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A Martingale Representation for Matching Estimators*

 
Matching estimators are widely used in statistical data analysis. However, the distribution of 
matching estimators has been derived only for particular cases (Abadie and Imbens, 2006). 
This article establishes a martingale representation for matching estimators. This 
representation allows the use of martingale limit theorems to derive the asymptotic 
distribution of matching estimators. As an illustration of the applicability of the theory, we 
derive the asymptotic distribution of a matching estimator when matching is carried out 
without replacement, a result previously unavailable in the literature. 
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I. Introduction

Matching methods provide simple and intuitive tools for adjusting the distribution of co-

variates among samples from different populations. Probably because of their transparency

and intuitive appeal, matching methods are widely used in evaluation research to estimate

treatment effects when all treatment confounders are observed (Rubin, 1973, 1977; Rosen-

baum, 2002). In spite of the popularity of matching methods, the asymptotic distribution

of matching estimators have been derived only for special cases (Abadie and Imbens, 2006).

In the absence of large sample approximation results to the distribution of matching esti-

mators, empirical researchers employing matching methods have often used the bootstrap

as a basis for inference. However, recent results have shown that, in general, the bootstrap

does not provide valid large sample inference for matching estimators (Abadie and Imbens,

2008).

The main contribution of this article is to establish a martingale representation for

matching estimators. This representation allows the use of martingale limit theorems (Hall

and Heyde, 1980; Billingsley, 1995; Shorack, 2000) to derive the asymptotic distribution

of matching estimators. Because the martingale representation applies to a large class of

matching estimators, the applicability of the methods presented in this article is broad.

As an illustration of the theory, we apply the martingale methods proposed in this paper

to derive the asymptotic distribution of a matching estimator when matching is carried

out without replacement, a result previously unavailable in the literature. Despite its sim-

plicity and immediate implications, the martingale representation of matching estimators

described in this article seems to have been previously unnoticed in the literature.

II. Matching Estimators

Empirical researchers often compare the distributions of some variable, Y , between two

groups of units after taking into account the confounding effects of a (k × 1) vector of

observed covariates, X. Let W be a binary variable that indicates membership to a par-

ticular population of interest. For example, in discrimination litigation research, W may
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represent membership in a certain demographic group, Y may represent labor wages, and

X may represent a vector of variables influencing workers productivity, like education or

tenure. In evaluation research, W typically indicates exposure to an active treatment or

intervention, Y is an outcome of interest, and X is a vector of observed confounders. Let

τ = E[Y |W = 1]− E
[
E[Y |X,W = 0]

∣∣∣W = 1
]
.

In evaluation research, τ is given a causal interpretation as the “average treatment effect

on the treated” under unconfoundedness assumptions (Rubin, 1977). Other parameters of

interest can be estimated using matching methods. These include the “average treatment

effect”, which is of widespread interest in evaluation studies, as well as parameters that fo-

cus on features of the distribution of Y other than the mean (see Imbens, 2004, and Imbens

and Wooldridge, 2008, for detailed reviews of the literature). Matching is also used for the

analysis of missing data, where it is often referred to as “hot-deck imputation” (Little and

Rubin, 2002). For concreteness, and to avoid tedious repetition or unnecessary abstrac-

tion, we will discuss matching estimation of τ only. However, the techniques proposed in

this paper are of immediate application to the estimation of parameters other than τ via

matching.

Consider random samples of sizes N0 and N1 of untreated and treated units, respectively.

Pooling together these two samples, we obtain a sample of size N = N0 + N1 that contains

treated and untreated units. For each unit in the pooled sample we observe the triple

(Y, X, W ). For each treated unit i, let JM(i) be the indices of M untreated units with

values in the covariates similar to Xi (where M is some small positive integer). In other

words, JM(i) is a set of M matches for observation i. To simplify notation, we will assume

that at least one of the variables in the vector X has a continuous distribution, so perfect

matches happen with probability zero. Let ‖·‖ be some norm in Rk (typically the Euclidean

norm). Let 1A be the indicator function for the event A. For matching with replacement,

JM(i) =

{
j ∈ {1, . . . , N} s.t. Wj = 0,

(
N∑

k=1

(1−Wk) 1{‖Xi−Xj‖≤‖Xi−Xk‖}

)
≤ M

}
.

