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1 Introduction

In the growth accounting literature it has since long been acknowledged that one should

pay attention to improvements in labor quality (see for instance Jorgenson et al., 1987,

and Bureau of Labor Statistics, 1993). Ignoring the labor quality component when

carrying out growth accounting implies that improvements in labor quality are allo-

cated to the residual TFP growth component, which incorporates the contribution of

all unobserved production factors and hence is di¢ cult to interpret. The issue of pro-

ductivity measurement with heterogeneous labor is discussed in OECD (2001, chapter

4.5), Ahmad et al. (2003, chapter 4.5) and Boulhol and Turner (2009). These references

also provide some recommendations with regard to practical implementation.

The idea behind skill-adjusting labor is based on the fact that labor is not a homo-

geneous input, but di¤ers in skill and e¢ ciency. If one replaces a worker with a more

productive one, assuming that they work the same number of man-hours, an increase

in output will, ceteris paribus, be the result. The question then is how to measure

di¤erences in productivity. An early idea put forward by Griliches (1960) was to look

at relative wages. In a perfect labor market wage di¤erences should mirror di¤erences

in productivity. The approach pursued in the present paper also builds on this idea,

but is modi�ed. We view variation in skill related predicted wages as more informative

about variation in productivity than the raw hourly wages. Observed wage di¤erences

do not only re�ect skill di¤erences, but also variables unrelated to skill, such as regional

and temporal variations in labor market conditions, rent sharing, unions�bargaining

power, and transient wage �uctuations.

A common method used to construct an index of skill-adjusted labor input is to

divide the workers into several groups and then let the growth in labor input services

be a weighted sum of the increases in man-hours in each of the groups. As Zoghi (2008)

points out one may calculate weights in di¤erent ways. The simplest way is to utilize

the observed wage bills associated with the di¤erent groups. An alternative to using

observed mean wages, which may be somewhat volatile, is to employ mean predicted

wages from a wage equation. Bolli and Zurlinden (2009), Lacuesta et al. (2008) and

Schwerdt and Turunen (2007) represent, in a broad sense, recent contributions within

this type of approach. These contributions focus on robustness issues in di¤erent
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dimensions. For instance Bolli and Zurlinden (2009) are occupied with the implications

of taking account of unobserved worker characteristics, while Lacuesta et al. (2008)

have a special focus on selection problems caused by a substantial amount of in�ow of

immigrant workers to Spain.

The main contribution of the current paper is to suggest an alternative method

for handling heterogeneity of labor within a growth accounting framework. We start

out by estimating a wage equation at the industry level using a panel data model for

eleven manufacturing industries. As explanatory variables in the equation we include

variables related to individual skill or personal attributes; that is, length of education,

experience, type of education and gender. In addition we include dummies for local

labor market areas and �xed e¤ects for years. From the estimated wage equation we

extract what one may label the skill component of the predicted wage, which only

captures the e¤ects of observed and unobserved individual variables. These predicted

wages are sorted in ascending order and divided in deciles. In each year we then know

which decile the worker belongs to and how many man-hours he/she contributes with.

This information is used to construct an index of skill-adjusted labor. The change in

this index is a weighted average of the change in man-hours for each of the 10 groups.

To calculate the weights we use median values of the skill-related predicted wages

within each decile.

The estimated wage equations (one for each of the industries) are also utilized in

conjunction with the benchmark method, where we divide the observations into 12

cells distinguishing between high and low education, three intervals of experience, and

gender. For each year we calculate the total number of man-hours and the mean of the

predicted (skill related) wages in each of the cells. This information is used to derive

an index of labor services.

We consider calculation of TFP growth at the industry level when labor is treated

in three di¤erent ways. In the �rst case labor is considered a homogeneous input

variable. The second case corresponds to what we just referred to as the benchmark

method, whereas in the third case we calculate TFP growth using the new method

put forward in this article. We �nd that the TFP growth diminishes when one goes

from the case with homogeneous labor to the benchmark method and even further
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when one goes from the benchmark method to the decile-based method proposed in

this paper. For the manufacturing industry as a whole the annual mean TFP growth

in the sample period is 2.5 percent when labor is treated as a homogeneous input, 2.3

percent when skill is accounted for by the benchmark method and 2.0 percent when

using the decile-based method.

