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With an Application to the Returns to Schooling* 
 
This paper identifies sharp bounds on the mean treatment response and average treatment 
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and monotone treatment selection (MTS). We use our bounds and the US National 
Longitudinal Survey of Youth to estimate mean returns to schooling. Our upper-bound 
estimates are substantially smaller than (1) estimates using only the concave-MTR 
assumption of Manski (1997) and (2) estimates using only the MTR and MTS assumptions of 
Manski and Pepper (2000). They fall in the lower range of the point estimates given in 
previous studies that assume linear wage functions. This is because ability bias is corrected 
by assuming MTS when the functions are close to linear. Our results therefore imply that 
higher returns reported in previous studies are likely to be overestimated. 
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1 Introduction

This paper examines the identifying power of the mean treatment response and average

treatment effect when the concave-monotone treatment response (concave-MTR) assumption

of Manski (1997) is combined with the monotone treatment selection (MTS) assumption of

Manski and Pepper (2000). We are motivated by the fact that either assumption alone

produces bounds that are too wide to have sufficient identifying power for many purposes.

We then apply this nonparametric method to estimate the returns to schooling and thus

assess the validity of point estimates reported in existing parametric studies.

Manski (1997) studies sharp bounds on the mean treatment response when the response

functions are assumed either to satisfy monotone treatment response (MTR) or concave-

monotone treatment response (concave-MTR). To enhance the identifying power on the

bounds, Manski and Pepper (2000) combine the MTS assumption with the MTR assump-

tion.1 They apply their bounds to estimate the returns to schooling. Their bound estimates

are narrower than those of Manski (1997). However, they are still so large that they contain

almost all the point estimates of the returns to schooling in the existing empirical literature.

In this paper, we add the assumption of concavity to the assumptions of MTS and MTR.

Concavity is a natural assumption, because diminishing marginal returns are commonly as-

sumed in economic analysis. We explore how including this assumption tightens the sharp

bounds on the mean treatment response and the average treatment effect.

Using the 2000 wave of the US National Longitudinal Survey of Youth (NLSY), we imple-

ment our bounds to estimate returns to schooling. Our sharp upper-bound estimates of the

year-by-year returns to schooling are in the range of 0032 to 0254. Our estimates are only

5 to 25 percent of Manski’s estimates and 7 to 57 percent of Manski and Pepper’s estimates.

Specifically, our upper-bound estimates on college education are in the range of 0076 to

0136 (0091 to 0152 for bias-corrected estimates) for local (year-by-year) returns and 0083

(0096 for the bias-corrected estimate) for the four-year average. Our upper-bound estimates

are therefore substantially smaller than either the estimates using only the concave-MTR as-

1Manski and Pepper (2000) introduce the monotone instrumental variable (MIV) assumption, which

weakens the instrumental variable assumption by replacing mean independence of outcomes and instruments

with mean monotonicity of outcomes and instruments. The MTS assumption is the MIV assumption when

the instrumental variable is the realized treatment. When the realized schooling years are used as instruments

in the estimation, the MTS assumption asserts that persons who choose more schooling have weakly higher

mean wage functions than do those who choose less schooling.
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sumption of Manski (1997) or the estimates using the MTR and MTS assumptions of Manski

and Pepper (2000). The point estimates of the returns to schooling in the existing literature

(e.g., Card (1999)) range between 0052 and 0132. Our upper-bound estimates on college

education are thus also smaller than many previous point estimates.

To illustrate, Figure 1 depicts the difference among the three sets of bounds in Manski

(1997), Manski and Pepper (2000), and this paper. In Figure 1, each individual  ∈  has

a response function  (·) which satisfies the concave-MTR and MTS assumptions. Also, 
is a treatment,  is ’s realized treatment,  =  () is ’s realized outcome, and  () 

 6=  are latent outcomes. Therefore,  [ ()|  = ]   6=  is the conditional mean of

latent outcomes which an individual who chooses treatment  would obtain if he were to

choose treatment . This conditional mean of latent outcome,  [ ()|  = ], is Point 

when  ≤  and it is Point 0 when    (denoted by 0 in Figure 1). Manski’s lower

bound on  [ ()|  = ] for  ≤  is Point , which is determined as the value of the

function describing the straight line joining ( [|  = ]) (Point ) and the origin (Point

), evaluated at . Manski and Pepper’s lower bound is  [|  = ] (Point ).

In contrast, our lower bound for  ≤  is Point , which is determined by first col-

lecting all of the functions describing straight lines joining (  [|  = ]) (Point ) and

(  [|  = ]), for any realized treatment  ≤ , and also the straight line which joins

( [|  = ]) (Point ) and the origin (Point ); and then taking the greatest value of

the evaluation of these functions at . In Figure 1,  takes the values  and . As a result,

when we take the greatest value of Point  (on the line joining Point  and ( [|  = ])

(Point  )), Point  (on the line joining Points  and ), and Point  (on the line joining

Points  and ), our lower bound is Point . Therefore, our lower bound (Point ) on

 [ ()|  = ] for  ≤  is not smaller than the lower bounds in Manski (1997) and Manski

and Pepper (2000), namely, Point  and Point , respectively. Similarly, our upper bound

(Point 0) on  [ ()|  = ] for    is not greater than the upper bounds of Manski (1997)

and Manski and Pepper (2000), namely, Point 0 and Point 0, respectively. Using the law of

iterated expectation, our bounds on the mean treatment response ( [ ()]) and the average

treatment effect ( [ (2)]− [ (1)] for 1  2) are narrower than or equal to the bounds

in Manski (1997) and Manski and Pepper (2000).

Many empirical studies estimate returns to schooling by utilizing the techniques of ordi-

nary least squares (OLS) and instrumental variables (IV). In his survey, Card (1999) shows
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that point estimates on returns to schooling in previous studies using US data are in the range

of 0052 to 0132. His study raises two serious concerns about the credibility of these point

estimates. First, almost all previous studies assume that the log-wage regression function is

linear in years of schooling. However, the assumption that each additional year of schooling

has the same proportional effect on log earnings, despite the heterogeneous components of

schooling choices, is debatable. Canonical human capital models, as in the work of Card

(1999), assume that the log earnings function is concave-increasing in schooling. Second,

since years of schooling are considered to be positively correlated with unobserved abilities

(because of the ability bias), it is more appropriate to utilize the IV technique. However, the

validity of the instrumental variables used in applications has often been questioned. Indeed,

IV estimates tend to be greater than OLS estimates, despite the predictions made by the

ability-bias hypothesis. As a result, Card (1999) argues that point estimates on returns to

schooling in the previous literature are biased upward.

In contrast to these previous studies, the concave-MTR assumption allows for flexible and

concave-increasing wage functions. Moreover, the MTS assumption corrects the ability bias,

in the sense of the mean-monotonicity of wages and schooling. Estimates of the upper bounds

on the returns to schooling under these assumptions are smaller than many point estimates

in previous research. This paper shows that our upper-bound on the average treatment effect

(i.e., the returns to schooling) is obtained when the conditional-mean response functions

(i.e., the log-wage functions) of individuals are the upper envelope (or upper boundary of

the convex hull) of the conditional means of realized outcomes. Thus, the log-wage functions

that attain the upper-bound estimates are concave but close to linear, and have more gentle

slopes than the linear log-wage functions in previous studies; consequently, our upper-bound

estimates are smaller than many point estimates. Our results therefore imply that the higher

returns reported in previous studies are likely to be overestimated.

In Section 2 we study the sharp bounds on the mean treatment response and the average

treatment effects under the assumptions of the concave-MTR and MTS. Section 3 applies

the bounds to the estimation of returns to schooling. We conclude with Section 4.
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2 Concave-Monotone Treatment Response andMonotone

Treatment Selection

We employ the same setup as Manski (1997) and Manski and Pepper (2000). There is a

probability space (Ω  ) of individuals. Each member  of population  has an individual-

specific response function  (·) :  →  mapping the mutually exclusive and exhaustive

treatments  ∈  into outcomes  () ∈  . Each individual  has a realized treatment

 ∈  and a realized outcome  ≡  (), both of which are observable. The latent outcomes

 ()   6=  are not observable. In combining the distribution of a random sample ( )

with prior information, we intend to identify the mean treatment response  [ ()] and the

average treatment effect,  [ (2)]− [ (1)] for 1  2.

Manski (1997) makes the MTR assumption as follows:

Let  be an ordered set, and 1 and 2 be elements of  . For each  ∈  ,

2 ≥ 1 =⇒  (2) ≥  (1) . (1)

Under the MTR assumption, he shows the sharp bounds on  [ ()]:X
≤

 [|  = ] ( = ) + 0 (  ) (2)

≤  [ ()] ≤
X
≥

 [|  = ] ( = ) + 1 (  ) ,

where [0 1] is the range of  .

Manski (1997) also shows the sharp bounds on  [ ()] when  (·) is a concave and
monotone treatment response (concave-MTR), and when  = [0 ] for some  ∈ (0∞] and
 = [0∞]: X



 [|  = ] ( = ) +
h 


¯̄̄
 ≥ 

i
 ( ≥ ) (3)

≤  [ ()] ≤
X


 [|  = ] ( = ) +
h 


¯̄̄
 ≤ 

i
 ( ≤ ) .

Manski and Pepper (2000) introduce the assumption of monotone treatment selection (MTS):

2 ≥ 1 =⇒  [ ()|  = 2] ≥  [ ()|  = 1] . (4)
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Under the assumptions of both MTS and MTR, they show the sharp bounds on  [ ()]:X


 [|  = ] ( = ) + [|  = ] ( ≥ ) (5)

≤  [ ()] ≤
X


 [|  = ] ( = ) + [|  = ] ( ≤ ) .

In contrast, we assume both concave-MTR and MTS. The following proposition demon-

strates the sharp bounds on  [ ()] under the assumption of both concave-MTR and MTS.

