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1 Introduction

Matching models are now widely applied in macroeconomic and microeconomic studies

of unemployment, but their empirical success remains controversial, as recent discus-

sion of the “unemployment volatility puzzle” has shown (Hall 2005a, Shimer 2005a,

Costain and Reiter 2008, Hagedorn and Manovskii 2008).1 The predominant conclu-

sion from these debates, advocated by Hall and Shimer,2 points to the effects of wage

rigidity (in new jobs) on job creation. Wage rigidity increases the procyclicality of

profits, amplifying fluctuations in hiring incentives and thus in vacancies and unem-

ployment. Alternatively, time variation in job separation rates has also been identified

as a margin that might drive unemployment fluctuations, by Mortensen and Nagypal

(2007a) and Fujita and Ramey (2009), among others; but these authors do not attempt

to explain why the separation rate varies. One theory that derives amplification en-

tirely from the separation margin is the “contractual fragility” mechanism of Ramey

and Watson (1997) and den Haan, Ramey, and Watson (1999). These papers stress

incentive problems as a way of enhancing the countercyclicality of separation rates,

arguing that in recessions, workers and firms may be forced to sever their relationships

because match surplus is insufficient to maintain incentive compatibility.

In this paper, we study the cyclical dynamics of a version of the Mortensen and

Pissarides (1994) model that incorporates aspects of both these approaches to labor

market volatility. As in Shapiro and Stiglitz (1984), we consider a moral hazard prob-

lem in which firms cannot perfectly monitor workers’ effort. Therefore, a firm-worker

pair bargain over match surplus subject to a no-shirking condition. This constraint

truncates the wage distribution from below, and since we assume the utility cost of

effort varies less than labor productivity, firms may have to pay workers a larger share

of match surplus in recessions, making profits more procyclical. Therefore, this form

of downward wage rigidity has the potential to amplify fluctuations in hiring. By the

same token, the incentive compatibility constraint may force firms to terminate jobs

that still have positive surplus, if this surplus is insufficient to prevent shirking. There-

fore, moral hazard also has the potential to cause a burst of inefficient separations

when a negative aggregate shock occurs.

1Recent surveys on the theory and applications of labor market matching models include Mortensen
and Pissarides (1999), Petrongolo and Pissarides (2001), Rogerson, Wright, and Shimer (2005), and
Yashiv (2007). Other empirical critiques of matching models, on grounds independent of “Shimer’s
puzzle”, include Cole and Rogerson (1999), Fujita (2004), and Ravn (2006).

2See also Gertler and Trigari (2008), Walsh (2005), and Krause and Lubik (2007).
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With its no-shirking condition, our model considers a form of real downward wage

rigidity that applies to new as well as continuing jobs, and microfounds it on informa-

tional frictions. Our form of wage rigidity is less extreme than that in models where

wage stickiness is imposed as an arbitrary constraint (like Shimer 2004 or Gertler and

Trigari 2008), but this is realistic, since empirically wage rigidity for new jobs appears

weak (Haefke, Sonntag, and van Rens 2008). Thus our goal here is not a new “solution”

for the unemployment volatility puzzle, but rather a qualitative and quantitative anal-

ysis of search and matching under one of the canonical structural models of rigid wages.

Several papers have studied the flip side of information asymmetry in labor relations,

namely firms’ private information about match productivity (Menzio 2005; Kennan

2008; Guerrieri, Shimer, and Wright 2008). Others have looked at moral hazard in

the steady state of the Mortensen-Pissarides model (Mortensen and Pissarides 1999,

Rocheteau 2001, Jansen 2001, Tawara 2008), or in a dynamic setup with exogenous

separation (Bruggemann and Moscarini 2007, Park 2007).3 However, we know of no

other study of the cyclical dynamics of a matching model with endogenous separation

subject to a no-shirking constraint, and we identify a number of effects absent in papers

that focus on steady states or on exogenous or efficient separation.4

Another ongoing controversy our model naturally addresses concerns the relative

importance of the hiring and separation margins for labor market fluctuations. Using

new data, Shimer (2005b) and Hall (2005b) argue that changes in separation rates

matter much less for unemployment dynamics than was previously thought; Fujita and

Ramey (2009) and Elsby, Michaels and Solon (2009) dispute this, arguing that inflows

into unemployment explain at least 35-40% of the rise in unemployment in US postwar

recessions. Either way, by taking both the hiring and separation margins seriously,

our model can confront a wider range of cyclical facts. As Figure 1 shows, hiring and

separation rates are strongly negatively correlated, and the separation rate rises in every

NBER-identified recession. Thus a complete understanding of the cyclical dynamics of

unemployment requires a model with endogenous job destruction, but full wage rigidity

is therefore a problematic assumption since it may imply inefficient separations that

ought to be prevented by renegotiation, as Barro (1977) pointed out. Our framework

takes this issue into account since it models the implications of information constraints

for wages and separation simultaneously, allowing for unlimited renegotiation.

3Park (2007) endogenizes temporary layoffs but treats permanent separation as exogenous.

4Mortensen and Nagypal (2007b) show that under certain conditions, efficient endogenous sepa-
ration implies unemployment dynamics that are observationally equivalent to the case of exogenous
separation. But under asymmetric information this is no longer true, since separation is inefficient
and workers’ surplus share varies.
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Moral hazard complicates the Mortensen-Pissarides framework, because it implies

that match surplus is unlikely to be a continuous function. Under full information,

separation only occurs when it is mutually beneficial, so surplus goes continuously

to zero at the separation threshold. But with unobservable effort, violation of the

no-shirking condition drives output suddenly to zero, making the surplus function

discontinuous. A related issue is that even fixing aggregate labor market conditions,

the separation problem of a firm-worker pair may have multiple solutions, because the

amount of surplus and therefore also the no-shirking constraint both depend on the

firm’s reservation thresholds. That is, if for any reason a marginal worker expects to

be fired more frequently, the firm will have to pay them more to induce effort, and

may therefore simply prefer to fire them. Due to this feedback between the reservation

strategy and the minimum incentive-compatible wage, contraction properties of the

original Mortensen-Pissarides model no longer apply. Nonetheless, using arguments like

those of Rustichini (1998), we show in Section 3 that there exists a unique maximal

surplus function and minimal vector of reservation thresholds that satisfy incentive

compatibility. By focusing on this unique pairwise-optimal equilibrium, we effectively

restrict attention to outcomes that are not subject to the Barro (1977) critique.

To preview our results, in Section 4 we show analytically in a simplified example

that moral hazard may, in theory, increase or decrease the variability of the separation

rate. If the probability of passing from boom to recession is sufficiently low, firms

will fire their least productive workers at the start of a recession, and the fraction

fired is increasing in the degree of moral hazard. But when the probability of passing

from boom to recession is higher, we obtain the opposite effect: greater moral hazard

decreases the spike of firing at the onset of a recession, and we calculate a parameter

threshold beyond which the reservation productivities collapse to a single value, so

that the separation rate is constant over the business cycle. We also show that greater

moral hazard increases the procyclicality of firms’ surplus share, which tends to make

hiring more variable.

In Section 5, we calibrate our model to U.S. data. Surprisingly, given the ambiguity

of the theoretical results, our quantitative findings are strong and robust: moral hazard

decreases cyclical labor market volatility, primarily by smoothing or even eliminating

fluctuations in the firing rate. The intuition behind this finding is a time-inconsistency

problem. In booms some marginal jobs survive that are destroyed when the economy

goes into recession. Since firms cannot commit to maintain these marginal jobs in the

future, they need to pay a higher flow of surplus to workers in these jobs to prevent

shirking. Hence, while the no-shirking constraint makes workers more expensive overall,

raising the reservation productivities and causing inefficient job churning, it especially
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affects the cost of marginal workers in booms. This is why it can push up the reservation

threshold for booms until it coincides with the threshold for recessions, at which point

all variation in separation rates is eliminated.

Thus the idea that incentive problems could amplify fluctuations of separation fails

in a calibrated dynamic model; in fact, the forward-looking nature of wage bargaining

actually reverses the result. Existing papers on “contractual fragility” missed this point

because they either analyzed the effects of a one-time shock to productivity, or, as in

Ramey and Watson (1997), assumed an i.i.d. idiosyncratic productivity component, so

that next period’s expected productivity is the same for all jobs. In contrast, in our

model idiosyncratic productivity is persistent, as in the data.5 The strong stabilizing

effect of moral hazard on separation rates means that our model makes no progress

on the unemployment volatility issue. Nonetheless, it is strikingly consistent with the

recent claims that unemployment variability is driven mostly by job creation, not by

job destruction. Moreover, because our model amplifies fluctuations in creation while

diminishing those of destruction, it also exhibits a robust Beveridge curve.

2 Model

This section describes a version of the Mortensen and Pissarides (1994) model with large

firms and imperfectly observable worker effort. Firms motivate workers by paying a

surplus on top of the reservation wage, and threatening to fire shirkers. Jobs are severed

when negative productivity shocks render them unprofitable.

2.1 Agents, preferences and technology

The economy is populated by a continuum of risk-neutral workers and firms. We

normalize the mass of workers to one and we assume the number of firms is infinitesimal

relative to the number of workers. Time is continuous and the infinitely-lived workers

and firms discount the future at the common rate r. Firms produce a unique final

good, using labor as the only input.

The lifetime utility of a worker is defined as∫ ∞
0

U(ct, ht)e
−rtdt =

∫ ∞
0

[ct + (1− ht)b] e−rtdt, (1)

where ct is consumption at time t, ht ∈ {0, 1} is the fraction of time devoted to work

and b is the constant value of leisure. Without loss of generality, we assume that

5For a recent analysis of U.S. plant-level productivity dynamics, see Abraham and White (2007).
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workers consume their entire income at all times; so when a worker is employed, ct

equals the wage, wt. In addition, an employed worker can set effort to zero (ht = 0),

which we will call “shirking”. Accordingly, the flow utility of a worker who exerts effort

is U(wt, 1) = wt, while that of a worker who shirks is U(wt, 0) = wt + b. Unemployed

workers enjoy leisure but receive no income, and so U(0, 0) = b.6

Firms have access to a constant-returns production technology. Each firm can

create a continuum of jobs, which are either vacant or filled by a worker; the output of

a filled job is Y (x, y, h) = (x+ y)h. Here x is a match-specific productivity process; its

realizations are observed by both the firm and the worker but not by anyone outside

the match. The second component y is an aggregate productivity process, common to

all jobs and observed by all agents. Finally, note that the flow output of a job drops

to zero whenever the worker shirks (h = 0).

We assume firms cannot monitor effort perfectly. A firm always observes its total

output, which reveals the average effort level of its many employees (formally a con-

tinuum). Also, any given individual worker’s effort level is observed at a fixed Poisson

rate ϕ per unit of time, but this observation is private and cannot be verified in court.

