
IZA DP No. 3671

Identification of Treatment Effects on the
Treated with One-Sided Non-Compliance

Markus Frölich
Blaise Melly

D
I

S
C

U
S

S
I

O
N

 P
A

P
E

R
 S

E
R

I
E

S

Forschungsinstitut
zur Zukunft der Arbeit
Institute for the Study
of Labor

August 2008



 
Identification of Treatment Effects on the 
Treated with One-Sided Non-Compliance 

 
 

Markus Frölich 
University of Mannheim 

and IZA  
 

Blaise Melly 
Brown University 

 
 
 
 

Discussion Paper No. 3671 
August 2008 

 
 
 

IZA 
 

P.O. Box 7240   
53072 Bonn   

Germany   
 

Phone: +49-228-3894-0  
Fax: +49-228-3894-180   

E-mail: iza@iza.org
 
 
 
 
 

Any opinions expressed here are those of the author(s) and not those of IZA. Research published in 
this series may include views on policy, but the institute itself takes no institutional policy positions. 
 
The Institute for the Study of Labor (IZA) in Bonn is a local and virtual international research center 
and a place of communication between science, politics and business. IZA is an independent nonprofit 
organization supported by Deutsche Post World Net. The center is associated with the University of 
Bonn and offers a stimulating research environment through its international network, workshops and 
conferences, data service, project support, research visits and doctoral program. IZA engages in (i) 
original and internationally competitive research in all fields of labor economics, (ii) development of 
policy concepts, and (iii) dissemination of research results and concepts to the interested public.  
 
IZA Discussion Papers often represent preliminary work and are circulated to encourage discussion. 
Citation of such a paper should account for its provisional character. A revised version may be 
available directly from the author. 

mailto:iza@iza.org


IZA Discussion Paper No. 3671 
August 2008 

 
 
 
 
 
 
 
 
 
 
 

ABSTRACT 
 

Identification of Treatment Effects on the Treated with 
One-Sided Non-Compliance 

 
Traditional instrumental variable estimators do not generally estimate effects for the treated 
population but for the unobserved population of compliers. They do identify effects for the 
treated when there is one-sided perfect non-compliance. However, this property is lost when 
covariates are included in the model. In this case, we show that the effects for the treated are 
still identified but require modified estimators. We consider both average and quantile 
treatment effects and allow the instrument to be discrete or continuous. 
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1 Introduction

Instrumental variable estimators of a binary endogenous treatment generally identify only the

treatment e¤ect on the subpopulation of compliers (which is known as the local average treatment

e¤ect, LATE, Imbens and Angrist (1994) or the complier average causal e¤ect CACE). LATE is

the average e¤ect for individuals whose treatment status is in�uenced by changing the value of

the instrument.1 In many situations, however, we would rather like to know the e¤ects on the

treated, e.g. the average e¤ect on the treated (ATET).

The population of compliers is not always of most interest. It is an unobservable population

because we observe the value of the treatment only for one value of the instrument. This makes

the interpretation of the �ndings less intuitive and can also limit their usefulness. For instance,

Manski (2003) notes that �ndings for unobserved populations cannot be used by a planner to

make treatment choice. In addition, for cost-bene�t calculations we need to measure the impacts

on those who actually have been treated. While we have individual data to estimate the bene�ts,

we observe only the total cost of the program. To perform the cost-bene�t analysis the treatment

e¤ects on the treated are required and not the complier average e¤ects.

Out of these reasons, we would like to identify the e¤ects for the treated population, e.g. the

average e¤ect (ATET) or quantile treatment e¤ects on the treated (QTET). It is well known that

in the case of one-sided non-compliance, the population of treated and compliers are identical such

that the instrumental variables estimator estimates e¤ects for the treated. However, as we argue

in this note, if additional control variables are included in the model, treated and compliers are

not identical. Nevertheless, the treatment e¤ects on the treated are still identi�ed, but di¤erent

estimators have to be used. Our results also apply, by obvious modi�cations, to the regression

discontinuity design (RDD), where one-sided noncompliance often occurs by design, see Battistin

and Rettore (2008), who refer to this as a partially fuzzy design.

