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ABSTRACT 
 

Can Value-Added Measures of Teacher Performance Be Trusted?* 
 
We investigate whether commonly used value-added estimation strategies can produce 
accurate estimates of teacher effects. We estimate teacher effects in simulated student 
achievement data sets that mimic plausible types of student grouping and teacher 
assignment scenarios. No one method accurately captures true teacher effects in all 
scenarios, and the potential for misclassifying teachers as high- or low-performing can be 
substantial. Misspecifying dynamic relationships can exacerbate estimation problems. 
However, some estimators are more robust across scenarios and better suited to estimating 
teacher effects than others.   
 

NON-TECHNICAL SUMMARY 
 
Value-added measures have become increasingly important as a key element of teacher 
performance evaluation. This paper lays out the theoretical foundation for the study of these 
measures and then uses simulations to determine how accurately several commonly used 
estimation methods measure teacher performance under different scenarios that assign 
students to schools and teachers. The estimation techniques that we evaluate form the 
building blocks of value added estimation currently in use in research and policy. We report 
the following findings: 

• No one method accurately captures true teacher effects in all possible assignment 
scenarios, although some are more robust across scenarios than others. 

• A dynamic OLS estimator that includes both prior achievement and teacher indicator 
variables on the right-hand-side is more robust to difficult estimation conditions than 
other estimators widely used in research and policy. 

• The probability that an above-average teacher can be misclassified as below average 
can be fairly high, even in scenarios in which the best estimation strategies produce 
estimates that correlate relatively well with true teacher rankings. 

• The probability that a teacher in the top or bottom quintiles of the quality distribution is 
correctly identified as such is lower than would be desirable for policy purposes that 
link performance to rewards or sanctions. 
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1. Introduction 

Accurate indicators of educational effectiveness are needed to advance national policy 

goals of raising student achievement and closing socioeconomically based achievement gaps. If 

constructed and used appropriately, such indicators for both program evaluation and the 

evaluation of teacher and school performance could have a transformative effect on the nature 

and outcomes of teaching and learning. Measures of teacher quality based on value-added 

models of student achievement (VAMs) are gaining increasing acceptance among policymakers 

as a possible improvement over conventional indicators, such as classroom observations or 

measures of educational attainment or experience. They are already in use to varying degrees in 

school districts1 and widely reported in the research literature.  

Intuitively, VAMs are appealing; they track growth in learning from one year to the next 

for individual students and parse that growth into pieces believed to represent the separate 

contributions made by teachers and schools as well as individual-specific factors. Moreover, 

given that standardized testing is now ubiquitous in U.S. school systems, VAMs can be 

inexpensive to implement relative to other forms of teacher evaluation such as classroom 

observation, and their use has been encouraged by Race to the Top (U.S. Department of 

Education, 2009). As a teacher evaluation tool, VAM-based measures are sometimes viewed as 

less subjective than judgments based on observations by principals or portfolios of 

accomplishments. Given the increasing visibility of VAM-based estimates of teacher and school 

quality, and the possible inclusion of teacher performance incentives in the upcoming 

reauthorization of NCLB, it is imperative that such measures be well constructed and 

understood.  

Controversy exists, however, as to the best way to construct VAMs and to their optimal 

application. Numerous methods have been developed (e.g., Sanders & Horn, 1994; Ballou, 

                                                 
1 In some districts, the popular press has computed and published teacher value-added scores. 
For example, in September 2010, the Los Angeles Times, after analyzing data obtained from Los 
Angeles Unified School District officials under California’s Public Records Act, created a 
website in which any member of the public can look up VAM-based ratings for individual public 
school teachers in grades 3 through 5. See: http://www.latimes.com/news/local/teachers-
investigation/ (downloaded 10/12/10). In New York City, after a protracted court battle, the 
district has been required to make teacher evaluation measures available to the public. See 
http://www.nytimes.com/2012/02/25/education/teacher-quality-widely-diffused-nyc-ratings-indicate.html 
(downloaded 5/4/12). 

http://www.latimes.com/news/local/teachers-investigation/
http://www.latimes.com/news/local/teachers-investigation/
http://www.nytimes.com/2012/02/25/education/teacher-quality-widely-diffused-nyc-ratings-indicate.html
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Sanders, & Wright (2004); McCaffrey et al., 2004; Kane & Staiger, 2008; Raudenbush, 2009), 

and studies that compare estimates derived from different models have found substantial 

variability across methods (McCaffrey et al., 2004). Concerns remain that our understanding of 

these models is as yet limited and that incentives built around them may do more harm than 

good, with teachers’ unions, in particular, reluctant to allow their constituents to be judged on the 

basis of measures that are potentially biased or imprecise.  

A central issue involved in establishing the validity of measures and inferences based on 

VAMs is whether VAMs effectively isolate the “true” contribution of teachers and schools to 

achievement growth or instead confound these effects with the effects of other factors that may 

or may not be within the control of teachers and schools. Given that neither students nor teachers 

are randomly assigned to schools and that students are not randomly assigned to teachers within 

schools, disentangling the causal effects of schooling from other factors influencing achievement 

is far from straightforward. The few studies that have attempted to validate VAMs have drawn 

different conclusions (e.g., Kane & Staiger, 2008; Rothstein, 2010)2, and questions about the 

validity of VAMs linger. 

In this paper, we investigate the ability of various estimation strategies to produce 

accurate estimates of teacher effects. Our main research question is the following: How well do 

commonly used estimators perform in estimating teacher effects under a variety of known 

conditions, including those in which particular underlying assumptions are violated? 

We focus our study on estimators that are commonly used in research and policy 

applications involving teacher effects. We first outline the assumptions that must be met for each 

estimator to have desirable statistical properties in the context of a conventional theoretical 

framework. We then apply the estimators to the task of recovering teacher effects in simulated 

student achievement data generated under different types of student grouping and teacher 

assignment scenarios. We then compare the estimated teacher effects to the true teacher effects 

embedded in the data.  

The paper is organized as follows. In Section 2, we outline a theoretical framework for 

value-added models based on a well-known structural cumulative effects model. Section 3 

                                                 
2 Kane and Staiger (2008) compare experimental VAM estimates for a subset of Los Angeles teachers with earlier 
non-experimental estimates for those same teachers and find that they are similar, suggesting that they are valid. 
Rothstein (2008), on the other hand, devises falsification tests that challenge the validity of VAM-based measures of 
teacher performance in North Carolina. 
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discusses each estimator in turn and its underlying assumptions. An important component of our 

study is that we apply all estimators to all of our simulation conditions—even those in which 

they are not necessarily expected to perform well in order to determine whether some methods 

are more robust than others across different scenarios.  We describe different mechanisms for 

grouping students and assigning teachers to classrooms in Section 4. Section 5 describes the 

simulation procedures and estimation strategies we employ. The simulations results in Section 6 

investigate the ability of the various value-added estimators of teacher performance to uncover 

true effects under our different data generating scenarios. By systematically comparing VAM-

based estimates resulting from different estimators to the true effects embedded in the various 

data generating processes, we are able to identify estimation strategies most likely to recover true 

effects under specific conditions.  

Our investigations yield several important findings. No one estimator performs well 

under all plausible circumstances, but some are more robust than others. Surprisingly, certain 

estimation approaches known to be inconsistent in the structural modeling framework fare better 

than expected. Our simulations highlight the pitfalls of misspecifying the dynamic relationship 

between current and prior achievement. In addition, we find that substantial proportions of 

teachers can be misclassified as “below average” or “above average” as well as in the bottom and 

top quintiles of the teacher quality distribution, even in the best-case scenarios.  

An important caveat to apply to our findings is that they result from data generation 

processes that incorporate many of the assumptions underlying a relatively simple conceptual 

model. Thus, we subject the estimators to idealized conditions. Undoubtedly real-life educational 

conditions are more complex, and the estimators will likely perform less well when applied to 

real data. Detecting the flaws in various estimators under idealized conditions, however, is the 

best way to discover fundamental differences among them. Thus, the simplifications built into 

our research design are the strength of the design.   

2. A Common Approach to Value-Added Modeling 

The derivation of particular VAMs typically rests on the specification of a structural 

“education production function,” in which achievement at any grade is modeled as a function of 

child, family, and schooling inputs. In its most general formulation, learning is a process that is 

considered to be both dynamic and cumulative – that is, past experiences and past learning 

contribute to present learning. Thus the model—often referred to as the generalized cumulative 
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effects model (CEM)—includes all relevant past child, family, and school inputs (Hanushek, 

1979, 1986; Boardman & Murnane, 1979; Todd & Wolpin, 2003; Harris, Sass, & Semykina, 

2011).  This model can be expressed as:  

Ait = ft (Eit,…, Ei0,Xit,…,Xi0,ci, uit)     (1) 

where Ait is the achievement of child i in grade t, Eit represents school-related inputs, Xit 

represents a set of relevant time-varying child and family inputs, ci captures the unobserved time-

invariant student effect (representing, for example, motivation, some notion of sustained ability, 

or some persistent behavioral or physical issue that affects achievement), and the uit represent the 

idiosyncratic shocks that may occur in any given period. In this very general formulation, the 

functional form is unspecified and can vary over time.  

Moving to an empirical model poses large challenges due to the lack of information 

regarding most past and even many current inputs to the process and the manner in which they 

are related to one another—that is, functional form, interactions, lagged responses, feedback, and 

so on. Inferring the causal effects of teachers and schools is therefore difficult. If children were 

randomly assigned to teachers and schools, many omitted variable issues would be considerably 

mitigated. However, random assignment does not typically characterize school systems, and, 

indeed, is not necessarily desirable. Random assignment of children to schools deprives parents 

of the ability to find schools that they believe to be best suited for their children through both 

residential sorting and school choice. Random assignment to teachers within schools deprives 

principals of one of their most important functions: to maximize overall achievement by 

matching the individualized skills of teachers to those students most likely to benefit from them. 

