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ABSTRACT 
 

Unexplained Gaps and Oaxaca-Blinder Decompositions*

 
We analyze four methods to measure unexplained gaps in mean outcomes: three 
decompositions based on the seminal work of Oaxaca (1973) and Blinder (1973) and an 
approach involving a seemingly naïve regression that includes a group indicator variable. Our 
analysis yields two principal findings. We show that the coefficient on a group indicator 
variable from an OLS regression is an attractive approach for obtaining a single measure of 
the unexplained gap. We also show that a commonly-used pooling decomposition 
systematically overstates the contribution of observable characteristics to mean outcome 
differences when compared to OLS regression, therefore understating unexplained 
differences. We then provide three empirical examples that explore the practical importance 
of our analytic results. 
 
 
JEL Classification: J31, J24, J15, J16 
  
Keywords: decompositions, discrimination 
 
 
Corresponding author: 
 
Steven J. Haider  
Department of Economics 
Michigan State University 
101 Marshall Hall 
East Lansing, MI 48824 
USA 
E-mail: haider@msu.edu       
 
                
 

                                                 
* The authors thank Jeff Biddle, Marianne Bitler, Jonah Gelbach, Kevin Hallock, David Neumark, 
Mathias Sinning, Gary Solon, Mel Stephens, and Steve Woodbury for very useful comments on an 
initial draft. All errors remain our own, of course. Haider gratefully acknowledges the financial support 
of the Australian National University as a Gruen Fellow. 

mailto:haider@msu.edu


Unexplained Gaps and Oaxaca-Blinder Decompositions  
 

1.  Introduction 

When faced with a gap in mean outcomes between two groups, researchers frequently 

examine how much of the gap can be explained by differences in observable characteristics. A 

common approach to distinguishing between explained and unexplained components follows the 

seminal papers of Oaxaca (1973) and Blinder (1973), with the original “Oaxaca-Blinder” (O-B) 

decomposition based on separate linear regressions for the two groups.  Letting d be an indicator 

variable for group membership, yd be the scalar outcome of interest for a member of group d, Xd 

be a row vector of observable characteristics (including a constant),  be the column vector of 

coefficients from a linear regression of y

dβ̂

d on Xd, and overbars denote means, it is straightforward 

to show that 

(1) )ˆˆ(ˆ)( 01010101 βββ −+−=− XXXyy . 

In this expression, the first and second terms on the right hand side represent the explained and 

unexplained components of the difference in mean outcomes, respectively.   

Both seminal articles pointed out that the decomposition in (1) is not unique in that an 

equally compelling alternative decomposition exists:  

(2) )ˆˆ(ˆ)( 01100101 βββ −+−=− XXXyy . 

While the first term on the right hand side of (2) is still interpreted as the explained component, 

this alternative calculation generally will yield different values from (1), and there is often little 

reason to prefer one to the other.  Many papers acknowledge this ambiguity by simply reporting 

both decompositions.    
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Several papers have proposed alternative O-B decompositions, with perhaps the most widely 

adopted alternative proposed by Neumark (1988).1  That paper develops a decomposition based 

on a pooled regression without group-specific intercepts.  It is important to emphasize that 

Neumark (1988) does not analyze the measurement issue of whether his pooled decomposition 

or those based on (1) and (2) distinguish between explained and unexplained gaps.  Rather, he 

analyzes what fraction of an unexplained wage gap, already purged of productivity differences, 

represents discrimination, demonstrating that different assumptions regarding employer behavior 

can lead to each of the three decompositions.2  Despite this difference in motivation, the pooled 

decomposition he proposed has been adopted as the primary approach to measuring explained 

and unexplained gaps in a number of empirical studies.3

Researchers also routinely use an even simpler approach to measure unexplained gaps.  They 

estimate the pooled regression including an indicator variable for group membership as well as 

the other observable characteristics, interpreting the coefficient on the group indicator as the 

unexplained component.  For example, this method has been applied to the measurement of 

union wage premiums (e.g., Lewis 1986), racial test score gaps (e.g., Fryer and Levitt 2004), and 

racial wage gaps (e.g., Neal and Johnson 1996).  

