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1 Introduction

A vast class of models of choice assume deterministic behaviour. This holds both for the

classical ‘rational’model (e.g. Samuelson [22], Richter [17]) and for more recent models

of boundedly rational choice. But empirical economists have always had to confront the

noisiness of the data. This raises the need to graft an appropriate error structure on the

model, and therefore leads to the construction of a probabilistic choice model. Pioneering

theoretical contributions in this area have been Luce [7] and Block and Marshak’s [2] and

Marshak’s [15] Random Utility Maximization (RUM) model. In this paper we present a

simple model of probabilistic choice from discrete choice sets (including RUM as a special

case), with two main features:

1) The stochastic components of the model is given a precise interpretation.

2) Some parameters governing those components are endogenised via an equilibrium

process.

The RUM model culminated in its most influential version, McFadden’s ([10], [11])

conditional logit (or multinomial logit) discrete choice model, in which the probability

p(ai, A) that alternative ai is selected from a choice set A takes the form

p(ai, A) = exp (u (ai)) /
∑
aj∈A

exp (u (aj)) ,

where u (aj) expresses the ‘systematic utility’of alternative aj.1 This model is a case

within a general class in which alternative ai generates a ‘random utility stimulus’u (ai)+

εi, where εi is an error term, and is chosen over alternative aj if u (ai)−u (aj) > εj−εi. In

this perspective, the crucial step consists of defining an appropriate probabilistic structure

on the errors. The logit model follows from the εi taking on i.i.d. Gumbel (or extreme

value type I) distributions2. A probit model would follow instead by assuming normal

distributions. In general, the basic constraint is that larger errors are made with smaller

1In applications, it is usually assumed further that utility is a linear function of the alternative at-

tributes.
2Gumbel distribution function (with parameters µ and σ): F (x) = exp

(
−e x−µσ

)
.
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probabilities, from which it follows that better alternatives are chosen with higher prob-

ability. Closely related ideas have also found their way in modelling strategic behaviour,

for the first time with McKelvey and Palfrey’s ([13], [14]) notion of Quantal Response

Equilibrium (QRE)3.

This approach has proved to be extremely useful for experimental and empirical eco-

nomics. But it seems fair to say that - beside the basic constraint of error monotonicity

in utility - the error structure is not given a clear psychological foundation. Rather, it is

chosen for analytical convenience from a standard set of statistical distributions, and then

is added on to a determinsitic model. In other words, economic (or psychological) theory

stops at the level of utility maximisation. ‘Bounded rationality’follows from exogeneous

random errors. This makes the error structure rather diffi cult to assess and interpret.4

We propose here a different route: we formulate directly a boundedly rational model

of choice wihich includes some stochastic components. The main advantage of doing so

is that the error structure becomes fully transparent, being part of the core model itself.

The stochastic components of this model are extremely simple and, especially, can be

given a precise psychological interpretation.

The model focusses on the notion of a consideration set. The agent does not rationally

evaluate all objectively available alternatives, but only a (possibly strict) subset of them,

the consideration set. Once a consideration set has been formed, a choice is made by

means of a preference relation, which in this paper we assume to be standard (complete

and transitive). This two-step conceptualisation of the act of choice is rooted in psychology

3See Goeree, Holt and Palfrey [4] for an overview.
4In his Nobel lecture, McFadden [12] recounts of how he first developed the model in response to

a specific practical problem, and then sought a theoretical foundation, which he found in the Gumbel

error specification within RUM theory. We recall here that the Gumbel distribution function can be seen

as the limit distribution function of (a suitable transformation of) the maximum value statistics for a

sample of N i.i.d. random variables, as N tends to infinity. The statistics needs to be appropriately

transformed when taking the limit since, obviously, letting G.be the common distribution function of the

random variables and GM the distribution function of max (Xi)i=1,...,N , we have limN→∞
(
GM (x)

)
=

limN→∞ (G (x))
N
= 0 for any x unless G (x) = 1. Even this brief account of the error structure behind

the conditional logit model makes it transparent how opaque its economic or psychological interpretation

is.
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and marketing science, but it has begun to diffuse in economics. Several recent models

of boundedly rational choice adopt it in one way or the other (Manzini and Mariotti [8],

Eliaz and Spiegler [3], Masatlioglu, Nakajima and Ozbay [9])5.

In our model the formation of the consideration set is stochastic. It is in fact the only

stochastic component of the model. For an alternative, the probability of membership

of the consideration set depends on two types of parameters (probabilities). The first

parameter ρ (‘rationality’), expresses the general propensity of the agent to consider all

alternatives. The second parameter σi (‘salience’) is alternative specific. We present two

natural models (called AND and OR) that depend on the specific way the parameters

combine to determine the probability of membership of the consideration set.

We show that for a special case (that of equal salience across alternatives) both models

can be expressed in a logit format. However, we use only ordinal preference information.

Contrast this with the logit model which uses, as explained above, equations of the type

u (ai)− u (aj) > εj − εi. These equations are only invariant to common cardinal (affi ne)

transformations of the u and the errors, andf therefore contain cardinal information.

One advantage of expressing rationality in parametric form is that makes it easy to

study how the probability of a given alternative being chosen varies with rationality.

We find that some of the ‘intuitive’properties of error do not hold. One might expect,

for example, that as rationality increases the agent will tend to choose each nonoptimal

alternative with lower and lower probability: but we show that this is not necessarily

the case. Both the AND and the OR models predict either monotonic or single peaked

relationships between ρ and the probability of choice, for all alternatives. The ANDmodel

predicts, for all alternatives and all parameters, an interval (and possibly the full interval)

in which the probability of choice increases with rationality. The OR model predicts an

increasing interval for some alternatives and some parameter configurations, but forbids

increasingness on the whole range except for the best alternative. Unexpected effects

may also occur (in the OR model) in respect of the odds (probability ratio) of choosing

a better alternative over a worse alternative, which may decrease with ρ. And in both

5These three models are examples of the modern ‘sophisticated models of choice behavior which are

deterministic’we alluded to in the opening.
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models the odds fail Luce’s [7] Independence of Irrelevant Alternatives test (which implies,

together with other assumptions, the logit model)6. Salience enters these relationships in

a non-obvious way.