For matching without replacement, the elements of {JM(i) s.t. Wi = 1} are non-overlapping
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subsets of {j ∈ {1, . . . , N} s.t. Wj = 0} chosen to minimize the sum of the matching dis-

crepancies:
N∑

i=1

Wi

∥∥∥∥∥∥
Xi − 1

M

∑

j∈JM (i)

Xj

∥∥∥∥∥∥
.

In both cases, the matching estimator of τ is defined as:

τ̂ =
1

N1

N∑
i=1

Wi

(
Yi − 1

M

∑

j∈JM (i)

Yj

)
.

Other matching schemes are possible (see, Rosenbaum, 2002; Hansen, 2004; Diamond and

Sekhon, 2008) and the results in this article are of broad generality. Notice that in this

article we reserve the term “matching” for procedures that use a small number, M , of

matches. Estimators that treat the number of matches as a function of the sample size

(with M → ∞ as N → ∞) have been proposed by Heckman, Ichimura, and Todd (1998)

and others. These estimators have asymptotically linear representations, so their large

sample distributions can be derived using the standard machinery for asymptotically linear

estimators.

III. A Martingale Representation for Matching Estimators

This section derives a martingale representation for matching estimators. For w ∈ {0, 1},
let µw(x) = E[Y |X = x,W = w] and σ2

w(x) = var(Y |X = x,W = w). Assume that these

functions are bounded. Abadie and Imbens (2006) derive the following decomposition for

matching estimators:

τ̂ − τ =
1

N1

N∑
i=1

Wi

(
Yi − 1

M

∑

j∈JM (i)

Yj − τ
)

=
1

N1

N∑
i=1

Wi

((
Yi − µ1(Xi)

)− 1

M

∑

j∈JM (i)

(
Yj − µ0(Xj)

))

+
1

N1

N∑
i=1

Wi

(
µ1(Xi)− 1

M

∑

j∈JM (i)

µ0(Xj)− τ
)

=
1

N1

N∑
i=1

Wi

((
Yi − µ1(Xi)

)− 1

M

∑

j∈JM (i)

(
Yj − µ0(Xj)

))
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+
1

N1

N∑
i=1

Wi

(
µ1(Xi)− µ0(Xi)− τ

)

+
1

N1

N∑
i=1

Wi

(
µ0(Xi)− 1

M

∑

j∈JM (i)

µ0(Xj)
)
.

That is, τ̂ − τ = DN + RN , where

DN =
1

N1

N∑
i=1

Wi

(
µ1(Xi)− µ0(Xi)− τ

)

+
1

N1

N∑
i=1

Wi

((
Yi − µ1(Xi)

)− 1

M

∑

j∈J (i)

(
Yj − µ0(Xj)

)
,

and

RN =
1

N1

N∑
i=1

Wi

(
µ0(Xi)− 1

M

∑

j∈J (i)

µ0(Xj)
)
.

The term RN is the conditional bias of matching estimator described in Abadie and Imbens

(2004). This term is zero if matches are perfect (that is, if all matching discrepancies,

Xi −Xj for j ∈ J (i), are zero), or if the regression µ0 is a constant function. In general,

however, this term is different from zero, as perfect matches happen with probability zero for

continuous covariates. The order of magnitude of RN depends on the number of continuous

covariates, as well as the magnitude of N0 relative to N1. Under appropriate conditions
√

N1RN converges in probability to zero (see section IV, or Abadie and Imbens, 2004, for

the case of matching with replacement).