In this paper, we compare these various methods for assessing the unexplained gap in mean 

outcomes between two groups. Our analysis yields two principal findings.  First, we show that 

the coefficient on the group indicator from a pooled OLS regression is an attractive approach for 
                                                 
1 Other alternatives in the spirit of Oaxaca (1973) and Blinder (1973) have been put forward by Reimers (1983) and 
Cotton (1988), who both propose decompositions which are convex linear combinations of those given in (1) and 
(2).  Oaxaca and Ransom (1994) provide an integrative treatment of the various methods. 
2 Neumark (1988) shows how different assumptions regarding employer preferences lead to different estimates of 
the wage structure that would prevail in the absence of discrimination, and therefore different estimates of 
discrimination.  His analysis starts from the assumption that the set of observable characteristics is sufficiently rich 
to remove all productivity differences between the groups of interest, so that any unexplained differences represent 
discrimination or favoritism.  We suspect that few researchers interested in decomposing group differences into 
explained and unexplained components intend to make such an assumption  
3 For examples of articles that adopt this pooling approach, see Oaxaca and Ransom (1994), Mavromaras and 
Rudolph (1997), DeLeire (2001), Hersch and Stratton (2002), Jacob (2002), Boden and Galizzi (2003), Gittleman 
and Wolff (2004), and Yount (2008). 
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obtaining a single measure of the unexplained gap.  Second, we show that the pooled O-B 

strategy systematically overstates the role of observables in explaining mean outcome as 

compared to OLS with a group indicator, thereby understating unexplained differences.4  The 

intuition for this result is straightforward:  the pooled regression coefficients on observable 

covariates are biased due to the omission of group-specific intercepts, which in turn causes the 

role of observables to be overstated. We then provide three empirical examples that explore the 

practical importance of our analytic results, two based on wage gaps and one based on test score 

gaps. 

2.  The Relationship among Four Measures of the Unexplained Gap 

As in the introduction, let y be the scalar outcome of interest, d be an indicator variable equal 

to 1 for an individual in group 1 and 0 otherwise, X be the vector of observable characteristics 

(including a constant but not d), and overbars denote means.  We study four different measures 

of the unexplained gap in y  between groups 0 and 1.  The first two measures come from the 

standard O-B decompositions listed in equations (1) and (2):  define Gap1 to be )ˆˆ( 010 ββ −X , 

the final term in (1), and similarly define Gap0 to be the final term in (2).  The third measure, 

Gapp, is the unexplained component from Neumark’s (1988) proposed decomposition,   

(3) )ˆˆ()ˆˆ(ˆ)( 00110101 βββββ −+−+−=− ppp XXXXyy , 

where is defined to be the coefficient vector from the pooled regression of y on X.  The first 

term on the right hand side of (3) is again interpreted as the explained component, and the sum of 

the final two terms is the unexplained component, Gap

pβ̂

p.  If y denotes a wage, for example, then 

these two terms correspond to each group’s advantage or disadvantage relative to the pooled 

                                                 
4 Fortin (2006) and Jann (2008) discuss the same potential problem with the pooled O-B decomposition without a 
group indicator.  Both studies mention the omitted variables bias intuition for why excluding the group indicator 
could be problematic, and both studies propose a solution that is identical to OLS with a group indicator variable. 
However, neither study develops general expressions for how the four unexplained gaps are related.  
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wage structure.  Finally, the fourth unexplained gap measure, GapOLS, is the coefficient on d 

from the pooled OLS regression of y on d and X.  We compare these gaps by specifying a 

population data generating process and then deriving what each of the gaps measure. 