In the second part of the paper we endogenise salience. We consider situations in

which alternatives can influence their own salience. There are many examples that fit this

case. In electoral contests, politicians make statements to get noticed by the voters, not

only to persuade them. Voters may not consider certain parties for cultural reasons or

out of habit7 (see Wilson [24] for a consideration set approach to political competition).

In animal mate competition the alternatives are male animals, the chooser is a female,

and salience is controlled via natural selection (e.g. endowing peacocks with more or less

showy tails), or by human activities (hair-styling, body-building, wealth-accumulation).

In an I.O. context the alternatives are products, and salience is controlled via marketing

strategies (Eliaz and Spiegler’s [3] work mentioned before is the first to study in detail

this type of competitive situation).8

Our main result is that, when alternatives can fully control their own salience (‘ab-

solute salience’), in equilibrium - under very general assumptions - both models have a

‘the showiest is the best’feature: the equilibrium ordering of salience fully reflects the

preference ordering over alternatives.

However, when salience is relative (so that alternatives can control salience only par-

tially), there exists fully perverse equilibria in both models. In such equilibria the worst

alternative has the highest probability of being chosen.

All these results have a bearing for the inferences we draw on true preferences us-

ing revealed preferences reconstructed from choice data. We briefly comment on such

6In its core version. The nested logit, for example, allow for violations of IIA. A probit model also

allows for such violations. See e.g. Agresti [1] for an overview of statistical methods for categorical data.
7In Wilson [24], for example, it is reported that African Americans tend to ignore Republican candi-

dates in spite of the overlap betwen their policy preferences and the stance of the Republicans, and even

if they are dissatisfied with the Democratic candidate.
8Examples in our discipline of factors affecting salience might be the choice of research topic, or the

title of a paper (an author wants to be read, reader has only a limited attention, catchy titles confer

salience - we may imagine that ‘choosing’ here means ‘remembering’: the reader only puts effort in

remembering the best quality paper among those he has considered).
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implications in the concluding section.

2 Salience and rationality

2.1 The Model

There is a countable (possibly finite) choice set of alternatives A = {a1, ..., an, ...}. The

agent has a strict preference ordering � on A. We will often refer to the position of an

alternative in the ranking as its quality, with a lower i indicating a higher quality, so that

ai � aj iff i < j.

While a standard rational consumer explores the entire choice set A and picks the

maximal element according to �, here � is applied only to a consideration set C (A) ⊆ A

of alternatives (the set of alternatives he actively considers). We allow for the consider-

ation set to be empty, in which case the chooser picks a default option a∗ (e.g. walking

away from the shop, remaining without a partner, abstaining from voting).

Membership of C (A) for the alternatives in A is probabilistic. The probability of

membership combines two components (probabilities): an idiosyncratic component σi ∈

[0, 1] which is specific to the alternative and an alternative-independent component ρ ∈

(0, 1). We call the probability σi the salience of alternative ai, and a list (σ1, ..., σn, ...) a

salience profile. Note that while we use the term salience throughout for simplicity and

because it tallies with leading examples, there are situations in which σi is not associated

with awareness of the alternative by the agent, but rather with the resistance of the agent

to consider the alternative for choice (e.g. for ideological reasons).

The probability ρ measures the general propensity of the agent to consider all alter-

natives. All else being equal, an agent with a higher ρ is more likely, coeteris paribus,

to apply his preference to the entire choice set A and ρ can thus be interpreted as the

agent’s degree of rationality.

We consider two elementary probability models, both of which determine C (A) in two

stages, as depicted in figure 1. The sets at the terminal nodes indicate the destination of

the alternative.

ORmodel: any alternative ai is drawn into the consideration set with probability σi, and
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OR model AND model

C(A) A\C(A)

A\C(A) A\C(A)C(A)C(A)

_ 1­_ _ 1­_

a 1­a a 1­a

Figure 1: Structure of the two models

then all alternatives which haven’t been drawn in this way are considered with probability

ρ. So

prob (ai ∈ C (A)) = σi + (1− σi) ρ

AND model: any alternative ai is provisionally drawn into the consideration set with

probability σi, and it remains there with probability ρ. So

prob (ai ∈ C (A)) = ρσi

In both models, once the probabilistic consideration phase has been completed and a

set C (A) has been formed, the agent chooses (if C (A) is nonempty) the alternative ai

with the properties that

ai ∈ C (A) and ai � aj for all aj ∈ C (A) \ {ai}

If C (A) is empty he chooses the default option a∗.9

Finally, observe that the models are invariant to permuting the order in which salience

and rationality are applied.

2.2 The Logit Retrouvé?

There is a formal relation between these models and the RUM models. We begin by

discussing a benchmark situation, in which both models collapse to a logit form. Let
9The default option could be replaced by a more complex procedure to arrive at a choice, notably

uniform randomisation over A.
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pAND (ai, A) and pOR (ai, A) denote the probabilities of choice conditional on the agent

picking an element in A in the AND and in the OR model, respectively.