Therefore, at any point in time, a firm only observes the effort of an infinitesimal frac-

tion (formally, zero measure) of its workforce. Faced with this moral hazard problem,

firms can offer incentives by paying workers a surplus above their reservation wage,

if they can credibly commit to fire anyone caught shirking. That is, in a nontrivial

equilibrium,7 wages must satisfy an incentive compatibility constraint which ensures

that a worker’s value of exerting effort to avoid firing exceeds the value of shirking. We

will see that this no-shirking condition (NSC) may or may not bind in equilibrium.8

In the rest of this section we explain how this version of the shirking model can

be embedded into a standard matching model of unemployment with endogenous job

creation and destruction.

6The assumption that shirking delivers the same utility from leisure as unemployment is just a
normalization. See Section 2.4.1 for details.

7The model also has a trivial equilibrium in which firms create no jobs because they conjecture
that workers never accept jobs or always shirk. We ignore this uninteresting alternative.

8This contrasts with the equilibrium in Shapiro and Stiglitz (1984), where a firm can costlessly
adjust the size of its workforce, and therefore need not pay more than the wage at which the NSC binds.
But when there are labor market frictions, a matched pair enjoys a surplus, and the worker’s bargained
share of surplus may always or sometimes suffice to satisfy the NSC, depending on parameters.
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2.2 The productivity processes

After the creation of a match, its productivity is exposed to shocks. Shocks to the

idiosyncratic productivity component arrive at the Poisson rate λ. The new values

of x are i.i.d. draws from a distribution F with support [x, x̄] and density f . For

simplicity, we assume F is uniform, so that f(x) = (x̄− x)−1 on [x, x̄].9 Moreover, for

the moment we assume newly-formed firm-worker pairs start to produce at the top of

the distribution, with x = x̄. The alternative of random initial match productivity is

defined in Appendix B, and is one of the cases simulated in Section 5.

The shocks to the common component y represent exogenous fluctuations in aggre-

gate labor productivity. By assumption, y follows a Markov chain across N distinct

states yi, for i ∈ {1, 2, ..., N}, ordered with y1 denoting the lowest and yN the highest

possible realization. New draws arrive at Poisson rate µ, and the conditional proba-

bility of moving from yi to yj is denoted by Gyj |yi
. The Markov transition matrix can

thus be written as

G ≡

 Gy1|y1 Gy1|yN

...
GyN |y1 GyN |yN


where column j lists the probabilities of the N possible successors of state yj, implying

that each column sums to one. We assume that G is irreducible (so for all i and j, yi

can eventually be reached from yj), and that the matrix 1
2
(I + G) exhibits first-order

stochastic dominance.10

In equilibrium, sufficiently bad shocks to x or y will give rise to endogenous sepa-

rations. In addition, we assume that matches separate for exogenous reasons at rate

δ. All separations are permanent and there is no recall of previous offers.

2.3 Matching

Unemployed workers meet vacant jobs through a random matching technology. The

gross rate of meetings at time t, mt, is given by

mt = M(ut, vt) (2)

where ut is the mass of unemployed, vt is the mass of vacancies, and M is a constant-

returns function. Therefore, a worker’s probability of finding a matching opportunity,

9A uniform distribution is not essential; see our earlier working paper version.

10This assumption guarantees that the transitions of y from one moment to the next, which are
governed by (1− µdt)I + µGdt, exhibit first-order stochastic dominance.
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per unit of time, can be written in terms of tightness θt ≡ vt/ut as

p(θt) =
M(ut, vt)

ut
= M

(
1,
vt
ut

)
. (3)

Similarly, the probability that an open vacancy meets a potential match is

q(θt) =
M(ut, vt)

vt
= M

(
ut
vt
, 1

)
, (4)

so that p(θt) = θtq(θt).

2.4 The value of matching

We now state the Bellman equations that summarize match values for workers and

firms. For the moment we impose two restrictions on the equilibrium that are known

to be valid in related models (e.g. Mortensen and Pissarides 1994; Cole and Rogerson

1999). First, we assume that aggregate jump variables may depend on y and that

match-specific jump variables may depend on x and y, but that neither depends on

other state variables, like the unemployment rate or the cross-sectional distribution of

productivity in existing jobs. Second, we assume firms follow a reservation strategy,

summarized by an N -dimensional vector of reservation productivities R, with individ-

ual elements Ri ≡ R(yi). In other words, in aggregate state yi only jobs with x ≥ Ri

survive; the rest are destroyed. In Sections 4 and 5 we prove by construction that

equilibria of this form exist.

We first write the Bellman equations under the assumption that workers never

shirk; later we derive the NSC that guarantees this. Call the bargained wage w(x, y)

and let the value functions of employed and unemployed workers be W (x, y) and U(y),

respectively. For any pair (x, y) in the set C(R) ≡ {(x, yi) : x ≥ Ri}, which we will call

the continuation region of a match, the function W must satisfy:

rW (x, y) = w(x, y)+δ [U(y)−W (x, y)]+λ

[∫ x̄

R(y)

W (x′, y)f(x′)dx′ + F (R(y))U(y)−W (x, y)

]

+ µ

 ∑
y′:x≥R(y′)

Gy′|yW (x, y′) +
∑

y′:x<R(y′)

Gy′|yU(y′)−W (x, y)

 . (5)

This equation states that the flow of returns for a matched worker includes the wage

plus several flows of expected capital gains and losses: possible losses from separation

at rate δ, the gains from new idiosyncratic productivity draws x′ at rate λ, and the

gains from aggregate shocks that change the common productivity component from y

to y′ at rate µGy′|y. Conditional on an idiosyncratic shock, the separation probability
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is F (R(y)), while aggregate shocks cause separation whenever x lies below the new

reservation productivity R(y′).

Unemployed workers obtain a flow payoff b from leisure and meet vacant firms at

rate p(θ(y)). The asset value of an unemployed worker, U(y), thus satisfies:

rU(y) = b+ p(θ(y))NW (y) + µ
∑
y′

Gy′|y [U(y′)− U(y)] (6)

where NW (y) is the worker’s expected value gain from a new job offer. Since we assume

for now that new jobs are drawn from the top of the job distribution, the gain is

NW (y) = W (x̄, y)− U(y) (7)

and new jobs are always accepted in a nontrivial equilibrium.

Now consider the value functions associated with vacancies, V (y), and filled jobs,

J(x, y). Inside the continuation region, the value of a filled job satisfies the following

Bellman equation:

rJ(x, y) = x+y−w(x, y)+δ [V (y)− J(x, y)]+λ

[∫ x̄

R(y)

J(x′, y)f(x′)dx′ + F (R(y))V (y)− J(x, y)

]

+ µ

 ∑
y′:x≥R(y′)

Gy′|yJ(x, y′) +
∑

y′:x<R(y′)

Gy′|yV (y′)− J(x, y)

 (8)

which has an interpretation analogous to that of (5).

We assume that maintaining a vacancy costs c per unit of time. Accordingly, for

each possible y, the value of a vacancy must satisfy:

rV (y) = −c+ q(θ(y))NF (y) + µ
∑
y′

Gy′|y [V (y′)− V (y)] (9)

where q(θ(y)) is the matching rate for vacant jobs and NF (y) is a firm’s expected

increase in value upon matching. Since new jobs come from the top of the productivity

distribution, we have

NF (y) = J(x̄, y)− V (y). (10)

Lastly, we assume firms create jobs until the rents from vacant positions are exhausted,

so at any moment in time

V (y) = 0. (11)
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Next, we define match surplus as S(x, y) ≡ J(x, y) +W (x, y)−U(y)− V (y). Sum-

ming the previous Bellman equations and simplifying, we can derive the Bellman equa-

tion for the match surplus:11

(r+δ+λ+µ)S(x, y) = x + y − b − p(θ(y))NW (y) + λ

x̄∫
R(y)

S(x′, y)f(x′)dx′ + µ
∑

y′:x≥R(y′)

Gy′|yS(x, y′).

(12)

The division of this match surplus is determined in bilateral negotiations subject to

the no-shirking condition of workers.

2.4.1 The no-shirking condition

To derive the NSC, note that a rational worker will never shirk in state (x, y) if the

gain from shirking during a brief interval dt is less than the expected cost of a layoff

in case of detection. The logic also works in the opposite direction. If it pays to shirk

for a short time dt in state (x, y), then workers will always shirk in that state.

Formally, let W s(x, y) denote the value function of a worker who shirks during an

interval dt and who plans to exert effort thereafter. Using (5), we can express the

difference between W s(x, y) and W (x, y) as

r [W s(x, y)−W (x, y)] = bdt+ ϕdt[U(y)−W (x, y)] + o(dt) (13)

where o(dt) is a term that becomes negligible compared to dt as dt → 0. Dividing by

dt and taking the limit as dt→ 0, we find that workers never shirk in state (x, y) if12

W (x, y)− U(y) ≥ b

ϕ
. (14)

This condition needs to be satisfied at each point in time, as long as the match contin-

ues, since we assume away temporary layoffs.13 Finally, note that executing the threat

to fire an observed shirker (off the equilibrium path) is an equilibrium strategy for the

firm if failing to do so would cause all other workers to shirk. From the workers’ view-

point, this response is also an equilibrium strategy, because individual workers have

11See our previous working paper version for some of the algebraic details.

12Note that in the NSC, the levels of shirking utility and monitoring frequency are irrelevant; only
their ratio b/ϕ matters. Therefore there is no loss of generality in our assumption that the leisure
derived from shirking is the same as the leisure derived from unemployment.

13Alternatively, we could rule out temporary layoffs endogenously by by introducing a sufficiently
large maintenance cost for laid-off jobs. For an analysis of moral hazard in a model where temporary
layoffs occur in equilibrium but endogenous separation does not, see Park (2007).
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no way to prove that they are not shirking when all other workers stop exerting effort

(recall that the fraction of time a firm observes any given worker’s effort is negligible).

Thus, effort is sustained by two credible trigger strategies: firms’ threat to fire shirkers,

and the threat of a firm-wide breakdown of discipline if any shirker is not fired.

2.5 Wages and turnover

We are now ready to describe the wage bargain and firms’ turnover decisions. We make

two strong but helpful assumptions about bargaining. First, we assume the bargaining

outcome can be revised continuously at no cost on the initiative of the firm and/or the

worker. This means that the wage must solve a bargaining game at all points in time,

eliminating any indeterminacy about the time path of labor income.14 Second, in the

spirit of Barro (1977), we assume the firm and the worker play the equilibrium of their

bilateral game that is jointly optimal, thus eliminating any indeterminacy about the

result of their game. In the next section we show that this assumption makes sense—

that is, given the behavior of the rest of the economy, there exists an equilibrium of

the game played by a given worker-firm pair which both prefer to any other. Note that

we are not assuming optimality at the aggregate level: we are simply ruling out the

possibility that a given pair separate because they fail to recognize a feasible way to

improve both their payoffs through renegotiation.

