiding a bidding war today interact directly in
any future period with probability zero, this seems reasonable. We consider a mechanism
that rules out Bertrand competition in a static setting in Section 5.3 below.

5A similar assumption is made in the standard random search model, namely, that a
worker and firm whose match is destroyed do not subsequently remember each other.
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for vacancies. Given V = 0, there is no incentive for vacancies competing
for a worker to drop out of the Bertrand competition before the wage is
bid up to w = 1 (thus justifying the notation J(1)). This in turn implies
that we also have J(1) = 0. Inserting these equilibrium conditions into the
expression for V gives

m(θ;a)

θ
(1− γ(θ;a))J(R) = cv(1 + r).

At the same time, the value of employing a worker at w = R is

J(R) = (1−R) +
1

1 + r
[(1− δ)J(R) + δV ].

Again using V = 0, we have

J(R) =
1 + r

r + δ
(1−R).

Combining these equations gives the first steady-state equilibrium condition,

cv =
m(θ; a)

θ
(1− γ(θ; a))

1−R

r + δ
. (11)

A worker also passes through three states — unemployed, employed at
the competitive wage, and employed at R. The value of unemployment is
defined by

U =
1

1 + r
{m(θ;a)[γ(θ; a)N(1) + (1− γ(θ;a))N(R)] + (1−m(θ; a))U},

where N(1) and N(R) are the values of employment at w = 1 and w = R,
respectively. These latter two values are in turn defined by

N(1) = 1 +
1

1 + r
{(1− δ)N(1) + δU}

N(R) = R+
1

1 + r
{(1− δ)N(R) + δU}.

The reservation wage property, i.e., N(R) = U, then implies

U =
1 + r

r
R

N(1) =
(1 + r)

r(r + δ)
(r + δR).
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Inserting these expressions into the expression for U and rearranging gives
the second steady-state equilibrium condition,

R =
m(θ;a)γ(θ;a)

r + δ +m(θ; a)γ(θ;a)
. (12)

The final equation for the steady-state equilibrium is the standard flow
(Beveridge curve) condition for unemployment. Since the labor force is
normalized to 1, this is

u =
δ

δ +m(θ; a)
. (13)

Equations (12) and (13) show that, as is common in this class of models,
once labor market tightness (θ) is determined, the other endogenous vari-
ables — in this case, R and u — are easily determined. Using equation (12)
to eliminate R from equation (11) gives the equation that determines the
steady-state equilibrium value of θ, namely,

cv =
m(θ∗∗;a)

θ∗∗
1− γ(θ∗∗; a)

r + δ +m(θ∗∗;a)γ(θ∗∗; a)
. (14)

Using our results on the properties of m(θ; a) and γ(θ;a), we can show that

the right-hand side of equation (14) equals
1

r + δ
as θ → 0, that it goes to

zero as θ → ∞, and that its derivative with respect to θ is negative for all

θ > 0. Equation (14) thus has a unique solution for each cv ∈ (0, 1

r + δ
].

The natural next step is to compare equilibrium steady-state labor mar-
ket tightness with the constrained efficient value of θ. The planner’s problem
is to choose the level of labor market tightness that maximizes the discounted
value of output net of vacancy costs for an infinitely-lived economy.6 That
is, the planner’s problem is to maximize

∞X
t=0

µ
1

1 + r

¶t

(1− ut − cvθtut)

subject to
ut+1 − ut = m(θt;a)ut − δ(1− ut)

6We consider only stationary solutions, but this is not likely to be restrictive in our
model. There are two standard reasons why a nonstationary solution might be optimal.
First, as shown in Shimer and Smith (2001), a nonstationary solution can be optimal in
a matching model with two-sided heterogeneity when agents’ characteristics are comple-
ments in production. A nonstationary solution may also be optimal if there are increasing
returns to scale in the matching function. Neither of these features is present in our model.
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with u0 given.
The current-value Hamiltonian for this problem is

H(θ, u) = 1− u− cvθu+ λ[m(θ;a)u− δ(1− u)]

with necessary conditions

∂H

∂θ
= −cvu+ λmθ(θ;a)u = 0

r
.
λ = −∂H

∂u
+ rλ = 1 + cvθ − λ[r + δ +m(θ;a)].

Evaluating at the steady-state, and eliminating λ, gives

cv =
(1 + cvθ

∗)mθ(θ
∗; a)

r + δ +m(θ∗;a)
. (15)

Now we can compare the levels of labor market tightness implied by
equations (14) and (15). Using equations (1) and (3), equation (14) can be
rewritten as

cv(r+δ+m(θ
∗∗; a)) = (1+cvθ∗∗)(1− θ∗∗

a
(1−e−a/θ∗∗))a−1(1−e−a/θ∗∗). (16)

Using equation (8), equation (15) can be rewritten as

cv (r + δ +m(θ∗; a)) = (1+cvθ∗)(1−θ
∗

a
(1−e−a/θ∗))a−1(1−e−a/θ∗− a

θ∗
e−a/θ

∗
).

(17)
As in the single-period analysis, θ∗ is the constrained efficient level of labor
market tightness, i.e., the value of θ that solves equation (15), and θ∗∗ is the
equilibrium level of labor market tightness, i.e., the value of θ that solves
equation (14). Comparing equations (16) and (17) yields the following:

Proposition 4 Let u, v → ∞ with v/u = θ and a ∈ {2, ..., A} fixed. Then
in steady state, θ∗∗ > θ∗.

Proposition 4 indicates that, as in the single-period analysis, when the
unemployed make a fixed number of multiple applications per period (a ∈
{2, ..., A}), equilibrium is constrained inefficient. Specifically, there is too
much vacancy creation. This result holds even though the ability of the
unemployed to reject offers in favor of waiting for a more favorable outcome
in some future period implies a dynamic monopsony wage above the single-
period monopsony wage of zero.
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Finally, note that the marginal benefit (MB) of opening a vacancy, the

RHS of equation (17), is
(1−e−a/θ−a

θ
e−a/θ)

(1−e−a/θ) times the average benefit (AB) ,

the RHS of equation (16). This ratio is the same in the one-period model and
is equal to the probability that a firm receives 2 or more applications condi-
tional on receiving at least 1 application. Call this conditional probability
P . Each additional vacancy attracts applications from other vacancies and
consequently increases the probability that multiple vacancies must compete
for the same candidate, the second coordination problem. The extent of this
negative externality is proportional to P . As a increases, both the MB and
the AB increase but the MB increases faster, and in the limit as a → ∞,
P → 1 and MB=AB. This does not mean that the labor market becomes
more efficient. To the contrary, the matching rate goes down. Increasing a
simply makes the planner’s problem more difficult. In the next section, we
endogenize a and show that workers typically apply to too many jobs.

5 Extensions and Robustness Checks

In this section, we focus on three simplifying assumptions that we made in
our basic model. These assumptions are: (i) that the number of applications
sent out by each worker is a parameter of the search technology, (ii) that
each vacancy can process at most one application per period, and (iii) that
two or more vacancies competing for the same worker engage in Bertrand
competition for that worker’s services. Accordingly, we examine what hap-
pens to our results if (i) the number of applications per worker is a choice
variable, (ii) each vacancy can process at most two applications, and (iii)
vacancies pursue strategies that rule out Bertrand competition.

5.1 Endogenous a

We have assumed that each worker makes a applications, where a ∈ {1, 2, ..., A}
is exogenously given. Since the equilibrium level of labor market tightness
is efficient when a = 1 but inefficient when a ∈ {2, ..., A}, it is natural to
ask whether — and under what circumstances — workers would choose to
make only one application or more than one. In addressing this question,
we consider only pure-strategy symmetric equilibria in application strate-
gies. That is, assuming that all other workers make a applications, under
what conditions (taking into account how firms react to all workers choosing
a) is it in the individual worker’s interest also to choose a? Our objective
is to determine whether our inefficiency results are robust with respect to
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endogenizing a in this way.
To make endogenizing a an interesting problem, there must be a cost

associated with applications, so we assume that each application costs ca to
submit. In the one-shot game, there are then only 2 exogenous parameters,
the cost of posting a vacancy, cv, and the cost of submitting an application,
ca. We need only consider 0 ≤ cv ≤ 1 and 0 ≤ ca ≤ 1 since worker output
equals 1 and if cv > 1, no firm would post a vacancy, and if ca > 1, no
worker would make an application. Thus for each (cv, ca) in the unit square
we can ask (i) what are the free-entry equilibrium values of θ and a and (ii)
what values of θ and a would a social planner choose?

We start with the equilibrium problem and ask: For what values of
(cv, ca) is a = 1 consistent with equilibrium? For what values of (cv, ca) is
a = 2 consistent with equilibrium? Etc. We address this question numeri-
cally as follows.