Proposition 1 There exists a utility function u : A→ Re representing � on A, a salience

profile, and coeffi cients α, α′, β, β′ such that pAND (ai, A) and pOR (ai, A) can be written

in logit form, that is

pOR (ai, A) = exp (α + βu (ai)) /
∑
j

exp (α + βu (aj))

pAND (ai, A) = exp (α′ + β′u (ai)) /
∑
j

exp (α′ + β′u (aj)) ,

To see this, let’s write down the choice probabilities explicitly. In the OR model, the

probability pOR (ai) that ai ∈ A is chosen is10:
pOR (ai) = σi

∏
j<i

((1− σj) (1− ρ))︸ ︷︷ ︸+ (1− σi) ρ
∏
j<i

((1− σj) (1− ρ))︸ ︷︷ ︸
probability that ai enters C in the

first stage and the alternatives better

than ai do not enter C

probability that ai enters C in the

second stage and the alternatives better

than ai do not enter C
that is

pOR (ai) = (σi + (1− σi) ρ) (1− ρ)i−1
∏
j<i

(1− σj)

In the AND model, the probability pAND (ai) that ai ∈ A is chosen is
pAND (ai) = σi

∏
j<i

(1− ρσj)×︸ ︷︷ ︸ ρ
∏
j<i

(1− ρσj)︸ ︷︷ ︸
probability that ai enters C (A) in the

first stage and the alternatives better

than ai do not enter C (A)

probability that ai remains in C (A) in

the second stage and the alternatives

better than ai do not enter C (A)

that is,

pAND (ai) = ρσi
∏
j<i

(1− ρσj)

10Use the convention that
∏0
j=1(.) = 1.
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Consider now the case of a common level of salience σ ∈ (0, 1), with σ = σi for all i. Then

the probability distributions are log-linear in quality

log pOR (ai) = α− β (i− 1)

log pAND (ai) = α′ − β′ (i− 1) ,

with α = log (σ + ρ− ρσ), β = − log (1− ρ) (1− σ), α′ = log ρσ, and β′ = − log (1− ρσ).

It follows that, defining an (ordinal) utility function u representing� on A by u (ai) = 1−i

we can write the probabilities of choice conditional on the agent picking an element in A

as in the statement of Proposition 1.

This observation provides a simple new psychological foundation for an often used

error specification. The OR and AND models can be seen in this perspective a class of

‘distortions’of the conditional logit model, where the distortions arise from differences in

salience between the alternatives. For example in the OR model

log pOR (ai) = log (σi + (1− σi) ρ) + (i− 1) log (1− ρ) +
∑
j<i

log (1− σj)

and i may enter non-linearly in the expression through the term
∑

j<i log (1− σj).

It is important, however, to bear in mind that the logit structure only holds for (affi ne

transformations of) the particular utility specification assumed. As our models use ordinal

preference information as primitive, the probability of choice can only be invariant to

that type of information. Some allowed utility transformations will destroy the loglinear

relationships. In other words, at a fundamental level the log-linearity only holds with

respect to the quality ranking index.

2.3 Limiting behavior

The limiting behavior of the two models underscores notable differences. In the limit as ρ

tends to 1, for any salience profile, the OR model clearly converges to the standard model

of preference maximisation: the best alternative is considered with probability one, and

therefore it is chosen with probability one. On the contrary, in the AND model there

may still be a positive probability (depending on the salience profile) that the better

alternatives are not considered, and therefore are not chosen.
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Curiously, the limiting version of the AND model for high rationality coincides with

the limiting version of the OR model for low rationality,

lim
ρ→1

pAND (a) = lim
ρ→0

pOR (a) = σi
∏
j<i

(1− σj)

A moment’s reflection explains this with the fact that taking these opposit limits is

the way to make consideration behavior be determined solely by salience in each of two

models. Observe that the quality difference effect persists in the limit.

The limiting conditional probabilities of choice as ρ vanishes are of interest:

lim
ρ→0

pOR (ai, A) = lim
ρ→0

(σi + (1− σi) ρ) (1− ρ)i−1
∏

j<i (1− σj)∑
k

(σk + (1− σk) ρ) (1− ρ)k−1
∏

j<k (1− σj)

=
σi

1 + σk
∑
k<i

σk
∏

j<k
1

(1−σj) +
∑
k>i

σk
∏

j<k (1− σj)

and

lim
ρ→0

pAND (ai, A) = lim
ρ→0

ρσi
∏

j<i (1− ρσj)∑
k

ρσk
∏

j<k (1− ρσj)

=
σi∑
k

σk

These calculations highlight a further difference from the logit (or quantal) models,

which collapse to random choice as when the ‘rationality’parameter β of the logit tends to

0. In general the limiting behaviour for ρ that tends to 0 is not purely random choice in our

models. In both the OR and the ANDmodel the salience difference between alternatives is

preserved in the limit. In addition the quality difference between alternatives is preserved

in the limit in the OR model (though not in the AND model).

The ANDmodel obviously does collapse to random choice in the limit of low rationality

in the common salience case (assume here the number of alternatives to be a finite number

10



n).11 The OR model collapses instead to random choice in the limit of low rationality

provided that common salience also vanishes:

σi = σ ∈ (0, 1) for all i⇒

lim
ρ→0

lim
σ→0

pOR (ai, A) =
1

n

Note that the order matters in the above repeated limit.

2.4 Basic Comparative Statics Properties

Some comparative statics properties are immediate and, in both the OR and AND model,

as expected:

• (salience responsiveness) the probability of an alternative being chosen increases

in the alternative’s own salience and decreases in the salience of the other alterna-

tives;

• (quality responsiveness) an increase in own quality12 increases the probability of

the alternative being chosen;

• (monotonicity) if the salience ranking is (weakly) the same as the inverse quality

ranking (i.e. i < j ⇒ σi ≥ σj), the probability that a better alternative is chosen is

higher than the probability that a worse alternative is chosen.13 However, the dis-

tribution of salience may scramble this association between quality and probability

of being chosen.

11Though not the OR model: in the common salience case we have

lim
ρ→0

pOR (ai, A)

=
σ

2− σ
(
1−

∑
k<i

1
(1−σ)i−k

)
− (1− σ)n−i

12More precisely, a permutation of the objects in the preference order which improves the ranking of

the object.
13So in particular this holds for the case of equal salience σi = σ for some common σ ∈ [0, 1].
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Because pOR (ai) and pAND (ai) are ith degree polynomials in ρ, the effect of an increase

in rationality is more subtle. In this respect the status of the best alternative a1 is different

from that of all the other alternatives. For a1 an increase in rationality is always good

news in both models, with

∂pAND (a1)

∂ρ
= (1− σ1) > 0

∂pOR (a1)

∂ρ
= σ1 > 0

(observe however that the two models have opposite implications concerning the effect of

salience on the impact of rationality).