Next, it will be shown that the term DN is a martingale array with respect to certain

filtration. First notice that:

DN =
1

N1

N∑
i=1

Wi

(
µ1(Xi)− µ0(Xi)− τ

)

+
1

N1

N∑
i=1

(
Wi − (1−Wi)

KN,i

M

) (
Yi − µWi

(Xi)
)
,

where KN,i is the number of times that observation i (with Wi = 0) is used as a match.

Therefore, we can write:
√

N1DN =
2N∑

k=1

ξN,k,
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where

ξN,k =





1√
N1

Wk

(
µ1(Xk)− µ0(Xk)− τ

)
if 1 ≤ k ≤ N,

1√
N1

(
Wk−N − (1−Wk−N)

KN,k−N

M

) (
Yk−N − µWk−N

(Xk−N)
)

if N + 1 ≤ k ≤ 2N.

Let XN = {X1, . . . , XN} and WN = {W1, . . . , WN}. Consider the σ-fields FN,k = σ{WN ,

X1, . . . , Xk} for 1 ≤ k ≤ N and FN,k = σ{WN ,XN , Y1, . . . , Yk−N} for N + 1 ≤ k ≤ 2N .

Then, {
i∑

j=1

ξN,j,FN,i, 1 ≤ i ≤ 2N

}

is a martingale for each N ≥ 1. As a result, the asymptotic behavior of
√

N1DN can be

analyzed using martingale methods. Analogous martingale representations hold for alter-

native matching estimators. Regardless of the choice of matching scheme, a martingale

representation holds for
√

N1DN . The reason is that no matter how matching is imple-

mented, the number of times that unit k is used as a match, KN,k, is given conditional on

XN and WN , and E[Yk − µWk
(Xk) |XN ,WN , Y1, . . . , Yk−1] = 0.

IV. Application: Matching without Replacement

In this section, we demonstrate how to apply the martingale representation of matching

estimators to derive the asymptotic distribution when matching is done without replace-

ment. To simplify the calculations, we assume that conditional on Wi the variance of Yi

does not depend on Xi. That is, σ2
w(x) = σ2

w for all x in the support of X and w ∈ {0, 1}.
Also, to simplify the exposition, we will concentrate on the case of one-to-one matching

(M = 1).

The conditional variances of the martingale differences are given by:

E[ξ2
N,k|FN,k−1] =

1

N1

WkE[(µ1(Xk)− µ0(Xk)− τ)2|FN,k−1]

=
1

N1

WkE[(µ1(Xk)− µ0(Xk)− τ)2|Wk = 1]

for 1 ≤ k ≤ N and

E[ξ2
N,k|FN,k−1] =

1

N1

E
[
(Wk−N − (1−Wk−N)KN,k−N)2 (

Yk−N − µWk−N
(Xk−N)

)2
∣∣∣FN,k−1

]
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=
1

N1

(
Wk−Nσ2

1 + (1−Wk−N)KN,k−Nσ2
0

)

for N + 1 ≤ k ≤ 2N . Let

V = E[(µ1(Xk)− µ0(Xk)− τ)2|Wk = 1] +
(
σ2

1 + σ2
0

)
.

Because for all 1 ≤ k ≤ N , KN,k ≤ 1 with
∑N

k=1 KN,k = N1,

2N∑

k=1

E[ξ2
N,k|FN,k−1] = V.

To apply a Martingale Central Limit Theorem to DN , it is enough to check the Lindeberg

condition,
2N∑

k=1

E[ξ2
N,k1{|ξN,k|≥ε}] → 0 for all ε > 0

(Billingsley, 1995, see Hall and Heyde, 1980, and Shorack, 2000, for alternative conditions).

Because for all δ > 0, |ξN,k|21{|ξN,k|≥ε}εδ ≤ |ξN,k|2+δ, we obtain that Lindeberg’s condition

is implied by Lyapounov’s condition:

2N∑

k=1

E[ξ2+δ
N,k ] → 0 for some δ > 0,

which, in turn, can be easily established under usual regularity conditions regarding bound-

edness of moments. Under these conditions, the Central Limit Theorem for Triangular

Martingale Arrays implies:
√

N1DN
d−→ N(0, V ).