Thus random assignment—while helpful from an evaluation standpoint—could result in 

suboptimal learning conditions if particular teacher and school characteristics interact in a 

beneficial way with student characteristics in the learning process.  

Clearly, however, knowledge of the effectiveness of particular schools, teachers, or 

programs in promoting learning is essential if we are to foster successful instructional 

approaches and curtail the use of ineffective ones. Causal measures of performance at the school, 

teacher, and program level are needed to identify instructional strategies that contribute to high 

performance. In the context of nonrandom assignment and omitted variables, statistical methods 

are the only tools available with which to infer effects, but they rely on strong assumptions. In 
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the next sections, we describe the assumptions used to derive models that are empirically feasible 

to estimate.  

2.1. The General Linear Formulation 

A distributed lag version of the cumulative effects model that assumes linearity is the typical 

and potentially tractable starting point for structural modeling. Equation (1) becomes  

   Ait = αt +Eitβ0+ Ei,t-1β1+… +Ei0 βt+Xitγ0+ Xi,t-1γ1+… +Xi0γt+ ηtci+ uit            (2) 

where we take Eit to be a row vector of observed education inputs at time t – including teacher or 

school characteristics, or, say, teacher indicators – and Xit to be a vector of observed time-

varying individual and family characteristics such as health status, household income, and so on. 

The term αt allows for a separate intercept in each time period, which would be appropriate if, 

for example, the score scales  are set to be different for different grade levels by the testing 

program. The period t = 0 corresponds to the initial year in school (which is generally 

kindergarten or could be pre-kindergarten in states where this is a common public school option). 

This formulation has several assumptions embedded in it: linearity, a functional form that is 

constant over time (except for the intercept and possibly the coefficient on ci), and an additive, 

idiosyncratic shock, uit, that accounts for all unobserved time-varying current and past factors.  

Note that the formulation in (2) does not explicitly recognize the possible presence of 

interactions among teachers, between teachers and students, or among students and is therefore a 

limited conceptualization of the educational learning process. It is possible to build in these 

complexities, although it is rarely done in practice, except for the occasional inclusion of peer 

characteristics.  

Exogeneity assumptions on the inputs are needed to estimate the parameters in the linear 

CEM. A common starting point—termed sequential exogeneity by Chamberlain (1992)—

assumes that the expected value of the time-varying unobservables, uit, conditional on all 

relevant time-varying current and past inputs and the unobserved child effect, is zero: 

E(uit| Eit, Ei,t-1,…, Ei0, Xit, Xi,t-1,…, Xi0, ci) = 0 .   (3) 

In practical terms, (3) requires that the time-varying unobservables that affect achievement are 

uncorrelated with observed school and family inputs—both current and past. Initially, this may 

seem reasonable given that most school input decisions, such as teacher and class size 

assignments, are made at the end of the previous school year, and cannot be based on changes in 

a student’s situation over the course of the school year. However, uit can contain factors such as 
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unobserved parental effort that respond to the assignment of school inputs. For example, a parent 

may provide more help for a student who is assigned to a poor teacher or a large class.  

As stated, (3) is an assumption about correlation between inputs and the time-varying 

unobservables, uit, and it does not address the relationship between student heterogeneity, ci, and 

the observed inputs. Many estimation approaches either ignore the presence of ci or assume it is 

uncorrelated with observed inputs – in other words, they assume what we would call 

heterogeneity exogeneity. If, however, ci is correlated with observed inputs, then standard pooled 

regression and generalized least squares approaches are generally inconsistent regardless of what 

we assume about the relationship between uit and the inputs. Several approaches can be used to 

deal with unobserved heterogeneity in equation (2)—most commonly, fixed effects and first-

differencing methods—each with a set of assumptions and drawbacks.  If we are not wedded to a 

structural model as in equation (2), past test scores can be included in regression equations as 

proxies for the unobserved heterogeneity. In fact, this is an important motivation for the dynamic 

regression method described in Section 3. 

Beyond the issue of unobserved heterogeneity, there are other obstacles to estimating 

equation (2). The linear CEM in this form is rarely estimated due to data limitations. If, for 

example, we have testing data on 3rd through 6th grade for each child and want to allow for the 

possibility that all previous teachers affect current outcomes (in this case, the Eit vector may be 

composed of teacher dummy variables), we need to have data linking students to their teachers in 

2nd and 1st grades, as well as kindergarten. In addition to the onerous data requirements, high 

correlations among inputs across time periods can limit the ability of any of these estimators to 

isolate specific contemporaneous or past effects and make estimation of the linear CEM 

unattractive. 

2.2. Geometric Distributed Lag Restrictions on the Linear CEM 

To solve the data limitations issue and conserve on parameters in the general linear CEM, 

researchers typically impose restrictions on the distributed lag coefficients. A simple and 

commonly applied restriction is a geometric distributed lag (GDL), which imposes geometric 

decay on the parameters in (2) for some 0 ≤ λ ≤1: 

βs = λsβ0,  γs = λsγ0,   s = 1,…,T     (4) 

This means that the effects of all past time-varying inputs (schooling-related as well as child- and 

family-related) decay at the same rate over time and their influence on current achievement 
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decreases in the specified manner as their distance from the present increases. With these 

restrictions, after subtracting λAi, t-1 from both sides of (2) and performing substitutions and 

simple algebra, we obtain a much simpler estimating equation: 

Ait =τt +λ Ai,t-1+ Eitβ0+Xitγ0+ πtci+ eit      (5) 

where  

eit = uit – λ ui,t-1  .      (6) 

Equation (5) has several useful features. First, the right hand side includes a single lag of 

achievement and only contemporaneous inputs. This is a much more parsimonious estimating 

equation than the general model (2) because past inputs do not appear. Consequently, data 

requirements are less onerous than those for the linear CEM, and parameter estimation of (5) is 

less likely to suffer from the multicollinearity that can occur among contemporaneous variables 

and their lags.  

It is important to see that the decay structure in the GDL equation means that any 

distributed lag effects are determined entirely by λ and β0. In other words, once we know the 

effect of contemporaneous inputs (β0) and the decay parameter (λ), the effects of lagged inputs 

are determined. Undoubtedly this is a highly restrictive assumption, but (5) is fairly common in 

the education literature. It is important to note, however, that the rate at which knowledge decays 

may differ for different students or for different subpopulations of students (Entwistle & 

Alexander, 1992; Downey, Hippel & Broh, 2004). Although allowing rates of decay to vary by 

individuals or groups is possible in (5), this is rarely, if ever, done in the literature on teacher 

effects. 

In deriving estimators based on equation (5), we must consider the exogeneity of inputs 

in this equation, including possible correlation with ci as well as correlation with the time-

varying unobservables eit. As shown in equation (6), eit depends on the current and lagged error 

from equation (2). If we maintain the sequential exogeneity assumption (3) in the structural 

CEM, uit is uncorrelated with Eit. In that case, simple algebra gives 

Cov(Eit, eit)= -λ Cov(Eit, ui,t-1).     (7) 

Equation (7) shows explicitly that in order to treat Eit and Xit as exogenous in (5) – that is, 

uncorrelated with the time-varying unobservables eit – we need to impose an assumption stronger 

than the sequential exogeneity in the structural equation (2) (unless λ = 0, which seems unlikely). 

In this case, the weakest exogeneity condition is that Eit is uncorrelated with uit – λ ui, t-1, which 
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could be true even if we do not assume Eit is uncorrelated separately with ui, t-1 and uit. However, 

for certain estimation strategies discussed below, the imposition of a stronger exogeneity 

assumption on the CEM, namely strict exogeneity, is needed and is clearly sufficient for Cov(Eit, 

eit) = 0. A straightforward way to state the strict exogeneity assumption is  

E(uit| EiT, Ei,T-1,…, Ei0, XiT, Xi,T-1,…, Xi0, ci) = 0.  (8) 

The difference between assumptions (8) and (3) is that (8) includes the entire set of observed 

inputs, including future inputs (this is why the t in (3) is replaced with T in (8)). Assumption (8) 

implies that the error term eit in (5) is uncorrelated with inputs at time t and all other time 

periods. 

In addition to possible correlation between the covariates and eit, we must recognize that 

it is virtually impossible for ci to be uncorrelated with Ai, t-1. Moreover, we often expect ci to be 

correlated with the inputs.  

 A simplistic approach to dealing with issues stemming from the presence of the lagged 

dependent variable is to assume that it does not matter – that is, assume that λ = 0, which implies 

complete decay. In this case, (5) reduces to what is often referred to as a “level-score” equation. 

As a special case of the CEM, the level-score approach is unattractive because λ = 0 is 

unrealistic. But level-score regressions have been used with experimental data – that is, when the 

inputs are randomly assigned – because then the structural CEM approach is not necessary for 

identifying teacher effects (see, for example, Dee, 2004). For estimating  teacher value added, 

random assignment means that one can compare mean achievement scores across teachers, and 

that is exactly what level-score regressions do in that setting.  

Another simple but very widely used formulation sets λ = 1 (no decay), which leads to 

subtracting Ai, t-1 from both sides of (5), thereby achieving a so-called “gain score” formulation: 

∆Ait =τt + Eitβ0+Xitγ0+ πtci+ eit.     (9) 

We now turn to describing different estimators used to estimate VAMs along with their 

statistical properties. 

3. Commonly Used Estimators and their Underlying Assumptions 

This section describes six commonly used estimation methods and the assumptions 

underlying their use. One caveat regarding our discussion of assumptions is that we appeal to 

large-sample properties because several of the estimators have no tractable finite-sample 

properties (such as unbiasedness) under any reasonable assumptions. Appealing to asymptotic 
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analysis is hardly ideal, especially for applications where the inputs are teacher assignments. In 

this scenario, the large-sample approximation improves as the number of students per teacher 

increases. But in many data sets, the number of students per teacher is somewhat small – fewer 

than 100 – making large-sample discussions tenuous. Nevertheless, asymptotic theory is the 

unifying theme behind the estimators that are applied in VAM contexts and provides a 

framework within which to identify underlying assumptions. 