A further observation stems from looking at the distribution functions, over quality

levels, indicating the probability of choosing an alternative of at least a given level i of

quality:

FOR (i) = 1− (1− ρ)i
∏
j≤i

(1− σj)

FAND (i) = 1−
∏
j≤i

(1− ρσj)

from which it is evident that, in both models:

• (cumulative rationality responsiveness) For any quality level i, the probabil-

ity of choosing an alternative of quality i or better is increasing in the degree of

rationality.

But for individual alternatives different from the best, the probability of being chosen

as a function of rationality depends in a non-obvious way on the parameters of the model.

3 Who gains from rationality?

3.1 OR model

In this section we discuss how the probability of choice for an alternative can vary non-

monotonically (but with at most one peak) in the OR model as rationality increases.

Compute

12



∂pOR (ai)

∂ρ
=

[
(1− σi) (1− ρ)i−1

∏
j<i

(1− σj)
]

+[
(σi + (1− σi) ρ) (i− 1) (1− ρ)i−2

∏
j<i

(1− σj)
]

= (1− ρ)i−2 (1− iσi − i (1− σi) ρ)
∏
j<i

(1− σj)

which is ambiguous in sign. The decomposition highlights the source of ambiguity. On

the one hand, an increase in ρ increases the probability that ai will be considered by

the decision maker in the event, with probability (1− σi), that it has not entered the

consideration set because of its salience; on the other hand, it also increases the probability

that better alternatives are considered.

Defining
1− iσi

(1− σi) i
≡ ρ

we have
∂pOR (ai)

∂ρ
> 0⇔ ρ < ρ

The threshold ρ ranges in (−∞, 1] and attains its maximum setting i = 1. Therefore
∂pOR(ai)

∂ρ
is single peaked or monotonic on (0, 1) and pOR (ai) attains a maximum, as a

function of ρ ∈ (0, 1), at ρ whenever ρ ∈ (0, 1). For pOR (ai) to peak at positive levels

of ρ, it must be that i < 1
σi
for otherwise ρ ≤ 0. Quality and salience are substitutes to

maintain a given ρ.

The set of alternatives can thus be partitioned into in three types (according to when

an increase in rationality is good news for the alternative), which we record as:

Proposition 2 pOR (ai) has at most one peak as a function of ρ ∈ (0, 1). It is always

increasing for i = 1. For any i > 1, pOR (ai) is strictly increasing on an initial range iff

iσi < 1, and for ρ suffi ciently high, pOR (ai) is strictly decreasing.

To summarise in words, for certain parameter values, the degree of rationality which

maximises the probability that a given alternative (different from the top one but of

suffi cient good quality) is chosen, is an intermediate one. An increase in rationality is

good news only for:

13



- the top alternative, always;

- alternatives displaying a combination of good quality and low salience, at suffi ciently

low rationality levels.

An agent with higher rationality may be less attracted by a good alternative (but not

the best) if it has high salience.

Note that only own salience, and not the salience of the other alternatives, affects the

value of ρ and thus the sign of the derivative. The effect of own salience on ρ (namely i−i2)

is negative for i > 1 and zero for i = 1. A lower quality (increase in i) reduces the threshold

ρ. The quality effect and the salience effect, as well as examples of choice probabilities

peaking at intermediate degrees of rationality fo second (or worse) rate alternatives, are

visualised in figure 2. Here, with respect to a baseline case (black line, i = 2, σi = 0.1)

quality is decreased (to i = 6) in the pOR (ai) represented by the gray solid line while

salience is increased (to σi = 0.3) in the pOR (ai) represented by the grey dashed line.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.1

0.2

0.3

0.4

rationality

choice probability

Figure 2: Comparative statics in the OR model: increasing σi shifts pOR (ai) upwards and

to the left; increasing i shifts pOR (ai) downwards and to the left.
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3.2 AND model

The response of the probability of choice in the AND model as rationality increases is

qualitatively different from that of the OR model, as we now demonstrate.

In order to highlight the role of ρ it is instructive to rewrite the model with the

following notation. Let S (m, k) denote the ordered set of combinations of k elements

from the set {σ1, ..., σm}, where |S (m, k)| =
(
m
k

)
, with all of the elements in S (m, k)

listed in ascending order lexicographically. Finally, let sm,k =
{

1, 2, ...,
(
m
k

)}
denote the

corresponding index set and let S (m, k) (i) denote the i− th element of S (m, k).

To see why this notation is useful, let for example i = 4 and compute the probability

pAND (a4) that alternative a2 is selected. This is given by

pAND (a4) = σ4ρ ((1− σ1ρ) (1− σ2ρ) (1− σ3ρ))

= σ4ρ (1− σ1ρ− σ2ρ− σ3ρ+ σ2σ3ρ
2 + σ1σ2ρ

2 + σ1σ3ρ
2 − σ1σ2σ3ρ3)

= σ4ρ (1− ρ (σ1 + σ2 + σ3) + ρ2 (σ1σ2 + σ1σ3 + σ2σ3)− ρ3σ1σ2σ3)

The relevant index sets are s3,1 = {1, 2, 3}, s3,2 = {1, 2, 3} and s3,3 = {1}, so that

e.g. S (3, 2) (1) = σ1σ2, S (3, 2) (2) = σ1σ3, S (3, 2) (3) = σ1σ3, and so on. Then we can

rewrite pAND (a4) as

pAND (a4) = σ4ρ

1 +
3∑
j=1

(−ρ)j
∑
k∈s3,j

S (3, j) (k)


In general, defining

A (i, j) =
∑

k∈si−1,j

S (i− 1, j) (k) ,

the probability that ai is chosen can be rewritten as:

pAND (ai) = σiρ

(
1 +

i−1∑
j=1

(
(−ρ)j A (i, j)