In the following we give a number of examples where this situation applies. In the �rst

type of examples, treatment assignment is randomized, but the assignment probability di¤ers

between individuals. In this case, we have to control for the covariates that determined the

assignment probability. Angrist (2006) examines a domestic violence experiment, where o¤enders

were randomly subjected to one of three treatments: �arrest, ordering the o¤ender o¤the premises

1The e¤ects on quantiles or on other statistical characteristics of the marginal distributions of the outcome are

also identi�ed for the same population (e.g. Abadie, Angrist, and Imbens (2002) or Frölich and Melly (2007)).
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for eight hours, and some form of advice that might include mediation�. One of the three

treatments was randomly selected each time police o¢ cers encountered a situation of domestic

assault. (Police o¢ cers could deviate from the random assignment and frequently did so.) Angrist

(2006) mentions that the not-arresting �treatment might have been randomly assigned with higher

probability to suspects with no prior history of assault. We then need to control for assault history

in the IV analysis.�Similarly, in clinical trials where assignment probability might depend on the

severity of the illness. Finkelstein, Levin, and Robbins (1996) suggests a design where treatment

assignment probability is 50% for everyone with severity of illness below a certain threshold and

100% for everyone above.2 Since the threshold is often arbitrary, a more e¤ective approach is to

gradually increase the assignment probability with the severity of illness (or other risk factors).

Similarly, assignment probabilities often vary with publicly subsidized social programmes (e.g.

training programmes) if local funding or supply constraints limit the number of places available

(per region and per time period, e.g. each week or month). See e.g. Black, Galdo, and Smith

(2005).

In the second type of examples, we consider randomized trials with missing outcomes. Non-

response and attrition are universal problems of most randomized trials, particularly when one

is interested in medium to long-term e¤ects of a treatment. Assuming �missing at random�

MAR (conditional on covariates X) is the method of choice to deal with missingness (Little and

Rubin 1987).3 (See e.g. Yau and Little (2001) on a randomized trial of job training assistance

for unemployed.) As Frangakis and Rubin (1999) observe, this assumption might often be too

strong. It can be relaxed by requiring ignorability to hold only conditionally on X and the

unobserved compliance type of the individual. Since the compliance type is unobserved, they also

require an exclusion restriction for the never-taker. Mealli, Imbens, Ferro, and Biggeri (2004)

examine a similar situation but rely on an exclusion restriction for compliers. In all these cases

with missing data, the distribution of X is not balanced among the populations with complete

outcome data. We extend the methods of the mentioned articles by deriving estimators for

unconditional treatment e¤ects on the treated.4 We emphasize that our results straightforwardly

generalize to the regression discontinuity design (RDD), where missing data has not been analyzed

2This allows for a RDD at the threshold.
3Apart from the rare cases where one has access to good instrumental variables for non-response.
4Missing outcome data also often occurs if for cost reasons we sample only a subset of the treated and controls

and oversample high-risk groups, e.g. if we are interested in rare events, such as death.
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in the literature so far.

As a third example, we often like to include additional covariates X to separate direct from

indirect e¤ects as in the spirit of Pearl (2000).5 A classic example in Pearl (2000) is the e¤ect

of taking the birth-pill on thrombosis. Taking the pill (D) is suspected to increase the risk of

thrombosis (Y ). At the same time does D reduce the number of pregnancies, which are known

to increase the risk of thrombosis. Here, we are not interested in the total e¤ect, but only in the

partial e¤ect of D on Y , i.e. which is not channeled via X. Similar ideas apply to the widely

used Mincer earnings regressions, see e.g. Heckman, Lochner, and Todd (2004). We might be

interested in the e¤ects of class size on wages, and assign children randomly to large and small

classes. The total e¤ect is identi�ed by the experimental design, but to obtain the partial e¤ects

one often includes labour market experience or profession/industry as a covariate in the regression.

Finally, we mention the situation where the instrumental variable has not been randomly as-

signed and therefore might be confounded, unless we condition on several background character-

istics. To give just one example, Pitt and Khandker (1998) examine the e¤ects of microcredit

on various labour market and health outcomes. Households with more than half an acre of land,

however, are not eligible to participate in these microcredit programmes. Let Z = 1 if landhold-

ings are below half an acre, and Z = 0 otherwise. Some households with Z = 1 receive micro-

credit (D = 1) while others do not (D = 0). At the same time, landholdings Z are likely to be

correlated with other background variables X that might have an independent e¤ect on various

outcome variables, e.g. health outcomes, and thus need to be conditioned on.

