
D
I

S
C

U
S

S
I

O
N

 
P

A
P

E
R

 
S

E
R

I
E

S

Forschungsinstitut 
zur Zukunft der Arbeit
Institute for the Study 
of Labor 

Decomposing the Composition Effect

IZA DP No. 6397

February 2012

Christoph Rothe



 
Decomposing the Composition Effect 

 
 
 
 

Christoph Rothe 
Toulouse School of Economics 

and IZA 
 

 
 
 
 
 

Discussion Paper No. 6397 
February 2012 

 
 
 

IZA 
 

P.O. Box 7240   
53072 Bonn   

Germany   
 

Phone: +49-228-3894-0  
Fax: +49-228-3894-180   

E-mail: iza@iza.org
 
 
 
 
 
 

Any opinions expressed here are those of the author(s) and not those of IZA. Research published in 
this series may include views on policy, but the institute itself takes no institutional policy positions. 
 
The Institute for the Study of Labor (IZA) in Bonn is a local and virtual international research center 
and a place of communication between science, politics and business. IZA is an independent nonprofit 
organization supported by Deutsche Post Foundation. The center is associated with the University of 
Bonn and offers a stimulating research environment through its international network, workshops and 
conferences, data service, project support, research visits and doctoral program. IZA engages in (i) 
original and internationally competitive research in all fields of labor economics, (ii) development of 
policy concepts, and (iii) dissemination of research results and concepts to the interested public.  
 
IZA Discussion Papers often represent preliminary work and are circulated to encourage discussion. 
Citation of such a paper should account for its provisional character. A revised version may be 
available directly from the author. 

mailto:iza@iza.org


IZA Discussion Paper No. 6397 
February 2012 

 
 
 
 
 
 
 

ABSTRACT 
Decomposing the Composition Effect 

 
This paper proposes a decomposition of the composition effect, i.e. the part of the observed 
between-group difference in the distribution of some economic outcome that can be 
explained by differences in the distribution of covariates. Our decomposition contains three 
types of components: (i) the “direct contributions” of each covariate due to between-group 
differences in the respective marginal distributions, (ii) several “two way” and “higher order” 
interaction effects due to the interplay between two or more covariates’ marginal distributions, 
and (iii) a “dependence effect” accounting for between-group differences in dependence 
patterns among the covariates. Our methods can be used to decompose differences in 
arbitrary distributional features, like quantiles or inequality measures, and allows for general 
nonlinear relationships between the outcome and the covariates. It can easily be 
implemented in practice using standard econometric techniques. An application to wage data 
from the US illustrates the empirical relevance of the decomposition’s components. 
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1. Introduction

Understanding the factors accounting for the differences in the distributions of individu-

als’ economic outcomes across two countries, time periods, or subgroups of the population

is central in several fields of economic research, particularly in labor and development eco-

nomics. For instance, the question why wage inequality has increased substantially in the

US and other industrialized countries over the past decades has received enormous atten-

tion in the recent literature. Other examples include the study of the gender wage gap,

wage differentials between natives and immigrants, and variations in health outcomes

across several developing regions. The distributional aspect is often critical in these ap-

plications. Comparing real hourly wages among male US workers in 1985 and 2005, for

example, one can observe that the median wage has remained approximately constant,

but that the 90% and 10% quantile have increased by about 20% and 5%, respectively.

There has thus been a substantial change in the overall shape of the wage distribution,

which would not be revealed by a simple comparison of means.

With such applications in mind, a number of papers have proposed procedures to de-

compose between-group differences in economic outcomes into two components: a com-

position effect due to differences in observable covariates across groups, and a structure

effect due to differences in the relationship that links the covariates to the outcome. The

most popular example is certainly the Oaxaca-Blinder procedure (Oaxaca, 1973; Blinder,

1973), which can be used to decompose differences in mean outcomes when the data

are generated by a simple linear model. More flexible methods that can be used to de-

compose general distributional features like quantiles or inequality measures, and allow

for complex nonlinear relationships between the covariates and the outcome variable are

proposed and studied by DiNardo, Fortin, and Lemieux (1996), Gosling, Machin, and

Meghir (2000), Donald, Green, and Paarsch (2000), Barsky, Bound, Charles, and Lup-

ton (2002), Machado and Mata (2005), Melly (2005), Chernozhukov, Fernandez-Val, and

Melly (2009) and Rothe (2010b), among many others. See also Fortin, Lemieux, and

Firpo (2011) for an extensive literature review. These papers differ mainly in the estima-

tion techniques being used. The parameters that are being estimated are conceptually

very similar.
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When the data contain information about several individual characteristics, it is nat-

ural to ask whether one of them is “driving” the value of the composition effect. For

example, one might wonder whether the composition part of the wage gap between na-

tives and immigrants is mostly due to differences in distribution of, say, education. Such

a detailed decomposition (Fortin et al., 2011) can easily be obtained for the mean of the

outcome variable in a linear model by the Oaxaca-Blinder procedure. In more general

settings, however, none of the above-mentioned more flexible methods is able to divide

the composition effect into the contribution of each covariate in a similar fashion. That is,

while they are able to quantify the extend to which e.g. differences in the composition of

workers contribute to the native-immigrant wage gap for every quantile of the wage dis-

tribution, they are unable to determine the contribution of differences in the distribution

of education alone.

Our paper addresses this issue by proposing a detailed decomposition of the compo-

sition effect that applies to any distributional feature, and does not rely on a particular

structure of the data generating process. We first argue that when considering distribu-

tional features other than the mean, it is generally impossible to apportion the composi-

tion effect into components attributable to between-group differences in specific covariates

such that these components add up to the full composition effect. Any attempt to define

such a partition, even in the most basic empirical settings, has to rely on arbitrary choices.

For example, when the data are generated by a simple linear model, between-group dif-

ferences in the outcomes’ variance can be due to the fact that the covariances among the

explanatory variables differ across groups. Since the covariance of two random variables

is the product of their respective standard deviations and the correlation coefficient, it

depends on features of both covariates’ marginal distributions, and on the dependence

structure between them. Such terms can therefore not be attributed unambiguously to a

specific covariate. Similar issues are present for essentially all distributional features that

are commonly of interest in applications (with the exception of the mean). Since objects

like quantiles or inequality measures are nonlinear transformations of the distribution of

the outcome, they are generally not additively separable in the marginal distributions of

the covariates, but contain “interaction terms” that stem from the interplay of two or

more covariates. Moreover, they are also influenced by the dependence patterns among
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the covariates across groups.

Our decomposition does not try to circumvent these issues by working with approx-

imations or imposing strong restrictions on the data generating process, but takes them

into account explicitly. In particular, we propose to split up the composition effect

into three types of components: (i) the “direct contribution” of each covariate due to

between-group differences in the respective marginal distributions, (ii) several “two way”

and “higher order interaction effects” due to the interplay between two or more marginal

distributions, and (iii) a “dependence effect” accounting for different dependence patterns

among the covariates.

We show that such a decomposition is well-defined in a general setting by using results

from copula theory (Nelsen, 2006). These results imply that the joint distribution func-

tion of the covariates can be separated into its marginals and a so-called copula function,

that determines the dependence structure. Our decomposition exploits this represen-

tation by creating various counterfactual covariate distributions that share properties

of both groups, and studying the resulting hypothetical outcome distributions. Similar

techniques are used in Rothe (2012) to extend the notion of partial effects to uncon-

ditional distributions. Our decomposition is conceptually easy to implement, requiring

only standard econometric methods to estimate copula functions and conditional CDFs.