Consider a candidate equilibrium in which all workers make a applica-
tions. Then, for each θ, we know what wage vacancies choose to post (from
equation (2) if a = 1; zero if a ∈ {2, ..., A}), and we know m(θ;a). We pick
a value of cv from a grid over (0, 1). From the free-entry condition (equa-
tion (6) if a = 1; equation (7) otherwise), there is a corresponding implied
value of θ. We then ask, using the value of θ implied by the free-entry
condition, for what values of ca is an individual worker’s expected payoff
maximized by choosing to send out the same number of applications as all
other workers do? We answer this numerically by comparing the expected
payoff associated with choosing a when all other workers also choose a with
those associated with choosing a−1, a−2, ... and a+1, a+2, ..., etc.7 For the
particular cv that we chose, this gives us a range of values for ca. We then
repeat for the next value of cv, etc. The outcome of this algorithm is the set
of (cv, ca) combinations in the unit square that are consistent with a pure-
strategy symmetric equilibrium in which all workers make a applications.
We carry out this process for a wide range of values for a.

Next, we address the social planner’s problem. Given (cv, ca), the natural
social planner problem is

max
θ,a

m(θ;a)− cvθ − caa,

where θ ≥ 0 and a ∈ {0, 1, 2, ...}. We know this problem is concave in θ for

7This comparison can be carried out in a finite number of steps since the maximum
number of applications a worker might make is limited by the requirement that the total
cost of submitting applications be less than one.
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a given a. Thus, if (θ∗, a∗) solves the social planner problem, we must have

cv = mθ(θ
∗;a∗),

and θ∗ = θ∗(a∗; cv) has a unique solution. We can plug this back into
the social planner’s objective and maximize numerically with respect to a.
This gives a∗ (and θ∗) as functions of (cv, ca). We can then compare the
equilibrium unit square with the social planner unit square.

The qualitative results of this exercise are as follows. First, although
there are many parameter configurations for which the equilibrium number
of applications, a∗∗, equals 1, this outcome requires relatively high values of
ca. Second, the equilibrium number of applications increases as ca falls (as
one would expect). Third, there are parameter configurations that admit
multiple equilibria. This reflects a complementarity between workers’ and
firms’ strategies. For example, if all workers choose a = 1, then vacancies
post a positive wage, w(θ; 1) > 0. For some values of θ (equivalently, for some
values of cv) it is not worthwhile for workers to submit a second application.
On the other hand, if all workers choose a = 2, then w = 0, and it cannot
be worthwhile for a worker to deviate to a = 1. Fourth, there are many
parameter configurations for which no symmetric pure-strategy equilibrium
exists. One parameter region in which this is the case is the set of (cv, ca)
combinations in which individual workers would prefer not to send out any
applications when all other workers choose a = 1. This occurs when both cv
and ca are relatively high. There are, however, other (cv, ca) combinations
for which no symmetric pure-strategy equilibrium exists. Fifth, for relatively
low values of ca, there are parameter regions with unique equilibria at a∗∗ =
2, a∗∗ = 3, etc.

In the parameter regions in which a symmetric pure-strategy equilibrium
(or equilibria) exists, we find a∗∗ ≥ a∗. Specifically, there are parameter
configurations for which a∗ = a∗∗ = 1 (where a∗∗ = 1 may either be unique
or one of two or more equilibrium possibilities). However, when a∗∗ ≥ 2,
we find a∗∗ > a∗. This occurs when cv and ca are low relative to the output
produced by a match. That is, for what we view as reasonable values of cv
and ca, the equilibrium number of applications exceeds the socially optimal
value. The reason is simply that individual workers, when deciding how
many applications to submit, fail to take into account the externality they
impose on other workers. The countervailing externality that one might
expect — that an increase in worker applications should make it easier for
firms to fill their vacancies — does not obtain because of the coordination
failure among vacancies.
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Finally, endogenizing a does not affect our basic efficiency result for labor
market tightness. For (cv, ca) combinations such that a∗ = a∗∗ = 1, we, of
course, have θ∗ = θ∗∗. For parameter configurations such that a∗∗ > a∗,
we typically find θ∗∗ > θ∗. For a small set of parameter configurations,
however, we find θ∗∗ < θ∗. This appears at first glance to be inconsistent with
Proposition 3, but note that in that Proposition, we imposed the restriction
that a∗ = a∗∗, which need not hold when we endogenize a. In any event, the
bottom line of this exercise is clear. The assumption that a is an exogenous
parameter of the search technology, which we made in order to make our
basic model as transparent as possible, is not driving our results on the
inefficiency effects of multiple applications.

5.2 Shortlisting

Our inefficiency result is based on a double coordination failure. Not only are
workers unable to coordinate in terms of where they send their applications,
but vacancies are unable to coordinate in terms of which applicants they try
to hire. In our basic model, we represented the coordination failure among
vacancies in a clean but extreme way. A natural question is the extent to
which our results depend on our assumption that each vacancy could pursue
at most one applicant.

To address this question, we now consider a version of the basic one-shot
model in which each vacancy can make up to two offers. Specifically, we
assume that vacancies form “short lists” as follows. If two or more workers
apply to a vacancy, the vacancy selects two applicants at random and rejects
the others. It selects one of its chosen applicants to receive its first-round
offer. The other applicant, if she is not hired by another vacancy in the
first round, gets a second-round offer in the event that the vacancy doesn’t
hire in the first round. If only one worker applies to a vacancy, then that
worker gets the vacancy’s first-round offer. To keep the algebra as simple as
possible, we analyze this model for the case of a = 2.

This extension makes our model far more difficult. The basic reason
is that when a worker thinks about applying to a vacancy that is deviat-
ing from the putative equilibrium wage, the indifference condition becomes
considerably more complicated. A worker’s application strategy affects the
probabilities of being placed on 0, 1, or 2 short lists; the worker could be
in first or second place on these short lists, etc. In addition, an interme-
diate wage arises in this model. Consider two vacancies competing for the
same applicant in the first round. If either or both of these vacancies has a
second-round candidate, then Bertrand competition in the first round stops
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before the competitive level.
Our analysis of shortlisting follows the same road map that we used

for our basic model. We first derive the matching probability, assuming a
symmetric equilibrium posted wage. Second, taking θ as given, we derive
the symmetric equilibrium wage posting strategy for vacancies. Finally, we
characterize the free-entry equilibrium level of labor market tightness and
the corresponding constrained efficient level and compare the two. The
central result of our analysis still holds — the equilibrium level of θ exceeds
the efficient level.

Because the details of the shortlisting extension are very tedious, we
present the analysis in Appendix C. Here, in the text, we simply summarize
and comment on our results.

We begin with the matching probability. Assuming the existence of a
symmetric equilibrium posted wage, that is, assuming that all vacancies are
equally attractive ex ante, the probability that a worker finds a job is

m(θ) = 1− (1− q1)
2(1− q2)

2, (18)

where q1 is the probability that an application leads to a first-round offer
and q2 is the probability that an application leads to a second-round offer
given that it does not generate a first-round offer. An explanation of the
form of m(θ) and expressions for q1 and q2 are given in Appendix C. Note
that the probability that an application leads to a first-round offer is the
same as the probability that the application would have generated an offer
had there been only one round; i.e., q1 = q (from the basic model). The
obvious result thus follows, namely, for each value of θ, shortlisting increases
the probability that a worker finds a job.

From the social planner’s perspective, the only effect of shortlisting is to
change the form of m(θ). The effect on equilibrium is, however, much more
complicated. For low values of θ, the equilibrium analysis is qualitatively
similar to the one we carried out for our basic model. All vacancies post
a wage of zero. Bertrand competition for an applicant who has two first-
round offers either drives the wage to the competitive level (if neither of
the competing vacancies has a second-round candidate) or to the interme-
diate wage (if at least one of the vacancies has a second-round candidate).
An applicant who, having failed to get any first-round offers, gets a single
second-round offer receives the monopsony wage (zero). An applicant who
gets two second-round offers receives a wage of one.

For higher values of θ (the cutoff value is approximately θ = 0.42), there
are multiple equilibria. For example, when θ = 1, any wage in the interval
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[0.20, 0.23] (approximately) is consistent with equilibrium. The reason for
multiple equilibria has to do with the discontinuity in the derivative of ex-
pected profit with respect to the potential deviant’s wage at the equilibrium
wage. The reason that w = 0 is not an equilibrium posted wage for higher
values of θ has to do with the change in application incentives implied by
shortlisting. In our basic model, a worker whose application is accepted by
more than one vacancy necessarily receives a wage of one, and workers are
willing to apply to vacancies posting w = 0 in hopes of hitting the jackpot.
With shortlisting, however, a worker can wind up with the posted wage even
if both of her applications are accepted — specifically, if she is first on one
vacancy’s short list and second on the other’s. (When θ is low, w = 0 arises
even with shortlisting due to a lack of competition among vacancies.)

