

IZA DP No. 6567

Do Wealthier Households Save More? The Impact of the Demographic Factor

Ansgar Belke Christian Dreger Richard Ochmann

May 2012

Forschungsinstitut zur Zukunft der Arbeit Institute for the Study of Labor

Do Wealthier Households Save More? The Impact of the Demographic Factor

Ansgar Belke

University of Duisburg-Essen, DIW Berlin and IZA

Christian Dreger

DIW Berlin and IZA

Richard Ochmann

DIW Berlin

Discussion Paper No. 6567 May 2012

IZA

P.O. Box 7240 53072 Bonn Germany

Phone: +49-228-3894-0 Fax: +49-228-3894-180 E-mail: iza@iza.org

Any opinions expressed here are those of the author(s) and not those of IZA. Research published in this series may include views on policy, but the institute itself takes no institutional policy positions.

The Institute for the Study of Labor (IZA) in Bonn is a local and virtual international research center and a place of communication between science, politics and business. IZA is an independent nonprofit organization supported by Deutsche Post Foundation. The center is associated with the University of Bonn and offers a stimulating research environment through its international network, workshops and conferences, data service, project support, research visits and doctoral program. IZA engages in (i) original and internationally competitive research in all fields of labor economics, (ii) development of policy concepts, and (iii) dissemination of research results and concepts to the interested public.

IZA Discussion Papers often represent preliminary work and are circulated to encourage discussion. Citation of such a paper should account for its provisional character. A revised version may be available directly from the author.

ABSTRACT

Do Wealthier Households Save More? The Impact of the Demographic Factor*

This paper investigates the relationship between wealth, ageing and saving behaviour of private households by using pooled cross sections of German consumption survey data. Different components of wealth are distinguished, as their impact on the savings rate is not homogeneous. On average, the effect attributed to real estate dominates the other components of wealth. In addition, the savings rate strongly responds to demographic trends. Besides the direct impact of the age structure, an indirect effect arises through the accumulation of wealth. The savings rate does not decrease with age in a monotonic way, as the permanent income hypothesis suggests. Most prominently, older households tend to increase their savings in the second half of their retirement period, probably due to bequest motives and increasing immobility. Given the ongoing demographic trend, an increase of 1.4 percentage points in the aggregated savings rate should be expected over the next two decades.

JEL Classification: G10, G11

Keywords: savings, wealth, demographic change

Corresponding author:

Christian Dreger DIW Berlin Mohrenstr. 58 D-10117 Berlin Germany

E-mail: cdreger@diw.de

^{*} Financial support from the Sparkassenstiftung is gratefully acknowledged.

1 Introduction

Since many years, the German economic performance is characterized by strong export growth due to strong competitiveness in foreign markets, coupled with weak expansion of domestic demand, in particular private consumption. This process has been accompanied by an excess of savings over investment, led to massive capital outflows and fostered the persistence of macroeconomic imbalances which are at the heart of the debt crisis in the euro area (Belke and Dreger, 2011). Therefore, the patterns of consumption and savings, i.e. income not spent for consumption, are of high relevance from a policy perspective.

According to the life-cycle permanent income hypothesis, private consumption is driven by permanent income, with the latter defined as the present value of expected lifetime resources. It might include physical wealth, such as housing and financial assets, as well as human wealth, i.e. current labour income plus the discounted value of the expected future labour income stream. A permanent increase in wealth will boost consumption due to its impact on expected lifetime income. If resources become more valuable, households are able to shift consumption plans upwards without violating budget constraints. Thus, an increase in consumption is predicted in each period over the remaining lifetime. The marginal propensity to consume should be equal to one in the long run, if consumers are rational and forward-looking.

Under these conditions, an increase in wealth is restricted to stimulate savings over the short and medium, but not in the long run. Higher savings is also expected if the shocks are temporary in nature. However, Carroll (2009) has argued that the optimal marginal propensity to consume may be less than one even in the presence of permanent shocks,

as buffer stock savers aim to realize a target asset-to-permanent-income ratio. For a given stock of assets, a positive shock to permanent income will move this ratio below its target, thereby raising the savings rate.