))
We can now check how this varies with rationality:

∂pAND (ai)

∂ρ
= σi

(
1 +

i−1∑
j=1

(
(−ρ)j A (i, j)

))
+ σiρ

(
i−1∑
j=1

j (−1)j
(
ρj−1A (i, j)

))
which yields

∂pAND (ai)

∂ρ
= σi

(
1 +

i−1∑
j=1

(
(j + 1) (−ρ)j A (i, j)

))
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Like in the OR model, the effect of a change in ρ on the probability of choice is

ambiguous, but here there clearly exists ρ̂ ∈ (0, 1) such that ∂pAND(ai)
∂ρ

> 0 if ρ < ρ̂. But

unlike in the OR model, there cannot be any sure-fire loser from an increase in rationality:

every alternative gains from increases in rationality, whatever the salience profile and the

quality of the alternative, at suffi ciently low levels of rationality (by taking away choice

probability from the default alternative a∗).

We now show that the threshold ρ̂, when it exists in (0, 1), is unique.

Proposition 3 For all i, pAND (ai) has at most one peak as a function of ρ ∈ (0, 1), and

it is strictly increasing on an initial range. Moreover pAND (ai) can be strictly increasing

on the entire interval (0, 1) even for i > 1.

All (easy but mostly tedious) missing proofs are relegated to a separate section.

The latter part of the statement highlights a major difference from the OR model: in

the AND model increases in rationality can be good news for inferior alternatives at all

levels of rationality, something which cannot happen in the OR model.

Note finally that, unlike in the OR model, the entire salience profile is relevant to

determine the impact of rationality. We display the salience and quality effect in the

graph below, using the same values as for the OR model:

3.3 Choice Odds and Menu Effects

We have noted that the effect of an increase in rationality on the probability of choice of

any alternative which is not the best is ambiguous. But what about the odds of choosing

a better quality alternative over a lower quality alternative? Even if the probability of

choosing an inferior alternative increases with rationality, one may conjecture that it does

so at a lower speed than superior alternatives, so that the odds of making a better choice

increase. This conjecture is clearly true in the AND model. Defining, for i < j,

oddsAND (i, j) ≡ pAND (ai)

pAND (aj)
=

σi

σj
∏j−1

k=i (1− ρσk)

we have immediately
∂oddsAND (i, j)

∂ρ
> 0
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Figure 3: Comparative statics in the AND model: increasing σi shifts pOR (ai) upwards;

increasing i shifts pOR (ai) downwards. With these parameter values ρ is always increasing

over the (0, 1) interval.

But the conjecture is false in the OR model, at low levels of rationality and low levels

of salience of the inferior alternative, irrespective of the quality difference between the

two alternatives.

Define, with i < j,

oddsOR (i, j) ≡ pOR (ai)

pOR (aj)
=

(σi + (1− σi) ρ)

(σj + (1− σj) ρ) (1− ρ)j−i
∏j−1

k=i (1− σk)
Then we have

Proposition 4 For all i, j with i < j, there exists ρ̄ ∈ (0, 1) and σ̄j ∈ (0, 1) such that,

for ρ < ρ̄ and σj < σ̄j,
∂oddsOR(i,j)

∂ρ
< 0.

Observe that both expressions for the odds violate Luce’s [7] classical IIA axiom, which

states that the choice probability ratio for two alternatives ai and aj is independent of the

other alternatives in the choice set A. In our models14, this holds true only for changes

in A which remove or delete alternatives each of which is either better or worse than

both ai and aj. Inserting, for example, an alternative al with ai � al � aj in the choice

14Imagining now that they apply to a collection of subsets of a universal set of objects X.
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set would change the terms (1− ρ)j−i
∏j−1

k=i (1− σk) and
∏j−1

k=i (1− ρσk) which appear

in oddsOR (i, j) and oddsAND (i, j), respectively. The insertion of such an intermediate

alternative would make no difference regarding the probability of choice of the better al-

ternative ai, but would create a new event of probability (σl + (1− σl) ρ) (σj + (1− σj) ρ)

in the OR model and (σlρ) (σjρ) in the AND model (namely the probabilities that an and

aj are both considered), in which the lower quality alternative is not chosen. As a par-

ticular implication of these observations, this means that oddsOR (i, j) and oddsAND (i, j)

are weakly increasing with the size of the choice set.

The dependence of the odds on the other available alternatives is often a realistic fea-

ture, which applied economist have sought to incorporate, for example, in the conditional

logit model.15 The blue bus-red bus problem is the standard example. Suppose the agent

chooses with probabilities one third each the train (t), a red bus (r) or a blue bus (b) as a

means of transport, so that the choice odds for any two alternatives are 1. Nevertheless,

if r is removed from the choice set, it is natural to expect that the odds of choosing b

over t become 2, rather than staying at 1 as required by IIA. In our model (once adapted

to include ranking ties), the natural exaplanation for why the odds should change (that

the agent ranks a blue bus and a red bus in the same way) immediately yields the odds

change.

4 Salience games

4.1 Absolute salience: The showiest is the best

We now imagine that alternatives can choose, possibly at a cost, the salience they pos-

sess. This is natural in several contexts. For example, a minor politician can make an

outrageous statement to get noticed by the media and enter the voters’ consideration

set, but he will likely incur a cost in terms of credibility. One can increase expenditure

on hairdressing to get noticed by potential partners. And firms, of course, have huge

advertising budgets.

15By adding a nested structure to choice process (nested logit) or by allowing heteroscedasticity of the

choice errors. See e.g. Greene [5].
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We are mainly interested in the question of how the equilibrium salience order cor-

relates with the quality order (and in how this is reflected in choice probabilities). The

answer is not obvious a priori as incentives seem to run both ways. On the one hand the

best alternative has a strong incentive to get noticed: it fears no competition. On the

other hand, the only weapon the inferior alternatives have to have a chance to be chosen

is to increase their probability of entering the consideration set.