The basic idea is as follows: Refer to Figure 1. The MTS assumption implies that, for   

 [|  = ] (Point  ) ≤  [ ()|  = ] (Point ). Also,  [ ()|  = ] is concave-MTR

in  ∈  . Thus, when  ≤ , for  ≤ , the value (Point ) of the function describing the

straight line traversing ( [|  = ]) (Point  ) and ( [|  = ]) (Point ), evaluated

at , is a lower bound on  [ ()|  = ] (Point ). Given (  [|  = ]) (Point ), these

lines are drawn for all realized points of ( [|  = ]) for  ≤  and the origin (Point )

because  = [0∞]. The values of these functions evaluated at  (Points   and ) are

all lower bounds on  [ ()|  = ] for  ≤  (Point ). These include the lower bound of

Manski (1997), i.e., Point  on the line joining Points  and ; and that of Manski and

Pepper (2000) ( [|  = ], i.e., Point  on the line joining Points  and ). Our lower

bound on  [ ()|  = ] for  ≤  is the greatest among these lower bounds (i.e., Point 

is the greatest among Points   and ). Similarly, when    (denoted by 0 in Figure

1), for any   , the value (Point 0) of the function describing the straight line travers-

ing ( [|  = ]) (Point  ) and (  [|  = ]) (Point ), evaluated at , is an upper

bound on  [ ()|  = ] (Point 0). Also, the value (Point 0) of the function describing the

straight line traversing the origin (Point ) and Point , evaluated at , is an upper bound

on  [ ()|  = ] (Point 0), as is the value  [|  = ] (Point 0) — the latter because of the

MTS assumption. Our upper bound (Point 0) on  [ ()|  = ] for    is the smallest

among these upper bounds (Points 0, 0, and 0); note that Point 0 corresponds to the

upper bound in Manski (1997), and Point 0 to the upper bound in Manski and Pepper

(2000). Using the law of iterated expectations, our bounds on  [ ()] are narrower than or

equal to those in Manski (1997) and Manski and Pepper (2000).

Proposition 1 Let  be ordered. Let  = [0 ] for some  ∈ (0∞] and  = [0∞].
Assume that  (·),  ∈ , satisfies the assumptions of concave-MTR and MTS. We extend
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the set of realized treatments and outcomes by including ( ) = (0 0), when there is no

realized treatment of zero. We then obtain the following three results:

(1) For (  0 ) ∈  4,X


 [|  = ] ( = )

+
X
≥

max
{ 0|≥0≥}

µ
 [|  = 0] + max

{|}

½
 [|  = 0]− [|  = ]

0 − 
(− 0)

¾¶
 ( = )

≤  [ ()] (6)

≤
X


 [|  = ] ( = )

+
X
≤

min
{ 0|≤0≤}

½
 [|  = 0] + min

{|0}
 [|  = 0]− [|  = ]

0 − 
(− 0)

¾
 ( = ) .

(2) These bounds are sharp. (3) These bounds are narrower than or equal to those using only

the concave-MTR assumption of Manski (1997), as well as those using only the MTR and

MTS assumptions of Manski and Pepper (2000).

In appendix A, we prove Proposition 1.

The introduction of the assumption of concavity into the MTR and MTS assumptions

narrows the width of the bounds on  [ ()] by:X
≥

½
max

{0|≥0≥}

µ
 [|  = 0] + max

{|}

½
 [|  = 0]− [|  = ]

0 − 
(− 0)

¾¶
− [|  = ]

¾
× ( = )

+
X
≤

µ
 [|  = ]− min

{ 0|≤0≤}

½
 [|  = 0] + min

{|0}
 [|  = 0]− [|  = ]

0 − 
(− 0)

¾¶
× ( = )  (7)

The first term shows the increase in the lower bound, while the second term demonstrates

the decrease in the upper bound.

The sharp bounds on the average treatment effects ( [ (2)] −  [ (1)] for 1  2)

are given in Proposition 2. Figure 2 provides an example: When 2 = 0 ≥  and 1  2
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let  ( 2) be the sharp upper bound on  [ (2)|  = ] in Equation (6) (Point 0), and

let 1 (1  2) be the value of the function describing the line joining Points    

and 0 evaluated at 1. When 1  2 =     [|  = ] (Point ) is the sharp upper

bound on  [ (2)|  = ] in Equation (6). Let 2 (1  2) be the value of the function

describing the line joining Points   and  evaluated at 1.
2 Then, our sharp upper

bound on  [ (2)|  = ]−  [ (1)|  = ] is  ( 2)−1 (1  2) for 2 = 0 ≥ ; and

it is  [|  = ] − 2 (1  2) for 2 =    Using the law of iterated expectations, we

obtain the sharp upper bound on the average treatment effect.

Proposition 2 Let  be ordered. Let  = [0 ] for some  ∈ (0∞] and  = [0∞].
Assume that  (·),  ∈ , satisfies the assumptions of concave-MTR and MTS. Suppose (

 0     1 2) ∈  8. We extend the set of realized treatments and outcomes by including

( ) = (0 0), when there is no realized treatment of zero. We then define the following

functions:

(1) For  ≥  = :

 () = arg min
{|−1()}

 [|  = −1 ()]− [|  = ]

−1 ()− 
, for  = 1 2   () , (8)

where 0 () =  and  () satisfies () () = 0

(1.1) For  ≤  ≤ ,

1 (   ) =

⎧⎨⎩  [|  = ] + ()−[|=]
− ( − ) if   

 [|  = ] if  = 

(9)

where

 ( ) = min
{ 0|≤0≤}

½
 [|  = 0] + min

{|0}
 [|  = 0]− [|  = ]

0 − 
(− 0)

¾
. (10)

(1.2) For  () ≤   −1 () ( = 1 2   ()),

1 (   ) = 
£
|  = −1 ()

¤
+

 [|  = −1 ()]− [|  =  ()]

−1 ()−  ()

£
 − −1 ()

¤
.

(11)

(1.3) For   ,

1 (   ) =  ( )  (12)

2Proposition 2 provides precise definitions for the quantities  ( 2)  1 (1  2)  and 2 (1  2).
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(2) For    = :

 ( ) = arg min
{|}

 [|  = ]− [|  = ]

− 
, (13)

 ( ) = arg min
{|−1()}

 [|  = −1 ( )]− [|  = ]

−1 ( )− 
for  = 2 3  ( ) ,

(14)

where  ( ) satisfies () ( ) = 0.

(2.1) For  ( ) ≤  ≤    = ,

2 (   ) =  [|  = ] +
 [|  = ]− [|  =  ( )]

−  ( )
[ − ] . (15)

(2.2) For  ( ) ≤   −1 ( ) ( = 2 3  ( )),

2 (   ) (16)

= 
£
|  = −1 ( )

¤
+

 [|  = −1 ( )]− [|  =  ( )]

−1 ( )−  ( )

£
 − −1 ( )

¤
.

(2.3) For   ,

2 (   ) =  [|  = ]  (17)

Then, we obtain the following results:

(i) For 1  2,

0 ≤  [ (2)]− [ (1)]

≤
X
≤2

[ ( 2)−1 (1  2)] ( = )

+
X
2

{ [|  = ]−2 (1  2)} ( = ) . (18)

These bounds are sharp.

(ii) These bounds are narrower than or equal to the sharp bounds on the average treatment

effects obtained using only the concave-MTR assumption of Manski (1997), as well as those

obtained using only the MTR and MTS assumptions of Manski and Pepper (2000).



10

In appendix B, we prove Proposition 2.

Proposition 2 shows that our sharp upper bound on  [ (2)]− [ (1)] is attained when
1 (   2) is the mean response function of individuals whose realized treatment () is not

greater than 2 (i.e.,  [ ()|  = ] for  ≤ 2); and when 2 (   2) is the mean response

function of individuals whose realized treatment () is greater than 2 (i.e.,  [ ()|  = ]

for   2). The function 1 (   2) is a function in  describing the upper envelope

of the points ( [|  = ]) for all  ≤  and the point (2  ( 2)) (i.e., a function

in  describing the upper boundary of the convex hull for a set formed by these points).

The function 2 (   2) is a function in  describing the upper envelope of the points

( [|  = ]) for all  ≤ 2 and the point (2  [|  = ]).3 Therefore, the curves of the

functions 1 (   2) and 2 (   2) are close to linear between 1 and 2. Furthermore,

the value { ( 2) − 1 (1  2)}(2 − 1), which is an approximation of the slope of

1 (   2), is most probably below the estimated coefficient obtained in many previous

studies that have used linear regression (specifically, those in which the realized outcomes 

are regressed on realized treatments ).4

3We will now provide intuitive explanations of why the conditional-mean response functions 1(   2)
and 2(   2) satisfy the concave-MTR and MTS assumptions. The convex hull is the smallest convex set
containing elements. Because a convex set has a concave upper boundary, these functions are concave-MTR.

Because the convex hull for a set formed by ( [ | =  ]) for all  ≤  is included in the convex hull

for a set formed by ( [ | =  ]) for all  ≤ 0 and   0; and because ( 2) and  [ | =  ] both
weakly increase in , it follows that (   2) ≤ (  

0 2) for  = 1 2 and for   0. That is, the
functions 1(   2) and 2(   2) satisfy the MTS assumption. To illustrate, Figure 2 shows that when
2 = 0 the function 1 (   2) is a function describing the line joining Points     and 0; that
is, a function describing the upper boundary of the convex hull for the set of Points     and 0.
When 2 =  the function 2 (   2) is a function describing the line joining Points   and ; that
is, a function describing the upper boundary of the convex hull for the set of Points    and  These

functions are both concave-MTR and MTS.
4Manski (1995) and Manski and Pepper (2009) study the identifying power of the homogeneous linear

response (HLR) assumption and the exogenous treatment selection (ETS) assumption, which are imposed

on the OLS regressions. The HLR assumption asserts that  () =  +   where  is an unobserved

covariate and  is a slope parameter that takes the same value for all . The ETS assumption asserts that for

( 1 2) ∈  3  [ ()|  = 1] =  [ ()|  = 2]  Under the HLR and ETS assumptions, Manski (1995) and
Manski and Pepper (2009) identify  = { [|  = 2] −  [|  = 1]}(2 − 1) This  is not smaller than
{ ( 2) − 1 (1  2)}(2 − 1) because  ( 2) ≤  [|  = 2] and  [|  = 1] ≤ 1 (1  2) 
Also, under the HLR and MTS assumptions, which are more restrictive than the concave-MTR and MTS

assumptions, Manski and Pepper (2009) identify the sharp upper bound on  This upper bound is not greater
than { ( 2) − 1 (1  2)}(2 − 1) To illustrate, Figure 2 shows that when 2 = 0 and 1 =  the

quantity { ( 2)−1 (1  2)}(2− 1) is the slope of the line joining Points  and 0 The coefficient
 under the HLR and ETS assumptions is the slope of the line joining Points  and 0 The upper bound
on  under the HLR and MTS assumptions is the slope of the line joining Points  and 
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3 Estimation of Returns to Schooling

We use the 2000 wave of the US National Longitudinal Survey of Youth (NLSY), which is

representative of the US noninstitutionalized civilian population who were between the ages

of 14 and 22 in 1979. Like Manski and Pepper (2000), who use the 1994 wave of the NLSY,

we use a random sample of white men who reported that they were full-time, year-round

workers and not self-employed nor involved in a family business. The sample size is 1 221.