Valid standard errors can be computed via a classical bootstrap approach.

For the special case of the mean of the outcome in a linear regression model, our

decomposition method reduces to the Oaxaca-Blinder procedure, and can thus be un-

derstood as a natural extension of this classical method to nonlinear models and general

distributional features. Our decomposition also shares some similarities with approaches

that use sequential conditioning arguments to define the impact of individual covariates

on the outcome distribution, as e.g. in in DiNardo et al. (1996), Machado and Mata

(2005), or Fortin et al. (2011). It also has the same aim as the so-called RIF decomposi-

tion described in Fortin et al. (2011). We review the aforementioned methods and their

relationship to our approach in more detail in Section 5.

It should be stressed that our focus in this paper is exclusively on a decomposition of

the composition effect. We do not address the related issue of deriving a decomposition

of the structure effect, i.e. dividing between-group differences in the structural functions
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that link the covariates and the outcome variable into components that can be attributed

to individual covariates. Such a task already faces conceptional difficulties in simple

linear models with discrete covariates, and does not seem possible for general nonlinear

structural functions with interactions between the covariates.

The remainder of the paper is structured as follows. In the next section, we introduce

a general setting for studying structure and composition effects. Section 3 illustrates the

conceptional difficulties for decomposing the composition effect through a simple example.

In Section 4, we describe our new detailed decomposition based on copulas. Section 5

compares our method to other techniques proposed in the literature. Section 6 shows

how to implement our decomposition in practice, and Section 7 contains an empirical

application to wage data from the US. Finally, Section 8 concludes.

2. Structure and Composition Effects

In this section, we introduce a general setting to study structure and composition effects,

which covers the frameworks used in e.g. DiNardo et al. (1996), Gosling et al. (2000),

Donald et al. (2000), Barsky et al. (2002), Machado and Mata (2005), Melly (2005),

Chernozhukov et al. (2009), Rothe (2010b), and Fortin et al. (2011). Throughout this

and the following three sections, we abstract from estimation issues and focus on defining

population quantities of interest. We return to questions of empirical implementation in

Section 6 and 7.

In our setting, we consider a population with two non-overlapping subgroups indexed

by i ∈ {0, 1}. These two groups could e.g. be men and women, natives and immigrants

or workers in two different countries or time periods. For any individual in group i,

we observe an outcome variable Yi and a d-dimensional vector of covariates Xi, with

corresponding distribution functions denoted by F i
Y and F i

X , respectively. The outcome

variable is generated through the nonseparable model

Yi = mi(Xi, ηi), i ∈ {0, 1} (2.1)

where ηi ∈ Rdη is an unobserved error term, assumed to be independent of Xi, and mi

is the so-called structural function. Since we do not impose any restrictions on neither

the distribution of the unobservables nor the specific functional form of mi, writing the
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relationship between Yi and Xi as in (2.1) does not restrict the analysis in any sense. Since

the function mi and the distribution of ηi are clearly not separately identified, we assume

without loss of generality that η1 and η0 have the same distribution. Our setting is fully

nonparametric and thus very flexible, allowing e.g. for heteroskedasticity or skewness in

the conditional distribution of Yi given Xi, among many other patterns of dependence.

In a typical application like the analysis of differences in wage distributions, Yi would be

an individuals’ wage, Xi and ηi would correspond to individual observed and unobserved

characteristics (from the perspective of the econometrician), and mi would be the wage

structure function.

Following the literature on decomposition methods, we assume that (2.1) describes a

stable relationship that is not affected by changes in the distribution of the covariates.

This is equivalent to assuming that the conditional CDF F i
Y |X of Yi given Xi is invariant

to counterfactual changes in the distribution of Xi. This condition makes it possible to

construct the marginal distribution of the outcome variable in group i under a counterfac-

tual experiment that exogenously changes the distribution of observable characteristics.

Recall that by the law of total probability we have that

F i
Y (y) =

∫
F i
Y |X(y|x)dF i

X(x) for i ∈ {0, 1}, (2.2)

and thus for any d-dimensional CDF G the function H(y) =
∫
F i
Y |X(y, x)dG(x) can be

interpreted as the CDF of the counterfactual random variable mi(Z, ηi), where Z ∼ G

is a d-dimensional random vector that is independent of ηi. This idea, which is central

to the decomposition literature, allows us to define the counterfactual distribution of the

outcome under the structure mi(·, ηi) of group i and the covariate distribution F j
X of

group j as

F
i|j
Y (y) =

∫
F i
Y |X(y, x)dF j

X(x). (2.3)

For any CDF F we refer to objects of the form ν(F ) in the following as a distributional

feature, where ν : F → R is a functional from the space of all one-dimensional distribution

functions to the real line. Examples of distributional features include the mean, with

ν : F 7→
∫
ydF (y), and the τ -quantile, with ν : F 7→ F−1(τ), but also higher-order

centered or uncentered moments, quantile-related statistics like interquantile ranges or
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quantile ratios, and inequality measures such as the Gini coefficient. Using this notation,

one can now decompose the observed difference

∆ν
O = ν(F 1

Y )− ν(F 0
Y )

between the distributional features ν(F 1
Y ) and ν(F 0

Y ) as follows:

∆ν
O = ∆ν

S + ∆ν
X (2.4)

where

∆ν
S = ν(F 1

Y )− ν(F
0|1
Y ) and ∆ν

X = ν(F
0|1
Y )− ν(F 0

Y ).

Here ∆ν
X is a composition effect, solely due to differences in the distribution of the covari-

ates between the two groups, and ∆ν
S is a structure effect, solely due to differences in the

structural functions m1 and m0. Note that the order in which differences in structural

functions and the covariate distributions are considered when defining ∆ν
X and ∆ν

S has

to be taken into account when interpreting the parameters in practice.

3. Problems for Decomposing the Composition Effect

When the data contain information about several individual characteristics, it is natural

to ask whether one of them is “driving” the value of the composition effect. For example,

one might wonder whether the composition part of the wage gap between natives and

immigrants is mostly due to differences in distribution of, say, education. More generally,

it seems desirable to have a methodology that is able to apportion the composition effect

into components attributable to each covariate. Such a detailed decomposition (Fortin

et al., 2011) can easily be obtained for the mean of the outcome variable in a linear model

by the Oaxaca-Blinder procedure, which certainly contributes to the popularity of the

method. When considering more general distributional distributional features, however,

like the variance or the quantiles of the outcomes, it is impossible to define a similar

decomposition without making subjective choices. This is due to two reasons. First, it is

generally not possible to express a distributional feature ν(F i
Y ) = ν(

∫
F i
Y |X(·, x)dF i

X(x))

as a sum of terms that each depend on the marginal distribution of a single covariate only.

Instead, explicit expressions for ν(F i
Y ) typically contain “interaction effects” resulting
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from the interplay of two or more marginal distributions, which cannot be attributed

unambiguously to a single covariate. Second, in general a distributional feature ν(F i
Y )

does not only depend on the marginal distributions of the covariates, but also on the

dependence patterns among them. Dependence patterns describe the relationship among

at least two covariates, and can therefore not be attributed unambiguously to a single

covariate.