3.1. Dynamic Ordinary Least Squares 

If we write equation (5) with a composite error vit, as  

Ait = τt +λ Ai,t-1+ Eitβ0+Xitγ0+ vit,     (10) 

and ignore the properties of vit – that it depends on πtci and (the possibly serially correlated) eit  – 

then we might take a seemingly naïve approach and simply estimate a dynamic regression. In 

other words, we might estimate λ, β0, and γ0 using a pooled OLS regression. We will refer to this 

estimator as “dynamic ordinary least squares” (DOLS). 

 Consistency of the DOLS estimator for β0, and γ0 (and λ)—which, recall, are parameters 

in the structural model—hinges on strict exogeneity of the inputs (with respect to {uit}) and no 

serial correlation in {eit}. Since eit = uit – λ ui,t-1, to claim that the {eit} are serially uncorrelated, 

we must place restrictions on the original errors {uit}. First, we must assume they follow an 

AR(1) process, namely uit =ρu i,t-1 + rit where { rit } is serially uncorrelated, and, second, we must 

assume that ρ =λ., which is often called the “common factor” (CF) restriction. The CF restriction 

amounts to assuming that past shocks to learning decay at the same rate as learning from family- 

and school-related sources. This is by no means an intuitive assumption. In any case, under the 

CF restriction the transformed errors eit = uit – λ ui,t-1 in (5) are the same as the serially 

uncorrelated rit.  

In addition, the presence of πtci generally causes inconsistency because ci is correlated 

with Ai,t-1 and possibly the inputs Eit, too, which will be the case if students are assigned to 

educational inputs based on time-constant unobservables. Controlling for background variables 

can mitigate the problem, but proxies for ci  may be hard to come by, and those easily available 

(for example, gender or race) are likely insufficient to proxy motivation or persistent correlates 

of ability.  

Even if, technically speaking, DOLS is inconsistent, it could nevertheless provide 

relatively accurate estimates of β0 under certain circumstances. For example, if the πtci are 
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sufficiently “small,” ignoring this component of the composite error term vit might not be costly. 

Even with substantial heterogeneity, the lagged test score may serve as a good proxy for ci, 

resulting in good estimators of β0 even though λ may be poorly estimated. An attractive feature 

of DOLS is that controlling for Ai,t-1 explicitly allows for the kinds of dynamic assignment of 

students to inputs based on prior test scores.  

3.2. The Arellano and Bond Approach  

 Rather than ignore ci, a combination of first differencing and instrumental variables can 

be used to account for unobserved heterogeneity, again assuming that πt is a constant. We can 

eliminate ci by first differencing (5) to obtain: 

ΔAit = χt +λΔAi,t-1+ ΔEitβ0+ΔXitγ0+ Δeit.    (11) 

Generally, this differenced equation cannot be consistently estimated by OLS because ΔAi,t-1 is 

correlated with Δeit. Nevertheless, under strict exogeneity of inputs {Eit} and {Xit}, Δeit is 

uncorrelated with inputs in any time period, and so it is possible to use lagged values of Eit and 

Xit as instrumental variables for ΔAi,t-1. (ΔEit and ΔXit act as their own instruments under strict 

exogeneity.) If we use more than one lag – as is often required to make the instruments 

sufficiently correlated with the changes – this IV approach increases the data requirements 

because we lose an additional year of data for each lag we include among the instruments. For 

example, if we use the lagged changes, ΔEi,t-1 and  ΔXi,t-1, as IVs, we lose one year of data 

because these depend on Ei,t-2 or Xi,t-2, respectively. Thus, this estimator is rarely applied in 

practice. Instead, the estimator proposed by Arellano and Bond (1991) (AB), which chooses 

instruments for the lagged gain score from available achievement lags, is more often used (e.g., 

Koedel & Betts, 2011).   

The AB approach is limited by its requirement that there be no serial correlation in the 

{eit}, thus imposing the common factor restriction described above. Formally stated, an 

assumption that implies no serial correlation in the errors and strictly exogenous inputs is:  

E(eit| Ai,t-1, Ai,t-2,…, Ai0, EiT, Ei,T-1,…, Ei0, XiT, Xi,T-1,…, Xi0, ci) = 0, (12) 

which maintains that eit is unpredictable given past achievement and the entire history of inputs. 

The usefulness of assumption (12) is that it implies that {Ai,t-2, ….,Ai0} are uncorrelated with eit
, 

and so these are instrumental variable candidates for  ΔAi,t-1 in (11). Typically, {Ai,t-2, ….,Ai0} is 

sufficiently correlated with  ΔAi,t-1, as long as λ is not “close” to one. With achievement scores 
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for four grades, and teacher assignments for the last three, equation (11) can be estimated using 

two years of gain scores.  

 Generally, care is needed when instrumenting for ΔAi,t-1 when λ  is “close” to one.  In 

fact, if there were no inputs and λ = 1, the AB approach would not identify λ. Simulation 

evidence in Blundell and Bond (1998) and elsewhere verifies that the AB moment conditions 

produce noisy estimators of λ when λ is near one. We should remember, though, that our main 

purpose here is in estimating school input effects (in our case, teacher effects), β0, rather than λ. 

For that purpose, the weak instrument problem when λ is near unity may not cause the AB 

approach to suffer too severely. 

If we wish to allow for the possibility of dynamic assignment and not assume strict 

exogeneity of the inputs in (2), then ΔEit requires instruments as well, and this is a tall order. In 

(11), Δeit depends on {uit, ui,t-1, ui,t-2} and so, if we hope to relax strict exogeneity of the inputs in 

(2), we must choose our IVs from {Ai,t-2, ….,Ai0,Ei,t-2, ….,Ei0,Xi,t-2, ….,Xi0}.  This approach 

imposes substantial data requirements. 

3.3. Pooled OLS on the Gain Score 

Estimation based on equation (9), where the gain score, ∆Ait, is used as the dependent 

variable and contemporaneous inputs are the explanatory variables is advantageous if the 

assumption that λ = 1 holds. If we can ignore the presence of ci or successfully introduce proxies 

for it, pooled OLS (POLS) is a natural estimation method and is used in various applications 

(e.g., Ballou, Sanders & Wright, 2004).  

A more subtle point is that when we view (9) as an estimating equation derived from the 

structural model (2), consistency of POLS relies on the same kind of strict exogeneity 

assumption we discussed in connection with (7): assignment of inputs at time t, Eit, cannot be 

correlated with the time-varying factors affecting achievement at time t – 1, ui,t-1. If the inputs are 

strictly exogenous in the CEM then Eit is uncorrelated with eit, and POLS is consistent provided 

the inputs are uncorrelated also with the unobserved heterogeneity. Inference for pooled OLS 

that allows arbitrary serial correlation and heteroskedasticity in the composite error πtci+ eit is 

straightforward. 

When there are only teacher dummies Eit in equation (9) the POLS estimator is the same 

as computing the average gain score for each teacher. 
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3.4. The Average Residual Approach 

When covariates other than teacher dummies appear in (9) – including past test scores – 

an approach to computing teacher performance measures that is widely implemented in the 

research literature (e.g., Chetty et al. 2011, McCaffrey et al. 2010, West & Chingos 2010, Kane 

& Staiger 2008) and for evaluation purposes in districts in various states (see the Wisconsin 

VARC estimator, Value-Added Research Center 2010) is based on the use of student-level 

residuals averaged at the teacher level. In the first step the gain score is regressed on the 

covariates (other than the teacher dummies) to obtain residuals.  In the second step those 

residuals are averaged within teacher to obtain the teacher VAMs. The second step is equivalent 

to a pooled OLS regression of the residuals on teacher dummies. We use the acronym AR to 

describe this approach. The popularity of AR seems to mainly hinge on the computational 

simplicity of obtaining average residuals by teacher.3 An important drawback to the AR 

approach, one which seems to have largely gone unnoticed, is that any correlation between 

teacher effects and included regressors, such as lagged test scores, is not purged in the first 

regression, thus generally leading to bias and inconsistency when such correlation exists.  By 

contrast, DOLS properly accounts for correlation between Eit and Ai,t-1 in equation (10). 

3.5. Random Effects on the Gain Score  

A drawback to POLS – again assuming for the moment that λ = 1, the inputs are strictly 

exogenous, and the inputs are uncorrelated with student heterogeneity – is that it is generally 

inefficient in estimating β0, because it ignores the serial correlation and heteroskedasticity in the 

composite error, πtci+ eit. If we assume πt is constant and that {eit} is serially uncorrelated and 

homoskedastic in equation (9), then random effects (RE) estimation can improve efficiency over 

POLS. Like POLS, RE assumes the heterogeneity is uncorrelated with inputs, but RE is 

guaranteed to be the efficient generalized least squares estimator when {eit} satisfies ideal 

assumptions.4  

                                                 
3 The AR approach allows one to avoid running regressions with large sets of teacher dummies. In a cross-sectional 
setting, it also permits the inclusion of variables that do not change within classroom, such as classroom averages. 
4 When POLS and RE are both consistent, it should be noted that RE can still improve upon POLS in terms of 
efficiency even if {eit} is serially correlated or contains heteroskedasticity. Efficiency gains using RE in such 
settings are not guaranteed, but it is often more efficient that POLS because it accounts for serial correlation to some 
extent, even if not perfectly. This is the motivation behind the generalized estimating equations literature (see, for 
example, Zeger, Liang, & Albert 1988 or Wooldridge 2010, Chapter 1). Also, πt not being constant does not cause 
inconsistency of RE (or POLS), although RE would not be the efficient GLS estimator with time-varying πt. One 
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3.6. Fixed Effects on the Gain Score 

If, instead of ignoring or proxying for ci, we allow for unrestricted correlation between ci 

and the inputs Eit and Xit, we can eliminate ci in the gain score equation via fixed effects (FE) (at 

least when πt is constant). The FE estimator also requires a form of strict exogeneity of Eit and Xit 

because FE employs a time-demeaning transformation that requires that the eit are uncorrelated 

with the time-demeaned inputs.5 As with the other methods, the strict exogeneity assumption 

stated in (8) is sufficient. When inputs related to classroom assignments are thought to be based 

largely on time-constant factors, FE is attractive, whereas POLS and RE will suffer from 

systematic bias. If inputs are uncorrelated with the shocks and heterogeneity, however, FE is 

typically less efficient than RE, and can be less efficient than POLS, too.  Although FE is rarely 

used in practice to estimate teacher performance measures, we include it here for didactic 

purposes and note that it is sometimes used in value-added models designed to assess program 

effects at the teacher or school level.  