Subject to these assumptions, match surplus is shared through incentive-constrained

Nash bargaining. That is, at all times, the wage w(x, y) maximizes the Nash product

[W (x, y)− U(y)]βJ(x, y)1−β (15)

subject to (14). In equilibrium, the surplus of a worker therefore satisfies

W (x, y)− U(y) = max [βS(x, y), b/ϕ] (16)

where β ∈ (0, 1) measures the relative bargaining strength of the worker. This wage rule

can be derived as the perfect equilibrium of an alternating offer game (e.g. Rocheteau

2001). It has the desirable feature that the moral hazard problem only affects wage

setting if the worker’s threat of shirking is credible. Whenever this is the case, the

14As in Macleod and Malcomson (1989), allowing either party to restart negotiation at any time
eliminates the possibility of upfront or delayed transfers from one party to the other, because these
would be made ineffectual by renegotiation. (Their paper obtained this result by assuming continuous
renegotiation and constant default payoffs; in our case it is a result of continuous renegotiation and
constant bargaining shares.)
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firm has two options: to raise the wage until the NSC is satisfied, or to sever the

relationship. Hence, in an ongoing relationship a firm’s surplus satisfies

J(x, y) = min [(1− β)S(x, y), S(x, y)− b/ϕ] , (17)

and a necessary condition for match continuation is

S(x, y) ≥ b/ϕ. (18)

3 Analysis

This section addresses several theoretical issues we have to understand in order to com-

pute our model. First, we show that there is a unique bilaterally-optimal reservation

policy for any firm-worker pair. Therefore it is meaningful to invoke the Barro (1977)

argument that pairs will only separate if it is jointly optimal to do so. Thereafter,

we describe the optimal surplus function and separation behavior and define general

equilibrium. Readers who wish to skip these technical issues may jump to Section 4,

where we solve the simpler case of just two aggregate states.

3.1 Partial equilibrium

Some previous papers have argued that match surplus sharing under an incentive

compatibility constraint may not pin down a unique bargain (Den Haan et al. 1999;

Mortensen and Pissarides 1999). The intuition is simple. For given aggregate labor

market conditions, workers’ match surplus depends negatively on the anticipated layoff

rate. Hence, if workers expect a rise in job destruction, a higher wage will be required

to ensure effort, but this reduces profits and so firms may choose to fire more fre-

quently, validating workers’ expectations. Thus, the non-cooperative choice of effort

and reservation thresholds creates scope for multiple equilibria.

However, contrary to appearances, this potential multiplicity relates to partial equi-

librium, not to general equilibrium. That is, it arises in the game played by a specific

firm-worker pair, taking as given aggregate market conditions. Moreover, we will now

show that for any aggregate conditions θ,NW ∈ RN
+ , there exists a unique bilateral

equilibrium reservation policy which the pair jointly prefers.

To analyze the pair’s separation behavior, we must look beyond Bellman equations

(5)-(12), which only describe values inside the continuation region C(R). Instead, we

now calculate the value T of continuing in an arbitrary state (x, y)— possibly outside of
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C(R)— until the next aggregate or idiosyncratic shock occurs.15 To be precise, suppose

that after any change in x or y, the worker and firm expect to follow a given reservation

strategy R, and they expect the value of their match to be S(x, y), where S is a given

non-negative function, weakly increasing in x and defined for x ≥ x. Then the value

of staying together temporarily can be calculated from (12) as follows:16

T (x, y;S,R, θ,NW ) ≡ (r + δ + λ+ µ)−1
[
x+ y − b− p(θ(y))NW (y)

+λ

∫ x

R(y)

S(x′, y)f(x′)dx′ + µ
∑

y′:x≥R(y′)

Gy′|yS(x, y′)]. (19)

Incentive compatibility remains satisfied as long as T (x, y;S,R, θ,NW ) is at least

equal to b/ϕ. But note that T itself depends on the reservation strategy R. Therefore,

given any candidate R, we can calculate a new reservation strategy R̃ as follows:

R̃(y) = min{x ≥ x : T (x, y;S,R, θ,NW ) ≥ b/ϕ}. (20)

The true reservation strategy associated with a given surplus function S must be a

fixed point of the mapping (20). We show in Appendix C that under weak regularity

conditions, a fixed point exists; moreover, there is an unambiguously lowest fixed point.

Like R, we can also think of the surplus S as the solution to a fixed point problem.

Inside C(R), surplus equals T ; outside, by definition, it is zero. But T depends on S.

Therefore given any candidate S, we can define a new surplus function S̃ as follows:17

S̃(x, y) =

{
0 for x < R(y)

T (x, y;S,R, θ,NW ) for x ∈ [R(y),∞)
(21)

The surplus function must be a fixed point of (21). The following proposition shows

that there is a unique fixed point of (21) which maximizes surplus; associated with it is

a unique, lowest possible vector of reservation productivities. In other words, for any

aggregate conditions, there is a unique reservation strategy that is jointly optimal for

the worker-firm pair.

15Echoing arguments from Section 2.4.1, the pair prefers to continue for an arbitrary length of time
in state (x, y) if and only if they prefer to continue in state (x, y) for a brief interval dt. So there is
no need to consider any off-equilibrium deviations other than the one analyzed here.

16Since for now we are only considering the partial equilibrium behavior of an individual pair, we
do not yet impose mutual consistency between S and R and θ and NW .

17It is convenient to define S for x ≥ x, even though these values of x never occur, because this
ensures that the “min” in (20) is always well-defined.
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Proposition 1. For any θ,NW ∈ RN
+ , there exists a unique pair S and R such that:

1. R is a fixed point of (20) given surplus function S.

2. S is a fixed point of (21) given reservation vector R.

3. If there exists another fixed point (S ′, R′) of (20)-(21), then R(y) ≤ R′(y) and

S(x, y) ≥ S ′(x, y) for all x and y.

Proof. See Appendix C.

The proof of Proposition 1 adapts Rustichini’s (1998) method for problems with

incentive constraints to address the bounding of R and S simultaneously.18 It con-

structs a monotone sequence Sj, for j ∈ {0, 1, 2, ...}, by iterating on (21). The initial

function S0 is weakly increasing in x and y. Mapping (21) obviously preserves mono-

tonicity in x, strengthening it to strict monotonicity on C(R). Given our first-order

stochastic dominance assumption for y, (21) also preserves monotonicity in y as long

as x+ y − b− p(θ(y))NW (y) is strictly increasing in y, meaning that for all i,

yi+1 − p(θ(yi+1))NW (yi+1) > yi − p(θ(yi))NW (yi). (22)

Finally, since the monotonicity properties of S are preserved at each step j, they

also hold in the limit, and this implies that the limiting reservation productivities are

increasing in y. Therefore we have the following corollary:

Corollary 1. Suppose that θ,NW ∈ RN
+ satisfy (22). Then the jointly optimal fixed

point pair (S,R) of (20)-(21) has the following properties:

1. Function S is strictly increasing in x for x ∈ [R(y), x].

2. Function S is weakly increasing in y.

3. The vector of reservation productivities R is weakly decreasing in y.

From here on, we will assume that (22) holds. Hence, arranging the reservation

productivities in ascending order we can write

RN+1 ≤ RN ≤ ... ≤ R1 ≤ R0 (23)

where we have defined RN+1 ≡ x and R0 ≡ x. Using this notation we can divide the

support of x into N + 1 (possibly empty) intervals of the form Ii ≡ [Ri, Ri−1), plus an

upper “interval” I0 ≡ {x} that contains newly created jobs. The monotonicity of the

reservation productivities implies that jobs with x ∈ Ii survive as long as y ≥ yi.

18In the absence of moral hazard, existence of a unique solution to the Bellman equation for the
surplus function can be proved using the contraction mapping theorem. But here, the discontinuity
in mapping (21) means that it fails to be a contraction.
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3.2 Characterizing the surplus function

Next, we characterize the solution to (12), noting that the the surplus function is

piecewise linear, with jumps at the endpoints of the intervals defined in (23).

Inside the intervals Ii, equation (12) permits us to differentiate the surplus function

with respect to x:

(r + δ + λ+ µ)
∂S(x, y)

∂x
= 1 + µ

∑
y′:x≥R(y′)

Gy′|y
∂S(x, y′)

∂x
. (24)

Notice that this equation contains just one value of x. Therefore, the equations on any

segment Ii can be solved independently from those on all the other segments, and the

possible existence of empty segments is irrelevant for the solution. The equations for

the slopes on segment Ii can be simplified as follows: ∂S(x,yi)
∂x

· · ·
∂S(x,yN )

∂x

 = ((r + δ + λ+ µ) I − µG′i)−1

 1
· · ·
1

 . (25)

where I is an identity matrix of order N + 1 − i and Gi is the matrix formed from

rows and columns j ≥ i of G (that is, the last N − i+ 1 rows and columns of G). An

inspection of (25) demonstrates that for each i ∈ {1, 2, . . . , N}, the surplus function

S(x, yi) gets steeper as x approaches the top of the productivity distribution. The

reason is that jobs with high realizations of x are relatively stable over the cycle. By

contrast, jobs in the interval IN are destroyed after any negative shock, so the revenues

from these fragile jobs are discounted at a higher rate.

The fact that the slope of S increases as we move right across intervals Ii is a stan-

dard property of models with endogenous separations. The novel feature introduced

by moral hazard is the presence of discontinuities in the surplus function. As equation

(21) shows, surplus S(x, yi) must be discontinuous at x = Ri because an infinitesimal

reduction in x would make the match unsustainable, implying a loss of at least b/ϕ.

Moreover, the prospect of future inefficient separations also causes a jump at Ri in all

higher states yj ≥ yi. The size of these “secondary” jumps depends on the probability

that the economy will enter aggregate state i at some point in the future.

To be more precise, for any i and j define the jump in the surplus function S(x, yj)

at x = Ri as

∆(Ri, yj) ≡ lim
dx→0

S(Ri + dx, yj)− S(Ri − dx, yj).

If there is continuation on both sides of Ri in state j, we can use (12) to calculate the

following formula for the jump:

(r + δ + λ+ µ)∆(Ri, yj) = µ
∑

y′:R(y′)≤R(yi)

Gy′|yj
∆(Ri, y

′). (26)
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Since ∆(Ri, yi) ≥ b/ϕ and G is irreducible, (26) implies that the jumps ∆(Ri, yj) at

points in the interior of C(R) are nonzero as long as there is moral hazard (that is, as

long as b/ϕ > 0).

Next, consider the jump in surplus associated with a marginal job, ∆(Ri, yi). Bear-

ing in mind our assumption that matched pairs play their jointly optimal equilibrium,

two things may occur at the reservation productivity Ri for any state i. First, suppose

the segment Ii = [Ri, Ri−1) is non-empty. Then the jump in S(x, yi) at x = Ri cannot

exceed b/ϕ, because if it did, the firm and worker would benefit from continuing at some

strictly lower productivity x − dx, and could do so without violating the NSC (recall

that T (x, yi;S,R, θ,N
W ) is continuous everywhere except at the reservation productiv-

ities). On the contrary, if the segment Ii is empty, then the surplus of the marginal job

can exceed b/ϕ. The possibility of an empty interval arises because S(x, yi) is discontin-

uous at Ri−1, so there may be a situation in which T (Ri−1 + dx, yi;S,R, θ,N
W ) > b/ϕ

while T (Ri−1 − dx, yi;S,R, θ,N
W ) < b/ϕ for any arbitrarily small value of dx. In

this case the reservation productivities of states i and i − 1 collapse, Ri = Ri−1. The

reason is that in state i, jobs with productivity marginally less than Ri−1 would be too

short-lived to generate a surplus of at least b/ϕ.