Both issues are a necessary consequence of considering features that are a nonlinear

transformations of the distribution function of the outcome variable. They are present

even for simple data generating processes like linear models. To see this, consider the

following trivial example. Suppose that in group i ∈ {0, 1} we have that mi(Xi, ηi) =

Xi1 +Xi2 + ηi, where Xi ∼ N(µi,Σi) is bivariate normal with

µi =

 µi1

µi2

 and Σi =

 σ2
i1 ρiσi1σi2

ρiσi1σi2 σ2
i2

 ,

and ηi ∼ N(0, 1). Since the structural function is the same in both groups, we clearly

have that ∆ν
S = 0 for any functional ν, and thus any difference in the distribution of

Y1 and Y0 reflects a composition effect. For instance, if ν(F i
Y ) = Var(Yi) we have that

∆ν
X = Var(Y1)−Var(Y0) with Var(Yi) = 1 + σ2

i1 + σ2
i2 + 2ρiσi1σi2. When ν(F i

Y ) = Qi
Y (τ)

is the τ -quantile of the distribution of Yi, we find that ∆ν
X = Q1

Y (τ) − Q0
Y (τ) with

Qi
Y (τ) = µi1 + µi2 + Φ−1(τ)

√
1 + σ2

i1 + σ2
i2 + 2ρiσi1σi2 and Φ the CDF of the standard

normal distribution. In both cases, the object of interest is not additively separable

in the parameters (µi1, σ
2
i1) and (µi,2, σ

2
i,2), which characterize the covariates’ marginal

distributions in this example. Moreover, in both cases the object of interest depends

on the value of the correlation coefficient ρi, which determines the dependence structure

among the covariates here.

The above discussion illustrates that a detailed decomposition with d elements, one

for each covariate, that add up to the full composition effect will generally have to rely

on arbitrary choices regarding which parts of the composition effect are attributed to

specific covariates. To avoid making such choices, this paper considers a more general

detailed decomposition containing additional terms that explicitly collect those parts of

the composition effect that cannot be attributed to a particular covariate.

8



4. A New Detailed Decomposition Based on Copulas

We now propose a new decomposition of the composition effect which accounts for the two

main problems listed in the previous section. In particular, our decomposition does not

only contain terms accounting for the direct contribution of differences in the marginal

distribution of individual covariates, but also several terms accounting for two-way and

higher-order “interaction effects”, and a term accounting for differences in the dependence

structure of the two covariate distributions.

The copula function of the covariate distribution plays a central role in the develop-

ment of our decomposition. Roughly speaking, copulas are functions that connect multi-

variate distribution functions to their univariate marginals (Trivedi and Zimmer, 2007).

In particular, it follows from Sklar’s Theorem (Sklar, 1959; Nelsen, 2006, Theorem 2.3.3)

that the CDF of Xi can always be written as

F i
X(x) = Ci(F i

X1
(x1), . . . , F i

Xd
(xd)) for i ∈ {0, 1}, (4.1)

where Ci is a copula function, i.e. a multivariate CDF with standard uniformly distributed

marginals, and F i
Xk

is the marginal distribution of the kth component of Xi. In this rep-

resentation, the copula is uniquely determined on the range of the marginal distribution

functions.1 The copula function characterizes the joint distribution of ranks in the re-

spective marginal distributions, and due to its uniqueness property it can be interpreted

as the object that determines the patterns of dependence among the components of Xi.

Equation (4.1) thus provides a way to disentangle the shape of the marginal CDFs and

the dependence among the components of Xi.

To describe how the copula representation (4.1) can be used to decompose the compo-

1This means that if all components of Xi are continuously distributed, there exists a one-to-one

relationship between the copula Ci and the multivariate CDF F iX . In the presence of at least one discrete

component, we can uniquely determine Ci(u1, . . . , ud) for all (u1, . . . , ud) ∈ Ran(F iX1
)× . . .×Ran(F iXd

).

In this case, the definition of Ci can be made unique on the entire set [0, 1]d by assuming that the discrete

components ofXi are generated through a threshold-crossing model with a continuously distributed latent

variable. That is, suppose that Xi = g(X∗i ) = (g1(X∗i1), . . . , gd(X
∗
id)) for some continuously distributed

random vector X∗i and a function g(·) that is weakly increasing in each of its arguments. For example, if

the kth component of Xi is binary, we could have Xik = I{X∗ik > 0} = gk(X∗ik). With such a structure,

Ci can be uniquely defined on [0, 1]d as the copula function of the joint CDF of the latent variables X∗i .
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sition effect, we introduce some further notation. In the following, every boldface letter de-

notes an element of the d-dimensional product set {0, 1}d. We also write 1d = (1, 1, . . . , 1)

and 0d = (0, 0, . . . , 0), and for any j ∈ {1, . . . , d} we denote by ej the jth unit vector,

i.e. the d-dimensional vector whose jth component is equal to one, and whose remaining

components are equal to zero. Furthermore, for any k ∈ {0, 1}d we define |k| =
∑d

l=1 kl.

Finally, we introduce a general notation for counterfactual outcome distributions, writing

F
i|j,k
Y (y) =

∫
F i
Y |X(y, x)dCj(F k1

X1
(x1), . . . , F kd

Xd
(xd)) (4.2)

for the distribution of the outcome in a counterfactual setting where the structure is as in

group i, the covariate distribution has the copula function of group j, and the marginal

distribution of the lth covariate is equal to the that in group kl. For example, we have

that F 1
Y = F

1|1,1d

Y and F 0
Y = F

0|0,0d

Y .

With the notation (4.2), we can now easily consider counterfactual settings that mix

various features of the two groups’ covariate distributions. As a first step, the composition

effect ∆ν
X can be decomposed into a dependence effect ∆ν

D resulting from between-group

differences in the copula functions, and a total marginal distribution effect ∆ν
M resulting

from differences in the marginal covariate distributions across the two groups:

∆ν
X = ∆ν

D + ∆ν
M (4.3)

where

∆ν
D = ν(F

0|1,1d

Y )− ν(F
0|0,1d

Y ) and ∆ν
M = ν(F

0|0,1d

Y )− ν(F
0|0,0d

Y ).

In the simple example with bivariate normal covariates given in Section 3, the term ∆ν
D

would capture the contribution of differences in correlation coefficients across the two

groups, whereas the term ∆ν
M subsumes the contribution of different mean and variance

parameters. Note that the order in which differences in the copula and the marginal CDFs

are considered when defining ∆ν
D and ∆ν

M has to be taken into account when interpreting

the parameters in practice.

In a second step, we then further decompose the total marginal distribution effect ∆ν
M

into several partial marginal distribution effects ∆ν
M(k), which account for between-group
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differences in the marginal distributions of one or several covariates:

∆ν
M =

∑
1≤|k|≤d

∆ν
M(k), (4.4)

where for any k ∈ {0, 1}d we define

∆ν
M(k) =

∑
1≤|m|≤|k|

(−1)|k|−|m|(ν(F
0|0,m
Y )− ν(F

0|0,0d

Y )).