Whether θ is low, so w = 0 is the unique posted wage, or θ is high,
so there are multiple equilibria, workers can receive three different wages
— the posted wage, the intermediate wage, and the competitive wage. The
intermediate wage, s, is determined by

1− s = (1− q1)(1− q2)(1−w). (19)

The left-hand side of this expression is the profit that a vacancy realizes
if it hires its first-round candidate at wage s. The right-hand side is the
expected profit for a vacancy that received two applications should it choose
to proceed to the second round. With probability 1−q1 the vacancy’s second-
place candidate will still be available after the first round. Conditional on
still being available, this candidate will fail to get a competing second round
offer with probability 1− q2. The vacancy then realizes a profit of 1−w.

For each value of θ, the next step is to compute the expected profit of
a vacancy, say π(θ). When there are multiple equilibria, we use the highest
possible equilibrium wage. At this wage, π(θ) is at its lowest possible level;
hence the incentive to create vacancies is as small as possible. The free-entry
equilibrium value of labor market tightness, θ∗∗, is determined by

cv = π(θ∗∗),

which is analogous to equation (7) in our basic model. The efficient value
of labor market tightness, θ∗, is determined by

cv = m0(θ∗),

precisely as in the basic model. The only effect of shortlisting is to change
the form of m(·).
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It is straightforward to compute m0(θ) and π(θ) numerically. Both of
these functions are positive and decreasing in θ, and π(θ) > m0(θ) for each
θ > 0. Equivalently, θ∗∗ > θ∗. That is, the central result of our basic model,
namely, that there is excessive vacancy creation in free-entry equilibrium,
continues to hold when we extend our model to allow for shortlisting.

There are, of course, other ways to relax the assumption that each va-
cancy can process at most one application. We feel, however, that we have
done so in a reasonable and realistic way. The fact that θ∗∗ > θ∗ contin-
ues to hold when we allow for shortlisting suggests that our result on the
inefficiency of competitive search equilibrium when workers make multiple
applications is robust to the assumption that vacancies can consider at most
one application. When a firm opens a vacancy, it does not internalize the
cost that it imposes on other vacancies (the second coordination problem).
Even if we were to allow vacancies to make their shortlists longer, they can
still lose all their candidates to competitors. In other words, shortlisting
reduces the second coordination problem but does not eliminate it.

5.3 Offer-Beating Strategies

In our basic model, we assumed that if a worker received offers from two or
more vacancies, those vacancies would then engage in Bertrand competition
for the worker’s services. Although the Bertrand assumption is standard in
the literature, it can be debated in our environment. A vacancy that is about
to lose a worker to a rival should be indifferent between letting the worker
take the other job versus entering into Bertrand competition. After all, both
policies, conceding or competing, lead to the same zero-profit outcome.

Simply assuming that each vacancy announces a common wage w and
then refuses to engage in ex post bidding is, of course, not satisfactory.8 If
all vacancies were to follow such a strategy, then a deviant could profit by
increasing its wage offer whenever its chosen applicant had other offers. This
leads us to consider offer-beating strategies.

We define such strategies as follows:

1. Post w.
8 If one were nonetheless simply to assume that ex post bidding is not allowed, then

there would be no common equilibrium posted wage. Suppose all vacancies post a wage
of w. Then, assuming that a worker who has multiple offers accepts the highest one and
so long as w is not too close to one, it is in the interest of any one vacancy to post a
slightly higher wage. Once w is sufficiently close to one, a vacancy can profit by lowering
its wage to the minimum level consistent with attracting one or more applications with
some positive probability.
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2. If all other vacancies pursuing the same applicant post w or less, con-
tinue to offer w.

3. If at least one other vacancy pursuing the same applicant posts w0 > w
or makes a counteroffer w0 > w, make a counteroffer above w0. If one or
more rivals makes a counteroffer to the counteroffer, respond in kind;
i.e., engage in Bertrand competition.

Of course, these strategies only are relevant when workers make more than
one application.

Offer-beating strategies are analogous to the price-beating strategies that
have been used in the industrial organization literature to rule out Bertrand
competition in prices. Price-beating strategies are sometimes used in that
literature as a foundation for “kinked demand curves” (e.g., Tirole 1988, pp.
243-45). Typically, there is a continuum of price-beating Nash equilibria —
absent any consideration of equilibrium refinements, there is a continuum of
prices at which the demand curve can kink.

We begin our analysis of offer-beating equilibria taking θ as given. We
first show that for each θ, there is a continuum of offer-beating Nash equi-
libria. These are indexed by w, where w ranges from the monopsony level
(zero) to an upper bound that is increasing in θ. The more difficult it is
for vacancies to attract workers at any given wage, i.e., the higher is θ, the
greater is the range of wages that can be supported as offer-beating Nash
equilibria. In terms of choosing among these equilibria, a common offer-
beating strategy with w = 0 is the obvious focal point. Nonetheless, we
continue to consider all the possible offer-beating Nash equilibria. We do
this to emphasize the scope of our second result — when we allow for free
entry, i.e., when we endogenize θ, all of these equilibria are inefficient. In
particular, all exhibit excess vacancy creation.

Proposition 5 Let w(θ;a) =
a

θ

e−a/θ

1− e−a/θ
. There exists a continuum of

symmetric offer-beating Nash equilibria indexed by w ∈ [0, w(θ;a)].

The strategy of proof is simple. We first show that if all vacancies follow
an offer-beating strategy at any common posted wage w, it is never in the
interest of any one vacancy to post a higher wage, w0. Posting a higher wage
increases the probability of attracting an applicant. This is beneficial only
if that applicant receives no other offers. We place an upper bound on the
expected benefit associated with an upward deviation in the posted wage
by supposing that an arbitrarily small increase in the posted wage above w
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attracts one or more applicants with probability one. Nevertheless, it is not
profitable to post w0 > w. The increase in the probability of attracting an
applicant is outweighed by the decrease in the probability that the vacancy
will receive a positive profit from that worker. Second, we check that a
downward deviation, i.e., w0 < w, is not profitable. This is the case for all
w ∈ [0, w(θ;a)] . The argument is essentially the same as the one we used
for the case of a = 1 in the proof of Proposition 2. The details are given in
Appendix D.

The next step is to allow for free entry. Suppose all vacancies follow an
offer-beating strategy with a posted wage of w. The equilibrium value of θ
is then determined as usual by

cv =
m(θ)

θ
(1−w).

Now, however, any w ∈ [0, w(θ;a)] is consistent with symmetric Nash equi-
librium, so there is a corresponding range of θ that is consistent with free-
entry equilibrium. The lowest possible equilibrium level of labor market
tightness is the one associated with w(θ; a). Call this lowest possible equi-
librium value of labor market tightness θ∗∗. Then θ∗∗ solves

cv =

1−
µ
1− θ∗∗

a
(1− e−a/θ∗∗)

¶a

θ∗∗

Ã
1− a

θ∗∗
e−a/θ

∗∗¡
1− e−a/θ∗∗

¢! .

As usual, let q =
θ

a
(1− e−a/θ). The free-entry condition is then

cv =
1− (1− q)a

aq
(1− e−a/θ

∗∗ − a

θ∗∗
e−a/θ

∗∗
). (20)

The planner’s problem is unchanged, so the efficient level of labor market
tightness, θ∗, is again the solution to

cv = (1− θ∗

a
(1− e−a/θ

∗
))a−1(1− e−a/θ

∗ − a

θ∗
e−a/θ

∗
),

cf., equation (9). This condition can be rewritten as

cv = (1− q)a−1(1− e−a/θ
∗ − a

θ∗
e−a/θ

∗
). (21)

Since 1− (1− q)a > aq(1− q)a−1 so long as a ≥ 2 (by the properties of the
binomial), the right hand side of (20) is greater than the right hand side of
(21) for each θ > 0. That is, θ∗∗ > θ∗. We thus have:
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Proposition 6 There is excessive vacancy creation in any symmetric offer-
beating Nash equilibrium.

The point of Proposition 6 is clear. The inefficiency associated with multiple
applications is not an artifact of assuming ex post Bertrand competition for
applicants. Offer-beating strategies are a particular alternative to Bertrand
competition. They create rents for vacancies which are absent in a com-
petitive environment. In a free-entry equilibrium, these rents translate into
excessive entry and wages that are too low. In fact, any strategy that reduces
competition will have this effect.