2.1.  The Case in Which Coefficients Are Equal across Groups 

We begin by assuming that the mean outcomes between groups 0 and 1 differ only by a 

constant and that the outcome is influenced by only one observable characteristic x.  These 

assumptions simplify the exposition substantially, but as we describe below, all of the results in 

this section extend to the case in which the outcome depends on a vector of characteristics X.  

We relax the assumption of equal coefficients across groups in the next subsection. 

Specifically, suppose the population relationship between y, d, and x is 

(4) εδδδ +++= xdy xd0 , 

with ε orthogonal to d and to x conditional on d.5  Under these strong assumptions, a sensible 

definition of the population unexplained gap is dδ .  Moreover, under these assumptions, the 

probability limit of GapOLS is dδ .    

To derive probability limits of the other estimates of the unexplained gap, we introduce some 

additional notation. An O-B unexplained gap can always be written as the difference in overall 

mean outcomes minus the difference in predicted mean outcomes, and both of these differences 

can be denoted by linear projections. Letting b(z |w) denote the slope from a linear projection of z 

on w and a constant, a general expression for an O-B unexplained gap is 

(5)  
),|ˆ()|(

])(ˆ[][Gap 0101

dxbdyb

xxyy

θ

θ

−=

−−−=
 

                                                 
5 In regressions with the scalar x, the constant will be denoted separately, while in the more general case X will 
denote a vector of characteristics including a constant.  
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where  is a coefficient computed from sample data. The choice of  is what distinguishes 

different O-B decompositions from each other.  For example, Gap1 is obtained when  is the 

OLS slope coefficient from a regression of y on x and a constant using data from group 1, while 

Gap

θ̂ θ̂

θ̂

0 is obtained when  is the OLS slope coefficient using data from group 0.   θ̂

Consider the probability limit of an O-B gap under the data generating process described by 

(4): 

 (6) 
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Thus, the estimated gap converges to dδ  whenever .  Because  in both 

group-specific regressions, the probability limits of Gap

xδθ =ˆ plim xδθ =ˆ plim

0 and Gap1 are dδ , implying that Gap0, 

Gap1, and GapOLS are asymptotically equivalent.   

In contrast, GapP generally will not converge to dδ .  The difference arises because, in a 

pooled regression that does not include the group-specific intercept d,  typically does not 

equal 

θ̂plim

xδ  due to omitted variables bias.  To see this formally, consider the probability limit of 

GapP, 
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(7)   
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It is useful to compare this expression to an alternative representation of the probability limit of 

GapOLS.  Defining )(~ wz  to be the component of z that is orthogonal to w in the population (so 

that )(~ wz = z – wb(z |w)), then 

(8) 
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where the fourth equality follows because ))(~,cov( xyx = 0 by the definition of )(~ xy .  

Comparing (7) and (8),  

(9) OLSP Gapplim
)var(
))(~var(Gapplim

d
xd

= . 

The ratio of the two gaps, )var())(~var( dxd , equals the probability limit of (1- R2) from the 

auxiliary regression of d on x, so the gaps are equivalent only when d is orthogonal to x (in which 

case observed characteristics explain none of the between-group differences in outcomes).  In all 
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other cases, the probability limit of GapP is smaller than the probability limit of GapOLS, which 

we have shown to be equivalent to dδ and the probability limits of Gap0 and Gap1.   

The intuition for this result is straightforward.  The omission of d from a pooled regression 

leads to omitted variables bias in the estimated coefficient on x.  Because the coefficient on x 

captures both the direct effect of x on y and the effect of d on y indirectly through the correlation 

between d and x, it tends to explain “too much” of the gap in outcomes, leading the unexplained 

gap to be too small.  We illustrate this effect in Figure 1 for the case in which 01 xx > , 
01 yy > , 

and 0>xδ .  The total gap in mean outcomes is 01 yy − , and based on the group 1 regression 

line (the top line in the figure), the explained gap is Ay −1 and the unexplained gap is 0yA − .  