3.7. Empirical Bayes and Related Estimators 

A popular estimation approach to teacher VAMS is the so-called “empirical Bayes” (EB) 

method, application of which results in so-called “shrinkage estimators.” The EB estimators are 

essentially the same as the VAMs obtained from the mixed model that is at the foundation of the 

Tennessee Value Added Assessment System (TVAAS) estimator originally developed by 

Sanders (for example, Ballou, Sanders & Wright 2004). Briefly, the teacher effects are modeled 

as random outcomes and then the best linear unbiased predictors are obtained as functions of the 

unknown variance parameters; estimates of the variance parameters are inserted to form the final 

shrinkage estimates. When applied to panel data, the EB approach loses its theoretical appeal in 

the presence of lagged test scores because the explanatory variables are no longer strictly 

exogenous. As is well known (for example, Morris, 1983), the EB VAM estimates when only 

teacher effects are included are simply the pooled OLS estimates shrunk toward the overall mean 

teacher effect, using a shrinkage factor that varies by class size. If class size is constant across 

teachers and time periods, as in the simulations we conduct, the EB estimator is identical (up to a 

scale factor) to various OLS estimators, such as the POLS and DOLS that we consider. 

                                                                                                                                                             
could instead use an unrestricted GLS analysis that would allow any kind of variance-covariance structure for πtci+ 
eit. We do not explore that possibility in this paper, however, as it is rare in applications. 
5 For the same reason, a lagged dependent variable cannot be included on the right-hand side.  
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Consequently, the rankings of the teacher effects will be unchanged, and so we do not discuss the 

EB estimator separately in this paper. 

3.8. Summary of Estimation Approaches 

In summary, estimation of the parameters of the structural cumulative effects model, even 

after we impose the geometric distributed lag restriction to arrive at equation (5), requires 

numerous additional assumptions. OLS estimation of the dynamic equation – what we have 

called DOLS – requires strict exogeneity of inputs Eit and Xit and effectively imposes the 

common factor restriction on an AR(1) model for {uit}. In addition, the method is not generally 

consistent if ci is in the equation. In contrast to DOLS, the AB approach explicitly recognizes the 

presence of ci but generally requires λ < 1,  strict exogeneity of the inputs Eit and Xit, and no 

serial correlation in the {eit}. POLS and RE on the gain score equation require strict exogeneity 

of inputs Eit and Xit and no correlation with ci. FE allows for correlation between ci and inputs Eit 

and Xit but maintains strict exogeneity. For either RE or FE to be an appropriate estimation 

method, however, λ  must equal 1 (or a known value). The AR approach requires teacher effects 

to be uncorrelated with other covariates, whether those are other inputs, student background 

variables, or lagged test scores.   

Violations of some assumptions may cause more severe problems in estimating teacher 

effects than violations of others, and it is thus an empirical question as to which estimator will 

perform best across various data generating mechanisms. For example, the AB approach is not 

guaranteed to dominate DOLS in every situation—if the inputs are not strictly exogenous, both 

estimators are technically inconsistent. Nor is AB necessarily better than approaches that impose 

λ = 1. At first glance it appears that (11) is more general because it does not impose λ = 1. But 

for AB to be consistent, serial correlation in the structural shocks {uit} must be of the AR(1) 

form and the CF restriction must hold. An important implication is that estimating λ when it is 

unity can be costly when using the first-differenced equation (11). In particular, if λ = 1 and the 

inputs are strictly exogenous, FE estimation of (9) consistently estimates the teacher effects 

without the CF restriction whereas AB estimation of (11) is generally inconsistent for the 

parameters in the CEM if the CF restriction fails. Because of this, we must be careful not to 

claim superiority of the AB approach over methods that do not require the CF restriction. The 

interesting question is which of the methods we have discussed does a better job recovering the 

coefficients on the inputs under different conditions, and that is what this study aims to answer. 
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4. Situating Theory in Context 

Until now, we have discussed assumptions underlying value-added models and 

estimation strategies in relatively abstract terms. We now describe the types of educational 

scenarios that form the basis of our simulation design and how they might be expected to violate 

exogeneity assumptions.  

We consider the process of matching students to teachers to be composed of two separate 

decisions—the grouping of students into classrooms and the assignment of classrooms to 

teachers. Grouping students in classrooms on the basis of their perceived ability, often called 

“tracking,” is not uncommon and can take a number of forms. Students may be grouped together 

on the basis of either their prior test score, Ai,t-1,6 their baseline level of achievement or ability 

upon entering school, Ai0, or their potential for learning gains, ci. We will refer to the first type of 

ability grouping, a relatively common practice in educational settings as “dynamic tracking,” 

following terminology used by Rothstein (2010). The second and third types of grouping, both 

forms of “static tracking,” are less common. They might occur when, for example, schools either 

formally or informally assess the level of learning or the growth potential of children upon 

entering school, group the children accordingly, then keep more or less the same groups of 

children together for several grades. 

Ability grouping in one form or another is likely to occur on a reasonable scale within 

educational systems. In the empirical literature, the phenomenon of ability grouping has been 

investigated primarily through techniques such as those developed by Aaronson, Barrow, and 

Sander (2007), which compare the average within classroom standard deviation in prior test 

scores with that produced by artificially regrouping students into classrooms—either randomly 

or perfectly sorted.  Most such studies find that actual average standard deviations are closer to 

the random scenario than the perfectly sorting scenario.  Dieterle et al. (unpublished), however, 

use a more fine-grained approach to the analysis of achievement data and find that substantial 

numbers of schools engage in dynamic tracking, a fact that can easily be obscured by the 

aggregated statistics. 

Tracking does not, in and of itself, induce correlation between unobserved factors 

affecting student performance and teacher effects but serves as a precondition for the possibility 

                                                 
6 Here for simplicity we refer to just one prior test score. However, principals might average over a series of prior 
test scores. 
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of correlation. We distinguish the practice of tracking— grouping of students together on the 

basis of some performance or ability criterion—from the practice of assigning these groups of 

students to teachers in nonrandom ways. In this study, we use the term “grouping” for the 

practice of placing students in classrooms and the term “assignment” for the action of assigning 

students to teachers.  

In our study, assignment of classrooms to teachers take three primary forms:  random 

assignment, assignment in which there is a positive correlation between teacher effects and 

student performance (that is, when better students are assigned to better teachers), and 

assignment in which there is a negative correlation between teacher effects and student 

performance (that is, when worse students are assigned to better teachers). We summarize 

different combinations of grouping and assignment mechanisms that might be encountered in 

educational settings in Table 1, along with acronyms that we use in the remainder of the paper.  

It is important to recognize that a mixture of these grouping and assignment methods can 

be used in any given district or even within a given school. However, for the sake of clarity in 

understanding and evaluating the performance of various estimators, we keep the scenarios 

distinct when we conduct our simulations and assume that all schools simultaneously use the 

same process.  

Generally, the random assignment of groups of students (regardless of how the groups 

may be formed) to available teachers is not a violation of either strict exogeneity or 

heterogeneity exogeneity and thus may not cause problems for standard estimation methods. The 

students may be grouped using dynamic or static assignment provided the teachers are randomly 

assigned to the groups. Of course, grouping may have other consequences, such as inducing 

correlation within classrooms in the unobserved factors affecting performance. But this is 

different from failure of exogeneity. 

The systematic assignment of high-performing students to either high- or low-performing 

teachers, on the other hand, can violate exogeneity assumptions. Dynamic grouping coupled with 

positive or negative assignment virtually always causes failure of strict exogeneity, because if the 

teacher assignment is correlated with past scores, then teacher assignment must be correlated 

with the innovations (errors) that affect past scores. In addition, if student heterogeneity ci exists 

then dynamic grouping with nonrandom assignment violates heterogeneity exogeneity, too: part 

of past performance depends on ci.  It should be noted that Dieterle et al. (unpublished) find 
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empirical evidence to suggest that ability grouping with positive assignment may occur to a 

nontrivial degree in school systems.   

The two cases of static grouping differ in important ways. For example, suppose students 

are grouped on a baseline score upon entry to school and then assigned to teachers nonrandomly 

in all subsequent grades. While this is a case of nonrandom assignment, for some estimation 

approaches there is no violation of relevant exogeneity assumptions. As an illustration, in the 

gain score equation (9), the baseline score does not appear. Therefore, even if teacher assignment 

is determined by the base score, if it is independent of the student heterogeneity ci and the errors 

eit, then pooled OLS estimation consistently estimates β0 (and the other parameters). Of course, 

this assumes that λ = 1 has been correctly imposed. If λ < 1, then the gain-score equation 

effectively omits the lagged test score, and this lagged score will be correlated with the base 

score, causing bias in any of the usual estimators applied to (9). 