6 Concluding Remarks

In this paper, we construct an equilibrium search model of a large labor
market in which workers, after observing all posted wages, submit a fixed
number of applications, a ∈ {1, ...A}, to the vacancies that they find most
attractive. We derive the symmetric equilibrium matching probability and
the common posted wage. When a = 1, our analysis is a large labor market
version of BSW. However, when a ∈ {2, ...A}, i.e., when workers make mul-
tiple applications, the symmetric equilibrium of our model is radically differ-
ent. With multiple applications, the match probability in our model reflects
the interplay of two coordination failures — an urn-ball failure among work-
ers and a multiple-application failure among vacancies. In addition, when
workers make more than one application, all vacancies post the monopsony
wage, but there is dispersion in wages paid. Workers who receive only one
job offer are paid the monopsony wage, but those who receive multiple of-
fers get the competitive wage. When workers make a single application or
when they apply to an arbitrarily large number of vacancies, equilibrium
is constrained efficient; but when workers make a finite number of multiple
applications, too many vacancies are posted. These results, both positive
and normative, carry over from the single-period model to a steady-state
framework and they are robust with respect to reasonable variations in our
key assumptions.

Directed search is an appealing way to model equilibrium unemploy-
ment and wage dispersion. In reality, workers do direct their applications to
attractive vacancies, but unemployment nonetheless persists as a result of
coordination failures on both sides of the labor market. In addition, those
workers who are lucky enough to generate competition for their services
do in fact have their wages bid up. The contribution of our paper is to
show that these realistic features can be captured in a tractable equilibrium

26



model and, more importantly, that when these features are incorporated,
equilibrium is not constrained efficient.
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Appendices

A Proof of Proposition 1

We now sketch the proof of Proposition 1. The full proof is given in Albrecht
et. al. (2004). We computem(θ; a) as follows. The probability that a worker
finds a job is one minus the probability that he or she gets no job offers.
Consider a worker who applies to a vacancies, and let the random variables
X1,X2, ..., Xa be the number of competitors that he or she has at vacancy 1,
vacancy 2, ..., vacancy a. The probability that the worker gets no job offers
can be expressed asX

...
X x1

x1 + 1

x2
x2 + 1

...
xa

xa + 1
P [X1 = x1, X2 = x2, ...Xa = xa].

In general, the random variables X1, X2, ...,Xa are not independent, making
the computation of the joint probability a difficult one. (Albrecht et. al.
2004 and Philip 2003 give an expression for the joint probability.) The
intuition for dependence is simple. Consider, for example, a labor market in
which u and v are small and in which each worker makes a = 2 applications.
Then, if a worker has relatively many competitors at the first vacancy to
which he or she applies, it is more likely that his or her second application has
relatively few competitors. The key to Proposition 1 is that this dependence
vanishes in the limit. In the limit, the fact that a worker has an unexpectedly
large number of competitors at one vacancy says nothing about the number
of competitors he or she faces elsewhere. The joint probability then equals
the product of the marginals, and the probability that a worker gets at least

one offer can be computed as 1 −
³P x

x+1P [X = x]
´a

. As u, v → ∞ with

v/u = θ, the number of competitors an applicant faces at any particular
vacancy, X, converges in distribution to a Poisson (aθ ) random variable. A
straightforward computation then gives equation (1).

If a = 1, there is no problem of dependence. The number of competitors
that a worker has at the vacancy to which he or she applies is a bin(u−1, 1v )
random variable. The probability that a worker gets an offer is then

1−
u−1X
x=0

x

x+ 1

µ
u− 1
x

¶µ
1

v

¶xµ
1− 1

v

¶u−1−x
=

v

u

∙
1− (1− 1

v
)u
¸
.

With a change in notation, this result is the same as the one given in BSW.
Taking the limit of this matching probability as u, v → ∞ with v/u = θ
gives m(θ; 1) = θ(1 − e−1/θ), as equation (1) implies. The case of a = v
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is the polar opposite. In this case, X1 = X2 = ... = Xa = u − 1 with
probability one, so the probability a worker gets an offer is 1− (u−1u )v, as in
JKK. Taking the limit as u, v →∞ with v/u = θ gives

m(θ) = 1− e−θ.

The same expression can be derived by taking the limit of m(θ;a) as a→∞
in equation (1).

B Proof of Proposition 2

As discussed in the text, we need to show that when a = 1, the wage
w(θ; 1) has the property that if all vacancies, with the possible exception
of a potential deviant (D), post that wage, then it is also in D’s interest to
post w(θ; 1). When a ∈ {2, ..., A}, we need to show that no matter what
common wage is posted by other vacancies, it is always in D’s interest to
undercut, thus driving w(θ; a) to zero.

Suppose D posts a wage of w0 and that each nondeviant vacancy (N)
posts w. Then D’s expected profit is

π(w0;w) = (1−w0)P [D gets at least one application]P [selected applicant has no other offer]
Let k be the probability that any one worker applies to D. In symmetric
equilibrium, k must be the same for all workers. As u → ∞, k must go to
zero; otherwise, any applicant to D would have an infinity of competitors
and therefore would get the job at D with probability zero. We let u→∞
and k → 0 in such a way that ku = ξ stays constant; thus, in a large
labor market, the number of applications sent to D is a Poisson (ξ) random
variable. We therefore have

P [D gets at least one application] = 1− e−ξ.

The parameter ξ depends on w0, w and θ through an indifference condition,
which we develop below. Finally, the last term on the right-hand side of
π(w0;w) can be written as

P [selected applicant has no other offer] = (1− qN)a−1,

where qN is the probability that any one application to an N vacancy leads
to an offer. We thus have

π(w0;w) = (1−w0)(1− e−ξ)(1− qN)a−1.
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The parameter ξ determines the probability (call it qD) that a worker
who applies to D gets an offer from that vacancy, as follows:

qD =
∞X
x=0

1

x+ 1

e−ξξx

x!
=
1

ξ
(1− e−ξ).

To understand this expression, note that (i) a worker who has x competitors

at D gets the offer from D with probability
1

x+ 1
and (ii) the number of

competitors faced by a worker who applies to D is Poisson (ξ). The proba-
bility that an application to an N vacancy leads to an offer is derived in a
similar fashion:

qN =
∞X
x=0

1

x+ 1

e−a/θ(aθ )
x

x!
=

θ

a
(1− e−a/θ).

The number of potential competitors at an N vacancy goes to infinity, the
probability that any one potential competitor applies to the N vacancy in
question goes to zero, and the product of these two terms goes to a/θ, so
the number of competitors faced by an applicant to an N vacancy is Poisson
(
a

θ
). Note that qN does not depend on w0.
We now develop the indifference condition, which defines ξ as a function

of w0 given w and θ. Each worker must be indifferent between sending all a
applications to N vacancies versus sending 1 application to D and the other
a−1 to N vacancies. The expected payoff from sending all applications to N
vacancies depends on neither ξ nor w0 and can thus be treated as a constant.
The expected payoff from sending one application to D and the others to N
vacancies does, of course, depend on ξ and w0.

The possible payoffs for a worker who sends 1 application to D and the
other a− 1 to N vacancies are

(i) 1 if 2 or more applications are accepted.
This occurs with probability

qD(1− (1− qN)a−1) + (1− qD)(1− (1− qN )a−1 − (a− 1)qN(1− qN)a−2)
= 1− (1− qN )a−1 − (1− qD)(a− 1)qN(1− qN)a−2.

(ii) w0 if only the application to D is successful.
This occurs with probability qD(1− qN )a−1.

(iii) w if the application to D is unsuccessful and only one application to N
is successful.
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This occurs with probability (1− qD)(a− 1)qN(1− qN)a−2.

(iv) 0 if no applications are successful.
This occurs with probability (1− qD)(1− qN)a−1

The expected payoff for a worker who sends 1 application to D and a− 1 to
N is thus

1−(1−qN)a−1−(1−qD)(a−1)qN (1−qN)a−2+w0qD(1−qN)a−1+w(1−qD)(a−1)qN (1−qN)a−2.
Equating this to the expected payoff from applying only to N vacancies

implicitly defines ξ(w0;w, θ). Differentiating with respect to w0, taking into

account that
dqD

dξ
= −1− e−ξ − ξe−ξ

ξ2
, and substituting for qD and qN gives

dξ

dw0
=

ξ(1− e−ξ)(1− θ
a(1− e−a/θ))

(1− e−ξ − ξe−ξ)
¡
(a− 1) θa(1− e−a/θ)(1−w) +w0(1− θ

a(1− e−a/θ))
¢

Since 1 − e−x − xe−x > 0 for all x > 0 and 1 ≥ w, we have
dξ

dw0
> 0 (as

expected) and
d2ξ

dw02
< 0.

Turning back to D’s optimization problem, π(w0;w) is proportional to
(1 − w0)(1 − e−ξ). Maximizing with respect to w0, the first-order (Kuhn-
Tucker) condition is

−(1− e−ξ) + (1−w0)e−ξ
dξ

dw0
≤ 0 with equality if w0 > 0.