Note that the steepness of the line determines the magnitudes of the explained and unexplained 

gaps, so Gap1 and Gap0 are identical because the group 1 and group 0 lines are parallel.  In 

contrast, the regression line for the pooled regression (denoted as the dashed line in the Figure) 

must be steeper than either group line due to omitted variables bias.  As a result, GapP must be 

less than the other three unexplained gap measures. 6

Finally, in Appendix A1 we show that the asymptotic relationship given in (9) is also an 

exact result that holds in finite samples.  Further, although we have assumed x is a scalar for 

notational convenience, the relationship between GapP and GapOLS holds when x is vector-valued 

and regardless of whether model (4) is correct: in all circumstances, GapP is exactly equal to 

GapOLS multiplied by (1-R2) from the auxiliary regression of d on all observable covariates. 7

                                                 
6 Neumark (1988), p. 293, makes a similar point about the case illustrated in Figure 1. We note, however, that our 
finding that GapP is smaller in absolute value than GapOLS does not require that 01 xx > , or that either measure is 
bounded between zero and the overall difference in mean outcomes.  
7 An implication of these results is that, while GapOLS and GapP will always have the same sign, the sign of the 
explained component can differ depending on which approach is used.  If 01 yy > , 01 xx < , and 0>xδ , then 

01 yy −  will be smaller than GapOLS and the associated explained component will be negative.  In this situation, 
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2.2. The Case in Which Coefficients Vary across Groups 

The relationship between GapP and GapOLS presented above is exact and general (see 

Appendix A1). Thus, in the varying coefficients case, GapP is still systematically less than 

GapOLS whenever the averages of observable characteristics differ between the two groups. 

Turning to the relationship between GapOLS, Gap1 and Gap0, we once again begin by 

assuming that the outcome is influenced by only one observable characteristic x.  However, the 

exact bounding result we obtain for this simple case does not extend to the case when the 

outcome depends on a vector of characteristics X.  We return to this issue below. 

Assume again that x is a scalar and that ε is orthogonal to d and to x conditional on d, but 

now we allow the coefficient on x to vary between the two groups, 

(4a) ελλλλ ++++= dxxdy dxxd0 .  

Equation (6) showed that the probability limit for an O-B unexplained gap based on  can be 

written as 

θ̂

(10) θ̂plim
)var(

),cov(
)var(

),cov(Gapplim
d

xd
d

yd
−= . 

Based on this expression, it is straightforward to see that  
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)1|,cov(
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=

−=
dx
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)0|var(

)0|,cov(
)var(

),cov(
)var(

),cov(Gapplim 0

=
=

−=
dx

dyx
d

xd
d

yd . 

As we show in the Appendix, GapOLS is a weighted average of Gap1 and Gap0, 
                                                                                                                                                             

01 yy − 01 yy −may be larger than GapOLS multiplied by (1- R2) from the auxiliary regression of d on x.  If so,  
will be larger than GapP, so that the explained component will be positive.  The use of GapP would therefore imply 
that observable characteristics explain a positive fraction of an outcome gap, despite the fact that the group with 
“better” outcomes has “worse” observable characteristics. 
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(13) , 0011OLS GapˆGapˆGap ww +=

with the weights given by sample analogs of the following: 
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It is straightforward to show that these weights are bounded by 0 and 1, implying that GapOLS is 

always bounded by Gap1 and Gap0.  In addition, the structure of these weights is intuitively 

appealing, with GapOLS approaching Gap1 for large values of var(x | d = 1) / var(x | d = 0) and 

for values of Pr(d = 1) close to 1.  When var(x) does not vary across groups, the weights are the 

sample analogues of Pr(d = 1) and Pr(d = 0), so that GapOLS is simply the group-size weighted 

average of Gap1 and Gap0.   