Many empirical studies have analysed the effects of wealth on private consumption or savings in panels of countries or regions (see, for instance, Case, Quigley and Shiller (2005) and Carroll, Otrok and Slacalek (2008). As a rule, the estimated parameters are not in contrast with the implications of the permanent income hypothesis: consumption, income and wealth are cointegrated, and the coefficients of the long run relationship look reasonable, more or less. Dreger and Reimers (2012) provide a review of the recent evidence. But there is also a remarkable lack of policy relevant conclusions. A panel environment is suboptimal to discriminate between different components of wealth, and country specific evidence is lost. Aggregation across assets and countries can blur the forces actually at work and can give rise to misleading policy conclusions. For individual countries, the results are often insignificant and pestered by serious multicollinearity between the various elements of wealth. Therefore, the first contribution of the paper is to explore the link between savings and wealth on the grounds of a huge microeconomic dataset for German households. Different wealth components can be easily integrated at this level.

Furthermore, the life-cycle framework predicts that a household's age affects its savings behaviour. In overlapping generation models, individuals work when they are young and retire when old (Abel, 2003). Hence, savings should decrease in age, although the increase in life expectancy may raise savings even for the elderly. A bequest motive could also lead to a more complicated behaviour, although it might not be distinguished from precautionary savings in times of uncertainty (Dynan, Skinner and Zeldes, 2002).

To finance their retirement, individuals raise the demand for financial assets during their working life. Large cohorts of workers may drive asset prices upwards. Therefore, they are expected to realize low returns on their investments compared to an average population structure. In contrast, small cohorts in the working age will receive a higher return. This pattern assumes that savings rates do not adjust to the rates of return. However, the savings rate of a large work cohort can decrease in response to lower rates of return. Investors can also shift their portfolios to short-maturity assets, if the fall in asset prices is anticipated.

A demographic impact on savings behaviour has been reported in several studies. An indirect effect might be transmitted through the wealth variable. An increase in the fraction of retired people in the population will reduce excess returns in financial markets, especially in countries with well developed security systems and lesser-developed financial markets (Ang and Maddaloni, 2005). In a panel of OECD countries Davis and Li (2003) reported a significant impact of the fraction of people in the asset culminating age (40-64) on real stock prices and real bond yields. Geanakoplos, Magill and Quinzii (2004) found evidence for a demographic impact on equity prices in France, Japan and the UK, but not for Germany. For the US, a positive correlation between the share of population in the working years and the level of stock prices can be detected (Poterba, 2004).

Other studies have focused on the direct impact of demographic shifts on the savings rate. According to the simulation evidence provided by Boersch-Supan, Ludwig and Winter (2006), substantial capital flows from fast aging regions to the rest of the world should be initially expected. However, trends will be reversed if households start to decumulate savings (see also Krueger and Ludwig (2007) on shifts in the distribution of

welfare between countries with different demographic patterns). Bloom, Canning, Mansfield and Moore (2007) have emphasized that a higher life expectancy will raise the need of life-cycle savings, because incentives in social security programs prevent retirement ages to increase in line with life expectancy. Following Demery and Duck (2006), shifts in the age structure have a sustained, but moderate effect on aggregate personal sector savings in the UK. The middle aged, and particularly the later middle aged, tend to save a higher share of their income than the young and the elderly. Hence, shifts between the middle-aged and the young or elderly should affect the aggregate savings rate.

The second contribution of the paper is to explore the effect of the age structure on the savings rate, both directly and through the wealth channel. Given the recent demographic projections, predictable changes for the savings rate are derived: An increase of 1.4 percentage points is expected over the next two decades. This would dampen private consumption expenditures, implying that domestic demand will play an even lesser role for the German economy. Furthermore, the rise in the savings rate will affect future current account positions (Higgins, 1998, Ferioli, 2005). As the demographic trend is particularly strong in Germany, its surplus will likely increase, i.e. the euro area imbalances will widen without proper political action.