The proof concludes by showing that
√

N1RN
p→ 0. For 1 ≤ i ≤ N such that Wi = 1,

let ‖UN0,N1,i‖ be the matching discrepancy for treated unit i when untreated units are

matched without replacement to treated units in such a way that the sum of the matching

discrepancies is minimized. If µ0 is Lipschitz-continuous, then there exists a constant C

such that
√

N1RN ≤ C
1√
N1

N∑
i=1

Wi‖UN0,N1,i‖.

The following proposition (proven in the appendix) provides sufficient conditions under

which
√

N1RN vanishes asymptotically.
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Proposition 1: Let F0 and F1 be the distributions of X given W = 0 and X given W = 1,

respectively. Assume that F0 and F1 have a common support that is a Cartesian product of

intervals, and that the densities f0(x) and f1(x) are bounded and bounded away from zero:

f ≤ f0 ≤ f̄ and f ≤ f1 ≤ f̄ . Assume that there exists c > 0 and r > k where k is the

number of (continuous) covariates, such that N r
1/N0 ≤ c. Then,

1√
N1

N∑
i=1

Wi‖UN0,N1,i‖ p→ 0.

The conditions of Proposition 1 assume that all covariates have continuous distributions.

This is done without loss of generality. Discrete covariates with a finite number of support

points can be easily dealt with by conditioning on their values, in which case k is equal

to the number of continuous covariates in X. Under the conditions of Proposition 1, the

conditional bias term,
√

N1RN , is asymptotically negligible, so we obtain:

√
N1

(
τ̂ − τ

) d→ N(0, V ).

V. Conclusion

This article establishes a martingale array representation for matching estimators. This

representation allows the use of well-known martingale limit theorems to determine the

large sample distribution of matching estimators. Because the martingale representation

applies to a large class of matching estimators, the applicability of the methods presented

in this article is very broad. Specific applications include matching estimators of average

treatment effects as well as “hot-deck” imputation methods for missing data.
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Appendix

Proof of Proposition 1: By changing units of measurement, we can always make the support
of the covariates equal to the unit k-cube. (This only adds a multiplicative constant to our
bounds.) Notice that we can always divide a unit k-cube into Nk

1 identical cubes, for N1 =
1, 2, 3, . . ..

Divide the support of F0 and F1 into Nk
1 identical cubes. Let ZN0,N1 be the number of such

cells that are occupied by more observations from the treated sample than observations from the
untreated sample. Let MN1 be the maximum number of observations from the treated sample
in a single cell. Let mN0,N1 be the minimum number of untreated observations in a single cell.
Notice that for any series, f(N1), such that 1 ≤ f(N1) < N1, we have:

Pr(ZN0,N1 > 0) ≤
N1∑

m=1

Pr(mN0,N1 < m) Pr(MN1 = m)

≤
bf(N1)c∑

m=1

Pr(mN0,N1 < m) Pr(MN1 = m)

+
N1∑

m=bf(N1)c+1

Pr(mN0,N1 < m) Pr(MN1 = m)

≤ f(N1) Pr(mN0,N1 < f(N1))
+ (N1 − f(N1)) Pr(MN1 > f(N1)).

Let DN1,m be the number of cells that contain more than m treated observations. Let 0 < α <
min{r−k, 1}. Consider f(N1) = Nα

1 . For N1 large enough, f̄/Nk
1 < 1. Using Markov’s Inequality

we obtain for N1 large enough:

Pr(MN1 > f(N1)) = Pr(DN1,Nα
1
≥ 1)

≤ E[DN1,Nα
1
]

≤ Nk
1 Pr

(
B(N1, f̄/Nk

1 ) > Nα
1

)
.