For |k| = 1, i.e. when k = ej is the jth unit vector, the term ∆ν
M(ej) = ν(F

0|0,ej
Y ) −

ν(F
0|0,0d

Y ) can be interpreted as the effect of conducting a counterfactual experiment in

group zero that entails changing the marginal distribution of the jth covariate to its

corresponding counterpart in group one, while holding everything else constant. It thus

measures the direct contribution of between-group differences in the marginal distribution

of the jth covariate to the composition effect. Note that these direct contributions are

equal to Fixed Partial Distributional Policy Effects (FPPE) introduced in Rothe (2012),

and thus have an interesting interpretation outside the present decomposition framework.

For any k with |k| > 1, the terms ∆ν
M(k) capture the contributions to the composition

effect of “|k|-way interaction effects” between the marginal distributions for which re-

spective component of k is equal to one. Consider for example the special case d = 2, in

which the only interaction term ∆ν
M(12) is given by

∆ν
M(12) = (ν(F

0|0,12

Y )− ν(F
0|0,02

Y ))−∆ν
M(e1)−∆ν

M(e2).

Here the first term on the right-hand side measures the joint contribution of differences in

the marginal distribution of covariates between the two groups, whereas the second and

third summand provide an adjustment for the direct effect of differences in one specific

marginal distribution alone, thus leading to the interpretation of ∆ν
M(12) as a “pure”

interaction effect. A similar interpretation applies in higher-dimensional settings.

As a further illustration, one can explicitly calculate the components of our detailed

decomposition for the simple setting described in Section 3, where in group i ∈ {0, 1} the

structural function is given by mi(Xi, ηi) = Xi1 +Xi2 + ηi, the covariates Xi ∼ N(µi,Σi)

are bivariate normal with

µi =

 µi1

µi2

 and Σi =

 σ2
i1 ρiσi1σi2

ρiσi1σi2 σ2
i2

 ,
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and ηi ∼ N(0, 1). Here the the copula Ci is a bivariate Gaussian copula with one-

dimensional parameter ρi. For the case that ν(F i
Y ) = Var(Yi), we find that the dependence

structure and total marginal distribution effects are given by

∆Var
D = 2(ρ1 − ρ0)σ11σ12 and

∆Var
M = (σ2

11 − σ2
01) + (σ2

12 − σ2
02) + 2ρ0(σ11σ12 − σ01σ02),

and the partial marginal distribution effects are

∆Var
M (e1) = (σ2

11 − σ2
01) + 2ρ0σ02(σ11 − σ01),

∆Var
M (e2) = (σ2

12 − σ2
02) + 2ρ0σ01(σ12 − σ02), and

∆Var
M (12) = −2ρ0(σ01σ12 + σ02σ11).

For ν(F i
Y ) = Qi

Y (τ) the distributional feature of interest, we find that

∆
Q(τ)
D = Φ−1(τ)

(√
1 + σ2

11 + σ2
12 + 2ρ1σ11σ12 −

√
1 + σ2

11 + σ2
12 + 2ρ0σ11σ12

)
and

∆
Q(τ)
M = Φ−1(τ)

(√
1 + σ2

11 + σ2
12 + 2ρ0σ11σ12 −

√
1 + σ2

01 + σ2
02 + 2ρ0σ01σ02

)
+ (µ11 + µ12)− (µ01 + µ02),

and that the partial marginal distribution effects are

∆
Q(τ)
M (e1) = Φ−1(τ)

(√
1 + σ2

11 + σ2
02 + 2ρ0σ11σ02 −

√
1 + σ2

01 + σ2
02 + 2ρ0σ01σ02

)
+ (µ11 − µ01),

∆
Q(τ)
M (e2) = Φ−1(τ)

(√
1 + σ2

01 + σ2
12 + 2ρ0σ01σ12 −

√
1 + σ2

01 + σ2
02 + 2ρ0σ01σ02

)
+ (µ12 − µ02), and

∆
Q(τ)
M (12) = Φ−1(τ)

(√
1 + σ2

11 + σ2
12 + 2ρ0σ11σ12 +

√
1 + σ2

01 + σ2
02 + 2ρ0σ01σ02

)
− Φ−1(τ)

(√
1 + σ2

11 + σ2
02 + 2ρ0σ11σ02 +

√
1 + σ2

01 + σ2
12 + 2ρ0σ01σ12

)
Of course, other distributional features could be considered as well.

In a setting with several explanatory variables, the large number of subcomponents of

∆ν
M often makes it infeasible to report all of them in empirical applications. In most cases,

we expect the “direct” marginal distribution effects ∆ν
M(ej) to be the most important
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(and most interesting) elements of the decomposition. If that turns out to be the case,

one possibility to keep the presentation of findings clear and concise is to report these

quantities together with the “aggregate interaction effect”
∑

2≤|k|≤d ∆ν
M(k), instead of

computing (and reporting) every single two-way or higher-order interaction term.

5. Relationship to other Approaches

In this section, we compare our copula decomposition to several related approaches that

have been proposed in the literature. We consider the classical Oaxaca-Blinder procedure,

methods based on so-called sequential conditioning arguments, and a recently proposed

method based on the RIF regression approach in Firpo, Fortin, and Lemieux (2009).

5.1. Approaches based on Linear Models. In the context of the linear regression

model, the Oaxaca-Blinder procedure, due to Oaxaca (1973) and Blinder (1973), is ar-

guably the most widely used approach of decomposing inter-group differences in mean

levels of an outcome variable into a structure effect and a composition effect. It can also

used to obtain a detailed decomposition of the composition effect. Using our notation, the

Oaxaca-Blinder procedure assumes that mi(x, ηi) = βi0 +
∑d

j=1 xjβi,j + ηi, and considers

the case that ν(F i
Y ) =

∫
ydF i

Y (y) = E(Yi). Under these conditions, the composition effect

can be written as

∆E
X =

d∑
j=1

(E(X1,j)− E(X0,j))β0j,

and the summands on the right hand side are the elements of the detailed decomposition,

with the jth summand being the contribution of the jth covariate.

The reason that none of the problems for decomposing the composition effect listed in

Section 3 are apparent for the Oaxaca-Blinder procedure is due to the special structure

of the framework. The additive separability of covariates in the data generating process

is preserved by the linearity of the functional F 7→
∫
ydF (y) that maps a CDF into the

corresponding expectation. Under these particular circumstances, the composition effect

can be apportioned unambiguously into contributions of each covariate. However, this

is not at odds with our approach. In fact, our method encompasses the Oaxaca-Blinder

procedure as a special case, as we have ∆E
M(ej) = (E(X1j)− E(X0j))β0j, ∆E

M(k) = 0 for

13



k 6= ej and ∆E
D = 0 in this setting. Our approach can thus be understood as a natural

extension of the Oaxaca-Blinder decomposition to nonlinear DGPs and general features

of the outcome distribution.

5.2. Approaches based on Sequential Conditioning. There exists an extensive

literature that has proposed measures to quantify the impact of individual covariates on

between-group differences in general distributional features. Examples include DiNardo

et al. (1996), Machado and Mata (2005), Altonji, Bharadwaj, and Lange (2008) or Fortin

et al. (2011), among many others. To define the respective object of interest, these papers

make use of sequential conditioning arguments. Generally speaking, the idea that they

share is to write the joint distribution of the covariates as the product of the marginal

distribution of its mth component and the conditional distribution of the mth component

given the remaining ones, and then manipulate one of the two factors in a counterfactual

experiment.