Because GapOLS is a linear combination of Gap1 and Gap0, OLS itself can be regarded as an 

O-B decomposition.  Specifically, Oaxaca and Ransom (1994) show that the various O-B 

decompositions that had been proposed take the form of equation (3) above, with replaced by 

a general reference vector .  The differences between the various 

decompositions rest with the selection of the weighting matrix 

pβ̂

10 ˆ)(ˆ* βββ Ω−+Ω= I

Ω .  In this notation, the O-B 

decomposition that corresponds to OLS uses the weighting matrix 

(15) ,  1011 ))ˆˆ()(ˆˆ( −−−=Ω ββββ diagdiag OLSOLS

where diag(.) denotes the operator that transforms a vector into a diagonal matrix with zeroes as 

the off-diagonal elements and  is the slope coefficient on X from a pooled regression of y on OLSβ̂
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X and d.8  In fact, GapOLS is equivalent to the O-B decomposition proposed by Cotton (1988) 

when var(x) is constant across groups. 

It is important to note that the relationships between GapOLS, Gap1 and Gap0 are not easily 

extended to the case when an outcome depends on a vector of characteristics X.  In particular, 

just as with the single regressor case described above, GapOLS is still a weighted average of Gap1 

and Gap0, with weights that are related to the relative group sample size and variance of 

observables.  This result is clear from the general weighting matrix in (15) because these factors 

will determine the magnitude of  relative to  and .  However, GapOLSβ̂ 0β̂ 1β̂ OLS is not 

necessarily bounded by Gap1 and Gap0 when there is more than one observable.9 Our empirical 

results in the next section will demonstrate the extent to which GapOLS deviates from Gap1 and 

Gap0 in three different contexts, as well as the extent to which GapP deviates from GapOLS.  

3.  Empirical Examples 
We demonstrate the practical importance of the analytic results shown above by presenting 

three empirical examples: the male-female wage gap among full-time, full-year workers using 

Current Population Survey (CPS) data; the white-black wage gap among full-time, full-year 

working males using CPS data; and the white-black test score gap in kindergarten using the fall 

1998 assessment of the Early Childhood Longitudinal Study – Kindergarten Cohort (ECLS-K).  

                                                 
8 We thank Mathias Sinning for suggesting this notation.  Sinning (2009) expands on this idea to develop an O-B 
decomposition framework for quantile regression.  

9 An alternative representation of the weights in equation 13 is 
Xd

Xd

XX

Xr
w

β

β
ˆ)(

ˆ)(
ˆ

10

1
1

−

−
=  and  where 

denotes a vector of coefficients on interactions 

10 ˆ1ˆ ww −=

Xdβ̂ dX ×  from a pooled OLS regression of y on X, d, and the 

interactions, and r is a vector of coefficients on d from auxiliary regressions of the dX × interactions on X and d. In 
the scalar x case,  is also a scalar so it cancels out of this expression, and the resulting expression can be shown 

to lead to (14a). More generally, however, is not bounded between 0 and 1 because of the presence of the  
terms. 

Xdβ̂
1ŵ Xdβ̂
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For the first two outcomes we first show results for 1985 and 2001, and for the last we present 

separate results for reading and math test scores.  

For both sets of wage gap results, we use a relatively sparse set of regressors, controlling for 

age, education, and occupation.10 We define full-time, full-year workers as those who are at least 

18 years old and are working more than 30 hours a week and 40 weeks a year.  The hourly wage 

is measured as annual earnings divided by annual hours, and all models examine the gap in the 

log hourly wage.  For the male-female results, we include all men (group 1) and women (group 

0) and control for whether an individual is black. For the white-black results, we only include 

males who report being black (group 0) or white (group 1).  In analyzing white-black test score 

differentials, we follow the specifications of Fryer and Levitt (2004), who show that seven 

covariates are sufficient to explain the entire gap in kindergarten test scores between whites and 

blacks based on GapOLS.11   

We provide the results in Table 1.  For each example, we list the sample size, the total gap 

between the two groups, the four measures of unexplained gaps discussed in the previous section 

(Gap1, Gap0, GapP, and GapOLS), and the R2 from the auxiliary regression of group status on the 

other regressors. 