Their hourly rate of pay and realized years of schooling were observed. In our application

to returns to schooling,  represents the realized years of schooling;  () is the logarithm of

the hourly rate of pay a person  would obtain if he were to have  years of schooling; and

 =  () is the logarithm of the observed hourly wage.5 Therefore, the average treatment

effect,  [ (2)] −  [ (1)] for 1  2, is the expected return to completing 2 years of

schooling relative to 1 years.

Table 1 shows estimates of  (|) and  () for all samples. Forty percent of the NLSY

respondents have 12 years of schooling and 18 percent have 16 years of schooling. For the

most part, estimates of  (|) increase with . However, we find three decreases of the

estimates of  [|  = 2] from the estimates of  [|  = 1] for 1  2 when 2 is equal to

nine, ten, and nineteen years of schooling. The decreases conflict with the MTS and MTR

assumptions. Like Manski and Pepper (2000), who also find four decreases in their data, we

compute the uniform 95-percent confidence intervals for the estimates of  (|) and find that
the intervals contain everywhere monotone functions. Therefore, it appears that the MTS and

MTR assumptions are consistent with the empirical evidence. However, the upper bounds

in Equations (6) and (18) have the term min{|0} { [|  = 0]− [|  = ]}Á (0 − ),

which is negative when  [|  = 0] is a decrease. The upper bounds in these Equations are

likely to be underestimated, as compared to the case in which there is no decrease, because

this negative term affects the upper bounds in or after schooling years which show decreases.6

Therefore, we deal with the problem associated with the decreases as follows. First, to

5We exclude two individuals whose wages are less than one dollar. Thus, the support of  is [0∞].
6When there is a decrease from  [|  = 1] to  [|  = 2] (1  2), for all  1 and 2 such that

1 ≤  ≤ 2  ≤ 1, 2 ≤ 2, and 1  2, the terms of  ( 2) − 1 (1  2) in Equation (18) are
negative. Therefore, the decreases reduce the upper bounds on the returns to schooling not only for the

schooling years of the decreases, but also for the subsequent years. The decreases in nine and ten years of

schooling have a significant effect on estimates of the returns to schooling; however, the decrease in nineteen

years of schooling has little effect. When we implement subsampling to derive confidence intervals and the

bias-corrected estimates, we have decreases in the subsamples, with which we deal in the same way.
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deal with the anomalous wage decrease for individuals with nine or ten years of schooling,

compared to those with just eight, we exclude individuals with eight years of schooling.

Because of the small sample size, we also exclude individuals with seven years of school-

ing, following Manski and Pepper (2000). When the samples of seven and eight years of

schooling are included, the upper-bound estimates are smaller (see Footnote 12). Second, for

the decreases from  [|  = 1] to  [|  = 2] (1 and 2 are eighteen and nineteen years

of schooling, respectively), we replace (2  [|  = 2]) with (2  [|  = 1]), so that the

decreases are smoothed out.7

Table 2 reports estimates of the bounds on  [ ()] in Equation (6). The subsampling

method is utilized to derive a 90 percent confidence interval, with the 005 subsampling

quantile as the lower bound and the 095 subsampling quantile as the upper bound, as shown

in Table 2.8

For comparison, Table 3 reports (i) the estimates of the bounds using only the MTR and

MTS assumptions (i.e., the bounds in Manski and Pepper (2000)), and (ii) the estimates

of the bounds using only the concave-MTR assumption (i.e., the bounds in Manski (1997)).

Estimates of our bounds are much narrower than those of both Manski and Pepper (2000) and

Manski (1997). In particular, by adding the assumption of concavity to the MTR and MTS

assumptions, the widths of the estimated bounds on the mean treatment response  [ ()]

are reduced to three-quarters when  = 12 (high-school completion) and to half when  = 16

(college completion). Also, compared to Manski and Pepper’s (2000) estimates using only

the MTR and MTS assumptions, our lower-bound estimates are larger than their estimates

for lower years of schooling, while our upper-bound estimates are smaller than their estimates

for higher years of schooling. Equation (7) shows that when  is small, the first term (the

increase in the lower bound) dominates the reduction in the width of the bounds, whereas

when  is large, the second term (the decrease in the upper bound) dominates it.

Table 4 reports the estimates of the upper bounds on the average treatment effect,

 [ (2)] −  [ (1)] for 1  2 (denoted by ∆ (1 2)) in Equation (18), namely, the es-

timates of the returns to schooling. Our bound estimates and the 95 percent subsampling

7Alternatively, we replace { [|  = 0]− [|  = ]}Á (0 − ) in the upper bounds in Equations (6)
and (18) with ({ [|  = 0]− [|  = ]}Á (0 − )  0). This specification produces fairly similar
estimates to the specification which smooths out decreases.

8As Politis, Romano, and Wolf (1999) and Chernozhukov, Hong, and Tamer (2007) indicate, even if the
estimates of the bounds are asymptotically biased, the subsampling confidence intervals (reported in Tables

2, 3, 4, and 5) are still consistent.
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quantile are listed in Columns 1 and 2, respectively. Table 5 presents the bound estimates and

the confidence intervals using only the MTR and MTS assumptions of Manski and Pepper

(2000), as well as those using only the concave-MTR assumption of Manski (1997). As Man-

ski’s (1997) upper-bound estimates also decrease with years of schooling, our upper-bound

estimates decrease with years of schooling, because of the shared concave-MTR assump-

tion. Our upper-bound estimates are in the range of 0032 to 0254 for year-by-year returns

to schooling, except for ∆ (9 10). Our upper-bound estimates are only 7 to 57 percent as

large as those in Manski and Pepper (2000) and only 5 to 25 percent as large as those in

Manski (1997). Upper-bound estimates on local returns to college education (∆ (12 13),

∆ (13 14), ∆ (14 15), and ∆ (15 16)) are between 0076 and 0136. Upper-bound estimates

on ∆ (12 16) imply that the completion of four years of college yields, at most, an increase

of 0331 in mean log wage relative to the completion of high school. This implies that the

average yearly returns from completing four years of college is at most ∆ (12 16) 4 = 0083.9

As Manski and Pepper (2009) point out, when the  and  operations are used in

Equations (6) and (18), estimates of these bounds may suffer from finite-sample bias. This

bias makes bound estimates narrower than the true bounds. Kreider and Pepper (2007)

and Manski and Pepper (2009) propose a bias-corrected estimator which is based on the

bootstrap method; however, we incorporate a bias-corrected estimator which is based on the

subsampling method.10 Columns 4 and 8 in Table 2 report the bias-corrected bound estimates

of  [ ()].11 Column 3 in Table 4 reports the bias-corrected upper-bound estimates on the

average treatment effect. For the returns to college education, the bias-corrected estimates of

the bounds are between 0091 and 0152 for local returns and 0096 for the four-year average.

Therefore, both the bias-corrected estimates and the 95 percent subsampling quantile of the

bounds on the returns to schooling are still significantly smaller than the estimates of the

9The upper-bound estimates on the returns to college education using only the MTR and MTS assumptions

are between 0249 and 0386 for local returns and 0138 for the four-year average, while the estimates using
only the concave-MTR assumption are between 0608 and 0705 for local returns and 0608 for the four-year
average.
10Let  be the analog estimate of the bound and let 

∗ () be the mean of the estimates using the

subsampling distribution; then the subsampling bias-corrected estimator is
³
1 +

p


´
−

p
∗ (),

where  and  are the size of the sample and subsample, respectively (see Politis, Romano, and Wolf (1999)).
11Lower-bound estimates are corrected downward at lower years of schooling, and upper-bound estimates

are corrected upward at higher years of schooling, because when  is small (large), the lower (upper) bound

in Equation (6) is dominated by the second term, which has the  () operations.
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bounds in either Manski and Pepper (2000) or Manski (1997).12

Many empirical studies regress log wages on years of schooling by using OLS and IV

techniques and report various point estimates of the returns to schooling. Card (1999) shows

that these point estimates (using US data) are between 0052 and 0132. He also raises two

serious concerns about the credibility of these high returns to schooling.13 First, years of

schooling may be positively correlated with unobserved abilities, which bias OLS estimates

upward (the effect known as the ability bias). And although the IV technique is utilized often

in the existing empirical literature, the estimates obtained using the IV technique tend to

be greater than OLS estimates, despite the predictions made by the ability-bias hypothesis.

Second, almost all previous studies assume linear log-wage functions on years of schooling.

There is, however, little a priori reason to assume that log wage varies linearly with years of

schooling.