More formally, let X−m denote the (d− 1)-dimensional subvector of X that does not

contain the mth component, and define a counterfactual outcome CDF by

G
i,j,k|m
Y (y) =

∫
F i
Y |X(y, x)dF j

Xm|X−m
(xm|x−m)dF k

X−m(x−m).

With this notation, one way to define the impact of the mth covariate is through a change

in the conditional distribution of Xm given X−m:

∆̃ν
M(m) = ν(G

0,1,0|m
Y )− ν(F 0

Y ).

Another possibility is to define the effect through a counterfactual change in the marginal

distribution of Xm while holding the conditional distribution constant:

∆̃ν∗
M(m) = ν(G

0,0,1|m
Y )− ν(F 0

Y ).

As argued in Rothe (2012), neither type of parameter can be interpreted as the impact of

between-group differences in the marginal distribution of Xm alone: the counterfactual

experiment used to define ∆̃ν
M(m) changes the conditional distribution of Xm given X−m,

and thus affects the dependence structure among the covariates, and the experiment used

to define ∆̃ν∗
M(m) changes the marginal distribution of X−m. Both types of parameters
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differ in this respect from our “direct” marginal distribution effects ∆ν
M(em). As they are

defined through an experiment that holds the copula function constant, the latter can be

interpreted as reflecting differences in the marginal distribution of Xm alone. A further

difference to our decomposition is that neither
∑d

m=1 ∆̃ν
M(m) nor

∑d
m=1 ∆̃ν∗

M(m) are equal

to the composition effect ∆ν
M in general. When defining a detailed decomposition of the

composition effect based on one of these approaches, one would thus end up with an

unexplained residual quantity that is difficult to interpret.

In order to avoid the last problem, one could use a modified sequential conditioning

argument and define another counterfactual outcome distribution

H
i|k
Y (y) =

∫
F i
Y |X(y, x)dF k1

X1|X2,...,Xd
(x1|x2, . . . , xd)

× dF k2

X2|X3,...,Xd
(x2|x3, . . . , xd)× . . .× dF kd

Xd
(xd),

for any k ∈ {0, 1}d. If we now let hm = (1, 1, . . . , 1, 0, 0, . . . , 0) be a d-vector whose first

m components are equal one, and whose remaining d−m components are equal to zero,

the composition effect can be written as

∆ν
X =

d∑
m=1

(ν(H
0|hm

Y )− ν(H
0|hm−1

Y )).

While now the components of the decomposition “add up” to the composition effect,

such an approach has the disadvantage of being “path dependent”, in the sense that the

results depend on the ordering of the random variables in the vectors Xi, which is of

course arbitrary. However, proceeding like this could be useful is there is a natural causal

ordering among the covariates, e.g. if they are chosen sequentially by the individuals.

5.3. Approach based on RIF Regressions. In this subsection, we contrast the

decomposition methodology proposed in this paper with a related procedure based on

the RIF regression techniques in Firpo et al. (2009), which is outlined in e.g. Fortin

et al. (2011, Section 5.2) and Firpo, Fortin, and Lemieux (2007, 2011). To describe the

approach, we need to introduce some notation. For any CDF F , denote the influence

function (Van der Vaart, 2000, p. 291) of the distributional feature ν(F ) by IF(·; ν, F ),

and let RIF(·; ν, F ) = ν(F ) + IF(·; ν, F ) be the corresponding recentered influence func-

tion. Recall that any influence function satisfies that
∫

IF(y; ν, F )dF (y) = 0, so that
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the expectation of RIF(Y ; ν, F ) with Y ∼ F is the distributional feature of interest.

Next, consider the coefficients γνi of a least-squares approximation of the RIF by a linear

function of the covariates, i.e.

γνi = argmin
γ

E((RIF(Yi; ν, F
i
Y )−

d∑
k=0

Xi,kγi,k)
2)

where Xi,0 ≡ 1 denotes a constant, and the coefficients γνi|j of a weighted linear least-

squares approximation, i.e.

γνi|j = argmin
γ

E(Ψj|i(Xi)(RIF(Yi|ν, F i|j
Y )−

d∑
k=0

Xi,kγk)
2),

where F
i|j
Y is as defined in (2.3) above, and Ψj|i(x) = dF j

X(x)/dF i
X(x) is the between-

group ratio of the covariates’ density functions. Here the weights Ψj|i(Xi) are chosen

such that the weighted distribution of Xi is equal to that of Xj. Noting that

ν(F i
Y ) =

d∑
k=0

E(Xi,k)γ
ν
i,k and ν(F

i|j
Y ) =

d∑
k=0

E(Xj,k)γ
ν
i|j,k, (5.1)

one can rewrite the usual structure and composition effect in the decomposition (2.4) as

∆ν
S =

d∑
k=0

E(X1,k)(γ
ν
1,k − γν0|1,k) and ∆ν

X = ∆̃ν
X,p + ∆̃ν

X,e, (5.2)

respectively, where

∆̃ν
X,p =

d∑
k=1

(E(X1,k)− E(X0,k))γ
ν
0,k, (5.3)

∆̃ν
X,e =

d∑
k=1

E(X1,k)(γ
ν
0|1,k − γν0,k).

The summands (E(X1,k)−E(X0,k))γ
ν
0,k on the right-hand side of (5.3) are interpreted by

Firpo et al. (2011) as the direct contribution of differences in the kth covariate distribution

to the composition effect, and ∆̃ν
X,e is interpreted as a specification error resulting from

the fact that the conditional expectation hi(x; ν, F i
Y ) = E(RIF(Yi; ν, F

i
Y )|Xi = x) is not

a linear function of x for most features ν. Sample counterparts of these quantities can

easily be estimated in practice, requiring only a (weighted) linear regression of a suitably
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transformed version of the dependent variable on the covariates, and the calculation of

sample means.2

For the special case that the data generating process is a simple linear model and

ν(F i
Y ) = E(Yi), the RIF decomposition coincides with the Oaxaca-Blinder procedure, as

RIF(y; ν, F ) = y in this case. For other distributional features like variances or quan-

tiles, however, the elements (E(X1,k) − E(X0,k))γ
ν
0,k of the detailed RIF decomposition

are generally difficult to interpret in practice. For example, it is immediate that the

RIF decomposition suggests by construction that the kth covariate does not contribute

“directly” to the composition effect as long as E(X1,k) = E(X0,k), irrespective of the

properties of the data generating process. More generally, the interpretation of the RIF

decomposition is problematic whenever the covariates affect the respective feature of the

outcome distribution through channels other than their means, which is true for essen-

tially all common distributional features other than the mean. Another issue is that the

“specification error” ∆̃ν
X,e incurred through the linear prediction step can be of substantial

magnitude even in simple settings. These points are further illustrated in the following

example.

Example 2. Suppose that for each i ∈ {0, 1} the data are generated by a simple linear

model as Yi = βi,0 +
∑d

k=1Xi,kβi,k + ηi with η1
d
= η0, that within each group the covariates

are fully independent of each other and normally distributed, and that the variance is

the distributional feature of interest, i.e. ν(F i
Y ) = Var(Yi). In this case, the composition

effect is easily seen to be

∆Var
X =

d∑
k=1

(Var(X1,k)− Var(X0,k))β
2
0,k.