In this section we assume that there is a finite number of alternatives, and that the

strategy set for alternative ai is a finite subset S of the unit interval (below we illustrate

how other domains could be considered). The payoff to each alternative is the expected

probability of being chosen minus a (possibly negative) cost associated with the chosen

salience level. One interpretation of this function is that alternatives either vie for one

single chooser who chooses one alternative, or care about ‘market share’with a continuum

of identical choosers each of whom chooses one alternative. Formally, let e be a function

e : S → Re. The payoff to alternative i for a pure strategy profile σ ∈ Sn is

zi (σi, σ−i) = (σi + (1− σi) ρ) (1− ρ)i−1
∏
j<i

(1− σj)− e (σi)

for the OR model and

zi (σi, σ−i) = σiρ
∏
j<i

(1− ρσj)− e (σi)

for the AND model. We make no assumption on the function e. In particular, e can be

increasing or decreasing. So e could be intepreted as effort, when increasing salience is

costly, or as elation, when increasing salience is pleasurable.

Proposition 5 In both the AND and the OR model there exists an equilibrium in pure

strategies.

The proof makes clear that this pure strategy existence result continues to hold when

S is a compact subset of [0, 1] and e (.) is continuous, or possibly discontinuous but

increasing. The next characterisation result holds even more generally, for any structure

of S ⊆ [0, 1] and any e (.).

When salience can be chosen endogenously, in equilibrium at any level of rationality

the salience order coincides with the preference order.
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Proposition 6 (The showiest is the best) Suppose ai � aj and let (σ1, ..., σn) be a pure

strategy equilibrium. Then, for all ρ, σi > σj both in the AND and in the OR model.

Note that lower quality alternatives do not have any intrinsic disadvantage, in terms

of salience enhancing technology, with respect to higher quality alternatives. The reason

why they produce less salience in equilibrium does not derive from lower levels of resources

or lower unit costs of salience production (as might be the case in a signalling story): every

alternative can choose from exactly the same set at exactly the same cost or benefit.

4.2 Relative salience: the ugly duckling can get picked most

often

So far we have assumed that each alternative can select its own salience independently

of the salience of the other alternative. In this sense salience was absolute. This is

appropriate in some contexts, e.g. if repeated ads in favour of an alternative merely have

the function of making the agent aware of the alternative (‘did you know that people who

read book A also read book B?’; ‘have you considered using a scooter to go to work’?),

with σi representing either the probability that the agent is aware or the proportion

of aware agents within a population. In other contexts, however, alternatives can only

control variables that affect salience in a relative way. If everybody else dresses in green

you will be salient by dressing in yellow, and viceversa. If all other candidates converge

on a given political message, you will be salient by deviating from that message. We call

this the case of relative salience.

We show that in this case the neat equilibrium ordering obtained in proposition 6

breaks down. As a consequence, it is even possible that, in equilibrium, the worst alter-

native is selected with the highest probability.

Suppose now that each alternative ai selects a ‘position’ vi ∈ [0, 1], and that own

salience is determined by the entire profile of the vi’s. In particular, we assume that an

alternative’s salience is conferred by its difference, in terms of position, from the ‘average

alternative’(excluding itself)

σi =

(
vi −

∑
j 6=i vj

(n− 1)

)2
∈ [0, 1]
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The alternatives aim as usual at maximising the probability of being chosen, where the

probability is computed according to either the AND or te OR model.

Proposition 7 The AND model admits (for some n) a pure strategy Nash equilibrium

in which, for any ρ, the worst alternative has the highest probability of being chosen.

Proposition 8 The OR model admits (for some n) a pure strategy Nash equilibrium in

which, for ρ suffi ciently small, the worst alternative has the highest probability of being

chosen. For ρ suffi ciently high (for any n) the best alternative is chosen with the highest

probability.

The difference between these two results stems from the difference between the AND

the OR model we highlighted before: at degrees of rationality near one, the OR model -

but not the AND model - approximates well the standard utility maximisation model.

5 Proofs

Proof of Proposition 3: Define as in the text

A (i, j) =
∑

k∈si−1,j

S (i− 1, j) (k)

We have already observed that pAND (ai) is strictly increasing on the initial range of

definition. We study the sign of ∂pAND(ai)
∂ρ

, which depends on the sign of the expression

1 +
i−1∑
j=1

(
(j + 1) (−ρ)j A (i, j)

)
(*)

= ρ2

(
1

ρ2
+

i−1∑
j=1

(
(j + 1) (−ρ)j−2A (i, j)

))

We show that there exists a single value ρ̂ ∈ (0, 1) at which ∂pAND(a4)
∂ρ

vanishes. Suppose

to the contrary that there were two such values ρ̂ ∈ (0, 1) and ̂̂ρ ∈ (0, 1), say with ρ̂ < ̂̂ρ.
Then, using the LHS side expression in equation * and the definition of ρ̂ and ̂̂ρ,

i−1∑
j=1

(
(j + 1) (−ρ̂)j A (i, j)

)
= −1 =

i−1∑
j=1

(
(j + 1)

(
−̂̂ρ)j A (i, j)

)
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On the other hand, using the RHS in equation * and the definition of ρ̂ and ̂̂ρ,
i−1∑
j=1

(
(j + 1) (−ρ̂)j−2A (i, j)

)
= − 1

(ρ̂)2

and
i−1∑
j=1

(
(j + 1)

(
−̂̂ρ)j−2A (i, j)

)
= − 1(̂̂ρ)2

Therefore
i−1∑
j=1

(
(j + 1) (−ρ̂)j−2A (i, j)

)
<

i−1∑
j=1

(
(j + 1)

(
−̂̂ρ)j−2A (i, j)

)
so that

(ρ̂)2
i−1∑
j=1

(
(j + 1) (−ρ̂)j−2A (i, j)

)
<
(̂̂ρ)2 i−1∑

j=1

(
(j + 1)

(
−̂̂ρ)j−2A (i, j)

)

⇔
i−1∑
j=1

(
(j + 1) (−ρ̂)j A (i, j)

)
<

i−1∑
j=1

(
(j + 1)

(
−̂̂ρ)j A (i, j)

)
a contradiction. Therefore there is at most one value of ρ ∈ (0, 1) at which ∂pAND(ai)

∂ρ

vanishes, from which (since ∂pAND(ai)
∂ρ

is a polynomial and is strictly increasing on the

initial range of definition) the first part of the statement follows. The plot in the text

shows examples for which pAND (ai) is strictly increasing on the whole interval (0, 1):

as is evident from the formula for pAND (ai), this can be obtained by setting values of

σ1, ..., σi−1 suffi ciently low (note that A (i, j) approximates σiρ when σ1, ..., σi−1 are close

to zero).