The remainder of the paper is structured as follows. Section 2 reviews the main demographic trends in the German economy in the years to come. Section 3 discusses the Income and Consumer survey of German households, which is the dataset used in the study. Empirical results are presented in section 4. Finally, section 5 comes up with the conclusions and policy recommendations.

2 Demographic trends in the German economy

The German population is expected to age rapidly over the next few decades. According to the projections of the German Statistical Office (2010), the number of people in the working age, i.e. aged between 20 and 65 years decreases by 7.5 millions (15 percent) until 2030. In contrast, the proportion of people in the retirement age (65 or older) will increase by 5.5 millions or one third of the current level.

These changes are driven by a combination of low fertility and higher old-age longevity. Since many years, the fertility rate is constant at 1.4, far below the reproduction level. At the same time, life expectancy rises by more than 1 year per decade. The old age dependency ratio, i.e. the number of retirees divided by the number of people in the working age will rise from 0.34 in 2010 to 0.53 in 2030, if people retire at the age of 65. To mitigate the financial burden, recent reforms will raise the retirement age. According to the pension reform decided in 2007, the normal retirement age will increase gradually between 2012 and 2029 from 65 to 67 years. Under these conditions, the old age dependency ratio is expected to increase from 0.29 to 0.47. However, Fehr, Kallweit and Kindermann (2010) have stressed that the efficiency gains from the reform are rather modest. Old-age poverty is hardly reduced as rich people are more flexible in adjusting retirement.

The decline of the labour force will reduce long term growth prospects and likely widen regional disparities within the country. Income convergence in Eastern German States may turn out to be more difficult, as the migration of workers towards the West puts additional pressure on the age structure. In general, demographic forecasts tend to be more reliable than other long term forecasts, as the number of individuals in a given age depends on the current number of younger people and mortality rates over the predic-

tion horizon. Nonetheless, uncertainty can arise from birth and mortality rates and immigration.

3 Income and Consumer Survey

The data in this study has been taken from the Income and Consumer Survey for German households (EVS) The survey is conducted by the German Statistical Office (http://www.stabu.de). Households are recruited voluntarily for reports every five years, according to stratified quota samples from Germany's current population census.

In the EVS, German households report detailed information on income, consumption, savings, and asset holdings at the household level, among others. It can be observed, for example, which fraction of composite savings is saved in stocks, which in bonds, or in owner-occupied housing. Moreover, income and consumption are available very detailed by their single components. This structure is exploited in the analysis when the relationship between the stock of wealth, measured by different assets, and the household savings rate is investigated.

The entire population covered by the EVS survey is restricted, as some groups are not covered: institutionalized people (i. e. military people in barracks, students in dormitories, elderly and disabled people in nursery homes or hospitals, nurses or migrant workers in residences, people in jails), homeless people, and households with monthly net household income greater than 35T Deutschmark for 1998 (18T euros for 2003 and 2008). Due to the voluntary participation, the survey is not a random sample from the population. Households of self-employed, farmers, workers, foreigners, single-person households, and households at the bottom and the top of the income distribution are

generally underrepresented. Although there are quota restrictions to be fulfilled and population weights are applied, a slight selection bias towards the middle income groups will nevertheless remain.

Despite these limitations, the Income and Consumer survey constitutes the most appropriate information for this study. It is the only micro set that comprises information on income, consumption expenditures, savings, and asset holdings in a relatively detailed structure. This allows for an analysis of the age profiles of household savings, while controlling for the stocks of asset holdings, and for an investigation of the effects of the portfolio structure on household savings for a fixed age group. The total number of households in the survey is 49,720 in 1998, 42,420 in 2003, and 44,088 in 2008, the last year available. The analysis is based on pooled cross sections. However, the cross sections do not constitute a panel.