Section 2 presents the framework and discusses the (trivial) case without covariates. We show

in section 3 that the treatment e¤ects are also identi�ed in the presence of covariates. Sub-section

3.1 gives a regression (matching) representation of the e¤ects while section 3.2 presents weighted

representations of the estimands. In both cases we allow for continuous or discrete instruments.

Finally, section 4 presents results for missing outcomes.

2 Instrumental variables and one-sided non-compliance

Consider a binary treatment Di 2 f0; 1g and let Y 1i , Y 0i be the potential outcomes in case of

treatment and non-treatment, respectively. In the medical drug trial example, the treatment

5We should be aware that including such post-treatment variables might introduce bias if those are correlated

with unobservables a¤ecting the outcome variable.
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choice is Di 2 fno drug; drugg and the outcome of interest is blood pressure one week after

treatment. Let Zi be an instrumental variable that has an e¤ect on Di but no direct e¤ect

on the potential outcomes. For example, Z could be random assignment to treatment versus

no-treatment, but later we also allow for other, not necessarily binary, instruments.

With random assignment of Z, the intention to treat e¤ect (ITT) is immediately identi�ed

by regressing Y on a constant and Z. Of most interest, however, is not the ITT but rather the

treatment e¤ect of D on Y , either the average treatment e¤ect E[Y 1 � Y 0] or in particular the

average treatment e¤ect on the treated (ATET)

E[Y 1 � Y 0jD = 1],

which receives most attention in the evaluation literature. The ATET refers to the subpopulation,

which actually received the treatment and thus realized the impact of the treatment and is

therefore the appropriate subpopulation for a cost-bene�t analysis.

If everyone complied with the random assignment, then D = Z and ITT=ATE=ATET.

However, in many applications the experimental protocol is violated. Non-compliance can be in

two directions: Individuals assigned to treatment (Zi = 1) may not take the treatment (Di = 0)

and, vice versa, individuals assigned to non-treatment (Zi = 0) may receive the treatment (Di =

1). In many applications, however, only one-sided non-compliance occurs. For example, if a new

medical drug is tested, it is impossible for someone assigned to placebo (Zi = 0) to gain access

to the new drug. Still, those who are assigned to treatment may not take the drug. Similarly

with participation in a training programme. Individuals assigned to training may not attend the

course. On the other hand, individuals randomized out may not be able or willing to take part

in the course, e.g. if the course providers are not permitted to accept them or charge very high

fees.

With one-sided non-compliance, we can distinguish two di¤erent types of individuals: Those

who would take the treatment if assigned to it, and those who would not take the treatment

irrespective of Z.6 We will call the former group the �compliants�or �compliers�and the latter

group the �never treated�. As shown in Imbens and Angrist (1994), the average treatment e¤ect

on the compliers, called LATE, can be identi�ed by instrumental variable estimation. Because

with one-sided non-compliance and random assignment of Z, only the compliers are those who
6 If the one-sided non-compliance is in the other direction, rede�ne D as 1�D. Of course, in this case we would

identify only e¤ects for the non-treated.
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receive the treatment, it follows that LATE=ATET such that

E
�
Y 1 � Y 0jD = 1

�
=
E [Y jZ = 1]� E [Y jZ = 0]

E [DjZ = 1] , (1)

see also Bloom, Orr, Bell, Cave, Doolittle, Lin, and Bos (1997). By straightforward modi�cations

we can also obtain the quantile treatment e¤ects for the treated (QTET). Hence, the ATET and

QTET are identi�ed.

The situation is di¤erent when we include additional control variables. Several reasons for

doing so have been discussed in the introduction. In this case, the populations of treated and

of compliers have di¤erent X distributions such that ATET6=LATE. More precisely, the ATET

corresponds to the treatment e¤ect on the treated compliers, which can be di¤erent from LATE.