Due to the independence of the covariates, the problems discussed in Section 3 do not

appear in this case, and the composition effect can be written as the sum of d terms

that each depend on the marginal distribution of a single covariate only. One would thus

expect any reasonable decomposition procedure to report the “direct” contribution of the

kth covariate to the composition effect to be equal to (Var(X1,k) − Var(X0,k))β
2
0,k in this

2Note that since one has to estimate ν(F 0
Y ), ν(F 0

Y ) and ν(F
0|1
Y ) in order to estimate the corresponding

RIF, the linear least-squares approximation step is unnecessary if one is only interested in ∆ν
S and ∆ν

X .
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case. However, this is not true for the RIF decomposition. Since here RIF(Y0; ν, F 0
Y ) =

(Y0−E(Y0))2 = (η0 +
∑d

k=1(X0,k−E(X0,k))β0,k)
2, it follows from the symmetry properties

of the covariate distribution that γVar0,0 = Var(Y0) and γVar0,k = 0 for k ≥ 1, and thus we

find that

∆̃Var
X,p = 0 and ∆̃Var

X,e =
d∑

k=1

(Var(X1,k)− Var(X0,k))β
2
0,k = ∆Var

X .

Applying the RIF decomposition would thus suggests that there is no “direct” contribution

from any of the covariates to the composition effect. The entire composition effect would

be attributed to the “specification error” ∆̃Var
X,e, irrespective of the actual between-group

differences in the covariates’ distributions.

While the last example is certainly a polar case, it should nevertheless be a reason

for concern. Since the elements of the RIF decomposition can deviate by potentially

large amounts from intuitive population quantities in simple linear models, one would

certainly not expect them to have systematically better properties in more complex set-

tings. To understand the underlying cause and magnitude of the problem, note that the

equality (5.1) does not imply a linear relationship between the feature of interest and the

means of the covariates that is invariant to changes in the distribution of X1 and X0. The

identity is not a consequence of a special property of the RIF, but follows mechanically

from the fact that the residuals from any least-squares approximation have mean zero by

construction. What follows however from the results in Firpo et al. (2009) is that the

relationship

ν(F i
Y ) =

d∑
k=1

E(X0,k)θ
ν
0,k,

with θν0,k = E(∂h0(X0; ν, F 0
Y )/∂X0,k) the average derivative of the conditional expectation

of the RIF, is indeed locally valid for infinitesimal location shifts in the distribution of

the covariates. One can thus show that the order of magnitude of the approximation

error incurred by the RIF decomposition tends to be smaller if for every k ∈ {1, . . . , d}

(i) the coefficient γν0,k is a good approximation of the average derivatives θν0,k, (ii) the

relationship between the distributions of X1,k and X0,k can be well approximated by a

location shift, i.e. F 1
Xk

(x) ≈ F 0
Xk

(x−ēk) with ēk = E(X1,k)−E(X0,k), and (iii) the location

shift parameter ēk is “sufficiently small” in absolute value.
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Under these fairly restrictive conditions, one can also show that the elements of the

detailed RIF decomposition can be interpreted as approximations of our “direct” partial

composition effects ∆M(ek). To see this, recall that these terms were defined as

∆ν
M(ek) = ν

(∫
F 0
Y |X(y, x)dC(F 0

X1
(x1), . . . , F 1

Xk
(xk), . . . , F

0
Xd

(xd))

)
− ν(F 0

Y )

in Section 4. It then follows under appropriate smoothness conditions on the functional

ν, the conditional CDF F 0
Y |X and the copula function C0 that

∆ν
M(ek) ≈ ν

(∫
F 0
Y |X(y, (x1, . . . , xk + ēk, . . . , xd))dF

0
X(x)

)
− ν(F 0

Y )

≈ ēk
∂

∂ēk
ν

(∫
F 0
Y |X(y, (x1, . . . , xk + ēk, . . . , xd))dF

0
X(x)

∣∣∣∣
ē=0

)
= (E(X1,k)− E(X0,k))θ

ν
i,k

≈ (E(X1,k)− E(X0,k))γ
ν
0,k,

where the errors incurred in the first, second, and forth step of the derivation are of the

order O(supx∈R |F 1
Xk

(x)−F 0
Xk

(x− ēk)|), O(‖ēk‖2) and O(‖θν0,k−γν0,k‖), respectively. Here

the first and second step exploit the smoothness conditions, the third step follows from

an application of the chain rule as in Rothe (2010a), and the fourth step is immediate.

As illustrated above, the error terms can be of substantial absolute magnitude even in

simple settings. Since the RIF decomposition at best provides a first-order approximation

to our copula decomposition, and the latter can be computed without error, the method

seems to be only useful in very particular settings with severe computational constraints.

6. Model Specification, Estimation, and Inference

The focus of this paper has so far been on defining a detailed decomposition of the

composition effect in terms of population quantities. Proceeding like this is instructive,

as it clarifies which objects we want to learn about in principle. Of course, in any empirical

application these quantities are unknown, and have to be estimated from the data. In this

section, we illustrate how this can be done using only standard econometric techniques.

We do not formally derive theoretical properties of the resulting estimators, such as

consistency and asymptotic normality, as they follow directly from standard arguments.
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To see how our detailed decomposition (4.3)–(4.4) can be estimated in practice, recall

that for any distributional feature ν the observed difference ∆ν
O, the structure effect ∆ν

S,

the dependence effect ∆ν
D, and the various partial marginal distribution effects ∆ν

M(k)

can all be expressed in terms of objects of the form ν(F
i|j,k
Y ), where

F
i|j,k
Y (y) =

∫
F i
Y |X(y, x)dCj(F k1

X1
(x1), . . . , F kd

Xd
(xd))

as defined in equation (4.2). To obtain estimates of the elements of our decomposition,

we can therefore simply use a plug-in approach and replace the terms ν(F
i|j,k
Y ) at every

occurrence with their sample counterparts ν(F̂
i|j,k
Y ), where

F̂
i|j,k
Y (y) =

∫
F̂ i
Y |X(y, x)dĈj(F̂ k1

X1
(x1), . . . , F̂ kd

Xd
(xd)),

with F̂ i
Y |X , Ĉi and F̂ i

Xm
being suitable estimates of the conditional CDFs F i

Y |X , the copula

functions Ci, and the marginal CDFs F i
Xm

of the m-th component of Xi, for i = 0, 1 and

m = 1, . . . , d, respectively. That is, our estimates are given by

∆̂ν
O = ν(F̂

1|1,1d

Y )− ν(F̂
0|0,0d

Y ), ∆̂ν
S = ν(F̂

1|1,1d

Y )− ν(F̂
0|1,1d

Y ),

∆̂ν
X = ν(F̂

0|1,1d

Y )− ν(F̂
0|0,0d

Y ), ∆̂ν
D = ν(F̂

0|1,1d

Y )− ν(F̂
0|0,1d

Y ), and

∆̂ν
M(k) = ν(F̂

0|0,k
Y )− ν(F̂

0|0,0d

Y ),

for any distributional feature ν.

We generally assume that the data available to the econometrician are two i.i.d. sam-

ples of size Ni from the distribution of (Yi, Xi) for i ∈ {0, 1}. In such a classical cross-

sectional setting, estimates of the just-mentioned unknown functions can in principle be

obtained by a variety of different methods. For the univariate distribution functions F i
Xm

,

the most straightforward estimator is arguably the usual empirical CDF, which is given

by

F̂ i
Xm(xm) =

1

Ni

Ni∑
l=1

I{Xi,m,l ≤ xm}.