Note that if there is an interior solution, the second-order condition holds.
We are interested in the possibility of an interior solution at w0 = w.

Consider first the case of a = 1. If w0 = w, then ξ = 1/θ. Substituting and
solving gives

w(θ; 1) =
e−1/θ

θ(1− e−1/θ)
,

as given in equation (2).
Consider next the case of a ∈ {2, ..., A}. In this case w0 = w implies

ξ = a/θ. Substituting the expression for
dξ

dw0
into the Kuhn-Tucker condition

gives

(1−w)ξe−ξ(1− 1
ξ (1− e−ξ))

(1− e−ξ − ξe−ξ)
³
(a− 1)1ξ (1− e−ξ)(1−w) +w(1− 1

ξ (1− e−ξ))
´ ≤ 1
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This can be rewritten as

ξ2e−ξ + (a− 2)ξe−ξ(1− e−ξ)− (a− 1)2(1− e−ξ)2

(1− e−ξ)
≤ w(ξ−a(1−e−ξ)+(a−1)2ξ(1−e−ξ)2)

Only a corner solution exists with w(θ;a) = 0 if this is a strict inequality.
Note that as ξ → 0, the RHS → 0 and, using L’Hôpital’s Rule, so does

the LHS. Note also that

dRHS

dξ
= w(1− ae−ξ + (a− 1)2(1− e−ξ)2 + 2(a− 1)2ξ(1− e−ξ)e−ξ) > 0,

while

dLHS

dξ
=
−e−ξ((1− e−ξ)2((a− 1)(a− 2) + ξ(a− 2)) + (1− e−ξ − ξ)2

(1− e−ξ)2
,

which is negative for a ∈ {2, ..., A}. Thus, in this case, we have a corner
solution with w(θ; a) = 0.

Finally to derive γ(θ; a), note that in symmetric equilibrium qN = qD ≡
q = θ

a(1− e−a/θ). A fraction 1− (1− q)a of all workers get a job. A fraction
1 − (1 − q)a − a(1 − q)a−1 of all workers receive multiple offers. Thus, a
fraction

1− (1− q)a − a(1− q)a−1

1− (1− q)a

of the workers who find a job receive the competitive wage. Substituting for
q gives equation (3). QED

C Shortlisting

C.1 Derivation of the matching probability

We first derive m(θ) for a worker (call her A). Let q1 be the probability
that an application leads to a first-round offer. Let q2 be the probability
that an application would lead to a second round offer given it does not
generate a first-round offer. Recall that we are assuming that workers make
two applications. We then have

m(θ) = 1− (1− q1)2+(1− q1)2(1− (1− q2)2) = 1− (1− q1)2(1− q2)2. (22)
The probability that A gets an offer in the first round is 1− (1− q1)

2. The
probability that she gets an offer in the second round is the probability that
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she fails to get a first-round offer, (1− q1)2, times the probability of getting
a second-round offer conditional on not having received an offer in the first
round, 1− (1− q2)2.

The calculation of q1 is as before. Suppose A applies to vacancy V. Let
Y be the number of other applications to V. Y is Poisson (2/θ). Then

q1 =
∞X
y=0

1

y + 1
P [Y = y] =

θ

2
(1− e−2/θ). (23)

Now suppose A applies to V and doesn’t get a first-round offer (neither
from V nor from the other vacancy to which she applies). The probability
that A gets a second-round offer from V is q2.

To compute q2 some notation is useful. Let C1 = 1 if A gets a 1st-round
offer from V; 0 otherwise. Thus, P [C1 = 1] = q1. Similarly, let C2 = 1 if A
gets a second-round offer from V; 0 otherwise. Assuming that A did not get
a first-round offer from the other vacancy to which she applied (in which
case, the following computations are not relevant), we have

q2 = P [C2 = 1|C1 = 0].

Suppose C1 = 0. Then V made a first-round offer to some other worker
— call him B. In order for A to get a second-round offer from V, it must
be that V failed to hire B in the first round. This can occur in two ways.
First, B gets a second first-round offer, and the vacancy (call it V*) making
this other offer has no second-round candidate. This occurs with probability
e−2/θ.9 Second, B gets a second first-round offer, the vacancy making the
offer has a second-round candidate, and B chooses the other vacancy. This
occurs with probability

q1
1− e−2/θ

q1

2
= (q1 − e−2/θ)/2.

9B gets the other first-round offer with probability q1. Let C1 = 1 if B gets a first-round
offer from V* , and let Y be the number of workers in addition to B who applied to V* .
Then V* has no second candidate on its short list if Y = 0. Using Bayes Law,

P [Y = 0|C1 = 1] = P [C1 = 1|Y = 0]P [Y = 0]

P [C1 = 1]
=

e−2/θ

q1
.

We thus have

P [C1 = 1 and Y = 0] = q1
e−2/θ

q1
= e−2/θ.
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The probability that V fails to hire in the first round is thus

e−2/θ +
q1 − e−2/θ

2
=

q1 + e−2/θ

2
.

Next, given that A is not first on V’s short list, what is the probability
that she is second? If y applicants other than A applied to V, and if one of
those applicants was chosen to be first on V’s short list, then there are y−1
remaining applicants with whom A is competing for second place. Given y,
the probability that A is second is thus 1/y. To find the probability that
A is second on V’s short list, given that she is not first, we need to sum
this conditional probability against the probability mass function for Y. We
know that unconditionally, Y is Poisson (2/θ).We also know that V did not
make an offer to A in the first round, i.e., C1 = 0. So,

P [Y = y|C1 = 0] = P [C1 = 0|Y = y]P [Y = y]

P [C1 = 0]

=

y
y+1e

−2/θ(2θ )
y/y!

1− q1
=

ye−2/θ(2θ )
y/(y + 1)!

1− q1
for y = 0, 1, ...

The probability that A is second on V’s short list given that she was not
first is then

∞X
y=1

1

y
P [Y = y|C1 = 0] =

∞X
y=1

e−2/θ(2θ )
y/(y + 1)!

1− q1
=

q1 − e−2/θ

1− q1

and

q2 = P [C2 = 1|C1 = 0] =
Ã
q1 + e−2/θ

2

!Ã
q1 − e−2/θ

1− q1

!
. (24)

Substitution then gives m(θ).

C.2 Expected Profit for a Vacancy

The efficient level of labor market tightness is determined as before by cv =
mθ(θ

∗). That is, from the social planner’s perspective, the only effect of
allowing for shortlisting is to change the form of m(θ).We want to compare
the efficient level of labor market tightness, θ∗, with the corresponding free-
entry equilibrium value, θ∗∗. Assuming for now the existence of a symmetric
equilibrium posted wage, the free-entry value of labor market tightness is
determined by cv = π(w(θ∗∗)), where w(θ) is the symmetric equilibrium
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posted wage given labor market tightness θ and π(w(θ)) is expected profit
net of the cost of vacancy creation for a vacancy that posts the equilibrium
wage in a market with labor market tightness θ. In this subsection, we derive
the general form of π(·).

Suppose all vacancies post w. The number of applications that any one
vacancy receives is Poisson with parameter 2/θ. Vacancy V gets no applica-
tions (and thus no profit) with probability e−2/θ; it receives one application
(and thus has only one applicant on its short list) with probability 2

θe
−2/θ; it

receives two or more applications (and thus has two applicants on its short
list) with probability 1− e−2/θ − 2

θe
−2/θ.

Suppose V has only one applicant (again, call her A) on its short list.
With probability 1 − q1, A does not receive a competing offer in the first
round, in which case V’s profit is 1 − w.10 With probability q1, A has a
competing first-round offer. The other vacancy (V*) has only this applicant,
i.e., no one in second place on its short list, with probability e−2/θ

q1
.11 In this

case, the two vacancies drive the wage to 1 (and profit to zero) through
Bertrand competition. With probability 1− e−2/θ

q1
, however, V* has a second-

round choice. In this case, Bertrand competition pushes the wage to s, the
maximum wage V* is willing to pay rather than dropping out to proceed to
the second round, and V realizes a profit of 1− s.

This highest wage, s, that a vacancy with two applicants on its short list
is willing to pay in the first round is determined by

1− s = (1− q1)(1− q2)(1−w). (25)

The right-hand side can be understood as follows. With probability 1− q1,
a vacancy’s second-place candidate is still available after the first round.
Conditional on still being available, she fails to get a competing second-
round offer with probability 1 − q2. The vacancy then realizes a profit of
1−w.

Summarizing, a vacancy has only one applicant on its short list with
probability 2

θe
−2/θ. In this case, the vacancy’s expected profit is

(1− q1)(1−w) + (q1 − e−2/θ)(1− s).