Some observations have been dropped from the analysis to remove outliers. In particular, households are excluded if they have non-positive disposable income, if they dissave more than their current income or if durable consumption exceeds disposable income by more than 200 percent. Furthermore, the analysis of the savings behaviour is restricted to households with a head aged between 20 and 80 years. By imposing these restrictions, 2.8 percent of the entire sample is lost.

-Figure 1 about here-

Figure 1 reveals the age profile for the savings rate. It largely mirrors the typical age profile from the life-cycle permanent income hypothesis: Assets are built up in younger

years when the savings rate increases, up to the mid-thirties. Thereafter, assets are built down until agents reach their retirement age; the savings rate decreases until a minimum of around -5.0 percent, right after people enter retirement.

During the retirement period, consumption is reduced as people become increasingly immobile, or bequest motives become increasingly relevant. This might explain the increase of the savings rate starting around the age of 75. When people approach the end of their lives, around 80 years, the savings rate is at around 2 percent, which is the same level people have in their early twenties and around the age of 60.

One of the determinants of the savings decision will be the stock of wealth, in terms of net asset holdings. Assets are considered net of outstanding debts. For example, housing values are reduced by outstanding mortgages and deposits by outstanding consumer credits. Assets are further categorized into three groups. The first group contains housing assets, owner-occupied as well as rented out. The second group includes equities, such as stocks, bonds, and mutual funds. The third group comprises other financial assets, such as savings deposits at banks and building societies, as well as private old-age pension and wholesale life insurances.

4 Econometric analysis

In modeling the intertemporal consumption decision, it is assumed that the household's budget is allocated between two periods, where the second period can be seen as an approximation for all future periods. Another interpretation of this set up is that a given budget is allocated discretely to immediate and future consumption in each period. By using a similar approach, Beznoska and Ochmann (2012) have investigated the effects

of changes in the interest rate and consumer prices on households' consumption-savings decision.

Current disposable income is allocated between consumption and savings, where the former is durable and non-durable consumption. For a consistent treatment of durable consumption, a correction is applied. In particular, user costs or service flows are constructed to explore effective consumption, as opposed to actual expenditures (Garner and Short, 2009). Expenditures for durable consumption are reallocated among households: those reporting a purchase have lower effective consumption than actual expenditures, those not purchasing get a positive value imputed for effective consumption. For example, if a household buys a car, only a fraction of the expenditure is considered as consumption in the current period. As a measure for depreciation, leasing rates have been estimated. Households that do not buy, but own a car, receive higher consumption due to the existence of user costs.

For our purposes, savings are defined as the difference between income and effective consumption. Only voluntary savings are considered, such as accumulations of financial assets, expenditures for a house purchase, premiums to private insurances, and repayments of loans. Mandatory or contractual savings, such as contributions to the statutory pension insurance system and employer-based savings plans, are subtracted from gross income and are not part of the disposable budget of private households. Furthermore, a net savings concept is applied, where expenditures for asset purchases are netted out against income from asset sales. Hence, the net savings ratio defined by savings at the household level over current income falls in the open interval $[-\infty, 1]$. The savings equation is based on three pooled cross-sections from the Income and Consumer survey as follows:

(1)
$$s_i = \alpha_0 + x_i' \beta + \gamma_1 \ln(y_i) + \sum_{k=1}^3 \gamma_{2k} A_{ik} + g(age_i) + \varepsilon_i$$

where i refers to the respective household and k to the class of assets. Specific characteristics of the household are embedded in the vector x, for example, household composition, education, gender, and social status of the head of the household. Current disposable income is denoted by y, and A is the level of net assets, where three classes are distinguished: housing, equities, and deposits. Income is measured in logs, while assets are original values. To account for the fact that many households do not have a stock of wealth the log-transformation has not been applied for the latter. The age of the household head is included in the function g(age). According to the statistical significance, g(.) is a cubic polynomial for the pooled estimation over all age groups, and a quadratic function for the separate estimations by age groups. The error term ε is assumed to be independent and identically distributed.