In sum, it cannot be the case that ∆(Ri, yi) exceeds b/ϕ when Ri is distinct from

Ri−1, a fact which can be summarized as a set ofN complementary slackness conditions:

dRidSi ≡ (Ri −Ri−1)

(
S(Ri, yi)−

b

ϕ

)
= 0 (27)

Equivalently, we can combine (27) with the match surplus equation (12), to obtain the

following the job destruction conditions:

(r+δ+λ+µ)
b

ϕ
≤ Ri + yi − b − p(θ(yi))N

W (yi) + λ

x̄∫
Ri

S(x′, yi)f(x′)dx′ + µ
∑

yj :Ri≥Rj

Gyj |yi
S(Ri, yj)

(28)

with equality if i = 1 or if Ri < Ri−1 strictly.

3.3 General equilibrium

So far, we have analyzed the behavior of a matched pair as a function of the produc-

tivities (x, y). To define general equilibrium, it suffices to ensure that tightness and

the value of searching for new jobs are consistent with the representative pair’s surplus

function and continuation behavior:
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Definition 1. A no-shirking equilibrium can be summarized by a surplus function

S(x, y), a vector R of reservation productivities, a tightness vector θ, and a vector of

new job values NW that satisfy the following conditions:

1. For each y, the surplus function satisfies (12) for x ∈ [R(y), x], and S(x, y) = 0

for x ∈ [x,R(y)).

2. For each y, the surplus function satisfies the job destruction condition (28) at the

reservation productivity R(y).

3. Labor market tightness θ(y) and the new job value NW (θ) are given by

c = q(θ(y)) min {(1− β)S(x, y), S(x, y)− b/ϕ} , (29)

NW (y) = max {βS(x, y), b/ϕ} . (30)

To calculate equilibrium we solve a root-finding problem to find numbers dRi and dSi,

for i ∈ {1, 2, . . . , N}, consistent with this definition. See Appendix A for details.

Finally, after calculating S, NW , θ and R, it is straightforward to simulate employ-

ment and productivity dynamics because θ(y) and R(y) jump immediately to their new

equilibrium values each time a shock hits the economy. Formally, let et(Ii) denote the

measure of employed workers with productivity in the set Ii at time t and let et = 1−ut
denote total employment. These employment aggregates evolve as follows:19

det(I0) = p(θ(yt))utdt− λet(I0)dt (31)

det(Ii) =

{
[(F (Ri)− F (Ri−1))et − et(Ii)]λdt when yt+dt ≥ yi

− et(Ii) when yt+dt < yi
(32)

dut = −det = −
N∑
i=0

det(It) (33)

where we have dropped all terms negligible relative to dt. Equation (31) defines the

evolution of the mass of jobs in the top productivity interval I0. Over a brief interval dt,

the economy creates p(θ(yt))utdt new jobs, and the outflow from I0 is λet(I0)dt. These

jobs continue if they draw a new x satisfying x ≥ R(y), and are destroyed otherwise.

The mass of continuing jobs evolves according to (32). In the absence of aggregate

shocks the mass et(Ii) evolves smoothly towards a conditional steady state, but et(Ii)

drops abruptly to zero if the aggregate productivity component falls below yi.

19We briefly abuse notation by subscripting y in an inconsistent but hopefully transparent way.
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4 Example: two aggregate states

Worker moral hazard can be expected to distort both the hiring and separation margins;

shortly we will quantify its effects in an example calibrated for the U.S. But before

moving to the numerical analysis, we want to anticipate some of these effects in a

simple example with two aggregate states, booms and recessions, and a symmetric

aggregate transition matrix:

G ≡
[

0 1
1 0

]
We set δ = 0, so there are only endogenous separations, and assume that new jobs

start at the top of the distribution, with productivity x.

Mortensen and Pissarides (1994) showed that an economy of this type generates

counter-cyclical fluctuations in job destruction when effort is perfectly observable. By

continuity, this will still be true in the presence of a small amount of moral hazard.

Hence, firms will have a core of stable jobs (with x ∈ [R1, x)) that survive through

booms and recessions, and in a boom they will also build up a fringe of fragile jobs

(with x ∈ [R2, R1)) which will be destroyed when the economy enters a recession.

4.1 Two states: calculating the surplus function

From Section 3.2 we know that the surplus function is piecewise linear, with slopes given

by (25). If there is no moral hazard problem, so that b/ϕ = 0, then the surplus function

is continuous, as illustrated in Figure 2a; this is the model analyzed by Mortensen and

Pissarides (1994). With moral hazard, there are also discontinuities at the reservation

productivities, given by formula (26). Simplifying (25) and (26), we can state the

surplus function as follows in terms of the reservation thresholds:

S(x, y1) =
x−R1

r + λ
+
b

ϕ
. (34)

S(x, y2) =


x−R2

r+λ+µ
+ b

ϕ
for x ∈ [R2, R1)

x−R1

r+λ
+ R1−R2

r+λ+µ
+ r+λ+2µ

r+λ+µ
b
ϕ

for x ∈ [R1, x]
(35)

Fig. 2b illustrates this discontinuous surplus function (it reduces to Fig. 2a if b/ϕ = 0).

In recessions the surplus has slope 1
r+λ

. In contrast, in booms it has slope 1
r+λ+µ

to the

left of R1 and 1
r+λ

to the right of R1. Intuitively, a marginal increase in idiosyncratic

productivity x is less valuable in the interval of “fragile” jobs, because the match is

not expected to last so long as it would if it lay in the “stable” interval.
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Table 1: Firing rates and surplus flows required by NSC (assuming R2 < R1)

Fragile jobs Stable jobs
Recessions
Current firing rate ∞ λF (R1)
Expected firing rate n.a. λF (R1)
Required surplus flow n.a. (r + λF (R1))b/ϕ

Booms
Current firing rate λF (R2) λF (R2)
Expected firing rate µ+ λF (R2) λF (R1)
Required surplus flow (r + µ+ λF (R2))b/ϕ (r + λF (R2))b/ϕ

According to (35), the jump in the surplus function for booms, S(x, y2), that occurs

at the stability threshold R1, must equal

∆(R1, y2) =

(
µ

r + λ+ µ

)
b

ϕ
(36)

which is the expected loss of surplus associated with separation in case of a future re-

cession. However, this jump formula depends only on the degree of moral hazard, not

on the productivity difference between booms and recessions. Therefore, (35) cannot

be satisfied under all conceivable parameter values, and a different equilibrium con-

figuration will arise as moral hazard increases, in which the reservation productivities

collapse to a single value. At R1, in order to have R2 < R1 strictly, it must be the

case that S(x, y2)− S(x, y1) ≥ µb/ϕ
r+λ+µ

. Otherwise, if booms cause only a small upward

shift in the surplus function (small relative to the degree of moral hazard, b
ϕ

), firms

will find it unprofitable to maintain workers with x < R1 in booms. This possibility is

illustrated in Figure 2c.

4.2 Two states: characterizing fluctuations in separation

The possibility that the reservation productivities may collapse in the presence of moral

hazard arises because workers in fragile jobs are particularly hard to motivate. To see

this, consider Table 1, which compares separation rates across various situations, and

analyzes their implications for the wage required to prevent shirking.

As the table shows, current firing rates are higher in recessions for all jobs than

they are in booms. Fragile jobs separate immediately in recessions (indicated as an

infinite firing rate in the table), and while the recession continues stable jobs separate

at rate λF (R1), which is at least as high as the separation rate in booms, λF (R2),

since R2 ≤ R1. However, what matters for incentives is the expected rate of firing,

taking into account the fact that the state may change. For fragile jobs in booms the
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expected firing rate is µ+λF (R2), which factors in the rate µ at which booms end. In

contrast, for marginal jobs in recessions the expected rate of firing equals the current

rate λF (R1), regardless of µ.

This difference in expected firing rates affects the no-shirking condition, which says

that workers must expect to earn b/ϕ above the value of unemployment over the life

of their jobs. In flow terms this means the wage must be high enough to generate

the per-period flows of surplus shown in the bottom row of each section of the table.

Note that if µ is close to zero, the required surplus flow in marginal jobs is higher in

recessions than in booms (because F (R1) ≥ F (R2)). This makes marginal workers

more expensive in recessions, which raises R1 even further relative to R2. Therefore,

when µ ≈ 0, including moral hazard in the model makes separation more variable, by

causing a larger wave of firing at the start of any recession.

However, when µ is sufficiently large, this argument is reversed. In particular, for

µ ≥ λ(F (R1)−F (R2)), the expected duration of marginal jobs is shorter in booms than

in recessions. This forces firms to pay marginal workers a higher flow surplus in booms,

encouraging them to fire more in booms, and thus tends to make the difference in the

reservation productivities smaller. In fact, when µ is sufficiently large relative to other

parameters, firms will raise R2 until it coincides with R1. Then the separation rate will

be constant over the cycle; there will no longer be any fragile jobs, and there will be

no burst of firing when a recession occurs. In Appendix D, we perform a comparative

statics analysis of R2−R1 in terms of y2− y1 to derive the following criterion for time

variation in the separation rate.

Proposition 2. Consider the two-state case, assuming y2 − y1 is small, and that b/ϕ

is small enough so that βS(x, yi) ≥ b/ϕ for each i. Then R2 cannot be strictly less

than R1 unless the following inequality is satisfied:

µb/ϕ

r + λ+ µ
<

y2 − y1

r + λF (R) + βqθ/(1− α)

Thus, separation varies countercyclically if the transition rate from booms to re-

cessions is low relative to the productivity difference between booms and recessions,

or if there is no moral hazard; otherwise it collapses to a constant rate.20 This way

in which moral hazard decreases the volatility of separation is obviously missed by

any analysis that considers steady states only. It is also absent in the discrete-time

model of Ramey and Watson (1997), because they assume idiosyncratic shocks have

no persistence, which means no jobs are more ‘fragile’ than any others.

20The fact that we are assuming only two aggregate states is not essential for this result, because the
calculation just involves comparing the probability of transition between two neighboring aggregate
states with the productivity gap between those states. A similar argument can be made about the
possible collapse of two or more neighboring reservation thresholds when there are many aggregate
states, and even as we go to the limit of a continuous aggregate productivity distribution.
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Table 2: Fluctuations in workers’ initial surplus share

Constant shares Countercyclical worker share Rent rigidity
b/ϕ < βS(x, y1) βS(x, y1) < b/ϕ < βS(x, y2) βS(x, y2) < b/ϕ

Worker share (recessions) βS(x, y1) b/ϕ b/ϕ
Worker share (booms) βS(x, y2) βS(x, y2) b/ϕ
Amplification of hiring? No Yes Yes

4.3 Two states: characterizing fluctuations in hiring

By raising the reservation thresholds, the NSC decreases the expected duration of all

jobs. Therefore it decreases match surplus, and hiring incentives, both in recessions

and booms. But the degree to which hiring is reduced varies over time, especially

since the NSC causes surplus shares to vary with the cycle. Table 2 shows how our

current example, with two aggregate states and new jobs at the top of the distribution,

generates three possible sharing regimes for the surplus of new jobs.