The paper proceeds as follows. In Section 2 we describe the data used in our

analysis. Section 3 deals with classi�cation of labor according to skill. In Section 4,

we calculate growth in total factor productivity (TFP) applying the di¤erent ways of

measuring labor input. Section 5 concludes the paper.

2 Data

For this study we use a rich employer-employee panel data set on Norwegian �rms,

covering the period 1995�2005. The sample is based on information from limited de-

pendent companies (i.e., the smallest legal unit). We have constructed panels of annual

�rm-level data for Norwegian �rms in eleven manufacturing industries, accounting for

about 90 percent of total man-hours in manufacturing.

Five di¤erent sources of Norwegian micro data are used. Two of them are �rm-

level data sets. One of the �rm-level data sets is based on the accounts statistics of

limited dependent companies, and the other comprises structural statistics for di¤erent

industrial activities. These data sources provide information on value-added and capital

at the end of the year in constant prices (for details about the capital variable see

Raknerud et al., 2007). The three remaining data sets contain individual-level data.

These are the Register of Employers and Employees, the Pay Statements Register,

and the National Education Database. The individual level data provide us with

information on man-hours, wages (constructed as annual earnings divided by contracted

annual working hours), the worker�s place of residence, length and type of education,

and potential experience - calculated as a person�s age minus the length of his education

minus the age at which he/she started at compulsory primary school. This information

makes it possible to link �rm-level and individual-level information and to integrate

individual-level data into a common data base and then aggregate to the �rm level.1

1For a more detailed description of data sources used, see the Data Appendix of Nilsen et al.
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3 Skill classi�cation

We start out by classifying workers into K di¤erent skill categories, according to their

relative e¢ ciency. The categories are sorted in ascending order such that the least

e¢ cient workers are in category 1, and each category contains the same proportion,

i.e., 100=K percent, of total man-hours. If M(k)t denotes total man-hours in skill

category k, for k = 1; :::; K, then total man-hours, Mt, can be written as

Mt =

KX
k=1

M(k)t.

A particular set of e¢ ciency weights, �k, k = 1; :::; K, with �k�1 < �k, is applied to the

man-hours in each category k, to calculate e¢ ciency-adjusted aggregate man-hours,fMt: fMt =
KX
k=1

�kM(k)t, 1 = �1 < �2 < ::: < �K , (1)

These parameters are calibrated based on the assumption of perfect substitution be-

tween workers, such that relative e¢ ciency between a worker in skill category k and 1,

�k, is equal to their relative wage: Instead of using the actual relative wages between

individuals observed in the data to calculate �k, we use the skill-related part of the

predicted wages, as motivated by the discussion in Section 1.

The following wage equation is estimated separately for each industry (for ease of

exposition we suppress the index for industry throughout the paper):

ln(Wprt) = Zrtz +Xptx + �p + "prt, (2)

where Wprt is the hourly wage of person p working in labor market region r in year

t. On the right hand side, we specify two (row) vectors with observed variables, Zrt

and Xpt. The vector of explanatory variables Zrt consists of observed variables that

are related to the labor market region (r) where the individual works and the calendar

year (t), and is assumed to be unrelated to the individual�s skill:2

Zrt = (labor market region dummies, year-speci�c dummies).

(2009).
2The de�nition of the seven labor market region dummies is based on characteristics such as size

and centrality (see http://www.ssb.no/english/subjects/06/sos110_en/sos.110_en.pdf).
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The other vector, Xpt, contains values of variables related to individual p�s skill in year

t:3

Xpt = (years of schooling, powers of years of experience up to 4�th order,

gender, type of education-dummies).

The attached coe¢ cient vectors are denoted z and x, respectively. The scalar �p is

an unobserved individual random e¤ect of individual p. Finally, "prt denotes a genuine

error term.

Next we decompose the log wage, ln(Wprt), into three parts:

ln(Wprt) = !pt + Zrt2 + "prt,

where

!pt � Xpt1 + �p (3)

is the only part which is relevant to skill measurement, while the second part; related

to the variables in the vector Zrt, and the third part; the transient noise "prt, do not

concern skill measurement.