Proof of Proposition 4: Differentiate logarithmically and rearrange to obtain

∂ log oddsOR (i, j)

∂ρ
=

(1− σi)
(σi + (1− σi) ρ)

+
(j − i)
(1− ρ)

− (1− σj)
(σj + (1− σj) ρ)

which is negative for ρ and σj small enough. Conclude by noting that oddsOR (i, j) is

a positive function so that sign∂ log oddsOR(i,j)
∂ρ

= sign∂oddsOR(i,j)
∂ρ

.

Proof of Proposition 5: Consider the OR model. At a pure strategy equilibrium,

alternative a1 simply solves the one-person problem

max
σ1∈S1

(σi + (1− σi) ρ)− e (σi)
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Let σ∗1 be the solution to this problem. Now suppose inductively that for each i < j

the game restricted to alternatives a1, ...aj−1 has a pure strategy equilbrium
(
σ∗1, ..., σ

∗
j−1
)
.

Then the game between alternatives a1, ...aj (of which 1, ..., j − 1 are indifferent to the

choice of alternative j) has the pure strategy equilbrium
(
σ∗1, ..., σ

∗
j

)
, where σ∗j is a solution

to the problem

max
σj∈Sj

(σj + (1− σj) ρ) (1− ρ)j−1
∏
i<j

(1− σ∗i )− e (σj)

So for any n the game has a pure strategy equilbrium.

A similar logic applies to the AND model.

Proof of Proposition 6: Consider the OR model. By contradiction, suppose that

ai � aj but σi < σj. We use a revealed preference argument. Because σi is optimal for

alternative ai, it must provide a weakly higher expected payoff than σj, that is:

(σi + (1− σi) ρ) (1− ρ)i−1
∏
k<i

(1− σk)− e (σi)

≥ (σj + (1− σj) ρ) (1− ρ)i−1
∏
k<i

(1− σk)− e (σj)

or

((σi + (1− σi) ρ)− (σj + (1− σj) ρ)) (1− ρ)i−1
∏
k<i

(1− σk)

≥ e (σi)− e (σj)

Since σi < σj and ρ < 1, we have (σi + (1− σi) ρ)− (σj + (1− σj) ρ) < 0. Furthermore,

since ai � aj and thus i < j, we have that (1− ρ)i−1
∏

k<i (1− σk) > (1− ρ)j−1
∏

k<j (1− σk).

Therefore the previous displayed equation implies

((σi + (1− σi) ρ)− (σj + (1− σj) ρ)) (1− ρ)j−1
∏
k<j

(1− σk) > e (σi)− e (σj)

But then

(σi + (1− σi) ρ) (1− ρ)j−1
∏
k<j

(1− σk)− e (σi)

> (σj + (1− σj) ρ) (1− ρ)j−1
∏
k<j

(1− σk)− e (σj)
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which means that alternative j would gain by deviating from σj to σi, a contradiction.

The same argument works for the AND model. If ai � aj it must be

(σiρ)
∏
k<i

(1− ρσk)− e (σi) ≥ (σjρ)
∏
k<i

(1− ρσk)− e (σj)

or

(σi − σj) ρ
∏
k<i

(1− ρσk) ≥ e (σi)− e (σj)

Therefore if it were σi < σj we would have

(σi − σj) ρ
∏
k<j

(1− ρσk) > e (σi)− e (σj)

which contradicts the optimality of σj for aj.

Proof of Proposition 7: We consider the case of three alternatives and claim that the

position profile v∗ = (0, 0, 1) is a Nash Equilibrium. For a generic profile v, the choice

probabilities are given by

pAND (a1, v) =
(
v1 − v2+v3

2

)2
ρ

pAND (a2, v) =
(
v2 − v1+v3

2

)2
ρ
(

1−
(
v1 − v2+v3

2

)2
ρ
)

pAND (a3, v) =
(
v3 − v1+v2

2

)2
ρ
(

1−
(
v1 − v2+v3

2

)2
ρ
)(

1−
(
v2 − v1+v3

2

)2
ρ
)

It is seen immediately that alternative 1’s best replies to v2 = 0 and v3 = 1 are v1 = 1

and v1 = 0, so that it cannot profitably deviate from v∗. Turning now to alternative 2,

check
∂pAND (a2, v)

∂v2

∣∣∣∣
v1=0
v3=1

=
1

8
ρ (2v2 − 1)

(
8− ρ− 5ρv2 − 4ρv22

)
Studying the sign, it is straightforward to verify that the possible maxima are at v2 = 0

and, depending on the size of ρ, either v2 = 1
2
or v2 = 1. The corresponding choice

probabilities are:

pAND (a2, v
∗) =

1

4
ρ

(
1− 1

4
ρ

)
pAND

(
a2,

(
0,

1

2
, 1

))
= 0

pAND (a2, (0, 1, 1)) =
1

4
ρ (1− ρ)
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so that, regardless of the size of ρ, alternative 2 cannot profitably deviate from v∗.