In the zero moral hazard case of Mortensen and Pissarides (1994), workers obtain a

constant share β of initial match surplus. By continuity, this remains true for a small

degree of moral hazard b/ϕ. As moral hazard increases, the NSC may eventually bind in

new jobs. Since surplus is monotonic in y, the NSC must bind on new jobs in recessions

before booms, that is, βS(x, y1) < b/ϕ < βS(x, y2), which implies that newly hired

workers will receive an efficiency wage in recessions and a bargained wage in booms.

This makes worker’s surplus share countercyclical, and firms’ share procyclical. Finally,

moral hazard may be so severe that new jobs receive an efficiency wage even in booms,

βS(x, y2) < b/ϕ, which requires firms to pay workers the same rent b/ϕ in recessions

and booms,21 and makes firms’ surplus share even more procyclical than the previous

case. Thus in the last two cases, moral hazard tends to amplify fluctuations in job

creation: firms profit more from hiring in booms both because aggregate productivity

is higher and because they receive a higher share of match surplus.

4.4 Two states: wage compression

Another way moral hazard affects newly-created jobs is by compressing wages across

those jobs, as we now show. We have emphasized how a binding NSC truncates the

wage distribution from below, to maintain surplus at or above b/ϕ. But in fact, the

NSC implies a degree of wage rigidity even when it is not binding. The reason is simple:

in their initial negotiations, workers and firms foresee the possibility that the NSC will

21Bruggemann and Moscarini (2007) have referred to this extreme case as ‘rent rigidity’.
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bind in the future. When it binds, the worker’s share of the flow proceeds will exceed

β, so these redistributive effects must be undone during the initial negotiations.

To see this, let x̂i denote idiosyncratic productivity level at which βS(x̂i, yi) = b/ϕ.

Assuming for a moment that µ = 0, and that x̂i < x for i = 1, 2, we can derive the

following expression for initial wages:

w(x, yi) = (1− β)rU(yi) + β(x+ yi)− λ
∫ x̂i

R(yi)

b/ϕ− βS(x′, yi)

x− x
dx′

The first two terms represent the bargained wage in the absence of moral hazard, and

the last term is an implicit transfer from the worker to the firm which compensates for

the fact that the the worker will earn more than βS(x, yi) whenever x falls below x̂i.

This shows that the NSC compresses the cross-sectional wage distribution, for a

given aggregate state. But the wage distribution is also compressed over time by a

similar mechanism. For example, suppose that βS(x, y1) < b/ϕ < βS(x, y2), the case

of countercyclical surplus shares. Then the wage in booms equals

w(x, y2) = (1−β)rU(y2)+β(x+y2)−λ
∫ x̂2

R(y2)

b/ϕ− βS(x′, y2)

x− x
dx′−µ

[
b

ϕ
− βS(x, y1)

]
This equation shows that the worker makes two implicit transfers to the firm. As

before, the integral term is a transfer which serves to compensate the firm for the

possibility that may x fall below x̂2 in the future. The last term is a transfer that

compensates the firm for the fact that it will need to pay the worker an efficiency wage

if the economy enters into a recession.

5 Calibrated results

Section 4 showed that moral hazard amplifies hiring volatility by causing time variation

in firms’ share of surplus, and that it affects the volatility of separation in an ambiguous

way, depending on the size and frequency of aggregate shocks. We now wish to look

at these effects quantitatively, and explore how all margins of labor market volatility

are affected by moral hazard when the model is calibrated to U.S. data.

5.1 Data and calibration

Relevant moments from U.S. data are reported in Table 3. The series for unemployment

(u), vacancies (v), and average productivity (ȳ) are taken from the FRED database;
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Table 3: Summary statistics, quarterly U.S. data, 1951:1-2006:2

u v θ p s y

Mean 0.0565 0.0610 0.926 1.350 0.0808 —
Standard deviation 0.193 0.197 0.374 0.164 0.0667 0.0164
Autocorrelation 0.941 0.945 0.946 0.910 0.623 0.864
Correlations

u 1 -0.886 -0.958 -0.946 0.577 -0.259
v — 1 0.976 0.920 -0.536 0.170
θ — — 1 0.962 -0.581 0.202
p — — — 1 -0.461 0.194
s — — — — 1 -0.421
y — — — — — 1

tightness is θ = v/u.22 The data on the probability of job finding (p) and separation

(s) are the series used in Shimer (2007).23 To compute the second moments the data

are logged and HP filtered with a smoothing parameter of 105, as in Shimer (2005).

The recent debate on labor market volatility mainly stresses the cyclical behavior

of the job finding rate p and the unemployment rate u. In the data p is roughly

10 times as volatile as productivity, and fluctuations in p explain a large part of the

fluctuations in u. Like p, vacancies v are also very volatile and strongly negatively

correlated with unemployment. Nonetheless, Table 3 clearly indicates that the job

finding rate is not the only relevant margin of adjustment. The rate at which workers

enter unemployment, s, is more than 4 times as volatile as y and is negatively correlated

with p and y. In line with this evidence, Fujita and Ramey (2009) estimate that job

destruction accounts for at least a third of the fluctuations in u.

With exogenous separation, it is straightforward to identify the matching param-

eters from the means of various labor market flows. Calibration is more difficult if

separation is assumed to be driven by match-specific productivity shocks, so that labor

flows depend on the parameters of the shock processes in complex ways. Where we

cannot calculate parameters directly from observables, our calibration strategy largely

follows that of Pissarides (2007).

22The unemployment series is UNRATE, the unemployment rate of persons aged 16 and over, which
has mean u∗ = 0.0565 in our sample; the vacancy series is HELPWANT, the Conference Board’s series
of help-wanted advertising; and productivity is OPHNFB, output per hour in nonfarm business. The
series were downloaded from http://research.stlouisfed.org/fred2/.

23Robert Shimer (2007) pointed out that it is important to correct for time aggregation bias when
calculating transition probabilities from data on unemployment stocks. We use the corrected series
that he constructed. The data from June 1967 and December 1975 were tabulated by Joe Ritter and
made available by Hoyt Bleakley. For additional details, please see Shimer (2007) and his webpage
http://robert.shimer.googlepages.com/flows.
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Our targets for θ, p, s and u come directly from Shimer’s data. In his series, mean

matching rates for workers and jobs are p∗ = 1.35 and q∗ = 1.25 per quarter, so mean

tightness is θ∗ ≡ p∗/q∗ = 0.9259. The mean rate at which employed workers separate

is s∗ = 0.0808 per quarter. Shimer also pointed out that if matching has constant

returns, and all new jobs are accepted, then regressing the job finding rate on tightness

gives the elasticity of matches with respect to vacancies. In our data this coefficient

is 0.42, so for the matching function mt = m0vt
1−αuαt we need α = 0.58, and we can

deduce m0 from p∗ = m0(θ∗)1−α. We then parameterize bargaining so that Hosios’

efficiency condition is satisfied in the absence of moral hazard, β = α.

Our model postulates both an exogenous separation rate δ and an endogenous rate

λF (R). Findings in Davis, Haltiwanger, and Schuh (1996, Chap. 2.5) offer a possible

way to separate these two components. In their quarterly data, job reallocations rep-

resent only 32%-53% of worker reallocations (and they cite other studies of matched

worker-firm data in which this fraction is roughly 40%). Since vacancies are filled

quickly, they argue that quarterly changes in a firm’s workforce must mainly reflect

changes in its demand for labor, rather than workers’ responses to individual factors.

We feel that the idiosyncratic productivity variations in our model are best interpreted

as changes in firms’ need for specific types of labor, and we therefore map the frac-

tion of endogenous separations into the ratio of job reallocation to worker reallocation.

Taking this to be 40%, we have δ = 0.6s∗ and λF (R) = 0.4s∗.

No more parameters can be inferred directly from observed steady state labor mar-

ket flows. In particular, endogenous separation is the product of λ and F (R), neither

of which is easily observable. We finish the calibration following Pissarides (2007), who

assumes idiosyncratic shocks are uniformly distributed and arrive at a quarterly rate of

λ = 0.1. Writing the support of these shocks as [1− ε, 1 + ε], steady state endogenous

separations are

λ

(
R− (1− ε)

2ε

)
= 0.4s∗ (37)

Also, Pissarides uses Hall’s (2006) calibration that the worker’s cost of labor b is 71%

of average productivity, which requires24

b = 0.71
1 + ε+R

2
(38)

assuming that the aggregate shock process y has mean zero.

24Here we compute b as a fraction of the average x after a job is hit by a shock. This measures
average productivity exactly if the initial productivity of a job is drawn from F . When jobs start
at the top of the distribution, as we assume here, average productivity is a weighted average of the
productivity of new and continuing jobs, but the difference is small for realistic parameter values.
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Table 4: Calibrated parameters for the U.S.: efficient benchmark

Parameter Value Source
moral hazard b/ϕ 0 Efficiency
matching parameter mo 1.394 CPS; Shimer (2005)
matching elasticity α 0.580 CPS; Shimer (2005)
tightness θ 0.926 CPS; Shimer (2005)
bargaining power β 0.580 Hosios condition
leisure value b 0.720 Hall (2005); calibrated
exogenous destruction rate δ 0.048 CPS; Davis et al. (1996)
risk free rate r 0.010
vacancy cost c 0.217 calibrated
uniform distribution F [x− x]/[x− x]
domain [x− x] [0.948,1.052] calibrated
arrival rate λ 0.100 Pissarides (2007)
arrival rate µ 1 normalization

Our parameterization must also be consistent with the job creation and job destruc-

tion conditions governing steady state flows. These equations depend on the match

surplus, which is

S(x) =
x−R

r + δ + λ
+
b

ϕ

in steady state. Using this surplus function, the productivity x̂ at which the NSC just

starts to bind is given by

x̂ = min

{
1 + ε, R +

1− β
β

(r + λ+ δ)
b

ϕ

}
.

Then, using the fact that w′(x) = β for all x ≥ x̂, and assuming new jobs start with

the maximum productivity x = 1 + ε, the job creation condition can be written as

c(θ∗)α

m0

=
(1− β)(1 + ε) + βx̂−R

r + δ + λ
(39)

Likewise, the reservation threshold R must satisfy the job destruction condition.