These examples illustrate several of the analytic results discussed in the previous section.  

First, the two standard O-B decompositions can yield dissimilar estimates.  Although the results 

are reasonably similar for the male-female and white-black wage gaps, they lead to noticeably 

different conclusions for the white-black test score gaps.  In particular, Gap1 (using regression 

                                                 
10 We include a quartic in age, 4 education categories (less than high school, high school, some college, completed 
college), and 14 occupation categories (the complete “Major Occupation” codes listed in the CPS for these years). 
11 Specifically, we include indicators for whether the mother’s age at first birth was over 30 or less than 20, an 
indicator for whether the mother received WIC payments, a quadratic in the number of books in the home, the 
child’s birthweight in ounces, and an NCES-created summary measure of the family’s SES.  See Fryer and Levitt 
(2004) for more details on these measures, and see Appendix Tables 1 and 2 for summary statistics for the 
estimation samples we use. 
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coefficients from the white sample) suggests that only 2.5 percent (0.380 / 14.660) of the racial 

gap in math scores remains unexplained after controlling for this small set of covariates, but 

nearly 28 percent (4.103 / 14.660) of the math gap is unexplained based on Gap0.   

  Second, GapOLS usually lies between Gap1 and Gap0, but not always; GapOLS is outside of 

the bounds for the white-black wage gap in 1985.  In addition, GapOLS tends to be closer to the 

bound corresponding to the group that represents a larger fraction of the data.  For all four white-

black gaps, GapOLS is very close to the estimate evaluated at the white coefficients (Gap1), but it 

is approximately in the middle of Gap1 and Gap0 for the male-female wage differential, 

consistent with the roughly equal shares of males and females in the population. 

Third, the deviation between GapP and GapOLS is exactly related to the R2 from the auxiliary 

regression of the group indicator on the other explanatory variables (Gapp = (1-R2) x GapOLS).  

GapP still falls between Gap1 and Gap0 in three cases (in the white-black wage differential in 

1985 and both test score differences), but in the other three it does not.  GapP is substantially 

outside the Gap1 and Gap0 estimates for both male-female wage gaps because of the high R2 of 

the auxiliary regression and the associated attenuation of GapP relative to GapOLS.12   

As further illustration of the relationships among the four Gap measures, Figures 2 and 3 

show the white-black and male-female wage gaps for each year between 1985 and 2007.  In the 

male-female case shown in Figure 2, the plots of GapOLS, Gap1, and Gap0 are quite similar. GapP 

is substantially lower in all years, due to the relatively high power of the covariates in explaining 

group membership, i.e., men and women are substantially different on observable dimensions.  

In the white-black case shown in Figure 3, Gap0 is consistently larger than Gap1, but the plots of 

GapOLS and GapP are essentially identical to Gap1 because the white group represents a large 

fraction of the population and because the explanatory variables do not predict group 
                                                 
12 Oaxaca and Ransom (1994) found a similar result in their male-female wage example (see their Table 3, column 
2), but they did not comment that this result was to be expected. 
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membership.  In both graphs, GapOLS lies in between or nearly in between Gap1 and Gap0 for 

every year. 

4.  Discussion and conclusion 

We analyze four methods to measure unexplained gaps in mean outcomes, three based on the 

decomposition methods of Oaxaca (1973) and Blinder (1973) and one based on a pooled 

regression with a group indicator variable.  Our analysis yields two principal findings.  We show 

that, in the case of a single observable characteristic, the coefficient on the group indicator from 

a pooled OLS regression is a weighted average of the unexplained gaps from the two standard O-

B approaches, with intuitively sensible weights that are bounded between 0 and 1 and sum to 1.  