The savings function is estimated via OLS on the pooled cross sections of household-level micro data. As the savings rate is not censored in the application, a Tobit estimation is not appropriate. Five regressions are considered: first, the savings function in a pooled model, where a joint regression is estimated for all age groups. In a second variant, the savings function is estimated separately for four age groups, namely age 20-34, age 35-49, age 50-64, and age 65-80. This approach allows for differing patterns of savings across the life-cycle, and for varying effects of income and all demographic factors, depending on whether agents are at the beginning of the life-cycle or in later years. One could think, for example, of the event of becoming unemployed to have a different effect on the savings behavior in case it occurs at the beginning of the working life rather than in case of an old worker. Regressions separated by age have the advantage of al-

lowing the wealth effects on savings to depend on the life-cycle track. Results from the first estimation on the pooled age groups will be utilized to infer life-cycle patterns of savings that are exclusively attributed to the effect of ageing. Results from the four regressions that are performed separately will be used to point out the relevance of wealth effects, in particular portfolio shifts, among the determinants of life-cycle saving patterns.

Table 1 comprises the results for all five models. Given the large sample of more than 130,000 observations in the pooled model, it is not surprising that all coefficient estimates turn out to be highly statistically significant. As the focus is on the wealth and ageing, the household-specific variables are omitted. The full array of results can be obtained from the authors upon request.

-Table 1 about here-

The income coefficient implies that a doubling of income increases the savings rate by almost 30 percent. This strong positive relationship between income and the savings rate is a standard result in the empirical literature. In addition, the pooled model indicates negative impacts for housing assets and equities, and positive effects for deposits. The coefficient estimates imply that an increase of 1 million euro in net housing assets lowers the household savings rate by 3.8 percentage points (3.6 percentage points for equities). The rationale is that an increase in asset holdings, ceteris paribus, lowers the need for further assets to be accumulated and thus the household savings rate. In contrast, an increase of 1 million euros in deposits increases the savings rate by 2.5 percent-

age points. Higher stocks of deposits do not necessarily reduce the savings rate, probably due to the existence of fixed savings contracts, such as savings agreements.

When the savings function is estimated separately for age groups, wealth effects can be further differentiated over the life cycle. Most of the estimated coefficients remain significant. It becomes apparent that there is a lot of heterogeneity in the effects of the assets on the savings rate, depending on whether households are at the beginning of the life cycle or at the end.

The effect of housing assets is negative for each of the four age groups. It does not matter much whether they are young or old; all agents reduce their savings rate when the stock of net housing assets appreciates. The effect of equities differs largely across age groups. It is strongly positive at the early stages of the working life (20-34, 11.6 percentage points) and in the group aged between 35 and 49 (6.3). It is not different from 0 in the 50-64 groups. It then turns negative (-4.9) as soon as agents enter retirement. The effect of deposits also varies across the life cycle. It is highly positive at young ages, both between 20 and 34 (39.2) and between 35 and 49 (12.6). It then turns significantly negative when approaching retirement (-7.4), only to become positive again during retirement (5.1).

The coefficient estimates indicate that there is huge heterogeneity in the age effects across the life cycle. While the estimated coefficients are similar and significant for the younger age groups of 20-34 and 35-49, age effects seem to be less prominent within the older age groups of 50-64 and 65-80, where the coefficients are not significantly different from zero.

These age effects can be best interpreted when the implied marginal effects of the age variable is plotted over the age distribution. This will be shown for the pooled model. Figure 2 reveals the marginal effects of the age of the household head on the household savings rate. These impacts result from the coefficient estimates of the (cubic) polynomial age function and can be interpreted as the impact of an additional year of age, ceteris paribus, i.e. given the current age as well as all other variables, such as current income and wealth holdings.