To address these two problems, we apply the MTS and concave-MTR assumptions. The

MTS assumption corrects the ability bias, in the sense of the mean-monotonicity of wages and

schooling. The concave-MTR assumption is consistent with conventional theories of human

capital accumulation. Estimates of the upper bounds on the returns to schooling under these

assumptions are within the range of the point estimates of previous research. When our

data and the OLS technique are used to regress log wages on years of schooling, the point

estimate on returns to schooling is 0101 (and the standard error is 00052). This estimate is

greater than the four-year average and some local returns of the bias-corrected upper-bound

estimates on college education in Table 4. Proposition 2 implies that the conditional-mean

response functions that attain our upper-bound estimates are the upper envelope of the

conditional means of realized outcomes. As a result, the upper-bound estimates are smaller

than the point estimates.14 Thus, our estimation results imply that higher point estimates

on returns to schooling in previous studies, particularly those utilizing the IV technique, are

12When the samples of seven and eight years of schooling are included, the upper-bound estimates on the

returns to schooling are in the range of 0055 to 0085 for the local returns to college education and 0058 for
the four-year average. The 95 percent subsampling quantile and the bias-corrected estimates are 0063−0112
and 0065− 0094 for the local returns, and 0071 and 0066 for the four-year average.
13Manski and Pepper (2000) and Belzil and Hansen (2002) also question the validity of these point estimates.
14Footnote 4 explains that the quantity ( 2) − 1(1  2) in Equation (18) is not greater than

(2 − 1) multiplied by the estimated slope-parameter of a linear response function under the HLR and ETS
assumptions. When 2 is large, the upper bound in Equation (18) is dominated by the first term, which
contains the terms of ( 2) − 1(1  2). Therefore, when 2 is large, the upper-bound estimates are

smaller than the point estimates.
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biased upward.

4 Conclusion

We identify sharp bounds on the mean treatment response and average treatment effect under

the assumptions of both the concave-MTR and MTS. Bounds on the returns to schooling

are estimated by utilizing our bounds and the NLSY data. Our upper-bound estimates of

returns to college education are 0076 to 0136 (0078 to 0173 for the 95 percent subsampling

quantile) for local returns and 0083 (0091) for the four-year average. Estimates of our

bounds are therefore substantially tighter than estimates using only the MTR and MTS

assumptions of Manski and Pepper (2000).

Our upper-bound estimates are also smaller than many point estimates reported in the

previous literature. In addition, other researchers have claimed that returns to schooling

have probably been overestimated as result of both the ability bias and misspecifications of

the wage function. Our estimation results now provide evidence that casts further doubt on

the validity of high average returns to schooling.

This approach can be applied to other important economic models that assume concave-

MTR and MTS. For example, the concave-MTR and MTS assumptions are consistent with

conventional production theory. Production theory often asserts that the output of a product

increases with input. This assertion has dual interpretations. The concave-MTR assumption

asserts that a production function weakly increases and marginal product weakly decreases

with input. The MTS assumption asserts that firms which select greater levels of output

have weakly greater average production functions than do those which select smaller levels of

output.15 Therefore, under the concave-MTR and MTS assumptions about the production

process, the bound approach in this paper could be applied to reveal the average produc-

tion function by estimating the average increase in a firm’s production as input increases:

 [ (2)]− [ (1)].

15Consider firm ’s concave-MTR production function  ()  where  is input,  is output, and  (0) ≥ 0
It is assumed that for all firms , realized input  is determined optimally where the marginal product equals

the marginal cost, 0 () =  (where  is the cost of input and the price of the output is set to unity). If

firm ’s production function has higher productivity than firm ’s, defined as 0 () ≥ 0 () for all  and

 (0) ≥  (0)  then  ≥  and  () ≥  ()
³
=
R 
0
0 () +  (0)

´
. It is reasonable to assume that

 [ ()| ] ≥  [ ()|  ] for  ≥  . In this case,  () satisfies the concave-MTR and MTS assumptions.
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5 Appendix

5.1 Appendix A: Proof of Proposition 1

Proof of Part (1):

For    :  [|  = ] =  [ ()|  = ] ≥  [ ()|  = ] by the MTR assumption.

 [ ()|  = ] ≥  [ ()|  = ] =  [|  = ] by the MTS assumption. Hence,

 [|  = ] ≥  [ ()|  = ] ≥  [|  = ]  (1)

Since  () is concave-MTR in  ∈  for all  ∈   [ ()|  = ] is concave-MTR in  .

Compare  [ ()|  = ] with the value of the function describing the straight line joining

the points ( [|  = ]) and ( [|  = ])  evaluated at 

Because Equation (1) holds and  [ ()|  = ] is concave-MTR in  , for  ≥   ,

 [ ()|  = ] ≤  [|  = ] +
 [|  = ]− [|  = ]

− 
(− ) ; (2)

and for  ≥   ,

 [ ()|  = ] ≥  [|  = ] +
 [|  = ]− [|  = ]

− 
(− ) . (3)

Since Equation (2) holds for any  which is smaller than  when  is not greater than ,

then for  ≥ ,

 [ ()|  = ] ≤  [|  = ] + min
{|}

 [|  = ]− [|  = ]

− 
(− ) . (4)

Similarly, since Equation (3) holds for any  which is smaller than  when  is not greater

than , then for  ≤ ,

 [ ()|  = ] ≥  [|  = ] + max
{|}

½
 [|  = ]− [|  = ]

− 
(− )

¾
. (5)

The MTS assumption implies that for all 0 ≥ ,  [ ()|  = ] ≤  [ ()|  = 0]. Also, for

all 0 ≤ , Equation (4) can be applied to the upper bound on  [ ()|  = 0] ; for 0 ≤ ,

 [ ()|  = 0] ≤  [|  = 0] + min
{|0}

 [|  = 0]− [|  = ]

0 − 
(− 0) .

Therefore, for  ≥ 

 [ ()|  = ] ≤ min
{0|≤0≤}

½
 [|  = 0] + min

{|0}
 [|  = 0]− [|  = ]

0 − 
(− 0)

¾
.

(6)
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Similarly, for  ≤ , by the MTS assumption and Equation (5)

 [ ()|  = ] ≥ max
{0|≥0≥}

µ
 [|  = 0] + max

{|}

½
 [|  = 0]− [|  = ]

0 − 
(− 0)

¾¶
.

(7)

Applying Equations (6) and (7) to the law of iterated expectations yields the second

terms of the upper and lower bounds, respectively, on  [ ()] in Equation (6).

Manski (1997) and Manski and Pepper (2000) show that under either the concave-MTR or

the MTS-MTR assumptions, for   ,

 [ ()|  = ] ≤  [|  = ] ; (8)

and for   ,

 [ ()|  = ] ≥  [|  = ] . (9)

Applying Equations (8) and (9) to the law of iterated expectations yields the first terms

of the upper and lower bounds, respectively, on  [ ()] in Equation (6).

These results thus yield the bounds on  [ ()] in Equation (6). 

Proof of Part (2):

To show that the bounds on  [ ()] in Equation (6) are sharp, it suffices to demonstrate

(i) that there exists a set of functions of  () for  ∈  that satisfy the concave-MTR and

MTS assumptions and that attain the upper bound, and (ii) that there also exists a set of

functions of  () for  ∈  that satisfy the concave-MTR and MTS assumptions and that

attain the lower bound.

(i) Proof of the existence of the functions  () for  ∈  that satisfy the concave-MTR

and MTS assumptions and that attain the upper bound:

The proof is organized in the following eight steps: Step 1 specifies functions [ ()|  = ]

for  ∈  Step 2 proves that these functions satisfy the concave-MTR assumption. Step 3

proves that these functions satisfy the MTS assumption. Steps 4 and 5 prove that these

functions are equal to  [|  = ] when  = . Steps 6, 7, and 8 prove that these functions

attain the upper bound in Equation (6).

Step 1: Define

 ( ) = min
{0|≤0≤}

½
 [|  = 0] + min

{|0}
 [|  = 0]− [|  = ]

0 − 
(− 0)

¾
. (10)
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For   , let the function  [ ()|  = ], for  ∈  , be:

min

µ
min

{|≤}
½
 [|  = e] +  (e )− [|  = e]

− e ( − e)¾   [|  = ]

¶
. (11)

For  ≥ , let the function  [ ()|  = ], for  ∈  , be:

 [|  = ]  (12)

Notice that the functions (10) (11) and (12) weakly increase in .  ( ) weakly

increases in , because in Equation (10) the object is minimized over the set {0 | ≤ 0 ≤ }
such that the set {0 |1 ≤ 0 ≤ } includes the set {0 |2 ≤ 0 ≤ } for 1 ≤ 2; the minimal

value over the former set is therefore not greater than that over the latter set. Similarly, the

function (11) weakly increases in , as does the function (12) the latter because of the

MTR and MTS assumptions.

Step 2: The function (11) satisfies the concave-MTR assumption, since by definition

its graph is the boundary of the convex hull, that is, the intersection of the subgraph of the

weakly increasing linear functions in  .16 The function (12) is concave-MTR in  .

Step 3: The functions (11) and (12) satisfy the MTS assumption, since these functions

weakly increase in .

Step 4: We will now prove that when    and  = , the function (11) is equal to

 [|  = ].

First, for  ≤ e  ,

 [|  = ] ≤  [|  = e] + min
{|}

½
 [|  = e]− [|  = ]e− 

¾
(− e) , (13)

since for   e  ,  [|  = ] =  [|  = e] + { [|  = e]− [|  = ]} (e− ) (− e) 
and for  = e,  [|  = ] =  [|  = e].
Second, for e  ,

min
{|}

 [|  = e]− [|  = ]e− 
≥  (e )− [|  = e]

− e  (14)

This is because by Equation (10),

 (e ) ≤  [|  = e] + min{|}{ [|  = e]− [|  = ]} (e− ) (− e).
Third, for  ≤ e  , by Equations (13) and (14),

 [|  = ] ≤  [|  = e] +  (e )− [|  = e]
− e (− e) . (15)

16The subgraph of  () is defined as { (  )|  ≤  ()}.
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By Equation (15), when    and  = , the function (11) is equal to min( [|  = ] 

 [|  = ]). Because  [|  = ] ≤  [|  = ]  it follows that the function (11) is equal

to  [|  = ], when    and  = .

Step 5: The function (12) is  [|  = ] when  ≥  and  = , because of its definition.

Step 6: We will now prove that when    and  = , the function (11) is equal to

 ( ); and that when  ≥  and  =  the function (12) is equal to  [|  = ].