To calculate the weights �k, and to classify workers into skill categories, only the

skill-related part, !pt, of the wage will be used, cf. (3). The detailed calculations

are as follows: Consider all the values of !pt occurring in our sample and sort them

in ascending order. To be speci�c, assume that K = 10 (deciles), which is what we

actually use in our application. Then let !(1) < !(2) < � � � < !(10) denote the 5, 15, 25,

..., 95 percent quantiles in the empirical distribution of !pt. The man-hours of person

p at time t are allocated to category k i¤

k = argmin
j

j!pt � !(j)j.

Thus !(k) is the median predicted wage (after removing the e¤ect of noise, "prt, and

labor market region and time dummies, Zrt) within category k. Finally, we calibrate

the e¢ ciency parameters using the relative median skill-related predicted wages:

�k =
exp(!(k))

exp(!(1))
, k = 1; :::; 10: (4)

3The data investigation shows that mainly workers with the following three types of education are
represented in the chosen industries: education in �General programs�, �Business and Administration�
and education in �Natural Sciences, Vocational and Technical subjects�.
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The median !(k) is then the middle point within the k�th decile, and is chosen as the

reference point as it is not vulnerable to outliers, in contrast to the corresponding mean

value of !pt. In general, the di¤erence between !(k) and the mean value of !pt within

the k�th decile is small, except for the highest decile, where the mean is in�uenced by a

few high outliers. Of course, this framework can be used for any K, and the modi�ed

de�nitions of the !(k) follow straightforwardly.

In practice, !(k) and �k must be estimated. This is done by replacing !pt with

b!pt � Xptb1 + b�p,
where b1 denotes the estimated parameter vector and b�p is the predicted random
e¤ect of individual p based on feasible GLS estimation. In our empirical analysis, the

parameters !(k) and �k are replaced by estimates, b!(k) and b�k, using b!pt instead of !pt.
The unknown parameters in (2) are estimated by GLS using unbalanced panel data

for each industry. The assumption that vp is a random e¤ect is convenient in order to

identify x �in particular the coe¢ cient attached to years of schooling, which in our

sample is close to being an individual-speci�c time-invariant variable.

An objection frequently raised against random e¤ects models is that the GLS-

estimators applied to estimate them are biased if the latent e¤ect is correlated with the

observed right-hand side variables. However, in our setting there are several problems

attached to using �xed e¤ects estimators. First, for a substantial part of the individuals

there are too few observations in order to obtain precise estimates. Second, most of

the observed right-hand side variables are time-invariant or nearly so, which implies

a genuine identi�cation problem. Third, since we apply the wage equations also to

predict wages for observations not included when estimating the wage equation (see

below) the random e¤ects speci�cation seems more appropriate. In light of these three

features we have chosen to stick to the random e¤ects speci�cation instead of the �xed

e¤ects speci�cation.

Before we estimate the wage equation (2), we carry out some data cleaning. First,

since wages of part time workers are particularly hampered by measurement errors, we

omit data for part-time workers. Second, we omit wage observations which are viewed

as being either unusually high or unusually low. The corresponding cut-o¤ values are

obtained using quantile regressions. For each industry, we perform quantile regressions
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for the 5 and 95 percent quantiles, respectively, to estimate these quantiles conditional

on labor market region and calendar year (which are the only included regressors).

When estimating the wage equations, we omit observations that are characterized by

either hourly wages below the conditional 5 percent or above the conditional 95 percent

quantiles. This procedure ensures smoother quantiles across time and labor market

region compared to the raw data quantiles.

[Table 1: Wage equation estimation results]

The data cleaning referred to above has been done only when estimating the wage

equation. The omitted observations are included again when performing the �nal TFP

calculations. Based on the wage equations we predict the skill-related wages for all

persons in every period they are observed. For workers not included in the estimation

sample, we obtain b!pt by using the observed Xpt and setting b�p = 0, which is the

optimal ex ante estimate of the random e¤ect.

The results from the wage equation estimations are reported in Table 1. We see

that the marginal returns to education are approximately 5 percent, in line with other

studies based on Norwegian data (see for instance Hægeland et al., 1999). The coef-

�cients attached to years of experience are hard to interpret directly, since the e¤ect

of experience is represented by a fourth order polynomial. If we only look at the �rst

order term, we �nd returns of the same magnitude as for education. However, the

marginal returns to experience is decreasing and becomes zero at around 30�32 years

of experience, and negative thereafter. The e¤ects of the other explanatory variables,

such as gender, labor market region and type-of-education are all in line with our prior

expectations.