Static assignment based on ci causes problems for estimating equations such as (9) unless 

πtci is removed from the equation. When πt is constant, the fixed effects and first-differencing 

transformations do exactly that. Therefore, assigning students to teachers based on the student 

heterogeneity does not cause problems for these types of estimators applied to (9). But other 

estimators, particularly POLS and RE, will suffer from omitted variable bias because Eit is 

correlated with ci. Static assignment based on student growth also causes problems for DOLS 

because DOLS ignores ci in estimating (10).  

Until now, we have focused on the assignment of students to teachers within schools. 

Another key consideration, however, is the sorting of students and teachers across schools. If 

higher achieving students are grouped within certain schools and lower achieving students in 

others, then the teachers in the high-achieving schools, regardless of their true teaching ability, 

will have higher probabilities of high-achieving classrooms. Similarly, if higher ability teachers 

are grouped within certain schools and lower ability teachers in others, then students in the 

schools with better teachers will realize higher gains. If both high ability teachers and high 

performing students are then grouped together within schools, the nonrandom sorting issue is 

exacerbated.  

In designing our simulation scenarios, we therefore consider three distinct “school 

sorting” cases. In Case 1, both students and teachers are randomly placed in schools. Thus there 

is no systematic difference in average test scores or average true teacher effects across schools. 
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In Case 2, students are sorted into schools according to their baseline levels of learning but 

teachers are still randomly placed in schools. Thus there is a significant difference in average test 

scores across schools but not in average teacher effects. In Case 3, students are randomly placed 

in schools but teachers are sorted into schools based on their true effects. Thus, there are 

systematic differences in average teacher effects across schools but not in average test scores.  

  In our investigation of the performance of various estimators under different sorting, 

grouping, and assignment scenarios, we focus on how well the estimators meet the needs of 

policymakers, considering how VAM-based measures of teacher effectiveness might typically be 

used in educational settings. If districts wish only to rank teachers in order to identify those who 

are high or low performing, then estimators that come close to getting the rankings right are the 

most desirable. For the purposes of structuring rewards and sanctions or identifying teachers in 

need of professional development, districts may wish primarily to distinguish high and low 

performing teachers from those who are closer to average; if so, it is important that the 

estimators accurately classify teachers whose performance falls in the tails of the distribution. If, 

on the other hand, districts wish to know how effective particular teachers are compared with, 

say, the average, then the teacher effect estimates themselves are of primary importance. Our 

study investigates the performance of various estimators with respect to all three criteria, using 

summary measures described in the next section. 

5. Methods 

Our empirical investigations consist of a series of simulations in which we use generated 

data to investigate how well each estimator recovers true effects under different scenarios. These 

scenarios are captured in data generating processes (DGPs) that vary the mechanisms used to 

assign students to teachers in the ways discussed in the previous section. To data generated from 

each DGP, we apply the set of estimators discussed in Section 3. We then compare the resulting 

estimates with the true underlying effects.  

5.1. Data Generating Processes 

To isolate fundamental problems, we restrict the DGPs to a relatively narrow set of 

idealized conditions. We assume that test scores are perfect reflections of the sum total of a 

child’s learning (that is, with no measurement error) and that they are on an interval scale that 

remains constant across grades. We assume that teacher effects are constant over time and that 

unobserved child-specific heterogeneity has a constant effect in each time period. We assume 
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there are no time-varying child or family effects, no school effects, no interactions between 

students and teachers or schools, and no peer effects. We also assume that the GDL assumption 

holds—namely, that decay in schooling effects is constant over time. In addition, we assume no 

serial correlation. Finally, there are no time effects embedded in our DGPs.   

Our data are constructed to represent three elementary grades that normally undergo 

standardized testing in a hypothetical district. To mirror the basic structural conditions of an 

elementary school system for, say, grades 3 through 5 over the course of three years, we create 

data sets that contain students nested within teachers nested within schools, with students 

followed longitudinally over time. Our simple baseline DGP is as follows: 

Ai3 = λAi2 + βi3 + ci + ei3 

Ai4 = λAi3 + βi4 + ci + ei4     (13) 

Ai5 = λAi4 + βi5 + ci + ei5 

where Ai2 is a baseline score reflecting the subject-specific knowledge of child i entering third 

grade, Ai3 is the achievement score of child i at the end of third grade, λ is a time constant decay 

parameter, βit is the teacher-specific contribution to growth (the true teacher value-added effect), 

ci is a time-invariant child-specific effect, and eit is a random deviation for each student. Because 

we assume independence of eit over time, we are maintaining the common factor restriction in 

the underlying cumulative effects model. We assume that the time-invariant child-specific 

heterogeneity ci is correlated at about 0.5 with the baseline test score Ai2.7 

In the simulations reported in this paper, the random variables Ai2, βit, ci, and eit are drawn 

from normal distributions, where we adjust the standard deviations to allow different relative 

contributions to the scores. It is somewhat challenging to anchor our estimates of teacher effect 

sizes to those in the literature, however, because reported teacher-related variance components 

range from as low as 3 percent to as high as 27 percent and obtained through different estimation 

methods (e.g., Nye et al. 2004, McCaffrey et al. 2004, Lockwood et al. 2007). Estimates in the 

smaller end of the range—i.e., around 5 percent—are more frequently reported. In our own 

investigations of data from a set of districts, however, we found rough estimates of teacher 

effects tending toward 20 percent of the total variance in gain scores but highly variable across 

                                                 
7 Other work by the authors (Reckase et al., unpublished) finds that when test scores are generated as in (13) such 
correlation—which seems realistic—is necessary to achieve data that conform to the parameter estimates derived 
from observed achievement distributions.    
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districts. Thus in our simulations, we explore two parameterization schemes. In the first, the 

standard deviation of the teacher effect is .25, while that of the student fixed effect is .5, and that 

of the random noise component is 1, each representing approximately 5, 19, and 76 percent of 

the total variance in gain scores, respectively,  In the second, the standard deviation of the 

teacher effect is .6, while that of the student fixed effect is .6, and that of the random noise 

component is 1, representing approximately 21, 21, and 58 percent of the total variance in gain 

scores, respectively,  Thus, in the latter scenario, teacher effects are relatively more important 

and should be easier to estimate. 

Our data structure has the following characteristics that do not vary across simulation 

scenarios: 

• 10 schools 

• 3 grades (3rd, 4th, and 5th) of scores and teacher assignments, with a base score in 2nd 

grade 

• 4 teachers per grade (thus 120 teachers overall) 

• 20 students per classroom 

• 4 cohorts of students 

• No crossover of students to other schools 

To create different scenarios, we vary certain key features:  the sorting of students and teachers 

into schools, the grouping of students into classes, the assignment of classes of students to 

teachers within schools, and the amount of decay in prior learning from one period to the next. 

Within each of the three school-sorting cases outlined in the previous section, we generate data 

using each of the 10 different mechanisms for the assignment of students outlined in Table 1.8 

Finally, we vary the decay parameter λ as follows: (1) λ = 1 (no decay or complete persistence) 

and (2) λ = .5 (fairly strong decay).9 Thus, we explore 3 × 10 × 2 = 60 different scenarios in this 

paper.10 We use 100 Monte Carlo replications per scenario in evaluating each estimator. 

5.2. Methods for Estimating Teacher Effects 

                                                 
8 We introduce a small amount of noise into each grouping process. 
9 Rough estimates of λ in real data cover a wide range of values.  Andrabi et al. (2009) find persistence rates of .5 or 
lower in Pakistani schools.   
10 Several more scenarios that relax various assumptions are added in sensitivity analyses discussed in a later section 
of the paper.   
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 We estimate the teacher effects using modified versions of the estimating equations (5) 

and (9). The modified equations reflect the simplifications determined by our DGPs. 

Specifically, we remove the time-varying intercept because our data have no time effects, we 

have no time-varying child and family effects, and we assume that πt = 1: 

ΔAit = Eitβ0+ ci + eit       (14) 

Ait = λ Ai,t-1+ Eitβ0+ ci+ eit      (15) 

ΔAit = λΔAi,t-1+ ΔEitβ0+ Δeit      (16) 

where Eit is the vector of 119 teacher dummies (with one omitted because every estimation 

method includes an intercept, either explicitly or by accounting for ci).  

For each of the 100 iterations pertaining to one DGP, we estimate effects for each teacher 

using one of six estimation methods discussed in Section 3: POLS, RE, and FE applied to (14), 

POLS applied to (15) (which we have called DOLS), Arellano and Bond (AB) applied to (16), 

and the average residual (AR) approach, which is based on (15) but only nets out the lagged test 

score from the current test score. We use the statistical software Stata for all data generation and 

estimation.   

5.3. Summary Statistics for Evaluating the Estimators 

For each iteration and for each of the six estimators, we save the estimated individual 

teacher effects, which are the coefficients on the teacher dummies, and also retain the true 

teacher effects. To study how well the methods uncover the true teacher effects, we adopt some 

simple summary measures. The first is a measure of how well the estimates preserve the rankings 

of the true effects. We compute the Spearman rank correlation, ρ̂ , between the estimated teacher 

effects, 𝛽̂𝑗, and the true effects, 𝛽𝑗, and report the average ρ̂  across the 100 iterations. 

Second, we compute two measures of misclassification. The first is the percentage of 

above average teachers (in the true quality distribution) who are misclassified as below average 

in the distribution of estimated effects. The second focuses on the tails of the quality distribution. 

We determine which teachers are estimated to be in the bottom 20 percent and then display the 

proportion of teachers at each percentile of the true effect distribution who are classified in this 

category using graphs.   

6. Simulation Results 

6.1. Random Sorting of Students and Teachers across Schools (Case 1) and No Decay, with 

Small Teacher Effects 
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We first discuss the findings for the case in which students and teachers are randomly 

sorted into schools and 1λ = ; these are shown in the left side of Table 2. The underlying 

parameterization scheme used here is the one in which teacher effects represent only five percent 

of the total variance in gain scores—a percentage frequently reported in literature. Each cell in 

Table 2 contains two numbers specific to the particular estimator-scenario combination. The first 

is the average rank correlation between the estimated and true teacher effects over the 100 

replications. The second is the average percentage of above average teachers who are 

misclassified as being below average.  