This condition depends on the worker’s flow value of search, pNW , which is

pNW = m0θ
1−α max

{
b

ϕ
, β

(
b

ϕ
+

1 + ε−R
r + λ+ δ

)}
if jobs start with maximum productivity. The job destruction condition is then

R = b+ pNW − y + (r + δ + λF (R))
b

ϕ
− λε

r + λ+ δ
(1− F (R))2 (40)

Plugging in x̂ and pNW , equations (37)-(40) jointly determine ε, b, c, and R condi-

tional on λ, b/ϕ, and the interest rate r. We initially calibrate the model abstracting
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Table 5: Simulated moments: efficient benchmark calibration

Variable
u v θ p s y

Mean 0.0595 0.0548 0.9260 1.2751 0.0806 —
Standard deviation 0.0751 0.0351 0.0561 0.0223 0.0798 0.0172
Autocorrelation 0.722 0.416 0.850 0.851 0.268 0.845
Correlations

u 1 0.697 -0.889 -0.884 0.758 -0.891
v — 1 -0.307 -0.299 0.662 -0.312
θ — — 1 0.994 -0.588 0.995
p — — — 1 -0.559 0.992
s — — — — 1 -0.597
y — — — — — 1

from moral hazard (b/ϕ = 0), and then explore how it behaves as we raise b/ϕ. Table

4 shows the implied parameterization if we set quarterly rates r = 0.01 and λ = 0.1 (as

in Pissarides, 2007). Finally, to match the standard deviation and quarterly autocorre-

lation of our U.S. labor productivity data we set µ to one and we assume that y takes

nine evenly-spaced discrete values spanning plus or minus two standard deviations,

setting the probabilities by Tauchen’s method.

5.2 Results

In Table 5 we report the implications of our efficient benchmark model for the same

moments shown in Table 3.25 As can be seen, the shocks to y generate roughly 40%

of the observed volatility in unemployment. However, the separation rate is more

volatile than in the data, whereas fluctuations in p account only for 13.6% of the

observed volatility in the job finding rate. Hence, a disproportionately large share of

the fluctuations in u are driven by changes in the job destruction rate.26

An even more striking failure of the benchmark model is its prediction for the

correlation between unemployment and vacancies. In the data these variables have a

strong negative contemporaneous correlation, (with an even stronger correlation be-

tween vacancies and the one-quarter lag of unemployment, not shown in the table).

25Since the model is defined in continuous time, the simulations are performed with short periods
(two weeks) after an appropriate rescaling of the parameters. Simulation results in Tables 5-11 are
generated by simulating 1000 histories of 240 quarters, discarding the first 40 quarters, so that the
remaining 200 quarters correspond roughly to the length of the U.S. post-war period.

26Mortensen and Nagypál (2007b) report similar results. They also obtain a countercyclical vacancy
rate but they do not discuss the implications for the Beveridge curve correlation.
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Our model instead generates a strong positive contemporaneous Beveridge correlation.

As explained in previous studies, this counterfactual result is due to a so-called “echo

effect” (e.g. Fujita, 2004). The spike in ut at the start of a recession immediately

causes a spike in vt since the large inflow into unemployment makes it easy for firms

to locate workers. Furthermore, the model generates much less persistence in ut and

vt than is observed in the data.

While our one-shock model generates an excessive correlation between the job find-

ing probability and productivity, its search and matching setup does a good job with

the negative correlation between job finding and separation. It is particularly success-

ful in predicting that separation leads job finding by one quarter. In the data the

negative correlation between separation and job finding increases from -0.461 contem-

poraneously to -0.602 with a one-period lead in separation; in the model it increases

from -0.559 to -0.664 (only the contemporaneous correlations are shown in the table).

Effects of worker moral hazard in the benchmark economy

We now study the effects of a gradual increase in b/ϕ when all other parameters are

held constant at their benchmark values. The results are reported in Table 6. The first

two columns contain the data for the U.S. and our efficient benchmark and in the rest

of the table we report a subset of moments for five increasing degrees of moral hazard.

The values of b/ϕ are chosen so that they span all the surplus sharing cases described

in Table 2, from constant shares to ‘rent rigidity’.

Theoretically, Section 4 suggested that introducing moral hard might amplify or

smooth the cyclical fluctuations in separation. But this calibration exercise sug-

gests that the overwhelming quantitative effect of moral hazard is to make separation

smoother. The log standard deviation σs decreases monotonically as we raise b/ϕ, and

beyond a value of 0.05 firms choose the same reservation productivity in all nine aggre-

gate states, so that the separation rate is constant. On the other hand, the standard

deviations of p and u follow an inverted-U pattern in response to the changes in b/ϕ.

The initial reduction in σp reflects the losses from inefficient churning which is more

intense in good states than in bad states. The reason that the volatility of p picks up

suddenly in the last column is that at this level of moral hazard, job creation is driven

by the NSC in all nine states. Hence, the data reported in the last column correspond

to an efficiency wage model in which the workers earn a constant rent b/ϕ in all jobs.27

The implied procyclicality of firms’ surplus share substantially increases the volatility

27At any given point in time the cross-sectional wage distribution is degenerate because all workers
earn the same wage, but the variance of the wage is non-zero because the efficiency wage moves along
the cycle.
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Table 6: Effects of worker moral hazard in the benchmark economy

Data Model
Mean 0 0.01 0.02 0.05 0.1 0.2
u 0.0565 0.0595 0.0620 0.0645 0.0699 0.0764 0.0902
θ 0.9260 0.9260 0.9258 0.9255 0.9240 0.9208 0.0892
p 1.3500 1.2760 1.2760 1.2758 1.2749 1.2732 1.2565
s 0.0808 0.0806 0.0842 0.0879 0.0957 0.1053 0.1245

Standard deviation
y 0.0164 0.0172 0.0174 0.0176 0.0177 0.0177 0.0176
u 0.1934 0.0751 0.0554 0.0381 0.0196 0.0194 0.0292
v 0.1974 0.0351 0.0225 0.0237 0.0376 0.0377 0.0586
θ 0.3737 0.0561 0.0561 0.0560 0.0557 0.0555 0.0852
p 0.1637 0.0223 0.0223 0.0222 0.0221 0.0220 0.0339
s 0.0667 0.0798 0.0539 0.0303 0 0 0

Correlations
(vt, ut) -0.8841 0.6974 0.1667 -0.6143 -0.8740 -0.8756 -0.8662
(ut, yt) -0.2532 -0.8909 -0.9125 -0.9355 -0.9412 -0.9416 -0.9071
(pt, st) -0.4608 -0.5590 -0.5503 -0.5300 −−− −−− −−−

of p. Nonetheless, this effect is too weak to compensate the initial fall in σu; in the

last column the standard deviation of p is 52% higher than in the efficient benchmark,

but the standard deviation of u is down to 0.0292 which is just to 15% of the volatility

observed in the data.

One noteworthy improvement in the performance of the model is the change in the

sign of the Beveridge curve. In the last three columns of Table 6 the model replicates the

strongly negative correlation between u and v. But even for a minimum employment

surplus of 0.02 (10% of the efficient value of NW (y9)) the model is able to generate a

Beveridge curve relationship with a corr(vt, ut) = −0.6143. Moreover, as soon as the

correlation of u and v becomes strongly negative, the correlation structure changes.

For example, with b/ϕ = 0.02, the strongest correlation is corr(vt−1, ut) = −0.6372, so

vacancies lead unemployment by one quarter, as they do in U.S. data.

Inspection of Table 6 suggests that the sign reversal of corr(v, u) is largely due

to the fall in the volatility of s. This reduces the spike in unemployment when the

economy is hit by a negative shock, making echo effects weaker as we raise the value

of b/ϕ. The countercyclical fluctuations in workers’ surplus share also tend to smooth

the echo effects, since they discourage job creation in bad states, but this effect seems

small. In fact, in our results the negative correlation between u and v becomes slightly

weaker as we raise b/ϕ beyond the value at which s becomes a constant.
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These experiments have kept all parameters the same except for the level of b/ϕ,

in order to explore the effects of moral hazard on second moments. Of course, chang-

ing b/ϕ also affects means; the unemployment rate rises by roughly one half as we

increase b/ϕ to 0.2. Therefore we have also run an experiment in which we repeat

the calibration procedure at each value of b/ϕ, to keep first moments fixed as far as

possible. Quantitatively, when recalibrating, the standard deviations of the logs of

unemployment and vacancies increase to 0.0539 and 0.1043 at b/ϕ = 0.2, about 40%

higher than the figures in Table 6. Qualitatively, though, the effects are very similar

to those observed in Table 6, so we do not report them here.

5.3 Robustness

The effects of moral hazard seen in Table 6 are quite robust across a variety of parame-

terizations. Here we consider changes in our specification for initial match productivity,

and also alternative values of b and λ.

Random initial match value

Our baseline model assumed that new jobs are created at the top of the distribution.

A natural alternative is to suppose that a job’s initial productivity is drawn from the

same distribution as subsequent shocks to x; this setup is spelled out in Appendix B.

In this case the model offers two additional margins for volatility in job finding. The

first margin is the acceptance probability. At any given point in time only a share

(1−F (R(yt))) of the matches are accepted and this probability varies cyclically in the

opposite direction of the firing probability. The second margin is the expected surplus

share of the newly hired workers. In aggregate states with a low realized y the NSC

binds in a larger proportion of jobs ([F (x̂i)−F (Ri)]/[1−F (Ri)]) than in good aggregate

states with a high y. For any positive value of b/ϕ, the expected surplus share of the

firms is therefore procyclical. This second effect becomes stronger as we tighten the

NSC. In contrast, fluctuations in the acceptance probability should become weaker as

we raise the value of b/ϕ, since moral hazard dampens fluctuations in R.

To assess the quantitative effects of the fluctuations in the hiring margin and the

surplus shares, we recalibrate the model following the same procedure as before, ad-

justed to take into account the changed zero-profit condition of firms. In Table 7 we

report the results of increasing moral hazard, holding fixed the rest of the parameters.28

28For this setup too, we have run an experiment in which we recalibrate to keep first moments
roughly constant as we increase b/ϕ, but the results are qualitatively similar to those in Table 7, so
we omit them.
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Table 7: Effects of moral hazard: random initial match value

Data Model
Mean 0 0.01 0.02 0.05 0.1 0.2
u 0.0565 0.0611 0.0642 0.0673 0.0750 0.0848 0.1077

Standard deviation
u 0.1934 0.0828 0.0631 0.0448 0.0186 0.0194 0.0224
v 0.1974 0.0402 0.0261 0.0236 0.0411 0.0441 0.0541
p 0.1637 0.0464 0.0390 0.0316 0.0213 0.0227 0.0273
s 0.0667 0.0775 0.0566 0.0364 0 0 0

Correlations
(v, u) -0.8841 0.7540 0.3756 -0.3871 -0.8620 -0.8521 -0.8300
(p, s) -0.4608 -0.3633 -0.3528 -0.3466 −−− −−− −−−

Holding fixed all parameters, making new jobs random has a large effect on mean

unemployment and greatly increases labor market volatility. But here, recalibrating

the parameters according to the same criteria as before, random initial match produc-

tivity raises unemployment volatility somewhat at low levels of moral hazard, but the

quantitative effects are small.29 Moreover, the overall pattern of effects from moral

hazard is unchanged.