For the higher-dimensional objects, i.e. the conditional CDFs and the copula functions,

several nonparametric, semiparametric and fully parametric procedures have been pro-

posed in the literature. Since most studies that make use of decomposition methods use

data sets containing a large number of individual socio-demographic characteristics, the
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substantial sample size requirements of nonparametric methods in such high-dimensional

settings make their application hardly attractive. It therefore seems advisable to consider

flexible parametric specifications, which have been applied successfully in the empirical

literature.

One popular approach to obtain estimates of a conditional CDF, used e.g. in Machado

and Mata (2005), is to model the conditional quantile function by a linear quantile re-

gression model (Koenker and Bassett, 1978; Koenker, 2005), and then invert the corre-

sponding estimated quantile function. In this case, we have

F̂ i
Y |X(y, x) =

∫ 1

0

I{xθ̂i(τ) ≤ y}dτ,

where θ̂i(τ) are the estimated coefficients from a τ -quantile regression of Yi on Xi. An-

other method that has recently attracted considerable interest is distributional regression

(Foresi and Peracchi, 1995). When using this technique, the conditional CDF is modeled

by a series of binary response models with varying “cutoffs”. The resulting estimate of

the conditional CDF is

F̂ i
Y |X(y, x) = Φ(xθ̂i(y)),

where Φ(·) is the standard normal CDF (or some other strictly increasing link function),

and θ̂i(y) is the maximum likelihood estimate of a Probit regression of the indicator

variable I{Yi ≤ y} on the covariates Xi. Chernozhukov et al. (2009) derive asymptotic

properties for these and several other parametric conditional CDF estimators, establish-

ing classical properties like
√
Ni-consistency and asymptotic normality under standard

regularity conditions. Rothe and Wied (2012) consider specification testing in these types

of models.

To obtain estimates of the copula functions Ci for i ∈ {0, 1}, it is also advisable to

use one of the numerous flexible parametric specifications that have been proposed in

the literature. Different copula models are able to generate different types of dependence

patters, and thus the analyst should chose a specification that is considered flexible

enough to encompass the relationship between the covariates in the respective group.

The extensive reviews of the properties of various copula models in e.g. Nelsen (2006) or

Trivedi and Zimmer (2007) are a useful guidance for this choice. In empirical applications

with many covariates that are not expected to have the same pairwise dependence patters,
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a suitable solution seems to be to use the Gaussian copula

CΣ(u) = ΦΣ(Φ−1(u1), . . . ,Φ−1(ud)),

with ΦΣ the CDF of a d-variate standard normal distribution with correlation matrix Σ

and Φ the standard normal CDF. When the sample size is small relative to the number

of the covariates, so that estimating the d(d− 1)/2 correlation parameters is not feasible,

more parsimonious specifications with stronger shape restrictions could be considered as

well. Again, we refer to Nelsen (2006) or Trivedi and Zimmer (2007) for an extensive

review. For any common copula model, the respective dependence parameters can be

estimated by Maximum Likelihood or Minimum Distance methods implemented in the

usual econometric software packages, and estimates can be shown to be
√
Ni-consistent

and asymptotically normal under standard regularity conditions (e.g. Genest, Ghoudi,

and Rivest, 1995).

The estimated elements of our detailed decomposition (4.3)–(4.4) can be shown to be

consistent and asymptotically normal under standard regularity conditions, using essen-

tially the same arguments employed by Chernozhukov et al. (2009) for estimates of the

structure and composition effect. Roughly speaking, the reasoning is as follows. First,

one shows that the estimates of the marginal CDFs, the conditional CDFs, and the cop-

ula functions are not only pointwise asymptotically normal, but converge to a Gaussian

process when taken as a function. Second, it then follows from the continuous mapping

theorem that the estimated counterfactual CDFs F
i|j,k
Y also converge to a Gaussian pro-

cess. Finally, asymptotic normality of ν(F
i|j,k
Y ) follows the the functional delta method

under a common smoothness condition on the functional ν. Since the asymptotic vari-

ance of the estimates typically has a complicated form, standard errors can be obtained

via the usual nonparametric bootstrap. The validity of such an approach follows again

from arguments in Chernozhukov et al. (2009).

7. An Empirical Application

In this section, we provide a small-scale empirical application that illustrates how our

copula decomposition technique can be used in practice. Using data from the Current

Population Survey (CPS), we decompose differences in various features of the 1985 and
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Table 1: Descriptive Statistics

1983–1985 2003–2005

Mean SD Q10 Q50 Q90 Mean SD Q10 Q50 Q90

Log Hourly Wage 1.78 0.52 1.05 1.82 2.46 1.85 0.58 1.11 1.83 2.65

Part-time status 0.09 – – – – 0.09 – – – –

Nonwhite 0.11 – – – – 0.13 – – – –

Union coverage 0.27 – – – – 0.15 – – – –

Married 0.67 – – – – 0.62 – – – –

Education 12.87 2.91 10.00 12.00 17.00 13.42 2.79 11.00 13.00 18.00

Experience 17.20 12.31 3.00 14.00 36.00 19.47 11.49 4.00 19.00 35.00

2005 distribution of wages among male workers in the United States. There is now

extensive evidence that during this period wage inequality in the United States has been

rising substantially in the top end of the wage distribution, but has slightly decreased in

the bottom end, leading to what is often called a polarization of the US labor market

(Autor, Katz, and Kearney, 2006; Lemieux, 2008).

We use a data set from Fortin et al. (2011), which was extracted from the 1983–

1985 and 2003–2005 Outgoing Rotation Group (ORG) supplements of the CPS. We also

refer to Lemieux (2006) for details on its construction. Our data contain information

on 232,784 and 170,693 males, respectively, that were employed in the relevant periods.

Workers in the 1983–1985 and 2003–2005 sample play the role of our group 0 and 1. The

outcome variable of interest is the log hourly wage, measured in constant 1985 dollars.

The covariates are years of education, years of potential labor market experience, and

dummies for union coverage, race, marital status, and part-time status. All observations

are weighted by the product of the number of hours worked and their respective CPS

sample weights.

Some descriptive statistics are given in Table 1. Results on wages confirm the general

picture that was found before in the literature. Over the sample period, the 90% quantile

of the wage distribution has been rising substantially, while the 10% quantile and the

median exhibit only a moderate increase or have remained approximately constant, re-

spectively. There is thus a large increase in wage inequality as measured by the difference

between the 90% and the 10% quantile, but this is the effect of an increase in inequality
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in the right tail of the distribution. Regarding the covariates, the most striking feature is

certainly the decline in union coverage from 27% in 1983–1985 to only 15% in 2003–2005.

Average (potential) labor market experience also increased substantially by more than

two years, and the average years of education also raised by a considerable amount of

about half a year. Changes in other explanatory variables are less pronounced.

To estimate the various elements of our detailed decomposition, we proceed as de-

scribed in Section 6. We model the copula functions Ci by a Gaussian copula, and the

conditional CDFs F i
Y |X by a distributional regression model with a Gaussian link func-

tion. Compared to an approach based on quantile regression, distributional regression

has the advantage that it is not affected by heaping in the distribution of wages, and

seems to be better suited to capture the somewhat irregular behavior of the conditional

wage distribution around the level of the minimum wage (Chernozhukov et al., 2009;

Rothe and Wied, 2012). In addition to the covariates mentioned above, we use quadratic

terms in education and experience and a full set of interaction terms for estimating the

conditional CDFs. Standard errors are calculated via the nonparametric bootstrap, using

B = 200 replications. Due to the large sample sizes, sampling variation in our estimates

is mostly negligible.