10A accepts any w ≥ 0.Were she instead to hold out in hopes of receiving a second-round
offer from the other vacancy to which she applied, she could not do better than w. The
reason is that there cannot be competition for A’s services in the second round. Of course,
if workers each make a > 2 applications, then there is a nontrivial first-round reservation
wage problem for workers. It would be straightforward, but algebraically tedious, to add
this feature.
11The derivation is given in footnote 9.
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Now suppose V receives two or more applications. V’s first-round choice
(again, call her A) fails to get a competing first-round offer with probability
1− q1, in which case V’s profit is 1−w. With probability q1, A does receive
a competing first-round offer. The other vacancy competing for A (call it
V*) has no second-round candidate with probability e−2/θ

q1
. In this case, V is

outbid and proceeds to the second round. V’s second-round choice (call him
B) is still available with probability 1− q1. Given that he is still available,
B receives no competing second round offer with probability 1 − q2, and
V’s profit is 1 − w. If B does receive a competing second-round offer, then
Bertrand competition drives profit to zero. Alternatively, with probability
1 − e−2/θ

q1
, V* does have a second applicant on its short list. Both V and

V* are willing to bid the wage up to s. V then gets A with probability 1
2

and realizes profit 1− s. With probability 1
2 , V fails to get A and proceeds

to its second-round choice (again, call him B). As before, B is still available
in the second round with probability 1− q1; given that he is still available,
B receives no competing second round offer with probability 1− q2; and V
gets profit 1−w.

Summarizing, a vacancy has two applicants on its short list with proba-
bility 1− e−2/θ − 2

θe
−2/θ. In this case, the vacancy’s expected profit is

(1− q1)(1−w) + q1(1− s).

We can now compute the expected profit for a vacancy that posts the
same wage w as all other vacancies:

π(w) =
³
1− e−2/θ

´
[(1− q1)(1−w) + q1(1− s)]− 2

θe
−4/θ(1− s) (26)

C.3 Derivation of the Equilibrium Wage

C.3.1 Deviations

Suppose all vacancies, save possibly one, post w. Suppose a deviant (D)
posts w0. A deviation to w0 changes the worker application intensity to D
from 2/θ to ξ. The indifference condition giving ξ = ξ(w0;w) is given below.

Consider the deviant posting w0 and receiving applications at rate ξ.
D receives exactly one application with probability ξe−ξ. With probability
1 − q1, D’s applicant (again, call her A) does not have a competing first-
round offer. In this case, D’s profit is 1− w0. With probability q1, A has a
competing first-round offer. With probability e−2/θ

q1
, the competing vacancy

(V*) has no second-round candidate, and Bertrand competition drives profit
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to zero. With probability 1− e−2/θ
q1

, V* has a second-round candidate, and
D realizes profit 1− s. Summarizing, D receives expected profit

(1− q1)(1−w0) + (q1 − e−2/θ)(1− s)

with probability ξe−ξ.
D receives 2 or more applications with probability 1 − e−ξ − ξe−ξ. D’s

first-round choice fails to get a competing first-round offer with probability
1− q1, in which case D’s profit is again 1− w0. With probability q1, A has
another first-round offer. V* has no second-round candidate with probability
e−2/θ
q1

, and D is thus outbid and proceeds to the second round. D’s second-
round choice (B) is still available with probability 1 − q1. Given that B
is still available, he does not receive a competing second-round offer with
probability 1−q2, and D gets profit 1−w0. If B does receive a second-round
offer, Bertrand competition drives profit to zero.

Now suppose V* has a second-round choice. This occurs with probability
1− e−2/θ

q1
. In this case, D wins the race for A (s0 > s) if w0 > w. D’s profit

is then 1 − s. If w0 < w, D loses the race and turns to its second-round
candidate (B). B is still available with probability 1 − q1; given that he is
still available, he receives no competing second-round offer with probability
1− q2; and D gets profit 1−w0.

Note that with 2 or more applicants, D’s expected profit (as a function of
w0) depends on whether w0 is greater or less than w. Specifically, if w0 > w,
D receives expected profit

(1− q1)(1−w0) + e−2/θ(1− s0) + (q1 − e−2/θ)(1− s),

while if w0 < w, D receives expected profit

(1− q1)(1−w0) + q1(1− s0).

Summarizing, if w0 > w,

π+(w0;w) =
³
1− e−ξ

´
[(1−q1)(1−w0)+(q1−e−2/θ)(1−s)]+

³
1− e−ξ − ξe−ξ

´
e−2/θ(1−s0).

If w0 < w,

π−(w0;w) =
³
1− e−ξ

´
(1−q1)(1−w0)+ξe−ξ(q1−e−2/θ)(1−s)+

³
1− e−ξ − ξe−ξ

´
q1(1−s0).

To derive ξ = ξ(w0;w), we now turn to the indifference condition.
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C.3.2 Indifference Condition

An applicant (A) should be indifferent between sending both applications
to nondeviant (N) vacancies versus sending one application to N and the
other to D when the arrival intensity is 2/θ at any N vacancy and ξ at D.
Consider an application to an N vacancy. A is first on N’s short list with
probability q1. She is second on N’s short list with probability q1 − e−2/θ.
(A is not first on N’s short list with probability 1− q1. Conditional on not

being first, she is second with probability q1−e−2/θ
1−q1 .) Finally, she is out of the

running at N with probability 1− 2q1 + e−2/θ. Similarly, if A applies to D,
she is first on D’s short list with probability qD1 =

1
ξ (1− e−ξ), she is second

on D’s short list with probability qD1 − e−ξ, and she is out of the running at
D with probability 1− 2qD1 + e−ξ.

Suppose A sends one application to D and one to N. There are 9 possi-
bilities to consider.

1. A is first on both short lists. This occurs with probability qD1 q1. If
neither D nor N has a second candidate, A’s payoff is 1. Given that A
is first on both short lists, this occurs with probability e−ξe−2/θ

qD1 q1
. If D

has a second candidate but N does not, A’s payoff is s0. This occurs
with probability (qD1 −e−ξ)e−2/θ

qD1 q1
. If N has a second candidate, but D does

not, A’s payoff is s. This occurs with probability e−ξ(q1−e−2/θ)
qD1 q1

. If both

vacancies have second candidates, A’s payoff is s if w0 > w and s0 if
w > w0. The probability that both D and N have second candidates is
(qD1 −e−ξ)(q1−e−2/θ)

qD1 q1
.

2. A is first on D’s short list and second on N’s. This occurs with prob-
ability qD1 (q1 − e−2/θ), and A’s payoff is w0.12

3. A is first on D’s short list and out of the running at N. This occurs
with probability qD1 (1− 2q1 + e−2/θ), and A’s payoff is again w0.

4. A is second on D’s short list and first on N’s. This occurs with prob-
ability (qD1 − e−ξ)q1, and A’s payoff is w.

5. A is second on both short lists. This occurs with probability (qD1 −
e−ξ)(q1 − e−2/θ).

12We evaluate the derivative of ξ(w0;w) at w0 = w, so we need not consider the case in
which w0 is “considerably less than” w. Were that the case, A might prefer to reject w0 in
hopes of getting a second round offer from N.
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a. w0 > w. The probability that A gets a second-round offer from D is
e−2/θ. This follows because D hires its first-round candidate if that per-
son has no other offer (probability 1−q1) or if that person has another
offer and the competing vacancy has a second applicant (probability
q1− e−2/θ). Thus D fails to hire its first-round candidate and makes a
second-round offer to A with probability 1−(1−q1+q1−e−2/θ) = e−2/θ.
The probability that A gets a second-round offer from N is q1+e−2/θ

2 .
N hires its first-round candidate if that person does not have another
first-round offer (probability 1 − q1) or if that person has another
offer, the other vacancy has a second- round candidate, and the ap-

plicant chooses N (probability
1

2
× (q1 − e−2/θ)). There are now 4

possibilities. First, A receives a second-round offer neither from D
nor from N. In this case, A’s payoff is zero. Second, A receives a
second-round offer from D but not from N. This occurs with proba-
bility e−2/θ(1− q1+e−2/θ

2 ), and A receives payoff w0. Third, A receives
a second-round offer from N but not from D. This occurs with proba-
bility q1+e−2/θ

2 (1− e−2/θ), and A receives payoff w. Finally, A receives
second-round offers from both D and N. This occurs with probabil-

ity e−2/θ(q1+e−2/θ)
2 , and A receives payoff 1. Thus, when w0 > w, A’s

expected payoff in the event that she is second on both short lists is
e−2/θ(1− q1+e−2/θ

2 )w0 + q1+e−2/θ
2 (1− e−2/θ)w + e−2/θ(q1+e−2/θ)

2 .

b. w0 < w. In this case, the probability that D makes a second-round
offer is q1 since the only way that D can succeed in the first round is
if its candidate does not have another offer (probability 1− q1). The

probability that A gets a second-round offer from N is again q1+e−2/θ
2 .