The opportunity cost of employment

One parameter that has been central to the debate about the volatility puzzle is the

opportunity cost of employment, b. Our simulations so far have used an intermedi-

ate value for b that amounts to 71% of labor productivity. In Tables 9 and 10 (see

Appendix E) we present results assuming ratios of 40 and 80 per cent, respectively,30

holding the remaining parameters fixed at their efficient benchmark values. As ex-

pected from previous studies, labor market volatility depends positively on the value

of b; a higher opportunity cost of labor leads to stronger fluctuations in job creation

because it reduces the match surplus. Nonetheless, once again we find the same pattern

of results. Sufficient moral hazard eliminates the cyclical fluctuations in the separation

rate, with little amplification of the fluctuations in job creation.

29In our benchmark model from Table 5 the expected value of x is falling with tenure. Consequently,
in new jobs the bargained wage places a lower weight on the value of forgone leisure than in existing
jobs. This effect, which tends to dampen the fluctuations in job creation, is eliminated when all the
realizations of x are drawn from the same distribution. For details on the relationship between tenure
effects and volatility, see Mortensen and Nagypal (2007b).

30We avoid going as far as the Hagedorn and Manovskii (2008) calibration in order to consider a
wide range of values of b/ϕ.
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Persistence of the idiosyncratic shock process

Finally, we consider a change in the frequency of idiosyncratic shocks. As we saw in

Sec. 5.1, this parameter cannot be calibrated from aggregate flow data, and we are

unaware of any microeconomic estimates for the persistence and variance of match-

specific productivity consistent with our setup. Therefore we have simply used the

value of λ from Pissarides (2007). His model replicates the quasi-elasticity of the

mean layoff rate with respect to y if λ is set to 0.1. Yet, in our model this parameter

choice leads to an efficient benchmark with relatively too much volatility in separation.

Therefore we explore the implications of a more persistent shock process, with λ = 0.07,

which delivers smaller cyclical fluctuations in separation. The results are reported in

Table 11. By decreasing fluctuations in s, this parameterization also decreases the

fluctuations in u, and it slightly improves the Beveridge curve correlation since the

spikes in s are smaller. Overall, though, the qualitative effects of moral hazard are the

same we have seen under other parameter configurations.

6 Conclusions

This paper has characterized the dynamics of a matching model with imperfectly ob-

servable worker effort. At a theoretical level, we showed that moral hazard may increase

unemployment volatility through two channels. It can amplify the fluctuations in job

creation by making firms’ surplus share procyclical, and it may amplify the fluctuations

in the job destruction rate when aggregate shocks are relatively infrequent.

Nonetheless, when we calibrate the model to U.S. data we find that moral hazard

strongly decreases the cyclical volatility of the main labor market variables. In all

our experiments the introduction of moral hazard causes a gradual reduction, and

eventually elimination, of the fluctuations in the job destruction rate, and this effect

dominates the rise in fluctuations in the job creation rate.

This surprising effect is the result of a time-inconsistency problem. Workers in

marginal jobs in booms turn out to be especially expensive to motivate, since they

place little value on maintaining jobs they expect to lose quickly anyway. Therefore,

having no way to commit to a long-term contract, firms may choose not to hire into such

“fragile” jobs in the first place. This finding calls into question the robustness of the

contractual fragility mechanism advocated by Ramey and Watson (1997). Persistence

in idiosyncratic match characteristics is the crucial element absent from their work

which reverses the effect of asymmetric information problems on fluctuations in match

separation.
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For the same reason, the introduction of worker moral hazard fails to help in solving

Shimer’s unemployment volatility puzzle. However, moral hazard does appear consis-

tent with other features of labor market dynamics. It may help explain the relative

smoothness of separation rates over time, as compared with rates of hiring. Nonethe-

less separation remains a highly countercyclical variable in our model (as long as some

fluctuation in separation remains). Our model is also successful with the several other

labor market correlations, like the fact that separation leads hiring, and the fact that

vacancies lead unemployment. Furthermore, by partially suppressing the volatility of

job destruction, moral hazard decreases the echo effects in vacancy formation. This

helps strengthen the negative correlation of unemployment with vacancies, in contrast

with the failure of the Beveridge curve in a number of previous papers with time-varying

separation.
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A Details of algorithm

We define an N -dimensional vector Q to summarize the complementary slackness con-

ditions (27). Given R0 ≡ x, for i ∈ {1, 2, . . . , N} we define

Qi ≡ dRi ≡ Ri −Ri−1 if Ri < Ri−1 (41)

Qi ≡ dSi ≡ S(Ri, yi)− b/ϕ if Ri = Ri−1 (42)

Thus Qi < 0 indicates that Ri is distinct from Ri−1, whereas Qi > 0 indicates that

thresholds Ri and Ri−1 collapse to a single value.

To calculate general equilibrium it suffices to solve an N -dimensional root-finding

problem for Q, as follows.

0. Guess an initial vector Q.

1. Loop over aggregate states yi, for i = 1 to N , using the information in Q to
calculate Ri and S(Ri, yi).

2. For each yi, loop over intervals Ij = [Rj, Rj−1) for j ∈ {i, i− 1, . . . , 2} and finally
I1 = [R1, R0]:

(a) If Rj−1 < Rj strictly, solve (25) to calculate the increase in S on interval Ij.

(b) If Rj−1 < Rj strictly, and j ≥ 2, use equations (26) to calculate the jump
in S(x, yi) at x = Rj−1.

At this point we have constructed an increasing, upper semi-continuous surplus function

S consistent with Q. The next steps are:

3. Use equations (29), (3), and (4) to calculate tightness θ and the probabilities p
and q.

4. Use (30) to calculate the worker’s value NW of a new job.

We now know all the objects that appear in the surplus equation (12). On the

left-hand side of (12), Q tells us directly the value of S(Ri, yi):

S(Ri, yi) =

{
b/ϕ if Qi < 0
b/ϕ+Qi if Qi ≥ 0

(43)

To see whether separation is optimal, we can now check whether (12) holds with the

desired accuracy at the reservation productivity x = Ri for each i:31

(r + δ + λ+ µ)S(Ri, yi) = Ri+yi−b+λ
∫ x

Ri

S (x′, yi) dF (x′)+µ
∑

yj :Ri≥Rj

Gyj |yi
S (Ri, yj)−p (θ (yi))N

W (yi)

(44)

If we find a vector Q that satisfies the job destruction condition (44), then we have

found the equilibrium surplus S, as well as R, θ, and all other equilibrium quantities.

31Checking this equation involves integrating S(x, yi). The integral can be evaluated piecewise using
the derivative information from step 2a.
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B Random productivity of new jobs

In the main text, we assumed all new jobs start with the maximum idiosyncratic

productivity x. Here we consider an alternative model with random initial idiosyncratic

productivity, drawn from the same uniform distribution F as continuing jobs. This

implies the following changes relative to the main text. Equation (7), which describes

the worker’s value NW (y) from a new job offer, is replaced by

NW (y) =

∫ x

R(y)

(W (x′, y)− U(y)) f(x′)dx′

This formula reflects the fact that some new jobs are rejected. Likewise, for the firm’s

value of a new matching opportunity, equation (10) is replaced by

NF (y) =

∫ x

R(y)

(J(x′, y)− V (y)) f(x′)dx′

Also, in Section 3.1, if new jobs are random there is no need to define the interval

I0 ≡ {x} consisting of the best jobs only. Instead, productivity x should be included

in the first interval, defining I1 ≡ [R1, x].

In the definition of a no-shirking equilibrium, point 3. is replaced by:

3′. Labor market tightness θ(y) and the new job value NW (y) are given by

c = q(θ(y))

∫ x

R(y)

min[S(x′, y)− b/ϕ, (1− β)S(x′, y)]f(x′)dx′ (45)

NW (y) =

∫ x

R(y)

max[b/ϕ, βS(x′, y)]f(x′)dx′ (46)

Thus in steps 3 and 4 of the computational algorithm, q and NW are calculated using

(45) and (46). Evaluating the integrals in (45)-(46) requires us to calculate the cutoffs

x̂(y) at which the NSC starts to bind, because the integrals are evaluated differently

to the left and right of x̂(y).

Finally, the employment dynamics equations (31)-(33) are replaced by these two:

det(Ii) =

{
[(F (Ri)− F (Ri−1)) (λet + p(θ(yt))ut)− λet (Ii)] dt when yt+dt ≥ yi

− et(Ii) when yt+dt < yi
(47)

dut = −
N∑
i=1

det (Ii) (48)
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C Proof of Proposition 1

We begin with a lemma that constructs a unique minimal reservation vector R∗ con-

ditional on any appropriate (equilibrium or nonequilibrium) surplus function S.

Lemma 1. Given θ,NW ∈ RN
+ , and given any nonnegative surplus function S(x, y)

that is weakly increasing in x for x ≥ x, there exists a unique vector R such that:

1. R is a fixed point of (20) given S, θ and NW .

2. If there exists another fixed point R′ of (20) then R(y) ≤ R′(y) for all y.

Proof of Lemma 1. We prove Lemma 1 by constructing a monotone, bounded
sequence Ri of reservation productivity vectors.

Define the N -dimensional vector R0 ≡ (x, x, ...x). Given S, θ, and NW , define a
new vector R1 by iterating once on (20) evaluated at R = R0. By construction, since
the minimum in (20) is selected from x ≥ x, we have R1(y) ≥ R0(y) for each y.

Define R2 by iterating once on (20) evaluated at R = R1. Since S is weakly
increasing in x, (19) shows that T is strictly increasing and unbounded in x. Also,
since S is nonnegative, T is weakly decreasing in R. Since R1 ≥ R0, these monotonicity
properties of T imply that R2(y) exists, and satisfies R2(y) ≥ R1(y), for all y. By
induction, if we define Ri+1 by iterating once on (20) evaluated at R = Ri, we obtain
Ri+1(y) ≥ Ri(y) for all y and all i ≥ 0.

We can find an upper bound for R by constructing a lower bound for T . Since S is
nonnegative, each element R(yi) is less than or equal to R̂(yi), defined as follows:

R̂(yi) = min

{
x ∈ [x,∞) :

x+ yi − b− p(θ(yi))NW (yi)

r + δ + λ+ µ
≥ b/ϕ

}
(49)

So the increasing sequence of vectors Ri is bounded above by the vector R̂, and therefore
the sequence Ri converges to a limit R.

Finally, suppose there is another fixed point R′ of (20). By construction, R′ ≥ R0.
Applying (20) once to both sides of this inequality, we obtain R′ ≥ R1. Applying (20)
repeatedly to both sides, we obtain R′ ≥ Ri for all i, and therefore R′ ≥ R. Q.E.D.

We will use the notation R∗(S, θ, NW ) to indicate the minimal fixed point R identified

in Lemma 1, showing explicitly its dependence on S, θ and NW . Note that an increase

in S increases T , causing R∗(S, θ, NW ) to (weakly) decrease.