We expect all estimators to work well when students and teachers are both randomly 

assigned to classes – the RG-RA scenario defined in Table 1. Of course, the estimated teacher 

effects still contain sampling error, and so we do not expect to rank or classify teachers perfectly 

using these estimates. We find that DOLS, AR, POLS, and RE yield rank correlations near .8 or 

higher, with RE producing a rank correlation of about .89. FE and AB have rank correlations 

well under .7, with the correlation for AB being the worst at .6. That the FE and AB estimators 

yield notably lower correlations is not terribly surprising given that they unnecessarily remove a 

student effect in this scenario; in addition, AB unnecessarily estimates a coefficient on the lagged 

test score. 

The DOLS, AR, POLS, and RE estimators are also better at classifying the teachers than 

the other two methods. RE incorrectly classifies an above average teacher as being below 

average about 14% of the time; the misclassification rate for DOLS is somewhat worse at 21%. 

The misclassification rates for FE and AB, on the other hand, are 26%. Clearly, the estimation 

error in the teacher effects using FE and AB has important consequences for using those 

estimates to classify teachers. The potential for misclassification is explored further in Figure 1 

for selected scenarios and estimators. The true teacher percentile rank is represented along the x-

axis, and the y-axis represents the proportion of times in which a teacher at a particular true 

percentile is classified in the bottom quintile of the distribution on the basis of his or her 

estimate. Thus, a perfect estimator would produce the step function traced on the graph, with y = 

1 when x ranges from 0 to 20 and y = 0 when x ranges from just above 20 to 100. Part a of 

Figure 1shows the superiority of DOLS, POLS, and RE over FE in the RG-RA scenario with 

lambda equal to one. However, it should be noted that even for these estimators under these 
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idealized conditions, identification of the “worst” teachers appears subject to a nontrivial amount 

of error.  

Taken as a whole, these findings indicate that RE is preferred under RG-RA with no 

decay, something that econometric theory leads us to expect because RE is the (asymptotically) 

efficient estimation method. However, POLS produces very similar results, AR results are only 

slightly worse, and DOLS is fairly similar, as well, despite the fact that AR and DOLS are 

technically inconsistent because of the presence of the unobserved student effect and its 

correlation with lagged achievement. DOLS does slightly worse than AR here probably because 

DOLS unnecessarily nets out the lagged test score from the teacher assignment, resulting in more 

estimation noise. 

Nonrandom grouping mechanisms for students have relatively minor consequences for 

RE, DOLS, AR, and POLS provided the teachers are randomly assigned to classrooms – 

whether the students are grouped according to their prior scores (DG-RA), baseline scores (BG-

RA), or heterogeneity (HG-RA).11 Generally, nonrandom grouping of students causes POLS, 

and RE to do less well in terms of precision – especially when grouping is based on student 

heterogeneity – most likely because the student grouping induces cluster correlation within a 

classroom.12 Nevertheless, they continue to yield relatively high correlations, ranging from .81 to 

.86. The methods that remove the student effect, FE and AB, continue to do a much worse job in 

ranking and also classifying teachers, even under heterogeneity grouping. Their performance is 

particularly poor for dynamic grouping with random assignment. RE is the best choice in 

scenarios in which 1λ = and assignment is random.  

When teachers are nonrandomly assigned to classrooms the properties of the estimation 

procedures change markedly – and it depends critically on the nature of the nonrandom 

assignment. When dynamic grouping is used and better students are assigned to the better 

teachers (i.e., the DG-PA scenario), DOLS is the preferred estimation approach for both the DG-

PA and DG-NA scenarios because it directly controls for the assignment mechanism. Across all 

the DG scenarios, DOLS is the most robust estimator. The AR method is clearly inferior to 

                                                 
11 Note that all random assignment scenarios are shown in shaded cells in the tables. 
12 The consequences of clustering are easy to understand with a method such as POLS. The POLS estimates are 
simply within-teacher averages of the student gain scores. The sampling method that gives the most precise 
estimates of a population average is random sampling, where observations are independent (as in the RG-RA 
design). With cluster correlation each new student effectively adds less information because that student’s outcome 
is correlated with other students’ outcomes in the cluster. 
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DOLS for both DG-PA and DG-NA because it does not partial out the effect of lagged test 

scores from the teacher assignment dummies. POLS and RE – which both leave 𝑐𝑖 in the error 

term – do well in ranking teachers in the DG-PA scenario—exceeding even the performance of 

DOLS—but poorly in the DG-NA scenario.  The switch from positive to negative assignment 

has the opposite effect on FE.  This is because systematic biases push the estimates in opposite 

directions.13  Under DG-NA, the estimators that remove the student-level heterogeneity – FE and 

AB – perform especially poorly, producing a negative rank correlation between the estimated 

and true teacher effects (−.32 for FE and −.07 for AB) and misclassifying large numbers of the 

above-average teachers as below average (56% for FE and 46% for AB). The poor performance 

of FE is highlighted in Figure 1, Part b, which vividly illustrates how the best teachers are more 

likely to be classified as underperforming than the worst ones. In this type of scenario—with 

students grouped on the basis of past test scores and assigned to teachers whose performance 

tends to match their own—these procedures will not be helpful in distinguishing among teachers.    

Nonrandom teacher assignment coupled with either of the two static grouping 

mechanisms also poses challenges. When 𝜆 = 1 and static grouping of students is based on the 

baseline score, the DOLS and AR estimators fluctuate least across the two scenarios with 

nonrandom assignment, although DOLS performs slightly better. AR is systematically biased 

because it does not net out the base score, 𝐴𝑖2, from the teacher assignment. DOLS is 

systematically biased because it effectively controls for the wrong explanatory variable, 𝐴𝑖,𝑡−1, 

when it should control for the base score, 𝐴𝑖2. This problem with DOLS can be seen, with 𝜆 = 1, 

by writing 𝐴𝑖𝑡 as a function of all past inputs, shocks, and the initial value. The resulting 

equation includes 𝐴𝑖2 with a time-varying coefficient. We can think of  𝐴𝑖,𝑡−1 acting as an 

imperfect proxy for𝐴𝑖2. POLS and RE fluctuate greatly across the two scenarios, indicating a 

systematic bias. The bias is introduced through correlation between the base score and the 

student fixed effect—if these are uncorrelated,14 POLS and RE would be consistent and better 

performing. FE and AB remain fairly stable across the BG-PA and BG-NA scenarios but again 

                                                 
13 Further analysis reveals that the estimates may look good when the distance from the mean teacher is inflated and 
poor when that distance is compressed.  These biases create the large swing from good to poor when we go from 
positive to negative assignment.  The effect of the bias is highly dependent on the context and therefore cannot be 
predicted when schools are using a mixture of positive and negative assignment. 
14 This is admittedly an unlikely possibility, but it was one that we explored in analyses not shown.  Although some 
correlations and misclassification rates were affected, the general patterns revealed in the findings were the same 
whether the base score and student fixed effect were correlated or uncorrelated. 
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perform poorly. The second type of static grouping mechanism (HG) combines students based on 

the value of 𝑐𝑖 - the time invariant student-specific growth potential. When 𝜆 = 1, 𝑐𝑖 is a 

permanent component of the gain score. That is, 𝑐𝑖 is added, in each period, to the previous 

score. When the students with the highest growth potential are grouped with the best teachers 

(HG-PA), the bias in DOLS, AR, POLS, and RE (estimators that ignore 𝑐𝑖) leads them to rank 

and classify the teachers well. But negative assignment causes them to do much worse. In fact, in 

the HG-NA scenario, no estimator does very well – the highest rank correlation is .62 (FE) and 

the lowest misclassification rate is 26% (FE). Figure 1.c illustrates the decline in performance of 

RE and DOLS relative to the scenario depicted in Part a. Theoretically, the FE estimator is the 

most efficient estimator among those that place no restrictions on the relationship between 𝑐𝑖 and 

the teacher dummies 𝐸𝑖𝑡. But the consistency of FE (and AB) is of small comfort, as it does not 

outperform the estimators that effectively treat 𝑐𝑖 and the teacher dummies 𝐸𝑖𝑡 as being 

uncorrelated along the dimensions that matter most: ranking and classifying. So far, even though 

we have discussed only the case of nonrandom sorting of students and teachers across schools 

and no decay, we can summarize some useful insights. First of all, the findings show that even 

under these idealized conditions, certain estimators perform very poorly under certain 

assignment mechanisms – even some estimators that effectively use the fact that 𝜆 = 1 in 

estimation. Estimators that are intended to be robust to static assignment do poorly under 

dynamic assignment.  

A useful finding, in looking across all assignment mechanisms is that DOLS does best: it 

is superior under dynamic grouping and still has value for ranking teachers under static grouping. 

We can understand the relatively good performance of DOLS under the various dynamic 

grouping scenarios by noting that if the DGP did not include a student effect, the DOLS 

estimator would be consistent across all assignment mechanisms associated with this scenario. 

Namely, the teacher dummies Eit are correlated with Ai,t-1 but the latter is controlled for in the 

DOLS regression. AR includes the lagged test score in the first-step regression but does not 

partial out its correlation with the teacher dummies. Because AB uses the differenced equation 

and instruments for the lagged gain score using test scores dated two or more periods ago, it also 

does not properly partial out the lagged level of the test score from teacher assignment. AB 

would likely work better if assignment in grade t depended only on the test score two grades 

earlier, but this assignment scenario seems unrealistic. POLS, RE, and FE do not control for the 
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lagged achievement score because they use the gain score as the dependent variable and omit the 

lag. POLS and RE – which both leave 𝑐𝑖 in the error term – suffer from an omitted variable 

problem because assignment is based on the lagged test score and the lagged score is positively 

correlated with ci. In the DG-PA case, the resulting bias in estimating the teacher effects by 

POLS or RE actually helps with ranking the students, but it hurts in the DG-NA case. DOLS, on 

the other hand, exhibits more or less the same behavior whether assignment is RA, PA, or NA. 