With probability q1(1 − q1+e−2/θ
2 ), A gets a second-round offer from

D but not from N. In this case, A’s payoff is w0. With probability
(1 − q1)

q1+e−2/θ
2 , D hires in the first round, but N does not. In this

case, A’s payoff is w. Finally, with probability q1(q1+e−2/θ)
2 , both D and

N make second-round offers to A and A’s payoff is 1. Summarizing, if
w0 < w, A’s expected payoff is q1(1− q1+e−2/θ

2 )w0+(1−q1)q1+e−2/θ2 w+
q1(q1+e−2/θ)

2 .

6. A is second on D’s short list and out of the running at N. This occurs
with probability (qD1 − e−ξ)(1 − 2q1 + e−2/θ). If w0 > w, D hires in
the first round with probability 1− e−2/θ and A’s payoff is zero. With
probability e−2/θ, A’s payoff is w0. If w0 < w, D fails to hire in the first
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round with probability q1. In this case, A’s payoff is w0.

7. A is out of the running at D and first on N’s short list. This occurs
with probability (1− 2qD1 + e−ξ)q1. In this case, A’s payoff is w.

8. A is out of the running at D and second on N’s short list. This occurs
with probability (1 − 2qD1 + e−ξ)(q1 − e−2/θ). N hires its first-round

candidate with probability 1− (q1+e−2/θ)
2 and A’s payoff is zero. Alter-

natively, N fails to hire on the first round with probability (q1+e−2/θ)
2 ,

in which case A’s payoff is w.

9. Finally, A is out of the running at both D and N. This occurs with
probability (1−2qD1 +e−ξ)(1−2q1+e−2/θ), and in this case, A’s payoff
is zero.

The discussion above is summarized in the following table, which presents
the expected payoff for a worker who sends one application to D and one to
N for each of the nine possible outcomes associated with that application
strategy.

D N Probability Expected Payoff (w0 > w)

1 1 qD1 q1
e−ξe−2/θ
qD1 q1

+
(qD1 −e−ξ)e−2/θ

qD1 q1
s0+qD1 (q1−e−2/θ)

qD1 q1
s

1 2 qD1 (q1−e−2/θ) w0

1 x qD1 (1− 2q1+e−2/θ) w0

2 1 (qD1 −e−ξ)q1 w

2 2 (qD1 −e−ξ)(q1−e−2/θ) e−2/θ(2−q1−e−2/θ)w0
2 + (q1+e

−2/θ)(1−e−2/θ)w
2 +e−2/θ(q1+e−2/θ)

2

2 x (qD1 −e−ξ)(1− 2q1+e−2/θ) w0e−2/θ

x 1 (1− 2qD1 +e−ξ)q1 w

x 2 (1− 2qD1 +e−ξ)(q1−e−2/θ) (q1+e−2/θ)
2 w

x x (1− 2qD1 +e−ξ)(1− 2q1+e−2/θ) 0

41



D N Probability Expected Payoff (w0 < w)

1 1 qD1 q1
e−ξe−2/θ
qD1 q1

+
(qD1 −e−ξ)q1

qD1 q1
s0+e−ξ(q1−e−2/θ)

qD1 q1
s

1 2 qD1 (q1−e−2/θ) w0

1 x qD1 (1− 2q1+e−2/θ) w0

2 1 (qD1 −e−ξ)q1 w

2 2 (qD1 −e−ξ)(q1−e−2/θ) q1(1−q1+e−2/θ
2 )w0+(1− q1)

q1+e−2/θ
2 w+q1(q1+e−2/θ)

2

2 x (qD1 −e−ξ)(1− 2q1+e−2/θ) q1w0

x 1 (1− 2qD1 +e−ξ)q1 w

x 2 (1− 2qD1 +e−ξ)(q1−e−2/θ) (q1+e−2/θ)
2 w

x x (1− 2qD1 +e−ξ)(1− 2q1+e−2/θ) 0

We can now compute the value of sending one application to D and one
to N, i.e., a (D,N) strategy, for any w0, w pair. The table indicates that the
form of this value differs according to whether w0 > w or vice versa.

Indifference between sending one application to D and one to N versus
sending both applications to N vacancies defines ξ(w0, w). We want to find
how the application intensity to D varies with small deviations from w,
first for the case in which the deviant’s wage is above the wage offered by
the N vacancies and then for the case of w0 < w. That is, we want to
find ∂ξ+(w0,w)

∂w0 |w0=w and ∂ξ−(w0,w)
∂w0 |w0=w, the right-hand and left-hand side

derivatives of the application intensity, evaluated at w0 = w.

We begin with ∂ξ+(w0,w)
∂w0 |w0=w. The expected payoff from a (D,N) strategy

when w0 > w is found using the figures in the top panel of the table and can
be written as:

e−ξe−2/θ + (qD1 − e−ξ)e−2/θs0 + qD1 (q1 − e−2/θ)s+ (qD1 − e−ξ)(1− q1)e
−2/θq2

+w0{qD1 (1− q1)(1 + e−2/θ(1− q2))− e−ξe−2/θ(1− q1)(1− q2)}
+w{q1(1− qD1 ) + (1− qD1 − e−2/θ(qD1 − e−ξ))(1− q1)q2}

The application intensity ξ is found by equating the individual’s expected
payoff from a (D,N) strategy to the expected payoff from applying to two

N vacancies. We find ∂ξ+(w0,w)
∂w0 by taking the derivatives of both sides with

respect to w0. Since the expected payoff from applying to two N vacancies
does not depend on w0, this entails equating the derivative of the expected
payoff from a (D,N) strategy with respect to w0 to zero and solving for
∂ξ+(w0,w)

∂w0 .
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This gives: ∂ξ+(w0,w)
∂w0 |w0=w =

(1−q1)[q1+2e−2/θ(1−q2)(q1−e−2/θ)]
e−4/θ(1−q1)[(1−2q2)−w(2−3q2)]−∂qD1

∂ξ [q1(q2+q1(1−q2))+(1−q1)q2e−2/θ+w((1−q1)e−2/θ−q1+(1−q21)(1−q2))]

Next, we find ∂ξ−(w0,w)
∂w0 |w0=w. The procedure is the same, but we must take

into account the differences in the expected payoff a (D,N) strategy when
w > w0. The expected payoff is now found using the figures in the bottom
panel of the table and can be written as:

e−ξe−2/θ + e−ξ(q1 − e−2/θ)s+ q1(q
D
1 − e−ξ)s0 + q1(q

D
1 − e−ξ)(1− q1)q2]

+w0(1− q1)[q
D
1 + q1(q

D
1 − e−ξ)(1− q2)]

+w[q1(1− qD1 ) + q2(1− q1)(1− qD1 − q1(q
D
1 − e−ξ))].

Setting the derivative of this with respect to w0 equal to zero allows us to
find
∂ξ−(w0,w)

∂w0 |w0=w =
(1−q1)q1(1+2(q1−e−2/θ)(1−q2))

e−2/θ(1−q1)(e−2/θ−q2(q1+e−2/θ)−w((q1+e−2/θ)(1−q2)−q1q2))−∂qD1
∂ξ (q

2
1+2q1q2(1−q1)+w((3q1−2)q1q2−2q21+1−q2))

C.3.3 Equilibrium with Shortlisting

We seek a symmetric pure-strategy Nash equilibrium posted wage. That is,
we seek a posted wage w with the property that if all other vacancies post
w, an individual vacancy neither has an incentive to post a higher wage nor
a lower wage. If all vacancies post w, then there will be three wages paid in
equilibrium, namely, w, s, and 1.

Recall that for w0 > w,

π+(w0;w) =
³
1− e−ξ

´
[(1−q1)(1−w0)+(q1−e−2/θ)(1−s)]+

³
1− e−ξ − ξe−ξ

´
e−2/θ(1−s0).

The right-hand side derivative of profit is

∂π+(w0,w)
∂w0 =

³
e−ξ

³
(1− q1)(1−w0) + (q1 − e−2/θ)(1− s)

´
+ ξe−ξe−2/θ(1− s0)

´
∂ξ+(w0;w)

∂w0

−
³
1− e−ξ

´
(1− q1)−

³
1− e−ξ − ξe−ξ

´
e−2/θ(1− q1)(1− q2).