Proof of Prop. 1. Rustichini (1998) advocates solving dynamic incentive-constrained
models by constructing a bounded, monotone sequence of value functions. This proof
adapts Rustichini’s method to deal with our surplus function and reservation vector
simultaneously. It is formally similar to the proof of Lemma 1.

Note that S0(x, y) ≡ max{ x̄+yN

r
, x+yN

r
} is nonnegative, and is an upper bound to

all fixed points of (21) and hence to the true surplus function. Let R∗(S0, θ, NW ) be
the minimal fixed point of (20) identified in Lemma 0. Set R0 ≡ R∗(S0, θ, NW ).

Define S1(x, y) by iterating once on (21), evaluated at S = S0 and R = R0.
By construction, S1(x, y) ≤ S0(x, y) for all x and y. Also, by construction of R0,
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T (x, y, S0, R0, θ, NW ) ≥ b/ϕ for x ∈ [R0(y), x̄]; moreover T is increasing in x. There-
fore S1 is a nonnegative function, weakly increasing in x ∈ [x,∞). By Lemma 0, there
exists a fixed point R1 ≡ R∗(S1, θ, NW ) of the mapping (20) evaluated at S = S1.
Since S1 ≤ S0, R1 ≥ R0.

Now define S2(x, y) by iterating once on (21), evaluated at S = S1 and R = R1.
Since T is increasing in S, and S1 ≤ S0, and since T is decreasing in R, and R1 ≥ R0,
we conclude that S2(x, y) ≤ S1(x, y) for all x and y. Also, for R1(y) ≤ x ≤ x̄,
T (x, y, S1, R1, θ, NW ) ≥ b/ϕ; and T is increasing in x. Therefore S2 is a nonnegative
function, weakly increasing in x ∈ [x,∞). By Lemma 0, there exists a fixed point
R2 ≡ R∗(S2, θ, NW ) of the mapping (20) evaluated at S = S2. Since S2 ≤ S1, R2 ≥ R1.
By induction, we can define a decreasing sequence of surplus functions Si+1 ≤ Si which
all satisfy the assumptions of Lemma 0, and are therefore associated with an increasing
sequence of reservation vectors Ri+1 ≥ Ri.

The functions Si are all bounded below by zero. Therefore the sequence Si converges
to a limit S̄, which is also a nonnegative function, weakly increasing in x ∈ [x,∞),
which has associated with it a reservation vector R ≡ R∗(S̄, θ, NW ). Since S̄ ≤ Si for
all i, and R∗ is decreasing in S, R ≥ Ri for all i.

Now suppose there exists another fixed point pair (S ′, R′). Since S0 is an upper
bound for all other fixed points of (21), and since R∗ is decreasing in S, we have S0 ≥ S ′

and R0 ≤ R′. Note that the mapping defined by (21) is increasing in S and decreasing
in R. Iterating once on (21), we obtain S1 ≥ S ′ and R1 ≤ R′. Now by induction, Si

and Ri bound S ′ and R′ for all i, and thus in the limit we have S̄(x, y) ≥ S ′(x, y) for
all x and y and R(y) ≤ R′(y) for all y. Q.E.D.

D Comparative statics underlying Proposition 2

To analyze the effects of moral hazard on separation rates we can perform comparative

statics on the reservation thresholds Ri with respect to the aggregate shock yi. The

derivative dR/dy shows the difference in reservation cutoffs implied by a small difference

in yi across states, and this determines the mass of firing that occurs when aggregate

productivity decreases.

Consider the simplified case analyzed in Section 4. Assume for concreteness that

b/ϕ is small enough so that the firm’s and worker’s surplus shares are 1− β and β in

equations (29)-(30). Assume the productivity difference between booms and recessions,

dy ≡ y2 − y1, is small enough for linearization to be accurate; also abbreviate dR ≡
R2 −R1 and dS ≡ S(R1, y2)− S(R1, y1).

We can then linearize the job destruction equation by subtracting (28) evaluated at

y = y1 from the same equation at y = y2. If we do so assuming that R2 < R1 strictly,

so that S(Ri, yi)) = b/ϕ, we obtain

0 = dR + dy − dpNW + λ

∫ R1

R2

S(x′, y2)f(x′)dx′ + λ

∫ x

R1

dSf(x′)dx′ − µ(b/ϕ+ dS)

≈ dR + dy − dpNW + λF ′(R)(b/ϕ)dR + (1− F (R))dS − µ(b/ϕ+ dS)
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Table 8: Two aggregate states: relation between yi and thresholds Ri

Case Surplus at threshold Difference in thresholds

µ = 0, b/ϕ = 0 S(R1, y1) = S(R2, y2) = 0 dR = − r+λ
r+λF (R)+βqθ/(1−α)dy

µ = 0, b/ϕ > 0 S(R1, y1) = S(R2, y2) = b/ϕ dR = − r+λ
r+λF (R)+βqθ/(1−α)−(r+λ)λF ′(R)b/ϕdy

µ > 0, b/ϕ > 0 S(R1, y1) = S(R2, y2) = b/ϕ dR = [r+2µ+λF (R)+βqθ/(1−α)]µb/ϕ−(r+λ+µ)dy
r+µ+λF (R)+βqθ/(1−α)−(r+λ+µ)λF ′(R)b/ϕ

µ > 0, b/ϕ > 0 dS = 1
r+2µ+λF (R)+βqθ/(1−α)dy R1 = R2 ≡ R

On the other hand, if we linearize assuming that R2 = R1 ≡ R, we obtain

(r + λ+ µ)dS = dy − dpNW + λ

∫ x

R

dSf(x′)dx′ − µdS

Using the other equilibrium relationships to solve out for dR or dS, we find the multi-

pliers summarized in Table 8.

The table analyzes several cases in order of increasing complexity. If µ = b/ϕ = 0

(no moral hazard, and no transitions across aggregate states), an increase in aggregate

productivity lowers the reservation threshold unambiguously: dR/dy < 0. In the

second line of the table, by allowing for a small amount of moral hazard, b/ϕ > 0, the

denominator of the multiplier becomes smaller, so dR/dy becomes more negative. That

is, when µ = 0, adding moral hazard increases the difference between the reservation

thresholds, so there would be a larger boost in firing if the economy were to move from

boom to recession (though at µ = 0, this transition occurs with zero probability).

In the third line of the table, we continue to assume that R2 < R1 strictly, but we

allow for µ > 0 and b/ϕ > 0. Note, though, that dR is no longer proportional to dy,

because the non-negligible quantity
[
r + 2µ+ λF (R) + βqθ

1−α

]
µb
ϕ

enters the numerator

of the multiplier formula. But note therefore that it is impossible to have R2 < R1

strictly unless the numerator in the third line is positive. Simplifying, we find that

R2 < R1 requires
µb/ϕ

r + λ+ µ
<

y2 − y1

r + λF (R) + βqθ/(1− α)

as stated in Prop. 2.

Intuitively, the reservation productivities may differ if there is no moral hazard

(b/ϕ = 0), or if the probability of moving from recession to boom is low (µ small),

or if aggregate productivity is sufficiently large in booms compared with recessions

(dy large). But if these conditions are not satisfied, then firms prefer not to maintain
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any workers with x < R1 in booms, because the wage that must be paid to these

workers in order to maintain the no-shirking incentive is too high to justify continuation.

In that case, the two thresholds collapse, R1 = R2 ≡ R. At x = R, the surplus

equals b/ϕ in recessions, but it is strictly higher in booms, since the worker is more

productive. The comparative statics equations then no longer serve to determine dR;

instead, they determine the difference between the surpluses in booms and recessions,

dS ≡ S(R, y2)− S(R, y1) = S(R, y2)− b/ϕ, as shown in the last line of the table.

E Additional tables

Table 9: Low opportunity cost of employment

Data Model
Mean 0 0.01 0.02 0.05 0.1 0.2
u 0.0565 0.5935 0.0605 0.0617 0.0643 0.0674 0.0737

Standard deviation
u 0.1934 0.0360 0.0270 0.0187 0.0094 0.0093 0.0092
v 0.1974 0.0172 0.0112 0.0111 0.0179 0.0179 0.0179
p 0.1637 0.0106 0.0106 0.0106 0.0105 0.0105 0.0105
s 0.0667 0.0393 0.0270 0.0154 0 0 0

Correlations
(v, u) -0.8841 0.7030 0.2286 -0.5634 -0.8730 -0.8738 -0.8754
(p, s) -0.4608 -0.5420 -0.5383 -0.5229 −−− −−− −−−

Table 10: High opportunity cost of employment

Data Model
Mean 0 0.01 0.02 0.05 0.1 0.2
u 0.0565 0.0597 0.0634 0.0667 0.0748 0.0844 0.1352

Standard deviation
u 0.1934 0.1091 0.0794 0.0544 0.0284 0.0281 0.0690
v 0.1974 0.0501 0.0319 0.0351 0.0551 0.0552 0.1518
p 0.1637 0.0326 0.0326 0.0325 0.0323 0.0322 0.0862
s 0.0667 0.1135 0.0754 0.0419 0 0 0

Correlations
(v, u) -0.8841 0.6917 0.1105 -0.6521 -0.8745 -0.8767 -0.8327
(p, s) -0.4608 -0.5720 -0.5593 -0.5354 −−− −−− −−−
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Table 11: High persistence of idiosyncratic shocks

Data Model
Mean 0 0.01 0.02 0.05 0.1 0.2
u 0.0565 0.0595 0.0610 0.0624 0.0652 0.0689 0.0767

Standard deviation
u 0.1934 0.0543 0.0406 0.0287 0.0196 0.0195 0.0270
v 0.1974 0.0242 0.0230 0.0294 0.0375 0.0375 0.0531
p 0.1637 0.0221 0.0221 0.0221 0.0220 0.0220 0.0310
s 0.0667 0.0538 0.0347 0.0170 0 0 0

Correlations
(v, u) -0.8841 0.1527 -0.4917 -0.8318 -0.8728 -0.8841 -0.8635
(p, s) -0.4608 -0.5087 -0.5024 -0.4744 −−− −−− −−−
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Fig. 1a. Fluctuations in hiring and separation rates
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Fig. 1b. JOLTS data for hiring and layoff rates
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Fig. 1a. reports data for the cyclical fluctuations in the quarterly transition rates between employment

and unemployment for the U.S. economy for the period 1951 - 2004. The original data are constructed

by Shimer and are corrected for possible time-aggregation biases. For more details, see footnote 25.

Fig. 1b. reports JOLTS data on hiring and layoff rates for the total non-farming sector available at

www.bls.gov/jlt/. We have adjusted the layoff data for seasonal effects.
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Fig. 2a.  Surplus functions without moral hazard
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Fig. 2b.  Surplus functions under moral hazard: Countercyclical job destruction
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Fig. 2c.  Surplus functions under moral hazard:   
Acyclical job destruction
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