Table 2 and Table 3 present the results of our decomposition for various measures

of location and spread, respectively. Row by row, we report estimates of the observed

change ∆ν
O, the usual structure and composition effect ∆ν

S and ∆ν
X , our dependence and

marginal distribution effects ∆ν
D and ∆ν

M , the direct contributions ∆ν
M(ej) for each of the

six covariates, and the sum
∑

2≤|k|≤6 ∆ν
M(k) of all “higher-order” interaction terms ∆ν

M(k)

with |k| > 1. All estimates and corresponding standard errors have been multiplied by

100 to improve readability. Estimates of the observed change ∆ν
O are very close to the

respective descriptive statistics that can be calculated directly from the data, which

indicates that our parametric model provides a reasonable fit. Comparing the observed

change to the structure and composition effect, we can see that changes in labor force

composition alone can explain a substantial part of changes in the mean wage, but they

do not offer an explanation for the differential change in the quantiles. For example,

when considering the median as the distributional feature of interest, composition effects

alone would predict a large upward shift of about the same magnitude as the observed
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Table 2: Estimated Decomposition of Differences in Distribution of Log Hourly Wages of Work-

ers in 2003–2005 and 1983–1985 using CPS Data.

Mean Q90 Q50 Q10

Observed Difference ∆ν
O 6.227 (0.034) 18.667 (0.040) -0.047 (0.046) 4.747 (0.029)

Structure Effect ∆ν
S 0.880 (0.036) 8.260 (0.042) -6.345 (0.052) 2.927 (0.041)

Composition Effect ∆ν
X 5.348 (0.031) 10.407 (0.032) 6.297 (0.046) 1.820 (0.040)

Dependence Effect ∆ν
D -0.335 (0.032) 1.051 (0.034) -0.639 (0.046) -1.411 (0.043)

Marginal Distr. Effect ∆ν
M 5.682 (0.037) 9.356 (0.035) 6.936 (0.049) 3.231 (0.043)

“Direct” Marginal Distribution Effect (∆ν
M (ej)) attributable to between-group differences in . . .

Part-time status -0.041 (0.036) 0.029 (0.038) -0.048 (0.048) -0.120 (0.042)

Nonwhite -0.230 (0.030) -0.181 (0.038) -0.271 (0.038) -0.238 (0.038)

Union coverage -2.542 (0.031) 0.796 (0.039) -4.006 (0.039) -2.964 (0.048)

Married -0.531 (0.027) -0.272 (0.032) -0.644 (0.038) -0.577 (0.036)

Education 4.373 (0.030) 3.956 (0.030) 5.749 (0.038) 4.386 (0.053)

Experience 4.297 (0.033) 4.325 (0.035) 5.768 (0.042) 3.755 (0.050)

Interaction (
∑

k≥2 ∆ν
M (k)) 0.357 (0.129) 0.703 (0.140) 0.388 (0.167) -1.012 (0.162)

Standard errors in parenthesis. All numbers have been multiplied by 100 to improve readability.

change in means. However, this is being offset by a negative structure effect of similar

magnitude, and thus the observed change in medians is approximately zero.

When decomposing the composition effect, one can see that changes in the dependence

pattern among the covariates play a substantial role for the measures of spread we consider

in Table 3. Depending on the distributional feature of interest, they can explain about

20%–40% of the composition effect alone. For the measures of location in Table 2, the

effect is much less pronounced. With the exception of the 90% quantile, the dependence

effect is negative for all measures of location, while the composition effect is positive in

all cases. When considering estimates of the “direct” marginal distribution effects, we

find that changes in the distribution of education and experience have strong positive

impact on all quantiles, with slightly larger magnitudes for the median relative to the

two extreme quantiles. As a consequence, these variables contribute only moderately

to the increase in inequality. Changes in union coverage rates are estimated to have a

strong negative impact on the median wage, a somewhat less negative one on the 10%

quantile, and a small positive effect on the 90% quantile. This covariate is thus the
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Table 3: Estimated Decomposition of Differences in Distribution of Log Hourly Wages of Work-

ers in 2003–2005 and 1983–1985 using CPS Data.

Variance Q90-10 Q90-50 Q50-10

Observed Difference ∆ν
O 7.767 (0.017) 13.920 (0.043) 18.714 (0.034) -4.795 (0.035)

Structure Effect ∆ν
S 4.891 (0.018) 5.333 (0.049) 14.605 (0.040) -9.272 (0.033)

Composition Effect ∆ν
X 2.877 (0.014) 8.586 (0.046) 4.109 (0.035) 4.477 (0.033)

Dependence Effect ∆ν
D 0.822 (0.014) 2.462 (0.046) 1.689 (0.032) 0.772 (0.035)

Marginal Distr. Effect ∆ν
M 2.054 (0.014) 6.125 (0.043) 2.420 (0.031) 3.705 (0.033)

“Direct” Marginal Distribution Effect (∆ν
M (ej)) attributable to between-group differences in. . .

Part-time status 0.057 (0.015) 0.149 (0.048) 0.078 (0.030) 0.072 (0.040)

Nonwhite 0.024 (0.017) 0.057 (0.049) 0.090 (0.034) -0.033 (0.029)

Union coverage 1.264 (0.017) 3.759 (0.057) 4.802 (0.035) -1.043 (0.039)

Married 0.173 (0.017) 0.304 (0.049) 0.372 (0.037) -0.068 (0.032)

Education -0.058 (0.015) -0.431 (0.055) -1.793 (0.029) 1.362 (0.035)

Experience 0.189 (0.018) 0.570 (0.057) -1.443 (0.035) 2.014 (0.036)

Interaction (
∑

k≥2 ∆ν
M (k)) 0.404 (0.068) 1.715 (0.198) 0.315 (0.126) 1.400 (0.134)

Standard errors in parenthesis. All numbers have been multiplied by 100 to improve readability.

single most important one for explaining changes in overall and top-end inequality, as

it accounts for about 25% of the observed change in each the 90%-10% and 90%-50%

quantile differences alone. Between-group differences in other explanatory variables are

found to be of relatively minor importance, as are the interaction effects between the

covariates marginal distributions.

8. Concluding Remarks

In this paper, we have proposed a detailed decomposition of the composition effect. The

method does not rely on a particular structure of the data generating process, and can be

used to decompose differences in essentially all features of the distribution of outcomes.

Our decomposition contains three types of components: i) the “direct contribution” of

each covariate due to between-group differences in the respective marginal distributions,

ii) several “two way” and “higher order” interaction effects due to the interplay between

two or more covariates’ marginal distributions, and iii) a “dependence effect” accounting

for different dependence patterns among the covariates. We argue that all three types
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are necessary for understanding differences in general distributional features even for

simple data generating processes, and illustrate their empirical relevance through an

application to US wage data. Our decomposition can be implemented using only standard

econometric techniques for estimating conditional distribution and copula functions, and

valid inference can be carried out via the bootstrap.
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