The strict bounding result on these weights, however, does not extend to the case when there is 

more than one regressor.  Thus, although the unexplained gap from a pooled OLS regression 

reflects the overall relationship between the observable characteristics and the outcome variable, 

this unexplained gap is no longer strictly bounded by the two standard O-B gaps.  In contrast, we 

show that the O-B pooling strategy without a group indicator systematically overstates the 

contribution of observables to mean outcome differences, therefore understating unexplained 

differences.  Thus, in circumstances where the decompositions are used to separate between 

explained and unexplained gaps, the O-B pooling strategy systematically fails to do so.  

To explore the practical significance of our results, we provide empirical examples involving 

white-black and male-female wage differentials and the white-black kindergarten test score gap. 

These examples demonstrate that GapOLS is typically close to the standard Oaxaca-Blinder 

unexplained gaps but systematically larger than GapP.  GapP will deviate from GapOLS to the 

extent that there are differences in the means of observable characteristics between the two 

groups.  This deviation can be large enough to drive GapP substantially below both standard O-B 

measures, as is the case with the male-female wage differentials.  
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Taken together, our analytical and empirical results suggest that the pooling O-B 

decomposition without a group-specific indicator should not be used to distinguish between 

explained and unexplained gaps, although this method may be useful to assess how much of an 

unexplained gap represents discrimination if specific assumptions are met.  In contrast, GapOLS 

provides an attractive summary approach to separate between-group mean differences into 

explained and unexplained components. 
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Appendix 

A1. The exact relationship between GapOLS and GapP 

Consider a sample of observations on y, a scalar outcome of interest, d, an indicator variable for 

group membership, and X, a vector of observed characteristics. For this appendix section define 

each to be the vector or matrix of deviations from its respective sample mean. Further, define P = 

X(X’X)-1X’ to be the projection matrix onto X and M =I-P to be its complement. Note that we 

need make no assumptions about relationships in the population. 

GapOLS is then given by 

 
(A1)  . )'()'(Gap 1OLS MydMdd −=
 
Similar to equation (7) in the text, GapP can be expressed as the difference of two regression 

coefficients, one that equals the total gap between the two groups and one that equals the 

predicted gap, which is constructed using fitted values from a pooled regression of y on X.  

Therefore,  

(A2)   

,Gap)1(

Gap)'()'(
')'(

')'(')'(Gap
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OLS1

1

11p

×−=

×=

=
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−

−

−−

XdR

Mdddd
Myddd
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where  is the R2

,XdR 2 from the auxiliary regression of d on X.  As a result, GapP will always be 

smaller than GapOLS except when d is orthogonal to X, which corresponds to the case in which 

covariates can explain none of the difference across groups in average outcomes.  

 
A2. The relationship between Gap0, Gap1 , and GapOLS in the scalar x case 

We first derive two expressions that will be useful in the final result.  Defining )1Pr( == dπ , note 

that  
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The first equality is the decomposition of the variance of x into “within group” and “between 

group” components, the second equality follows from applying the law of iterated expectations 

to E(x), the third follows because E(x | d = 1) - E(x | d = 0) = cov(x,d) / var(d) for any binary 

variable d, and the fourth because var(d) = π(1-π) for any binary variable d.  Similar logic 

implies that  

 (A4)   .
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Beginning with the result in (13), we combine (11), (12), (14a), and (14b): 
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where 
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Simplifying Π,  
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(A6)  
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The equality on the last line follows from using (A3) and (A4) to simplify the preceding line.  As 

a result,  
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Recall from the text that  
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Since )(~ xd represents the residuals from a population regression of d on x, 
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This implies that (A8) can be rewritten as follows: 
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(A10) 
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Comparing (A7) and (A10) gives the desired result. 
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Table 1: Empirical results 
               