-Figure 2 about here-

The marginal effects of age on the savings rate are U-shaped over the life-cycle, a pattern which is inherently determined by the specification of a cubic polynomial for the age variable. The effect of an additional year of age on the savings rate is lowest around the age of 40 to 42 (-0.3). This is when agents start to significantly decrease savings. The effect of living one additional year is largest at the highest age (+0.7). This is when agents start again building up some assets that they ran down when entering retirement and that shall now be built up again for the purpose of bequest, or that can simply not be consumed because people become increasingly immobile.

The age coefficients from the savings function imply an average marginal age effect (weighted by population weights) for the age group below 65 of -0.23 and for the age group above 65 of +0.35. If these marginal age effects are assumed to be constant over the next two decades, the demographic shift in the population structure would imply an increase in the aggregate savings rate of 1.4 percentage points until 2030. Thus, a rise in

the savings rate can be expected, but it does not appear to be very pronounced. Nonetheless, it will dampen the evolution of private consumption expenditures. Furthermore, the demographic trend is especially strong in Germany. Thus, the surplus in this country's current account will likely widen further, i.e. the problem of the euro area imbalances will become even more severe.

5 Conclusion

This paper investigates the relationship between wealth, ageing and saving behaviour of private households by using three pooled cross sections of German consumption survey data. Different components of wealth are distinguished, as their impact on the savings rate is not homogeneous. On average, the effect attributed to real estate dominates the other components of wealth. In addition, the savings rate strongly responds to demographic trends. Besides the direct impact of the age structure, an indirect effect arises through the accumulation of wealth. The savings rate does not decrease with age in a monotonic way, as the permanent income hypothesis suggests. Most prominently, older households tend to increase their savings over their retirement period. Given the ongoing demographic trend, an increase of 1.4 percentage points in the aggregated savings rate should be expected over the next two decades.

References

Abel AB (2003): The effects of a baby boom on stock prices and capital accumulation in the presence of social security, Econometrica 71, 551-578.

Ang A, Maddaloni A (2005): Do demographic changes affect risk premiums? Evidence from international data, Journal of Business 78, 341-380.

Belke A, Dreger C (2011): Current account imbalances in the euro area. Does catching up explain the development? DIW Discussion Paper 1106.

Beznoska M, Ochmann R (2012): The interest elasticity of household savings - A structural approach with German micro data, Empirical Economics, forthcoming.

Bloom DE, Canning D, Mansfield RK, Moore M (2007): Demographic change, social security systems, and savings, Journal of Monetary Economics 54, 92-114.

Börsch-Supan A, Ludwig A, Winter J (2006): Ageing, pension reform, and capital flows. A multi-country simulation model. Economica 73, 625-658.

Browning, M. and A. Lusardi (1996): Household saving: Micro theories and micro facts, Journal of Economic Literature 34, 1797–1855.

Carroll C (2009): Precautionary saving and the marginal propensity to consume out of permanent income, Journal of Monetary Economics 56, 780-790.

Davis EP, Li C (2003): Demographics and financial asset prices in the major industrial economies, Brunel University, Discussion Paper 03-07.

Deaton A, Paxson CH (1997): The effects of economic and population growth on national savings and inequality, Demography 34, 97–114.

Demery D, Duck NW (2006): Demographic change and the UK savings rate, Applied Economics 38, 119-136.

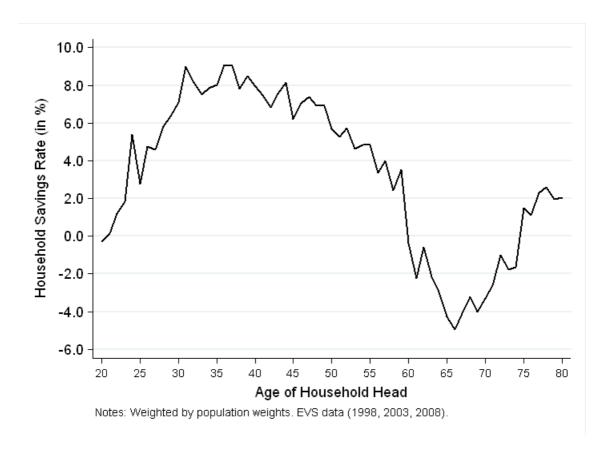
Dreger C, Reimers H-E (2012): The long run relationship between private consumption and wealth. Common and idiosyncratic effects, Portuguese Economic Journal 11, 21-34.