When    and  =  the function (11) is equal tomin
¡
min{|≤}  (e )   [|  = ]

¢
.

Because  ( ) weakly increases in , min{|≤}  (e ) =  ( )  and  ( ) ≤
 ( ) =  [|  = ] for   . Hence, when    and  = , the function (11) is equal

to  ( ).

When  ≥  and  =  the function (12) is equal to  [|  = ] by its definition.

Step 7: In the case where the function  [ ()|  = ] is (11) for    and (12) for

 ≥ , it follows from Step 6 and the law of iterated expectations, and from the fact that

 ( ) =  [|  = ] for  = , that:

 [ ()] =
X


 [|  = ] ( = ) +
X
≤

 ( ) ( = )  (16)

The quantity (16) is the upper bound in Equation (6) Therefore, these functions attain

the upper bound in Equation (6)

Step 8: By combining Steps 1 to 7, we conclude that the functions (11) and (12)

satisfy the concave-MTR and MTS assumptions and attain the upper bound in Equation

(6). Hence, there exists a set of functions of  () for  ∈  that satisfy the concave-MTR

and MTS assumptions and that attain the upper bound in Equation (6).

For   ,  ( ) is the sharp upper bound on  [ ()|  = ]  and for  ≥ ,  [|  = ]

is the sharp upper bound on [ ()|  = ]. Hence, the sharp joint upper bound on { [ ()|  = ] 

 ∈ } is obtained by setting each of the quantities  [ ()|  = ]   ∈  at  ( ) for

   and at  [|  = ] for  ≥ . Therefore, the upper bound in Equation (6) is the sharp

upper bound on  [ ()].

(ii) Proof of the existence of the functions  () for  ∈  that satisfy the concave-MTR

and MTS assumptions and that attain the lower bound:

The proof is organized in the following five steps: Step 1 specifies the functions [ ()|  = ],

for  ∈  Step 2 proves that these functions satisfy the concave-MTR assumption. Step 3

proves that these functions satisfy the MTS assumption. Step 4 proves that these functions
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are equal to  [|  = ] when  = . Steps 5 and 6 prove that these functions attain the

lower bound in Equation (6).

Step 1: Define the following four functions: For  =  e  and  =  

0∗ ( ) = arg max
{ 0|≥0≥}

µ
 [|  = 0] + max

{|}

½
 [|  = 0]− [|  = ]

0 − 
(− 0)

¾¶
.

(17)

∗ ( ) = arg min
{|}

 [|  = 0∗ ( )]− [|  = ]

0∗ ( )− 
. (18)

 (   ) =  [|  = 0∗ ( )] +
 [|  = 0∗ ( )]− [|  = ∗ ( )]

0∗ ( )− ∗ ( )
[ − 0∗ ( )] 

(19)

 (   ) = min
{|≥ }min { (  e )   [|  = e]} . (20)

For  ≥ , let the function  [ ()|  = ] be

 (   )  (21)

For   , let the function  [ ()|  = ] be

min { [|  = ]   (   )} . (22)

Notice that for  ≥ , the function  (  ) in Equation (19)where  =  weakly increases

in  This is because in Equation (17) the object is maximized over the set {0 | ≥ 0 ≥ }
such that the set {0 |1 ≥ 0 ≥ } includes the set {0 |2 ≥ 0 ≥ } for 1 ≥ 2; the maximal

value over the former set is therefore not smaller than that over the latter set.  (  )

is the maximal value in Equation (17). Notice also that  (   ) weakly increases in .

This is because in Equation (20) the object is minimized over the set {e |e ≥ } such that
the set {e |e ≥ 1} includes the set {e |e ≥ 2} for 1 ≤ 2; the minimal value over the former

set is therefore not greater than that over the latter set.

Step 2: The functions (21) and (22) satisfy the concave-MTR assumption, since their

graphs are the boundaries of the convex hulls, and they weakly increase in  .

Step 3: The functions (21) and (22) satisfy the MTS assumption, since  (  )

and  [|  = ] weakly increase in 

Step 4: We will now prove that when  ≥  and  = , the function (21) is equal to

 [|  = ].
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First, for e ≥  ≥ , by Equations (17) (18) and (19) where  = e and  = 

 [|  = ∗ (e )] +  [|  = 0∗ (e )]− [|  = ∗ (e )]
0∗ (e )− ∗ (e ) [− ∗ (e )] =  ( e )

≥  [|  = ] +
 [|  = ]− [|  = ∗ (e )]

− ∗ (e ) (− )

=  [|  = ∗ (e )] +  [|  = ]− [|  = ∗ (e )]
− ∗ (e ) [− ∗ (e )] 

Therefore, for e ≥  ≥   ∗ (e ),
 [|  = 0∗ (e )]− [|  = ∗ (e )]

0∗ (e )− ∗ (e ) ≥  [|  = ]− [|  = ∗ (e )]
− ∗ (e ) ≥ 0. (23)

For e ≥  ≥   ∗ (e ), because of Equations (19) and (23),
 ( e ) =  [|  = ∗ (e )] +  [|  = 0∗ (e )]− [|  = ∗ (e )]

0∗ (e )− ∗ (e ) [− ∗ (e )]
≥  [|  = ∗ (e )] +  [|  = ]− [|  = ∗ (e )]

− ∗ (e ) [− ∗ (e )] =  [|  = ] 

(24)

Second, for e ≥ , because of the MTS-MTR assumption,

 [|  = e] ≥  [|  = ]  (25)

Hence, for  ≥ , Equation (20) where  =  and  = , and Equations (24) and (25)

imply that  (  ) =  [|  = ]  That is, when  ≥  and  =  the function (21) is

equal to  [|  = ].

Step 5: We will now prove that when    and  = , the functions (22) is equal to

 [|  = ].

First, for    ≤ 0∗ (e ) ≤ e by Equation (18) where  = e, 0 ≤ { [|  = 0∗ (e )] −
 [|  = ∗ (e )]} [0∗ (e )− ∗ (e )] ≤ { [|  = 0∗ (e )]− [|  = ]} [0∗ (e )− ] 

Thus,

 ( e ) ≥  [|  = 0∗ (e )] +  [|  = 0∗ (e )]− [|  = ]

0∗ (e )− 
[− 0∗ (e )]

=  [|  = ]  (26)

Second, for    ≤ e, Equation (25) holds.
By Equations (25) and (26),  (  ) ≥  [|  = ] 
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Therefore, when    and  =  the function (22) is equal to  [|  = ].

Step 6: We will now prove that the functions (21) and (22) attain the lower bound

in Equation (6). The proof is organized in the following five substeps: Substeps 6.1 to 6.3

prove that the function (21) is equal to  (  ), when  ≥  and  =  Substep 6.4

proves that the function (22) is equal to  [|  = ] when    and  =  Substep 6.5

uses the previous substeps and the law of iterated expectations to prove that the functions

(21) and (22) attain the lower bound in Equation (6).

Substep 6.1: Since the function  (  ) weakly increases in , for e ≥ ,

 (  ) ≤  ( e )  (27)

Substep 6.2: When  = e in Equations (17) and (18), e ≥ 0∗ (e ) ≥   ∗ (e ).
Therefore, the MTS-MTR assumption implies that  [|  = e] ≥  [|  = 0∗ (e )] and
 [|  = 0∗ (e )] ≥  [|  = ∗ (e )]. Hence, for e ≥ ,

 ( e ) ≤  [|  = e]  (28)

Substep 6.3: By Equations (20) where  =  and  = , and by Equations (27) and

(28), it follows that for  ≥ ,

 (  ) =  (  )  (29)

Hence, when  ≥  and  = , the function (21) is equal to  (  ).

Substep 6.4: The proof of Substep 6.4 will be constructed along lines that are similar to

the proofs of Substeps 6.1 to 6.3. For e ≥  because (i) Equations (17), (18), and (19)

hold, (ii)  (  ) weakly increases in  for  ≥ , and (iii) 0∗ ( ) = , it follows that:

 ( e ) ≥  (  ) =  [|  = ]  (30)

Also, for e ≥ 

 [|  = e] ≥  [|  = ]  (31)

By Equation (20) where  =  and  = , and by Equations (30) and (31),

 (  ) =  [|  = ]  (32)

For   

 [|  = ] ≤  [|  = ]  (33)
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Hence, by Equations (32) and (33), when    and  =  the function (22) is equal

to  [|  = ] 

Substep 6.5: When the function  [ ()|  = ] is (21) for  ≥  and (22) for   ,

by Substeps 6.3 and 6.4, together with the law of iterated expectations,

 [ ()] =
X


 [|  = ] ( = ) +
X
≥

 (  ) ( = )  (34)

The quantity (34) is the lower bound in Equation (6) Therefore, these functions attain

the lower bound in Equation (6)

Step 7: By combining Steps 1 to 6, we conclude that the functions (21) and (22)

satisfy the concave-MTR and MTS assumptions and attain the lower bound in Equation (6)

Hence, there exists a set of functions of  () for  ∈  that satisfy the concave-MTR and

MTS assumptions and that attain the lower bound in Equation (6).

For  ≥ ,  (  ) is the sharp lower bound on  [ ()|  = ]  and for   ,

 [|  = ] is the sharp lower bound on [ ()|  = ]. Hence, the sharp joint lower bound on

{ [ ()|  = ]   ∈ } is obtained by setting each of the quantities  [ ()|  = ]   ∈ 

at  (  ) for  ≥  and at  [|  = ] for   . Therefore, the lower bound in Equation

(6) is the sharp lower bound on  [ ()]. 

Proof of Part (3):

We will now prove that our bounds in Equation (6) are narrower than or equal to both

Manski’s (1997) bounds, as represented in Equation (3) above; and Manski and Pepper’s

(2000) bounds, as represented in Equation (5) above.

The first terms of the upper bounds in Equations (3), (5), and (6) are the same, and the

first terms of the lower bounds in these equations are also the same. Therefore, we will now

compare the second terms of the bounds in these equations.