Finally consider alternative 3:

∂pAND (a3, v)

∂v3

∣∣∣∣
v1=0
v2=0

=
1

8
ρv3
(
ρv23 − 4

) (
3ρv23 − 4

)
The roots of the polynomial are v3 = 0, v3 = ± 2√

ρ
and v3 = ± 2√

3ρ
, so that for v3 ∈ [0, 1] we

have that ∂pAND(a3,v)
∂v3

∣∣∣
v1=0
v2=0

> 0 for v3 ∈
(

0, 2√
3ρ

)
and v3 > 2√

ρ
, while ∂pAND(a3,v)

∂v3

∣∣∣
v1=0
v2=0

< 0 for

v3 ∈
(

2√
3ρ
, 2√

ρ

)
. It follows that pAND (a3, (0, 0, v3)) is maximised for v3 = min

{
1, 2√

3ρ

}
=

1. The corresponding choice probability is

pAND (a3, v
∗) =

1

16
ρ (ρ− 4)2

It is now straightforward to verify that

pAND (a3, v
∗) > pAND (a1, v

∗) > pAND (a2, v
∗)

Proof of Proposition 8: Consider again the case with three alternatives. The choice

probabilities are now:

pOR (a1, v) =

(
v1 −

v2 + v3
2

)2
+

(
1−

(
v1 −

v2 + v3
2

)2)
ρ

pOR (a2, v) =

=

((
v2 −

v1 + v3
2

)2
+

(
1−

(
v2 −

v1 + v3
2

)2)
ρ

)(
1−

(
v1 −

v2 + v3
2

)2)
(1− ρ)

pOR (a3, v) =

=

((
v3 −

v1 + v2
2

)2
+

(
1−

(
v3 −

v1 + v2
2

)2))
×

×
(

1−
(
v1 −

v2 + v3
2

)2)(
1−

(
v2 −

v1 + v3
2

)2)
(1− ρ)2
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Evaluating at v∗ = (0, 0, 1) yields:

pOR (a1, v
∗) =

1

4
(1 + 3ρ)

pOR (a2, v
∗) =

3

4
(1− ρ)

1

4
(1 + 3ρ)

pOR (a3, v
∗) =

9

16
(1− ρ)2

It is imediately apparent that pOR (a1, v
∗) > pOR (a2, v

∗). Moreover, for ρ ∈ (0, 1),

pOR (a3, v
∗) > pOR (a1, v

∗) if and only if ρ < 5−2
√
5

3
< 1

3
; and pOR (a3, v

∗) > pOR (a2, v
∗) if

and only if ρ < 1
3
.

To verify that v∗ is an equilibrium, it is immediately checked that alternative 1 cannot

profitably deviate from v∗. Turning now to alternative 2,compute:

∂pOR (a2, v)

∂v2

∣∣∣∣
v1=0
v3=1

=
1

8
(ρ− 1)

(
−10 (1− ρ) v32 − 3 (1− ρ) v22 + 2 (7− 11ρ) v2 − (3ρ+ 5)

)
Assume now that ρ < 1

3
. This implies that pOR (a2, (0, v2, 1)) can only be maximised at

v2 = 0 or v2 = 1. The corresponding choice probabilities are

pAND (a2, (0, 0, 1)) =
3

16
(1 + 3ρ) (1− ρ)

pAND (a2, (0, 1, 1)) = 0

so that v2 = 0 is the best reply.

Turning finally to alternative 3:

∂pOR (a3, v)

∂v3

∣∣∣∣
v1=0
v2=0

=
1

4
v3 (v3 − 2) (v3 + 2) (1− ρ)2

and it is easy to check that pOR (a2, (0, 0, v3)) is maximised in v3 = 0.

The second part of the statement follows trivially from inspection of the payoff func-

tions.

6 Concluding remarks and related literature

The broad aim of this paper was to open the black box of ‘bounded rationality’ and

statistical distributions in explaining choice errors that make an agent deviate from ‘true’
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utility maximisation. Admittedly, we have opened just one box. Other explanations,

beside consideration sets, may be relevant. Recently Rubinstein and Salant [21] have

studied an agent who expresses different preferences under different frames of choice.

The link with this paper is that the set of such preferences is interpreted as a set of

deviations from a true (welfare relevant) preference. However, their analysis takes a very

different direction from ours in that it eschews any stochastic element. The probability

model is, on the contrary, at the core of our theory.

There are also different plausible ways to model consideration sets and the compe-

tition for them. The already mentioned work by Eliaz and Spiegler [3] studies in great

detail the competition between two firms, who choose marketing strategies to make their

products enter the consideration sets of a continuum of identical consumers. The choice

model at the heart of this work is an application of Masatlioglu, Nakajima and Ozbay [9],

which is deterministic. Eliaz and Spiegler [3] also perform comparative statics exercises

that relate to changes in rationality. One the main findings is that in some equilibria

firms do not increase their profits compared to a situation in which consumers are fully

rational (informed). More comparisons are made either by introducing in the population

of boundedly rational consumers some rational consumers, or by changing the ‘consider-

ation function’(the function that determines the consideration set of consumers). One

implication is that industry profits are a non-monotonic function of changes in rationality

thus defined.

A first general message from our paper is that ‘revealed preferences’are not necessarily

a better guide to discovering true preferences when the rationality of the agent is higher

(namely when the agent has a higher probability of being better informed about the

available alternatives). For example, suppose you can observe or infer the degrees of

rationality, ρ and ρ′, under which two sets choices were made. Suppose that alternative

x is chosen more frequently over alternative y in condition ρ than in condition ρ′: it does

not necessarily follow from the fact that ρ > ρ′ that x is more likely to be better that

y. Less rational agents (or agents choosing under worse informational conditions) may

express their preference through choice more truthfully than more rational agents.

A second message is that the revealed preference ranking coincide (probabilistically)
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with the true preference relation in only two cases: if (1) salience is exogenous, or if (2)

salience is endogenous but can be fully set by the alternatives (a yellow dress is salient).

But the revealed preference ranking can even reverse the true ranking when salience is

endogenous and is relative (a yellow dress is salient when all other dresses are green).
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