[Figure 1: The e¢ ciency parameters in di¤erent industries]

The calculated values of �k for all the manufacturing industries are displayed in

Figure 1. We see that there is considerable variation in �k across the di¤erent industries,

for a given decile k. In particular, �10 is highest in the typical high-tech industry

Electrical equipment (which also have the highest share of workers with at least 13

years of education; about 35 percent), especially compared to the traditional low-

tech industry Wood products (where the share of workers with at least 13 years of
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education is about 8 percent). One also notes that the curves of Electrical equipment

and Chemical products are steeper at the upper part of the distribution, as shown

by �10=�9 and �9=�8, compared to industries characterized by a large share of low-

skilled workers. Thus the high-tech industries seem to employ and reward workers

with especially high productivity.

We will consider di¤erent types of benchmark methods for calculating e¢ ciency

weighted total man-hours, fMt. A trivial benchmark is, of course, to set fMt = Mt,

i.e., no skill adjustments. In the (more elaborate) benchmark method we will classify

workers (or man-hours by a particular worker in a given year) into cells based on values

of a sub-set of the covariates, Xpt, described above. Then we follow Zoghi (2008)

and skill-adjust the change in input of labor services by calculating the change in a

Törnqvist index. The weight of the workers in cell j, j 2 J , is the skill-related wage bill

for this group of workers divided by the total skill-related wage bills for all the groups.

In our application we will consider a case with 12 cells. The classi�cation is based

on three variables: Education length, Experience and Gender, where Education length

has two discrete outcomes: less than 13 years and at least 13 years, and Experience has

three disjunct outcomes: Experience � 7 years; 8 �Experience � 15 years; Experience

� 16 years. A listing of the cells with de�nitions is given in Table A.2 in the Appendix.

4 Productivity growth analysis

To analyse the importance of the choice of di¤erent skill measures, we consider a

growth accounting framework at the industry level implicitly assuming constant re-

turns to scale. Instead of sticking to a Cobb-Douglas production function speci�cation

with constant share-parameters, we allow for time-varying share-parameters and em-

ploy Törnqvist indices. As pointed out by Morrison Paul (1999, p. 43) and Diewert

(1976) this choice is consistent with assuming a translog production function. The

growth in labor productivity, � ln(Yt=Mt), where Yt and Mt are valued added and the

total number of man-hours at the industry level, respectively, is decomposed into con-

tributions from heterogeneous labor (to be speci�ed below), capital services, Kt, and
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a residual term, �TFPt. The latter denotes growth in total factor productivity.4 The

expression for the relative growth in labor productivity is given by

� ln

�
Yt
Mt

�
= �t� ln

 fMt

Mt

!
+ (1� �t)� ln

�
Kt

Mt

�
+�TFPt, (5)

where fMt is aggregate skill-adjusted man-hours according to our proposed method, as

de�ned in (1) or calculated according to the benchmark method. Equivalently, we can

write

�TFPt = � ln

 
YtfMt

!
� (1� �t)� ln

�
KtfMt

�
:

Using the benchmark method, we follow Zoghi (2008), and de�ne

� ln(fMt) =
X
j2J

0:5(sjt + sj;t�1)� ln(Mjt), (6)

where Mjt is the number of man-hours in cell j at time t, and the sjt are weights

de�ned as follows:

sjt =
exp(b!jt)MjtP
j2J exp(b!jt)Mjt

,

where b!jt denotes the mean value of b!pt belonging to cell j in year t, cf. (3). Following
the traditional approach in growth accounting, the industry level share-parameter �t

is calibrated using the arithmetic mean of the cost share of labor (i.e., the total wage

bill divided by total factor costs) in period t and t� 1.5

For each industry in the manufacturing sector, we compare the TFP growth ob-

tained from (5) with two other cases: First, when �k � 1 for all k and hence fMt in (5) is

replaced by the non-adjusted man-hours, Mt, and second, when � ln(fMt) is calculated

as in (6) based on an index set, J , consisting of 12 categories. Note that the left-hand

side of (5) does not depend on the skill measure used, sinceMt equals total man-hours.

[Table 2: Growth equation estimates]

We see from the results reported in Table 2 that labor costs as a share of total factor

costs are approximately 70 percent on average, but vary considerably, from about 80

4In the TFP growth calculations we only include �rms with at least three years of contiguous data
and no missing variables.