(i) Comparison with the bounds in Manski (1997) (Equation (3)):

Because the set of realized treatments and outcomes includes ( ) = (0 0) and [0|  = 0] =
0, it follows that, for  ≤  :

min
{0|≤0≤}

½
 [|  = 0] + min

{|0}
 [|  = 0]− [|  = ]

0 − 
(− 0)

¾
≤  [|  = ] +

 [|  = ]


(− ) = 

h 


¯̄̄
 = 

i
; (35)
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and for  ≥ ,

max
{ 0|≥0≥}

µ
 [|  = 0] + max

{|}

½
 [|  = 0]− [|  = ]

0 − 
(− 0)

¾¶
≥  [|  = ] +

 [|  = ]


(− ) = 

h 


¯̄̄
 = 

i
. (36)

(The right-hand sides of Equations (35) and (36) are included in the brackets of the

left-hand sides of Equations (35) and (36), respectively, for the case where  = 0 and

0 = .)

Taking Equations (35) and (36) together with the law of iterated expectations implies

that the second term of the upper bound in Equation (6) is smaller than or equal to that in

Equation (3) and that the second term of the lower bound in Equation (6) is greater than

or equal to that in Equation (3). Therefore, our bounds in Equation (6) are narrower than

or equal to Manski’s (1997) bounds as shown in Equation (3).

(ii) Comparison with the bounds in Manski and Pepper (2000) (Equation (5)):

For  ≤ ,

min
{0|≤0≤}

½
 [|  = 0] + min

{|0}
 [|  = 0]− [|  = ]

0 − 
(− 0)

¾
≤  [|  = ] ;

(37)

and for  ≥ ,

max
{0|≥0≥}

µ
 [|  = 0] + max

{|}

½
 [|  = 0]− [|  = ]

0 − 
(− 0)

¾¶
≥  [|  = ] .

(38)

(The right-hand sides of Equations (37) and (38) are included in the case of 0 =  in

the brackets of the left-hand sides of Equations (37) and (38), respectively.)

Taking Equations (37) and (38) together with the law of iterated expectations implies

that the second term of the upper bound in Equation (6) is smaller than or equal to that in

Equation (5) and that the second term of the lower bound in Equation (6) is greater than

or equal to that in Equation (5). Therefore, our bounds in Equation (6) are narrower than

or equal to Manski and Pepper’s (2000) bounds as shown in Equation (5). 
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5.2 Appendix B: Proof of Proposition 2

Proof of Part (i):

The lower bound on [ (2)]− [ (1)] in Equation (18) holds because  () is monotone.
It is sharp because the hypothesis { (1) =  (2) =   ∈ } satisfies the concave-MTR
and MTS assumptions (since  [|  = ] increases in ).

In order to obtain the sharp upper bound on  [ (2)]− [ (1)], let us first obtain the

sharp upper bound on  [ (2)|  = ]− [ (1)|  = ].

For ( 1 2) ∈  3 in order to obtain the sharp upper bound on  [ (2)|  = ] −
 [ (1)|  = ], hold  [ (2)|  = ] fixed and minimize  [ (1)|  = ] subject to these

three conditions: (a) that the function  [ ()|  = ] for  ∈  traverses the three points

(2  [ (2)|  = ]), (1  [ (1)|  = ])  and ( [|  = ]); (b) that this function satisfies

the concave-MTR assumption; and (c) that this function satisfies the MTS assumption. This

yields the maximum of  [ (2)|  = ] −  [ (1)|  = ] as a function of  [ (2)|  = ].

Then maximize this expression over  [ (2)|  = ].

To implement this strategy, we use the following seven-step process: In Steps 1 and 2, we

set  [ (2)|  = ] at the sharp upper bound on  [ (2)|  = ]  In Steps 3 and 4, given

 [ (2)|  = ] which is equal to its sharp upper bound, we minimize  [ (1)|  = ] subject

to conditions (a), (b), and (c). Steps 1 to 4 therefore determine the value  [ (2)|  = ]−
 [ (1)|  = ]. In Step 5, we show that this value is greater than or equal to other values

 [ (2)|  = ] −  [ (1)|  = ] such that  [ ()|  = ] satisfies conditions (a), (b), and

(c). In Step 6, by combining Steps 1 to 5, we show the sharp upper bound on  [ (2)|  = ]−
 [ (1)|  = ]  In Step 7, we conclude that the sharp upper bound on  [ (2)]− [ (1)]

is the upper bound in Equation (18).

Step 1: Equations (6) and (8) in Appendix A and Equation (10) imply:

 [ (2)|  = ] ≤  ( 2) for  =  ≤ 2, (39)

and

 [ (2)|  = ] ≤  [|  = ] for 2   =  (40)

The proof of Part (2) of Proposition 1 in Appendix A implies that these upper bounds are

sharp.

Step 2: Set  [ (2)|  = ] at  ( 2) in Case (1) where  =  ≤ 2, and at  [|  = ]
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in Case (2) where 2   = . Then, find the minimal value of  [ (1)|  = ] subject to

conditions (a), (b), and (c). Steps 3 and 4 obtain these minimal values.

Step 3: The claim of this step is the following:

In Case (1) where  =  ≤ 2: Given  [ (2)|  = ] =  ( 2), then 1 (1  2) is

the minimal value of  [ (1)|  = ], subject to conditions (a), (b), and (c). We prove this

claim using four substeps: 3.1, 3.2, 3.3, and 3.4.

Substep 3.1: Proof that 1 (   2) satisfies condition (a):

Equation (9) implies that 1 (2  2) =  ( 2) and 1 (  2) =  [|  = ]  There-

fore, 1 (   2) traverses the three points (2  ( 2)), (1 1 (1  2))  and ( [|  = ]),

thereby satisfying condition (a). Note that  ( 2) =  [|  = ] if  = 2.

Substep 3.2: Proof that 1 (   2) satisfies condition (b):

When   2, by Equation (8) where  = 1 and Equation (14) where e =   = 2, and

 =  (), it follows that

0 ≤  ( 2)− [|  = ]

2 − 
≤  [|  = ]− [|  =  ()]

−  ()
. (41)

When  = 2, by Equation (9),

1 (2  2) =  [|  = ]  (42)

Because Equation (8) holds, +1 ()   ()  −1 ()  and  [|  = ] weakly increases

in , then for  ≤ 2 and  = 1 2   (),

0 ≤  [|  = −1 ()]− [|  =  ()]

−1 ()−  ()
≤  [|  = −1 ()]− [|  = +1 ()]

−1 ()− +1 ()
.

(43)

Now consider a triangle whose vertices are (−1 ()   [|  = −1 ()]), ( () 

 [|  =  ()]), and (+1 ()   [|  = +1 ()]), where +1 ()   ()  −1 ().

The slope of the line linking the two vertices (−1 ()   [|  = −1 ()]) and ( () 

 [|  =  ()]) and the slope of the line linking the two vertices (−1 ()   [|  = −1 ()])

and (+1 ()   [|  = +1 ()]) satisfy Equation (43). Then the slope of the line link-

ing the two vertices ( ()   [|  =  ()]) and (+1 ()   [|  = +1 ()]) satisfies the

following equation: for  ≤ 2 and  = 1 2   (),

0 ≤  [|  = −1 ()]− [|  =  ()]

−1 ()−  ()
≤  [|  =  ()]− [|  = +1 ()]

 ()− +1 ()


(44)
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And for   2, by Equation (12), the slope of 1 (   2) is zero.

Therefore, by Equations (41), (42), and (44), 1 (   2) is concave-MTR in  ∈  .



Substep 3.3: The proof that 1 (   2) satisfies condition (c):

Because of Equations (8), (9), and (11), the subgraph of 1 (   2) includes all observations

whose treatments are not greater than  (i.e., ( [|  = ]) for  ≤ ). Therefore, this

includes the segments linking any two of those observations. This result and Equation (11)

imply that for  ≤ 0 ≤  ≤ 2,

1 (  
0 2) ≤ 1 (   2)  (45)

Therefore, 1 (
0 0 2) ≤ 1 (

0  2) for 0 ≤ . The proof of Part (2) in Appendix A

shows that  ( 2) weakly increases in ; that is,  (
0 2) ≤  ( 2) for 

0 ≤ . Thus,

between 0 and 2, the function describing the segment linking the point (0 1 (0  2)) and

the point (2  ( 2)) = (2 1 (2  2)) is not smaller than the function describing the

segment linking the point (0 1 (0 0 2)) and the point (2  (0 2)). Hence, because

Equation (9) holds, and because 1 (   2) is concave-MTR in  , it follows that Equation

(45) holds for 0 ≤  ≤ 2 and 0 ≤  ≤ 2.

In addition, for 0 ≤  ≤ 2   , by Equation (12), Equation (45) holds.

Because Equation (45) holds for  ∈  , 1 (   2) is MTS. 

Substep 3.4: The claim of this substep is that given [ (2)|  = ] =  ( 2), 1 (1  2)

is smaller than or equal to the value  [ (1)|  = ] for any function  [ ()|  = ] which

satisfies the conditions (a), (b), and (c), identified previously. We divide Case (1) where

 =  ≤ 2 into two subcases: (1.1), where  =  ≤ 1  2 and (1.2), where 1   =  ≤ 2;

we then prove this claim for each of these two subcases.

Subcase (1.1), where  =  ≤ 1  2 : If the concave-MTR function  [ ()|  = ]

traverses the points (2  ( 2)) and ( [|  = ]), then for 1 ∈ [ 2), the value

 [ (1)|  = ] is not smaller than the value 1 (1  2) because the function 1 (   2)

for  ∈ [ 2) in Equation (9) describes the segment linking the points (2  ( 2)) and
( [|  = ]).