6.2. Random Sorting of Students and Teachers across Schools (Case 1) and Strong Decay 

with Small Teacher Effects 

The performance of several estimators deteriorates substantially when we change the 

value of 𝜆 from 1 to .5. The right side of Table 2 shows simulation findings when students and 

teachers are randomly assigned to schools and 𝜆 = .5. Importantly, because POLS, RE, and FE 

act as if 𝜆 = 1, these estimators are now applied to an equation with misspecified dynamics, 

regardless of the assignment mechanism. Because POLS, RE, and FE use the gain score as the 

dependent variable, an omitted variable, 𝐴𝑖,𝑡−1 in equation (14) will have a coefficient of −.5 on 

it; this is important to remember in interpreting the findings. 

Dynamic misspecification has a large effect on the precision of the estimates. Compared 

with the 𝜆 = 1 DGP, the rank correlations for POLS, RE, and FE are substantially worse when 

𝜆 = .5. For example, even in the RG-RA scenario, the rank correlation for RE is only .55, down 

from .89. The misclassification rate is 35% compared with 14% when 𝜆 = 1. The impact on 

POLS and RE for misclassifying low-performing teachers is seen in Figure 1.d15.   

When coupled with dynamic assignment, dynamic misspecification has very serious 

consequences for all estimators with the notable exception of DOLS. AR is also unaffected but 

remains inferior to DOLS. When the best students are matched with the best teachers (DG-PA), 

POLS, RE, FE, and AB actually produce rank correlations that are either close to zero or 

negative and have 52% or greater misclassification rates. The striking effects for 

misclassification at the tails of the quality distribution are visible in Figures 1.e.   

Dynamic misspecification also has consequences in the case of static assignment. POLS 

and RE do a very poor job of ranking and classifying students in the BG-PA case. The rank 

correlation is only .2. FE and AB do better in this case, but both are clearly inferior to DOLS. 
                                                 
15 Because 𝜆 < 1, the composite errors in the random effects estimation have negative serial correlation, causing the 
estimated variance of 𝑐𝑖 to be negative. In such cases, Stata sets the variance to zero, which leads to the POLS 
estimate. This happens across all simulations, so POLS and RE are identical. 
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With negative assignment, POLS and RE do substantially better but are always inferior to 

DOLS. Even when grouping is based on heterogeneity, DOLS generally does better than other 

estimators. DOLS does not do particularly well in the HG-NA setting but at least it produces a 

nontrivial rank correlation (.5). As we saw in the case when 𝜆 = 1, no estimator works very well 

in the HG-NA case, and all have extremely high misclassification rates, most of which display 

more error than chance. 

Taken as a whole, the simulations for Case 1—i.e., when both students and teachers are 

randomly assigned to schools, combined with small teacher effects, point to several conclusions. 

While DOLS is not uniformly better across all of the grouping, assignment, and decay 

assumptions, it is nearly so. DOLS is easily preferred under dynamic grouping: looking across 

the different assignment mechanisms and both values of 𝜆, no estimator is even a close second. 

The performance of DOLS is stable across values of 𝜆. The other estimators show much more 

sensitivity to the value of 𝜆. The robustness of DOLS makes it the recommended approach 

among the group of estimators considered in this study. However, we should note that the 

potential for misclassification in these simple DGPs, even using DOLS, can approach levels that 

might be considered unacceptable for policy purposes.  

6.3. Large Teacher Effects 

We also conducted a set of simulations where teacher effects represent a much larger 

relative share of the total variance in student gains. These are reported in Table 3, as well as 

Figure 2. As to be expected, when the size of the teacher effects is raised relative to the student 

effect and shock, rank correlations improve and misclassification rates decline somewhat. The 

same overall patterns observed in the “small” teacher effects case continue to hold. The relative 

superiority of DOLS over AR in the DG scenarios and over POLS and RE in the scenarios with 

strong decay is still evident when teacher effects are large. The FE and AB estimators improve 

their rank correlations in many scenarios when teacher effects are large but remain the least 

effective estimators overall. Although concerns over inaccuracy in the estimates and rankings are 

mitigated when teacher effects are large, the same lessons regarding which estimator to use in 

particular contexts apply, and the overall conclusion that DOLS is more robust across scenarios 

holds. 

6.4.Sensitivity Analyses 
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We subjected our simulations to several sensitivity analyses. First, we looked at the 

impact of nonrandom sorting of students and teachers across schools. These different sorting 

scenarios did little to affect the general patterns described above, indicating that the primary 

threat to the estimation of teacher effects stems from within-school assignment to teachers.  

However, some changes in the correlations and misclassification rates were evident for most 

estimators in most scenarios. POLS and RE deteriorated slightly when students were 

nonrandomly sorted across schools. FE and AB deteriorated substantially when teachers were 

nonrandomly sorted across schools.   

We also ran a full set of simulations with 𝜆 = .75 (more moderate decay), without any 

surprises. This implies a less severe form of dynamic misspecification for estimators such as 

POLS and RE than the 𝜆 = .5 case. It is not surprising that the performance of POLS and RE 

was essentially between the 𝜆 = 1 and 𝜆 = .5 cases. The DOLS estimator was hardly affected by 

the value of 𝜆.  Nor was AR, but it was still generally outperformed by DOLS. 

We also added classical measurement error to the test scores in our DGPs. In addition, we 

ran simulations in which serial correlation was introduced in the errors (i.e., relaxing the 

common factor restriction). While these complications did not affect the overall patterns 

described, they generally served to depress rank correlations slightly and to increase 

misclassification rates for POLS, RE, FE, and AB (they were particularly damaging to AB when 

there was no decay). For DOLS and AR, the effects of measurement error were mixed. Serial 

correlation actually seemed to improve DOLS and AR slightly16. Given that serial correlation 

can be picked up by including a lagged test score, this is not terribly surprising. Remember, we 

are not out to estimate the coefficient on the lagged test score but only to rank teachers based on 

the estimated VAMs.  

Finally, we examined the performance of the estimators when student mobility across 

schools was present. When we allowed 10 percent of students to switch schools in each year, FE 

and AB improved overall but still suffered in the dynamic grouping-nonrandom assignment 

scenarios and were still not as robust as DOLS. For all sensitivity analyses, details are available 

from the authors upon request. 

                                                 
16 Tables containing the additional simulation findings are available on request from the authors. 
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7.  Conclusions and Future Directions  

Simulated data with known properties permits the systematic exploration of the ability of 

various estimation methods to recover the true parameters used to generate the data—in our case 

teacher effects. This study has taken the first step in evaluating different value-added estimation 

strategies under conditions in which they are most likely to succeed. Creating somewhat realistic 

but idealized conditions facilitates the investigation of issues associated with the use of particular 

estimators. If they perform poorly under these idealized conditions, they will almost certainly do 

worse in real settings.  

Our main finding is that no one method is guaranteed to accurately capture true teacher 

effects in all contexts even under these relatively idealized conditions, although some are more 

robust than others. Because we consider a variety of DGPs, student grouping mechanisms, and 

teacher assignment mechanisms, it is not surprising that no single method works well in all 

hypothetical contexts. Both the teacher assignment mechanism and the nature of the dynamic 

relationship between current and past achievement play important roles in determining how well 

the estimators function.  

A dynamic specification estimated by OLS—what we have called DOLS—was, by far, 

the most robust estimator across scenarios. Only in one scenario—heterogeneity-based grouping 

with negative assignment—did it fail to produce useful information with regard to teacher 

effects. However, none of our estimators was able to surmount the problems posed by this 

scenario—not even estimators designed to eliminate bias stemming from unobserved 

heterogeneity—and it is perhaps a less realistic scenario than others we considered. 

In all other situations, DOLS provided estimates of some value. The main strength of this 

estimator lies in the fact that, by including prior achievement on the right-hand side, it controls 

either directly or indirectly for grouping and assignment mechanisms. In the case of dynamic 

grouping coupled with non-random assignment, it explicitly controls for the potential source of 

bias. In the case of baseline and heterogeneity grouping, the effect of controlling for prior 

achievement is less direct but still somewhat effective in that both those grouping mechanisms 

are correlated with prior achievement. 

These findings suggest that choosing estimators on the basis of structural modeling 

considerations may produce inferior results by drawing attention to relatively unimportant 

concerns and away from key concerns. The DOLS estimator is never the prescribed approach 
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under the structural cumulative effects model with a geometric distributed lag (unless there is no 

student heterogeneity), yet it is often the best estimator. One can think of the DOLS estimator as 

a regression-based version of a dynamic treatment effects estimator. That is not to say that the 

general cumulative effects model is incorrect. It merely reflects the fact that efforts to derive 

consistent estimators by focusing on particular concerns of structural modeling (e.g., 

heterogeneity, endogenous lags) may obscure the fact that controlling for the assignment 

mechanism even in specifications that contain other sources of endogeneity is essential. 

Approaches that attend to less important features of the structural model, when coupled with 

nonrandom assignment, may yield estimators that are unduly constrained and thus poorly 

behaved. The poor performance of the AB estimator exemplifies this. By differencing for 

heterogeneity and using instrumental variables to remove bias from the estimation of lambda, it 

loses much of its ability to estimate teacher effects precisely. The findings in this paper suggest 

that flexible approaches based on dynamic treatment effects (for example, Lechner, 2008;, 

Wooldridge, 2010, Chapter 21) may be more fruitful than those based on structural modeling 

considerations. 