Using Bennett’s bound for binomial tails (e.g., Shorack and Wellner, 1996, p. 440), we obtain:

Pr
(
B(N1, f̄/Nk

1 ) > Nα
1

)
= Pr

(
B(N1, f̄/Nk

1 )− f̄/Nk−1
1√

N1
>

Nα
1 − f̄/Nk−1

1√
N1

)

≤ exp

{
− f̄/Nk−1

1

1− f̄/Nk
1

[
Nα+k−1

1

f̄

(
log

(
Nα+k−1

1

f̄

)
− 1

)
+ 1

]}

= exp

{
− 1

1− f̄/Nk
1

[
Nα

1

(
log

(
Nα+k−1

1

f̄

)
− 1

)
+

f̄

Nk−1
1

]}
.

Similarly, let CN0,N1,m be the number of cells with less than m untreated observations. Then,

Pr(mN0,N1 < m) = Pr(CN0,N1,m ≥ 1)
≤ E[CN0,N1,m]
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=
Nk

1∑

n=1

Pr
(
B(N0, pn) < m

)
,

where pn is the probability that an untreated observation falls in cell n. Then, because for all n,
pn ≥ f/Nk

1 , we obtain:

Pr(mN0,N1 < m) ≤ Nk
1 Pr

(
B(N0, f/Nk

1 ) < m
)
.

Also, for large enough N1, there exists δ such that (c/f)/N r−α−k
1 < δ < 1. Using Chernoff’s

bound for the lower tail of a sum of independent Poisson trials (e.g., Motwani and Raghavan,
1995, p. 70), we obtain that for large enough N1:

Pr
(
B(N0, f/Nk

1 ) < Nα
1

)
= Pr

(
B(N0, f/Nk

1 ) < f
N0

Nk
1

Nα+k
1

fN0

)

≤ Pr

(
B(N0, f/Nk

1 ) < f
N0

Nk
1

c/f

N r−α−k
1

)

≤ exp
(
−(fN0/N

k
1 )

(
1− (c/f)/N r−α−k

1

)2
/2

)

≤ exp
(
−fN r−k

1 (1− δ)2/2c
)

.

This proves an exponential bound for Pr(ZN0,N1 > 0).
Rearrange the observations so the first N1 observations in the sample are the treated obser-

vations. For 1 ≤ i ≤ N1, let ‖UN0,N1,i‖ be the matching discrepancy for treated unit i when
untreated units are matched without replacement to treated units in such a way that the sum
of the matching discrepancies is minimized. For 1 ≤ i ≤ N1, let ‖VN0,N1,i‖ be the matching
discrepancy for treated unit i when untreated units are matched without replacement to treated
units in such a way that the matches are first done within cells and, after all possible within-cell
matches are exhausted, untreated units that were not previously used as a match are matched
without replacement to previously unmatched treated units in other cells. Notice that:

N1∑

i=1

‖UN0,N1,i‖ ≤
N1∑

i=1

‖VN0,N1,i‖.

Let dN1,k be the diameter of the cells. Let Ck be the diameter of the unit k-cube. Notice the if
the unit k-cube is divided in Nk

1 identical cells, then Ck = N1dN1,k. For 1 ≤ n ≤ Nk
1 , let AN1,n

be the n-th cell. Then,

E
[‖VN0,N1,i‖

∣∣ZN0,N1 = 0
] ≤

Nk
1∑

n=1

dN1,k Pr(X1,i ∈ AN1,n|ZN0,N1 = 0)

≤ dN1,k

≤ Ck

N1
.

Now,

E

[
1√
N1

N1∑

i=1

‖UN0,N1,i‖
]

≤ E

[
1√
N1

N1∑

i=1

‖VN0,N1,i‖
]
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= E

[
1√
N1

N1∑

i=1

‖VN0,N1,i‖
∣∣∣ZN0,N1 = 0

]
Pr(ZN0,N1 = 0)

+ E

[
1√
N1

N1∑

i=1

‖VN0,N1,i‖
∣∣∣ZN0,N1 > 0

]
Pr(ZN0,N1 > 0)

≤ Ck√
N1

+
√

N1Ck Pr(ZN0,N1 > 0) −→ 0.

Markov’s Inequality produces the desired result. ¤
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