White-black Male-female White-black   
log wage gap log wage gap test score gap 

   1985 2001 1985 2001 Math Reading 
N 28,163 40,949 48,499 76,747 13,040 12,374 
       
Total gap 0.254 0.216 0.372 0.285 14.660 11.352 
Share in group 1 0.927 0.902 0.598 0.570 0.871 0.865 
       
Gap1 0.130 0.105 0.346 0.280 0.380 -0.272 

Gap0 0.126 0.129 0.388 0.297 4.103 2.800 

GapP 0.127 0.105 0.276 0.233 0.680 0.109 

GapOLS 0.131 0.108 0.361 0.294 0.782 0.124 

       
Auxiliary R2 0.034 0.028 0.238 0.208 0.131 0.122 
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Appendix Table 1: Descriptive Statistics for CPS 

       

       

 N Wage Black Female Age HS+. 

1983 45,637 8.79 0.08 0.40 38.72 0.84 

1984 46,196 9.10 0.08 0.40 38.61 0.85 

1985 48,499 9.62 0.09 0.40 38.52 0.85 

1986 48,365 10.09 0.09 0.40 38.44 0.86 

1987 48,402 10.44 0.09 0.41 38.47 0.86 

1988 49,495 10.80 0.09 0.41 38.58 0.87 

1989 46,741 11.12 0.09 0.41 38.68 0.87 

1990 52,015 11.71 0.09 0.41 38.68 0.87 

1991 51,402 11.99 0.09 0.41 38.89 0.88 

1992 50,018 12.40 0.09 0.43 39.08 0.89 

1993 49,405 12.91 0.09 0.43 39.35 0.89 

1994 47,948 13.19 0.09 0.43 39.54 0.90 

1995 48,839 13.67 0.09 0.42 39.66 0.90 

1996 43,719 14.55 0.09 0.42 39.86 0.89 

1997 44,727 15.14 0.09 0.42 40.06 0.89 

1998 44,941 15.82 0.09 0.43 40.15 0.90 

1999 46,314 16.41 0.09 0.43 40.27 0.89 

2000 47,551 16.61 0.09 0.43 40.45 0.89 

2001 76,647 18.12 0.11 0.43 40.25 0.90 

2002 75,429 19.02 0.11 0.43 40.63 0.90 

2003 73,809 19.48 0.11 0.43 40.98 0.90 

2004 72,531 19.88 0.11 0.43 41.34 .091 

2005 71,711 20.39 0.11 0.43 41.40 0.91 

2006 72,170 20.97 0.10 0.43 41.48 0.90 

2007 72,500 21.93 0.11 0.43 41.69 0.91 

Note:  Entries are unweighted means of the variables listed in the column headings, listed by 
survey year.  Everyone who worked full-time and full-year is included (at least 30 hours per 
week and 40 weeks per year).  Wages are in nominal dollars. 
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Appendix Table 2: Descriptive Statistics for ECLS-K 

    

 Full sample Blacks Whites 

    

N 13,040 1,708 11,332 

    

SES Composite 0.10 -0.38 0.17 

 (0.78) (0.70) (0.77) 

# books in home 80.78 40.44 87.09 

 (59.70) (39.97) (59.82) 

Mother’s age at first birth 24.20 20.93 24.71 

 (5.45) (4.76) (5.37) 

Child’s birthweight in pounds 7.42 6.97 7.49 

 (1.30) (1.37) (1.28) 

WIC participation 0.35 0.71 0.29 

 (0.48) (0.45) (0.46) 

Fall K math 53.64 39.21 55.90 

 (28.17) (25.39) (27.92) 

Fall K reading 51.78 41.96 53.31 

 (28.72) (26.95) (28.69) 

    

Note:  Cell entries are unweighted means of the variable listed in the row headings, with standard 
deviations reported in parentheses.  The “Full sample” column includes both black and white 
kindergarten students in ECLS-K.  All covariates are measured as described in Fryer and Levitt 
(2004). 
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