5In the current paper we do not consider the link between TFP growth at the plant/�rm and the
industry levels, as discussed in Hulten (2001, pp. 38�39). Cf. also Baily et al. (1992) and Foster et
al. (2001).
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percent in Electrical equipment and Transport and communication to about 50 percent

in Mineral products. Furthermore, labor productivity growth (3.5 percent annually,

averaging over all the industries) is mainly explained by capital deepening. Growth in

labor quality also contributes: Regardless of which method is used to skill-adjust labor

input, the growth in skill-adjusted man-hours is higher than the growth in number of

man-hours (i.e., � ln
�fMt=M t

�
is positive in all industries). The lower value of TFP-

growth using our method compared to the benchmark method is solely accounted for

by a higher growth in skill-adjusted man-hours obtained with our method.

In Table 2 we also report the mean annual growth in labor productivity over the

period 1995�2005 together with the mean annual TFP growth according to (i) the

case without any skill adjustment, (ii) the benchmark method, and (iii) the new wage

equation based skill-adjusted measure of labor input put forward in this paper.

With no skill adjustment, the mean annual TFP growth varies between 0.5 and 3.7

percent, with 2.5 as an average across the industries. In all the industries the mean

annual TFP growth varies between 0.5 and 3.7 percent, with 2.5 as an average across

the industries. In all the industries the mean annual TFP growth is lower using the

benchmark method compared to the method without skill adjustment. Our proposed

e¢ cency adjustment leads to an even wider di¤erence. The latter di¤erence varies from

less than 0.1 percentage point to 0.4 percentage points. On average, our method leads

to 0.5 percentage points lower TFP growth than the case with no quality adjustment,

and 0.3 percentage points lower growth compared to the benchmark method. Thus,

our method unambigously leads to reduced TFP growth, by allowing more of the

change in value-added to be picked up by the measurable components compared to the

benchmark method.

We have considered some robustness checks. First, we have added type of education

as an extra dimension for the benchmark method. This variable has three outcomes:

General programs; Vocational and technical subjects; and Other type of education.

Thus, the benchmark method now involves 48 cells. We �nd for all industries that

the TFP growth for this extended version of the benchmark method is practically

indistinguishable to the one obtained for the benchmark method using 12 cells. This

resembles the conclusion obtained by Fosgerau et al. (2002) using Danish data. As a
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second robustness issue we have investigated how sensitive the results are with respect

to the cut-o¤values used when trimming the data set for the full time workers. Instead

of applying the thresholds corresponding to the 5 and 95 percent conditional quantiles,

we have employed the 1 and 99 percent thresholds. It turns out that even though the

estimates of the parameters in the wage equations are somewhat changed, the predicted

values obtained from the estimated wage equations are very similar. Accordingly,

the estimated TFP growth is not signi�cantly in�uenced by the application of these

alternative cut-o¤ values.

Why does our method for skill adjustment yield a higher increase in labor quality

growth than what is obtained using the benchmark method? We have seen that this

has nothing to do with the number of cells used in connection with the benchmark

method. The main di¤erence between the two approaches lies in our method�s order-

ing of the skill categories according to relative e¢ ciency. In contrast the benchmark

method leads to categories (cells) that cannot be ordered. A consequence of this is

that movements up and down the deciles over time (for a given employee) are more

common than movements between cells using the benchmark method. This pattern

is clearly visible from the transition matrices of Tables A.3 and A.4 in the Appendix,

which show transition rates between the di¤erent categories using the two methods.

These transion rates are empirical transition probabilities (relative frequencies) and

illustrate to what extent persons move from one skill category to another between two

subsequent years during the observation period. The additional variability in fMt=M t

using our method instead of the benchmark method enables us to better explain labor

productivity growth, as is seen from the decrease in the (residual) TFP-growth term

when switching from the benchmark method to our quantile-based method.

A �nal important question is whether the di¤erences in the mean TFP growth using

the various skill measures are statistically signi�cant. To answer this question we pro-

vide standard errors of the mean di¤erence in TFP growth by means of bootstrapping.

The bootstrap works as follows. From the dataset used to produce the TFP growth

estimates reported in Table 2 we draw a sample of N �rms (with replacement). For

each of these N �rms we use the entire time series of output, wage costs, hours of

work, and capital. In each replication we calculate the di¤erence between the mean

12



TFP growth obtained using our quantile-based method and the benchmark method.