Finally, despite the relatively robust performance of DOLS, we find that even in the best 

scenarios and under the simplistic and idealized conditions imposed by our data generating 

process, the potential for misclassifying above average teachers as below average or for 

misidentifying the “worst” or “best” teachers remains substantial, particularly if teacher effects 

are relatively small. Applying the commonly used estimators to our simplified DGPs results in 

misclassification rates that range from at least five to more than 50 percent, depending upon the 

estimator and scenario.  

It is clear from this study that certain VAMs hold promise:  they may be capable of 

overcoming many obstacles presented by non-random assignment and yield valuable 

information, providing assignment mechanisms are known or can be deduced from the data. Our 

findings indicate that teacher rankings can correlate relatively well with true rankings in certain 

scenarios and that, in some cases, misclassification rates may be relatively low. Given the 

context-dependency of the estimators’ ability to produce accurate results, however, and our 

current lack of knowledge regarding prevailing assignment practices, VAM-based measures of 

teacher performance, as currently applied in practice and research, must be subjected to close 

scrutiny regarding the methods used and interpreted with a high degree of caution.  
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Methods of constructing estimates of teacher effects that we can trust for high-stakes 

evaluative purposes must be further studied, and there is much left to investigate. This paper 

does not address the degree to which test measurement error, school effects, time-varying teacher 

effects, different types of interactions among teachers and students, and compensating or 

reinforcing contemporaneous family effects alter the performance of the estimators.  Finally, 

diagnostics are needed to identify the structure of decay and prevailing teacher assignment 

mechanisms. If contextual norms with regard to grouping and assignment mechanisms can be 

deduced from available data, then it may be possible to determine which estimators should be 

applied in a given context. Other work by the authors and others (e.g., Dieterle et al. 

unpublished) finds that dynamic grouping is present in a nontrivial number of schools and also 

finds suggestive evidence of positive assignment, offering further evidence of the usefulness of 

DOLS.  

Clearly, although value-added measures of teacher performance hold some promise, more 

research is needed before they can confidently be implemented in high-stakes policies. Our 

findings suggest that teacher effect estimates constructed using DOLS may be useful in 

answering research questions that employ them in regression specifications. The degree of error 

in these estimates, however, makes them less trustworthy for the specific purpose of evaluating 

individual teachers. It may be argued that including these measures in a comprehensive teacher 

evaluation along with other indicators could provide beneficial information and represent an 

improvement over the status quo. However, it would be unwise to use these measures as the sole 

basis for sanctions. Even if such measures are released to the public simply as information—as 

has recently been the case in Los Angeles and New York City—the potential for inaccuracy, and 

thus for damage to teachers’ status and morale, creates risks that could outweigh the benefits. If 

such measures are accurate, then publicizing or attaching incentives to them may motivate 

existing teachers to increase efforts or induce individuals with high performance potential into 

the teaching profession. If, however, such measures cannot be trusted to produce fair evaluations, 

existing teachers may become demoralized and high potential individuals considering teaching 

as a profession may steer away from entering the public school system. 

Given that the accuracy of VAM-based measures of teacher performance can vary 

considerably across contexts and that the potential for bias if particular methods are applied to 
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the wrong situations is nontrivial, we conclude that it is premature to attach high stakes to these 

measures until their properties have been better understood.  
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Table 1: Grouping and Assignment Acronyms 

Acronym Process for grouping 

students in classrooms 

Process for assigning students to 

teachers 

RG-RA Random Random 

DG-RA Dynamic  

based on prior test scores 

Random 

DG-PA Dynamic  

based on prior test scores 

Positive correlation between teacher 

effects and prior student scores (better 

teachers with better students) 

DG-NA Dynamic  

based on prior test scores 

Negative correlation between teacher 

effects and prior student scores 

BG-RA Static  

based on baseline test scores 

Random 

BG-PA Static  

based on baseline test scores 

Positive correlation between teacher 

effects and baseline student scores 

BG-NA Static  

based on baseline test scores 

Negative correlation between teacher 

effects and baseline student scores  

HG-RA Static  

based on heterogeneity 

Random 

HG-PA Static  

based on heterogeneity 

Positive correlation between teacher 

effects and student fixed effects 

HG-NA Static  

based on heterogeneity 

Negative correlation between teacher 

effects and student fixed effects  
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Table 2:  Results from 100 replications of Case 1-random sorting of students and teachers across schools.  Small 

teacher effects.  Row 1: Average rank correlation.  Row 2:  Percentage of above average teachers misclassified as 

below average 
 
 
 
 
 
  
Small Teacher 

Effects 
λ=1 λ=.5 

Estimator 
 
 
 
Assignment  
Scenario 

DOLS AR POLS RE FE AB DOLS AR POLS RE FE AB  

 0.78 0.81 0.88 0.89 0.63 0.60 0.78 0.82 0.55 0.55 0.48 0.60 
RG-RA 21% 19% 15% 14% 26% 26% 21% 19% 35% 35% 32% 26% 

 0.78 0.81 0.81 0.86 0.59 0.52 0.78 0.81 0.52 0.52 0.42 0.54 
DG-RA 21% 19% 19% 16% 27% 29% 21% 19% 34% 34% 32% 29% 

 0.77 0.68 0.90 0.90 -0.32 -0.07 0.79 0.70 0.05 0.05 -0.41 -0.09 
DG-PA 23% 28% 13% 13% 56% 46% 21% 27% 52% 52% 54% 53% 

 0.76 0.62 0.32 0.32 0.74 -0.19 0.78 0.68 0.74 0.74 0.69 0.74 
DG-NA 20% 29% 41% 41% 20% 54% 21% 26% 22% 22% 21% 21% 

 0.78 0.81 0.84 0.86 0.63 0.60 0.78 0.81 0.54 0.54 0.48 0.61 
BG-RA 21% 19% 18% 16% 25% 26% 21% 19% 35% 35% 32% 26% 

 0.82 0.78 0.91 0.92 0.63 0.60 0.84 0.81 0.36 0.36 0.50 0.60 
BG-PA 19% 22% 12% 12% 24% 26% 17% 19% 43% 43% 30% 26% 

 0.73 0.71 0.55 0.65 0.61 0.58 0.69 0.67 0.62 0.62 0.42 0.59 
BG-NA  23% 24% 32% 28% 25% 27% 27% 27% 35% 35% 35% 27% 

 0.77 0.79 0.82 0.85 0.63 0.59 0.77 0.79 0.55 0.55 0.48 0.60 
HG-RA 22% 21% 18% 17% 25% 27% 22% 21% 35% 35% 32% 26% 

 0.87 0.86 0.91 0.91 0.63 0.61 0.87 0.87 0.61 0.61 0.45 0.61 
HG-PA 16% 16% 12% 12% 25% 26% 15% 16% 33% 33% 34% 26% 

 0.51 0.50 0.39 0.55 0.62 0.58 0.50 0.49 0.45 0.45 0.49 0.59 
HG-NA 33% 34% 39% 33% 26% 26% 34% 35% 39% 39% 30% 27% 
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Table 3:  Results from 100 replications of Case 1-random sorting of students and teachers across schools.  Large 

teacher effects.  Row 1: Average rank correlation.  Row 2:  Percentage of above average teachers misclassified as 

below average 
 

 

Large 
Teacher 
Effects 

λ=1 λ=.5 

Estimator 
 
 
 

Assignment 
Mechanism 

DOLS AR POLS RE FE AB DOLS AR POLS RE FE AB  

 0.94 0.95 0.97 0.97 0.70 0.68 0.94 0.95 0.83 0.83 0.61 0.69 
RG-RA 11% 9% 7% 7% 23% 23% 11% 9% 18% 18% 27% 23% 

 0.93 0.94 0.94 0.97 0.69 0.66 0.93 0.95 0.81 0.81 0.59 0.68 
DG-RA 11% 10% 10% 8% 23% 24% 11% 10% 20% 20% 28% 23% 

 0.93 0.78 0.96 0.96 0.32 -0.21 0.93 0.80 0.57 0.57 -0.02 0.50 
DG-PA 12% 23% 8% 8% 37% 50% 11% 22% 33% 33% 44% 32% 

 0.92 0.84 0.82 0.83 0.76 0.16 0.93 0.88 0.88 0.88 0.72 0.77 
DG-NA 11% 18% 19% 19% 20% 40% 11% 16% 15% 15% 21% 19% 

 0.94 0.95 0.96 0.97 0.70 0.69 0.94 0.95 0.83 0.83 0.61 0.69 
BG-RA 11% 10% 9% 7% 23% 23% 11% 10% 19% 19% 27% 23% 

 0.94 0.90 0.97 0.97 0.70 0.69 0.95 0.91 0.75 0.75 0.61 0.69 
BG-PA 10% 14% 7% 7% 22% 23% 9% 13% 24% 24% 27% 23% 

 0.91 0.93 0.90 0.94 0.69 0.68 0.90 0.92 0.83 0.83 0.56 0.68 
BG-NA  13% 12% 14% 11% 23% 23% 14% 13% 21% 21% 30% 24% 

 0.93 0.93 0.94 0.96 0.70 0.69 0.93 0.93 0.83 0.83 0.61 0.69 
HG-RA 12% 11% 10% 8% 23% 24% 12% 11% 19% 19% 27% 23% 

 0.95 0.94 0.96 0.97 0.70 0.69 0.94 0.95 0.83 0.83 0.61 0.69 
HG-PA 10% 11% 8% 7% 22% 23% 11% 9% 18% 18% 27% 23% 

 0.85 0.85 0.82 0.89 0.69 0.68 0.93 0.95 0.81 0.81 0.59 0.68 
HG-NA 17% 18% 20% 15% 22% 23% 11% 10% 20% 20% 28% 23% 
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Figure 1. Small teacher effect (thick solid=perfect classification, solid=DOLS, dash=POLS, cross=RE, dot=FE, asterisk=AR) 
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Figure 2. Large teacher effect (thick solid=perfect classification, solid=DOLS, dash=POLS, cross=RE, dot=FE, asterisk=AR) 
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