Subcase (1.2), where 1   =  ≤ 2 : For  () ≤ 1  −1 () ≤  ( =

1 2  ()), because the function [ ()|  = ] is concave-MTR, the value [ (1)|  = ]

is not smaller than the value of the function describing the segment linking the points
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(−1 ()   [ (−1 ())|  = ]) and ( ()   [ ( ())|  = ]), evaluated at 1. Because

 [ ()|  = ] is MTS,  [|  = −1 ()] ≤  [ (−1 ())|  = ] and  [|  =  ()] ≤
 [ ( ())|  = ]. Therefore, the value  [ (1)|  = ] is not smaller than the value

1 (1  2) because the function 1 (   2) for  ∈ [ ()  −1 ()) in Equation (11) de-
scribes the segment linking the points (−1 ()   [|  = −1 ()]) and ( ()   [|  =  ()]).

Therefore, the claim of this substep is true.

Combining Substeps 3.1 to 3.4, we conclude that in Case (1) where  =  ≤ 2 given

 [ (2)|  = ] =  ( 2), then 1 (1  2) is the minimal value of  [ (1)|  = ],

subject to conditions (a), (b) and (c).

Step 4: The claim of this step is the following:

In Case (2) where  =   2 : Given  [ (2)|  = ] =  [|  = ]  then 2 (1  2) is the

minimal value of  [ (1)|  = ], subject to conditions (a), (b), and (c) as specified earlier.

Like our proof of Case (1) in Step 3, we prove this claim using five substeps.

Substep 4.1: By Equations (15), (16), and (17), 2 (   2) traverses the points (2

 [|  = ]), (1 2 (1  2)) and ( [|  = ]), and therefore satisfies condition (a).

Substep 4.2: 2 (   2) satisfies condition (b).

Substep 4.3: 2 (   2) satisfies condition (c).

Substep 4.4: For 0 ≤ 2  , 1 (  
0 2) and 2 (   2) satisfy condition (c).

The proofs of Substeps 4.2, 4.3, and 4.4 can be constructed along lines that are similar to

the proof in Substeps 3.2 and 3.3 of Step 3 that 1 (   2) satisfies conditions (b) and (c).

(For the proof of Substep 4.4, we use the fact that for 0 ≤ 2  ,  (0 2) ≤  (2 2) =

 [|  = 2] ≤  [|  = ] to show that 1 (  
0 2) ≤ 2 (   2).)

Substep 4.5: The claim of this substep is that given  [ (2)|  = ] =  [|  = ]  it

follows that 2 (1  2) is smaller than or equal to the value of  [ (1)|  = ] for any

function  [ ()|  = ] which satisfies conditions (a), (b), and (c). We divide Case (2)

where  =   2 into two subcases: (2.1), where  ( 2) ≤ 1  2   = , and (2.2), where

 ( 2) ≤ 1  −1 ( 2) ≤ 2   =  ( = 2 3  ( 2)); we then prove this claim

for each subcase.

Subcase (2.1), where  ( 2) ≤ 1  2   = : Because the function  [ ()|  = ] is

concave-MTR and traverses the points (2  [|  = ]) and ( ( 2)   [ ( ( 2))|  = ]),

the value  [ (1)|  = ] is not smaller than the value of the function describing the segment

linking these two points, evaluated at 1. Because [ ()|  = ] is MTS, [|  =  ( 2)] ≤
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 [ ( ( 2))|  = ]. The function 2 (   2) for  ∈ [ ( 2)  2) describes the segment
linking the points (2  [|  = ]) and ( ( 2)   [|  =  ( 2)]). Therefore, the value

 [ (1)|  = ] is not smaller than the value 2 (1  2).

Subcase (2.2), where  ( 2) ≤ 1  −1 ( 2) ≤ 2   = : The value [ (1)|  = ]

is not smaller than the value 2 (1  2). The proof can be constructed along lines that

are similar to the proof in Subcase (1.2) of Substep 3.4.

Therefore, the claim of Substep 4.5 is true.

Combining Substeps 4.1 to 4.5, we conclude that given  [ (2)|  = ] =  [|  = ] 

then 2 (1  2) is the minimal value of  [ (1)|  = ], subject to conditions (a), (b), and

(c).

Step 5: In Steps 1 to 4, we have shown that when  ≤ 2 and  [ (2)|  = ] =  ( 2),

the maximum of  [ (2)|  = ] −  [ (1)|  = ] subject to conditions (a), (b), and (c)

is  ( 2) − 1 (1  2). Also, when   2 and  [ (2)|  = ] =  [|  = ], the

maximum of  [ (2)|  = ] −  [ (1)|  = ] subject to these conditions is  [|  = ] −
2 (1  2). In Step 5, we will show that these maxima are greater than or equal to

the maxima of  [ (2)|  = ]− [ (1)|  = ]  such that  [ (2)|  = ] is different from

 ( 2) for  ≤ 2 or it is different from [|  = ] for   2; and such that [ ()|  = ]

satisfies conditions (a), (b), and (c).

In Case (1) where  =  ≤ 2 : Suppose that we set  [ (2)|  = ] at a value which is

smaller than  ( 2). Let this value be   ( 2) where   ( 2)   ( 2). (Note

that  ( 2) is the sharp upper bound on  [ (2)|  = ] in Case (1) in Equation (39).)

Given [ (2)|  = ] =   ( 2), we will nowminimize [ (1)|  = ] such that [ ()|  = ]

satisfies conditions (a), (b), and (c). The process for obtaining the minimal value of [ (1)|  = ]

is similar to that in Step 3.

In Subcase (1.1), where  =  ≤ 1  2 : Given  [ (2)|  = ] =   ( 2), the

minimal value of  [ (1)|  = ] such that  [ ()|  = ] satisfies conditions (a), (b), and

(c) is the value of the function describing the segment linking the points (2   ( 2))

and ( [|  = ]), evaluated at 1. The function 1 (   2) for  ∈ [ 2) describes the
segment linking the points (2  ( 2)) and (  [|  = ]). Therefore, the maximum of

  ( 2)− [ (1)|  = ] subject to conditions (a), (b), and (c) is smaller than  ( 2)−
1 (1  2).

In Subcase (1.2), where 1   =  ≤ 2 : Given  [ (2)|  = ] =   ( 2), the
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minimal value of  [ (1)|  = ] such that  [ ()|  = ] satisfies conditions (a), (b), and

(c) is 1 (1  2). Therefore, the value   ( 2)−1 (1  2) is smaller than the value

 ( 2)−1 (1  2) 

Thus, in Case (1)  =  ≤ 2 :  ( 2)−1 (1  2) is greater than or equal to a value
 [ (2)|  = ]− [ (1)|  = ] for a function  [ ()|  = ] which satisfies conditions (a),

(b), and (c).

In Case (2), where  =   2 : Suppose that we set  [ (2)|  = ] at a value which

is smaller than  [|  = ]. Let this value be  ( 2) where  ( 2)   [|  = ].

(Note that  [|  = ] is the sharp upper bound on  [ (2)|  = ] in Case (2) in Equation

(40).) A process similar to that in Step 4 can now apply to obtain the minimal value of

 [ (1)|  = ] subject to conditions (a), (b), and (c), given  [ (2)|  = ] = ( 2).

In Subcase (2.1), where  ( 2) ≤ 1  2   =  : Given  [ (2)|  = ] =  ( 2),

the minimal value of  [ (1)|  = ] subject to conditions (a), (b), and (c) is not smaller

than the value of the function describing the segment linking the points (2 ( 2)) and

( ( 2)   [|  =  ( 2)]), evaluated at 1. The proof of this claim can be constructed

along lines that are similar to the proof of Subcase (2.1) in Substep 4.5. The function

2 (   2) for  ∈ [ ( 2)  2) describes the segment linking the points (2  [|  = ])

and ( ( 2)   [|  =  ( 2)]). Therefore, the maximum of  ( 2) −  [ (1)|  = ]

subject to conditions (a), (b), and (c) is smaller than  [|  = ]−2 (1  2).

In Subcase (2.2), where  ( 2) ≤ 1  −1 ( 2) ≤ 2   =  ( = 2 3  ( 2)):

Given  [ (2)|  = ] =  ( 2), the minimal value of  [ (1)|  = ] subject to condi-

tions (a), (b), and (c) is not smaller than the value 2 (1  2). The proof of this claim

can be constructed along lines that are similar to the proof in Subcase (2.2) of Substep

4.5. Therefore, the maximum value of  ( 2)− [ (1)|  = ] is smaller than the value

 [|  = ]−2 (1  2).

Thus, in Case (2), where  =   2 :  [|  = ]−2 (1  2) is greater than or equal

to a value  [ (2)|  = ] −  [ (1)|  = ] for a function  [ ()|  = ] which satisfies

conditions (a), (b), and (c).

Step 6: By combining Steps 1 to 5, we conclude the following:

In Case (1) where  =  ≤ 2 and 1  2,

0 ≤  [ (2)|  = ]− [ (1)|  = ] ≤  ( 2)−1 (1  2) . (46)
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In Case (2) where 1  2   = ,

0 ≤  [ (2)|  = ]− [ (1)|  = ] ≤  [|  = ]−2 (1  2) . (47)

These bounds are sharp.

Step 7: By Step 6, the sharp joint upper bound on { [ (2)|  = ]− [ (1)|  = ]   ∈ }
is obtained by setting each of the quantities  [ (2)|  = ]− [ (1)|  = ]   ∈  at its

upper bound in Equation (46) for  ≤ 2 and at its upper bound in Equation (47) for

  2 Therefore, by the law of iterated expectations, we conclude that the sharp upper

bound on  [ (2)]− [ (1)] is the upper bound in Equation (18). 

Proof of Part (ii):

We will now prove that our bounds in Equation (18) are narrower than or equal to the

bounds in Manski (1997) and Manski and Pepper (2000)

(1) Comparison with the bounds in Manski (1997):

The sharp bounds on the average treatment effects obtained using only the concave-MTR

assumption of Manski (1997) are:

0 ≤  [ (2)]− [ (1)] (48)

≤
X
≤2


h 


¯̄̄
 = 

i
(2 − 1) ( = ) +

X
2

½
 [|  = ]−

∙


2
1

¯̄̄̄
 = 

¸¾
 ( = ) .

We will now compare the upper bounds in Equations (18) and (48) using the two steps:

Step (1.1) compares the first terms of the upper bounds in Equations (18) and (48), and

Step (1.2) compares the second terms.