After 250 bootstrap replications, we calculate the standard deviation of the di¤erences

in mean TFP growth over the bootstrap sample and take this as an estimate of the

standard error of the di¤erence in mean TFP growth. We �nd that the di¤erence in es-

timated TFP growth between the quantile-based method and the benchmark method

is statistically signi�cant (the estimated standard error of the di¤erence equals 0.09

percentage points). If we now consider a 50-years horizon as an example, which is not

uncommon in long-run projections, a constant annual TFP growth rate of 2.0 instead

of 2.3 percent implies a 42 percentage point lower TFP growth over such a time span.

Thus, an improved measure of labor input has non-negligible e¤ects when considering

growth accounting in the long term.

5 Concluding remarks

In this paper we have suggested a new method for constructing an index of labor ser-

vices. Extracting and classifying skill-related predicted wages plays a decisive role in

our quantile (decile)-based method. We calculate the growth of TFP for 11 manu-

facturing industries using this new measure of labor services and compare the results

with what is obtained using (i) a more traditional method for accounting for labor

heterogeneity within a growth accounting framework and (ii) assuming homogeneous

labor. We �nd that the new method gives a lower growth in TFP than both (i) and

(ii). For the manufacturing sector as a whole we �nd that the mean annual growth

in TFP is 0.3 percentage points lower using the new measure of labor services instead

of the more traditional measure (i) based on a set of prede�ned cells, which we have

exempli�ed by dividing the observations into 12 cells according to length of education,

working experience and gender. This can be interpreted as the measure put forward

in this paper captures more of the growth in labor quality than the more traditional

measure.

While our main concern in the present paper has been to assess the importance of

skill adjustment for calculating growth in TFP, elaborations of our approach should

be of interest, given the importance of the issue discussed. Perhaps the most natural

one is to extend the information set used in the estimation of the wage equations with
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�rm-speci�c variables, e.g. represented by dummy variables of �rms such as in Abowd

et al. (1999). Another relevant topic is to relax the constant returns to scale restriction

when decomposing the growth in labor productivity.
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Appendix: Supplementary tables

Table A.1: Industries and NACE codes

Industry NACE codes Abbreviated industry label
Food, beverages and tobacco 15-16 Food etc.
Textile and leather products 17-19 Textile etc.
Wood and wood products 20 Wood etc.
Paper and publishing 22 Paper etc.
Chemical and plastic products 25 Chemical etc.
Mineral products 26 Min. products
Metal products 27-28 Met. products
Machinery 29 Machinery
Electrical equipment 30-33 El. equip.
Transport and communication 34-35 Transport etc.
Furniture and others 36-37 Furniture etc.
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Table A.2: Listing of cells for the benchmark method

Cell Length of education Experience Gender
I <13 years Experience < 7 years Male
II <13 years Experience < 7 years Female
III <13 years 8 years � Experience < 15 years Male
IV <13 years 8 years � Experience < 15 years Female
V <13 years Experience � 16 years Male
VI <13 years Experience � 16 years Female
VII �13 years Experience < 7 years Male
VIII �13 years Experience < 7 years Female
IX �13 years 8 years � Experience < 15 years Male
X �13 years 8 years � Experience < 15 years Female
XI �13 years Experience � 16 years Male
XII �13 years Experience � 16 years Female
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Table A.3: Transition rates between di¤erent labor quality deciles
Deciles

Deciles 1 2 3 4 5 6 7 8 9 10
1 0.84 0.16
2 0.01 0.81 0.18
3 0.02 0.79 0.19
4 0.03 0.80 0.17
5 0.02 0.81 0.17
6 0.02 0.84 0.14
7 0.02 0.87 0.11
8 0.01 0.91 0.08
9 0.01 0.95 0.05
10 0.01 0.99
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Table A.4: Transition rates between cells for the benchmark method*
Cells

Cells I II III IV V VI VII VIII IX X XI XII
I 0.84 0.14 0.02
II 0.84 0.12 0.04
III 0.86 0.14
IV 0.85 0.15
V 1.00
VI 1.00
VII 0.85 0.15
VIII 0.86 0.14
IX 0.88 0.12
X 0.89 0.11
XI 1.00
XII 1.00
*See Table A.2 for de�nitions of the cells.
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