Evaluating at w0 = w gives

∂π+(w0,w)
∂w0 =

³
e−2/θ

³
(1− q1)(1−w) + (q1 − e−2/θ)(1− s)

´
+ 2

θe
−4/θ(1− s)

´
∂ξ+(w;w)

∂w0

−
³
1− e−2/θ

´
(1− q1)−

³
1− e−2/θ − 2

θe
−2/θ

´
e−2/θ(1− q1)(1− q2).
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We find the left-hand side derivative in a similar fashion. For w0 < w,

π−(w0;w) =
³
1− e−ξ

´
(1−q1)(1−w0)+ξe−ξ(q1−e−2/θ)(1−s)+

³
1− e−ξ − ξe−ξ

´
q1(1−s0),

so

∂π−(w0,w)
∂w0 =

µ
e−ξ

¡
(1− q1)(1−w0) + q1(1− s) + (q1 − e−2/θ)(1− s)− q1(1− s0)

¢
−ξe−ξ ¡(q1 − e−2/θ)(1− s)− q1(1− s0)

¢ ¶
∂ξ−(w0;w)

∂w0

−
³
1− e−ξ

´
((1− q1) + q1(1− q1)(1− q2)) + ξe−ξq1(1− q1)(1− q2).

Evaluating at w0 = w gives

∂π−(w,w)
∂w0 =

³
e−2/θ

³
(1− q1)(1−w) + (q1 − e−2/θ)(1− s)

´
+ 2

θe
−4/θ(1− s)

´
∂ξ−(w;w)

∂w0

−(1− e−2/θ)(1− q1)− q1(1− e−2/θ − 2
θe
−2/θ)(1− q1)(1− q2).

Given θ, a posted wage w is a symmetric Nash equilibrium if ∂π
+(w0,w)
∂w0 |w0=w ≤

0 and ∂π−(w0,w)
∂w0 |w0=w ≥ 0.

We investigate the nature of equilibrium numerically. For θ below ap-
proximately 0.42, both derivatives are negative for all w ∈ [0, 1]. Thus, for
these values of θ, the unique pure-strategy symmetric Nash equilibrium is
w = 0. For θ above this cutoff level, there exists a range of w such that
both inequalities are satisfied. The range of equilibrium posted wages goes
from about 0.01 to about 0.04 when θ = 0.5. When θ = 2, there is again a
range of equilibrium posted wages, this time from about w = 0.36 to about
w = 0.71. We have repeated this exercise for many values of θ, and the re-
sult is always qualitatively the same. The left-hand side derivative of profit
with respect to the deviant wage, evaluated at the common wage, is always
greater than the corresponding right-hand side derivative. Both derivatives
are positive at w = 0 and both are negative (and equal to each other) at
w = 1. Thus, given θ above the cutoff level, there is a continuum of equilib-
ria, ranging from the wage at which ∂π+(w0,w)

∂w0 |w0=w = 0 to the one at which
∂π−(w0,w)

∂w0 |w0=w = 0.

C.4 Efficiency

The final step is to investigate the relationship between the equilibrium and
efficient levels of θ. We show numerically that there is excessive vacancy
creation in equilibrium; that is, θ∗∗ > θ∗.

As in Section 3, θ∗ is defined by cv = mθ(θ
∗), where the derivativemθ(θ)

is now computed using equation (22) and the definitions of q1 and q2, which
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Figure 1: π(w(θ)) (upper curve) and mθ(θ) (lower curve)
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are given in equations (23) and (24). The equilibrium value, θ∗∗ is defined
by the free-entry condition, cv = π(w(θ∗∗)), where w(θ) is an equilibrium
wage given θ. As noted above, for θ below the cutoff level, w(θ) = 0. For θ
above the cutoff level, we focus on w−(θ), that is, the wage that, given θ,

solves ∂π−(w0,w)
∂w0 |w0=w = 0. Given θ, this is the highest possible equilibrium

wage.
In Figure 1, we plot mθ(θ) and π(w−(θ)) against θ. As in Section 3,

π(w−(θ)) > mθ(θ) for each value of θ. Equivalently, θ∗∗ > θ∗.

D Offer-Beating strategies

Proof of Proposition 5: Expected profit in a symmetric offer-beating
equilibrium in which all vacancies post w is

π(w) = (1−w)(1− e−a/θ)(
1− (1− q)a

aq
), where q =

θ

a
(1− e−a/θ).

The first term in π(w) is profit for a vacancy that hires a worker at w, the
second term is the probability the vacancy receives at least one application,
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and the third term is the probability that the vacancy hires conditional
on receiving at least one application. The derivation of the third term is
as follows. Consider an applicant selected by a particular vacancy. The
number of other offers this applicant has is bin(a − 1, q). Given that all
vacancies follow the offer-beating strategy, i.e., do not engage in Bertrand
competition, the probability that the vacancy in question succeeds in hiring
the applicant is then

a−1X
x=0

1

x+ 1

µ
a− 1
x

¶
qx(1− q)a−1−x =

1− (1− q)a

aq
.

We first consider the expected profit associated with an upward devia-
tion, i.e., a posted wage of w0 > w.We bound this expected profit, which we
call π+(w0;w), by noting that an upward deviation can increase the hiring
probability to at most 1 and that profit conditional on hiring the worker,
1−w0, is less than 1−w. The deviant makes a profit on its applicant only if
all the other applications that the applicant makes are rejected. This occurs
with probability (1 − q)a−1. If the applicant has one or more other offers,
the offer-beating strategy followed by the other vacancies calls for Bertrand
competition since w0 > w. We thus have

π+(w0;w) < (1−w) · 1 · (1− q)a−1.

The fact that no vacancy wants to make an upward deviation then follows
from

(1− q)a−1 < (1− e−a/θ)(
1− (1− q)a

aq
) =

1− (1− q)a

θ
,

which holds for a ≥ 2.
To verify this, rewrite the inequality as

y(a, q) =
1− (1− q)a

θ
− (1− q)a−1 > 0.

Let x =
a

θ
, so q(x) =

1− e−x

x
, and define z(x, a) = ay(a, q) or

z(x, a) = x(1− (1− q)a)− a(1− q)a−1.

We want to show that z(x, a) > 0 for all x > 0 and a ≥ 2. This is done by
induction. First,

z(x, 2) =
1− e−2x − 2xe−2x

x
.
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Using L’Hôpital’s Rule, z(0, 2) = 0. Since the numerator of z(x, 2) is positive
for all x > 0, it follows that z(x, 2) > 0.

Now suppose z(x, b) > 0 for some integer b > 0. We have

z(x, b+ 1) = x(1− (1− q)b+1)− (b+ 1)(1− q)b

=
³
x(1− (1− q)b)− b(1− q)b−1

´
(1− q) + xq − (1− q)b

= z(x, b)(1− q) + xq − (1− q)b.

Thus,

z(x, b+ 1) > xq − (1− q)b = 1− e−x − (1− q)b

> 1− e−x − (1− q) = q − e−x =
1− e−x − xe−x

x
.

It is straightforward to show (mimicking the argument that z(x, 2) > 0 for
all x > 0) that this final term is positive for all x > 0. Thus, z(x, b) > 0 =>
z(x, b+ 1) > 0, and our proof by induction is complete.

Next, we consider the expected profit associated with a downward de-
viation, i.e., a posted wage of w0 < w. To develop an expression for this
expectation, π−(w0;w), we mimic the argument given in the proof of Propo-
sition 2. Specifically, suppose workers apply to the deviant (D) with Poisson
intensity ξ, where ξ is determined by an indifference condition to be given
below. Then

π−(w0;w) = (1−w0)(1− e−ξ)(1− q)a−1.

The second term is the probability that D gets at least one application, and
the third term is the probability that D’s chosen applicant has no other
offers. Note that the final term is independent of w0.

The condition determining ξ is that each worker be indifferent between
sending all a applications to nondeviants (N) versus a−1 applications to N
and one application to D. The expected payoff to the first strategy depends
on neither w0 nor ξ. The expected payoff to the second strategy is

qD(1− q)a−1w0 + (1− (1− q)a−1)w,

where

qD =
1− e−ξ

ξ

is the probability that a worker’s application to D is accepted. The first
term in this expected payoff is the probability that the worker gets the offer
from D but no offers from N ; in this case, the payoff is w0. The second term
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is the probability of at least one offer from N ; in this case the expected
payoff is w. Equating these two expected payoffs defines ξ as a function of
w0. Using

dqD

dξ
=
− ¡1− e−ξ − ξe−ξ

¢
ξ2

,

it is straightforward to derive

dξ

dw0
=

ξ(1− e−ξ)
w0 (1− e−ξ − ξe−ξ)

.

Finally,

dπ−(w0;w)
dw0

=

∙
−(1− e−ξ) + (1−w0)e−ξ

dξ

dw0

¸
(1− q)a−1.

This derivative is nonnegative, i.e., D has no incentive to post w0 < w, so
long as

w0
³
1− e−ξ − ξe−ξ

´
≤ (1−w0)ξe−ξ, i.e.,

w0 ≤ ξe−ξ

1− e−ξ
.

Evaluating at w0 = w, D has no incentive to undercut the common wage w

so long as w ≤ a

θ

e−a/θ

1− e
−a/θ . QED.
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