Step (1.1): For  ≤ 2, the function 1 (   2) is concave-MTR in  and traverses the

points (2  ( 2)) and
¡
() ()  

£
|  = () ()

¤¢
= (0  [|  = 0]) where [|  = 0] ≥

0; this follows from the proof of Part (i) and Equations (9) and (11). Then

1 (1  2) ≥  ( 2)

2
1 (49)

Because Equation (10) holds, the set of realized treatments and outcomes includes (0 0), and

 [0|  = 0] = 0, for  ≤ 2,

 ( 2) ≤  [|  = ] +
 [|  = ]


(2 − ) = 

h 

2

¯̄̄
 = 

i
 (50)

By Equations (49) and (50), for  ≤ 2,  ( 2)−1 (1  2) ≤  [|  = ] (2 − 1).
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Step (1.2): For   2, the function 2 (   2) is concave-MTR in  and traverses the

points (2  [|  = ]) and
¡
() ( )  

£
|  = () ( )

¤¢
= (0  [|  = 0]) where

 [|  = 0] ≥ 0; this follows fromEquations (15) and (16). Then2 (1  2) ≥  [(2) 1|  = ].

Thus, for   2  [|  = ]−2 (1  2) ≤  [|  = ]− [(2) 1|  = ] 

Therefore, by the law of iterated expectations, the upper bound in Equation (18) is smaller

than or equal to that in Equation (48).

(2) Comparison with the bounds in Manski and Pepper (2000):

The sharp bounds on the average treatment effects using only the MTR andMTS assumptions

of Manski and Pepper (2000) are:

0 ≤  [ (2)]− [ (1)] (51)

≤
X
1

{ [|  = 2]− [|  = ]} ( = ) +
X

1≤≤2
{ [|  = 2]− [|  = 1]} ( = )

+
X
2

{ [|  = ]− [|  = 1]} ( = ) .

We will now compare the upper bounds in Equations (18) and (51)

The upper bound in Equation (51) is equal to the upper bound on  [ (2)] minus the

lower bound on  [ (1)] in Equation (5). Proposition 1 shows that the bounds in Equation

(6) is narrower than or equal to the bounds in Equation (5). Therefore, the upper bound

on  [ (2)] minus the lower bound on  [ (1)] in Equation (6) is smaller than or equal

to the upper bound in Equation (51). Furthermore, as the proof of Part (i) shows, the

upper bound in Equation (18) is sharp; thereby, this upper bound is smaller than or equal

to the upper bound on  [ (2)] minus the lower bound on  [ (1)] in Equation (6). Hence,

the upper bound in Equation (18) is smaller than or equal to the upper bound in Equation

(51).17 

17Alternatively, this can be proven by using the following facts: (1) For   1,  ( 2) ≤  [|  = 2] be-
cause of Proposition 1, and 1 (1  2) ≥  [|  = ] because 1 (   2) is MTR in  and 1 (  2) =
 [|  = ]. (2) For 1 ≤  ≤ 2,  ( 2) ≤  [|  = 2], and 1 (1  2) ≥  [|  = 1] because
1 (   2) is MTS. (3) For   2, 2 (1  2) ≥  [|  = 1] because 2 (   2) is MTS.
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Note:  
Filled circles indicate the realized treatments and the conditional means of realized outcomes. 
Open circles indicate the latent treatments and the conditional means of latent outcomes. 
Open squares indicate the bounds on the conditional-mean treatment responses. 
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Figure 2 
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Note:  
Filled circles indicate the realized treatments and the conditional means of realized outcomes. 
Open circles indicate the latent treatments and the conditional means of latent outcomes. 
Open squares indicate the bounds on the conditional-mean treatment responses. 
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Table 1: Mean Log(Wages) and Distribution of Schooling

z E (y |z ) P (z ) Sample Size
7 2.228 0.006 7
8 2.541 0.016 20
9 2.449 0.019 23
10 2.515 0.017 21
11 2.637 0.020 24
12 2.722 0.404 493
13 2.954 0.070 86
14 2.975 0.087 106
15 3.062 0.038 46
16 3.247 0.181 221
17 3.266 0.038 46
18 3.386 0.051 62
19 3.358 0.025 31
20 3.393 0.029 35

Total 1 1221



Table 2: Upper and Lower Bounds on E [y (t )]: Assumptions of Concave-MTR and MTS

Estimate
0.05 

Subsampling 
Quantile

0.95 
Subsampling 

Quantile

Bias 
Corrected 
Estimate

Estimate
0.05 

Subsampling 
Quantile

0.95 
Subsampling 

Quantile

Bias 
Corrected 
Estimate

(1) (2) (3) (4) (5) (6) (7) (8)
t
9 2.449 2.126 2.809 2.449 2.953 2.929 3.112 2.931
10 2.558 2.440 2.936 2.509 2.954 2.931 3.119 2.931
11 2.665 2.606 2.991 2.616 2.957 2.933 3.120 2.934
12 2.767 2.734 3.012 2.734 2.961 2.935 3.121 2.940
13 2.834 2.801 3.040 2.806 3.000 2.947 3.121 2.991
14 2.871 2.847 3.062 2.843 3.041 2.956 3.128 3.044
15 2.905 2.880 3.082 2.879 3.084 2.961 3.140 3.100
16 2.937 2.910 3.101 2.915 3.108 2.965 3.158 3.131
17 2.946 2.922 3.106 2.923 3.129 2.973 3.185 3.155
18 2.953 2.926 3.110 2.931 3.150 2.979 3.216 3.180
19 2.953 2.929 3.111 2.931 3.170 2.983 3.237 3.205
20 2.953 2.929 3.112 2.931 3.189 2.984 3.262 3.230

Lower Bound on E [y (t )] Upper Bound on E [y (t )]



Estimate
0.05 

Subsampling 
Quantile

0.95 
Subsampling 

Quantile
Estimate

0.05 
Subsampling 

Quantile

0.95 
Subsampling 

Quantile
(1) (2) (3) (4) (5) (6)

t
9 2.449 2.126 2.809 2.952 2.904 3.005
10 2.513 2.025 2.835 2.954 2.903 3.005
11 2.631 2.350 2.912 2.958 2.908 3.011
12 2.711 2.652 2.771 2.963 2.912 3.016
13 2.834 2.745 2.923 3.072 2.982 3.161
14 2.844 2.765 2.920 3.083 2.979 3.181
15 2.876 2.789 2.973 3.138 2.993 3.303
16 2.937 2.882 2.991 3.262 3.169 3.358
17 2.940 2.879 2.999 3.279 3.036 3.512
18 2.953 2.900 3.005 3.385 3.174 3.601
19 2.951 2.902 3.005 3.359 3.041 3.704
20 2.952 2.904 3.005 3.393 3.087 3.697

Estimate
0.05 

Subsampling 
Quantile

0.95 
Subsampling 

Quantile
Estimate

0.05 
Subsampling 

Quantile

0.95 
Subsampling 

Quantile
(1) (2) (3) (4) (5) (6)

t
9 0.594 0.566 0.627 2.952 2.904 3.005
10 1.141 1.103 1.182 3.000 2.945 3.056
11 1.666 1.617 1.715 3.069 2.995 3.151
12 2.174 2.113 2.236 3.156 3.058 3.267
13 2.400 2.347 2.452 3.524 3.401 3.668
14 2.584 2.538 2.633 3.934 3.781 4.113
15 2.723 2.681 2.767 4.389 4.203 4.603
16 2.846 2.799 2.892 4.860 4.635 5.109
17 2.894 2.848 2.942 5.407 5.150 5.688
18 2.928 2.879 2.977 5.967 5.684 6.282
19 2.944 2.896 2.995 6.545 6.233 6.899
20 2.952 2.904 3.005 7.131 6.793 7.520

Table 3: Upper and Lower Bounds on E [y (t )]: 

Manski and Pepper's (2000) Bounds: Assumptions of MTR and MTS
Lower Bound on E [y (t )] Upper Bound on E [y (t )]

Manski's (1997) Bounds: Assumption of Concave-MTR
Lower Bound on E [y (t )] Upper Bound on E [y (t )]

  Manski and Pepper's (2000) Bounds and Manski's (1997) Bounds 



Table 4: Upper Bounds on Returns to Schooling: 

Estimate
0.95 

Subsampling 
Quantile

Bias Corrected 
Estimate

(1) (2) (3)
t 1 t 2

9 10 0.505 0.878 0.482
10 11 0.254 0.407 0.257
11 12 0.168 0.227 0.182
12 13 0.136 0.173 0.152
13 14 0.103 0.129 0.117
14 15 0.091 0.101 0.107
15 16 0.076 0.078 0.091
16 17 0.051 0.064 0.061
17 18 0.044 0.052 0.053
18 19 0.034 0.043 0.042
19 20 0.032 0.039 0.040

12 16 0.331 0.365 0.386

0.083 0.091 0.096Average Effect

Upper Bounds on ∆ (t 1 , t 2 )

  Assumptions of Concave-MTR and MTS



Estimate
0.95 

Subsampling 
Quantile

Estimate
0.95 

Subsampling 
Quantile

(1) (2) (3) (4)
t 1 t 2

9 10 0.505 0.839 1.500 1.528
10 11 0.445 0.941 1.023 1.050
11 12 0.332 0.619 0.789 0.817
12 13 0.361 0.470 0.705 0.734
13 14 0.249 0.380 0.656 0.685
14 15 0.295 0.484 0.627 0.658
15 16 0.386 0.514 0.608 0.639
16 17 0.341 0.585 0.601 0.632
17 18 0.445 0.682 0.597 0.628
18 19 0.406 0.754 0.595 0.627
19 20 0.442 0.753 0.594 0.627

12 16 0.551 0.662 2.430 2.555
0.138 0.165 0.608 0.639Average Effect

Table 5: Upper Bounds on Returns to Schooling: 

Upper Bounds on ∆ (t 1 , t 2 )
Manski and Pepper's (2000) Bounds Manski's (1997) Bounds

  Manski and Pepper's (2000) Bounds and Manski's (1997) Bounds