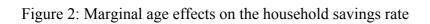
Dynan KE, Skinner J, Zeldes SP (2002): The importance of bequests and life-cycle saving in capital accumulation, American Economic Review 92, 274-278.

Fehr H, Kallweit M, Kindermann F (2010): Pension reform with variable retirement age. A simulation analysis for Germany. Netspar Discussion Paper 02/2010-013.

Feroli M (2006): Demography and the US current account deficit, North American Journal of Economics and Finance 17, 1-16.

Garner TI, Short K (2009): Accounting for owner-occupied dwelling services: Aggregates and distributions, Journal of Housing Economics 18, 233-248


Geanakoplos J, Magill M, Quinzii M (2004): Demography and the long run predictability of the stock market, Brooking Papers on Economic Activity 35, 241-326.


Higgins M (1998): Demography, national savings, and international capital flows, International Economic Review 39, 343–69.

Krueger D, Ludwig A (2007): On the consequences of demographic change for rates of returns to capital, and the distribution of wealth and welfare, Journal of Monetary Economics 54, 49-87.

Poterba J (2004): The impact of population aging on financial markets, NBER Working Paper 10851.

Figure 1: Age profiles of the household savings rate

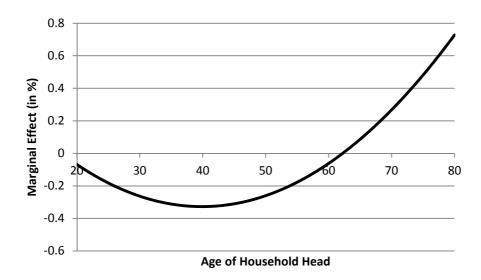


Table 1: OLS estimates for the savings function: Age and wealth effects

dep. var: s _i in %	pooled age groups		20-34		35-49		50-64		65-80	
	Coeff	(SE)	Coeff	(SE)	Coeff	(SE)	Coeff	(SE)	Coeff	(SE)
Income:										
log of disp. income	28.7 (0.16)***		33.3 (0.41)***		29 (0.25)***		28.8 (0.31)***		26.5 (0.41)***	
Assets:										
Housing	-3.75 (0.31)***		-5.8 (1.41)***		-2.36 (0.50)***		-3.23 (0.53)***		-2.73 (0.70)***	
Equities	-3.6 (1.18)***		11.6 (6.80)*		6.34 (2.44)***		1.89 (2.21)		-4.88 (1.96)**	
Deposits	2.51 (1.21)**		39.2 (5.61)***		12.6 (2.15)***		-7.44 (1.91)***		5.09 (2.70)*	
Age of HH Head:										
age	0.71 (0.15)***		-1.53 (0.59)***		-1.53 (0.44)***		0.33 (0.81)		1.33 (1.24)	
age ²	-0.026 (0.0030)***		0.016 (0.01)		0.014 (0.0053)***		-0.0047 (0.0072)		-0.0063 (0.0086)	
age ³	0.00022	(0.000019)**								
Observations	132,393		20,256		50,585		36,888		24,664	
R^2	0.268		0.340		0.281		0.260		0.190	

Notes: Standard errors, robust to heteroskedasticity, in parentheses. Omitted variables: demographic controls (gender, marital status, nationalty, location, education, family composition, social status), time effects (year dummies, quarter dummies), a dummy for cars in the household, and a constant. Significance levels: *p<0.10, **p<0.05, ***p<0.01.

Source: Own calculations using the EVS data (1998, 2003, 2008).