3 Identi�cation of treatment e¤ects for the treated

We still consider the case where D is binary, but permit Z and X to be of any dimension and

any type. If Z has a mass point at z0, fZ (z0) = Pr (Z = z0); if Z is continuous, fZ (z0) denotes

the probability density function. We assume in the following:

Assumption 1:

i) One-sided non-compliance: Pr (D = 0jZ = z0) = 1

ii) Existence of compliers: Pr (D = 1) > 0

iii) Independent instrument: Y 0??ZjX

iv) Support condition: fZjX(z0) > 0 for almost every X

Assumption (i) is the one-sided perfect compliance assumption that is central in this paper.

Assumption (ii) requires that the instruments have some power in that there are at least some

individuals who react to it. The third assumption is the main instrumental variable assumption.

The fourth assumption requires that Z = z0 may be observed given almost all values of X.

Assumption (i) has no identifying power if Z = z0 cannot be observed.7 This assumption also

7 If Z has a mass-point at z0 this assumption requires that Pr (Z = z0jX) > 0. If Z is continuous, some

additional technical regularity conditions should be added (either smoothness of fZjX (z) at z0 or of the conditional

distribution of Y given X and Z at z0, compactness of the support of Z) in order to ensure the consistency of

potential estimators. We do not further discuss these technical details in the following.
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covers the assumption of Imbens and Angrist (1994) but is weaker in many respects, apart from

the one-sided non-compliance assumption.

We need one point z0 where receipt of treatment is impossible. E.g. in the medical trial

example, Z is binary and at z0 = 0 we have Pr(D = 1jZ = z0) = 0, i.e. those assigned placebo

cannot get access to the new drug. We embrace a more general setup here where Z can be non-

binary. E.g. Z may represent di¤erent intensities with which patients in the treatment group

are encouraged or given incentives to take the prescribed drug. (In the placebo group, Z = 0.)

We thus permit non-binary Z, do not require monotonicity and only need the instrumental

variable condition to hold conditional on X. Note that for identi�cation of ATET, Assumption

1(iii) could be weakened to require only mean independence, but for identi�cation of quantile

treatment e¤ects, full independence is required.

3.1 Regression representation

We will show in this section that ATET and QTET are identi�ed by Assumption 1. In order to

provide succinctly the results for ATET, QTET and any other statistic based on moments of the

marginal distribution of Y0, Theorem 1 states a general result that will be specialized later to the

cases of ATET and QTET.

Theorem 1 (Regression) Let g (�) be any real measurable function such that E
��g �Y 0��� <1.

Under Assumption 1

E
�
g
�
Y 0
�
jD = 1

�
=

R
E [g (Y ) jX;Z = z0] dFX � E [g (Y ) � (1�D)]

Pr (D = 1)
(2)

Theorem 1 is a powerful identi�cation result. It says that any statistical characteristic that

can be de�ned in terms of moments of the distribution of Y 0 is identi�ed for the treated. Making

use of this result we obtain after a few calculations a simple representation for the ATET:

Corollary 2 Under Assumption 1

E
�
Y 1 � Y 0jD = 1

�
=

Z
E [Y jX]� E [Y jX;Z = z0]

Pr (D = 1)
dFX =

E [Y ]�
R
E [Y jX;Z = z0] dFX
Pr (D = 1)

.
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Note that this simpli�es to equation (1) if X is the empty set and if Z is binary. A nat-

ural estimator for the ATET is obtained by plugging in nonparametric regression estimators of

E [Y jX;Z] and E [Y jX] to estimate ATET as
nP
i=1

�
Yi � Ê [Y jXi; Z = z0]

�
nP
i=1
Di

.

Note that this formula is very di¤erent from LATE, which has been derived in Frölich (2007):

E
�
Y 1 � Y 0jT = complier

�
=

R
(E [Y jX;Z = zH ]� E [Y jX;Z = z0]) � dFXR
(E [DjX;Z = zH ]� E [DjX;Z = z0]) � dFX

,

where zH = argmax
z2Supp(Z)

Pr (D = 1jZ = z) is the value of the instrument which induces the largest

fraction of people to treatment, and where we have to assume monotonicity additionally.

In many research areas, one is not only interested in the average treatment e¤ect, but also

in its distributional e¤ects. Consider two di¤erent training programmes with the same (positive)

average e¤ect on wages. If the impacts of the �rst programme are mostly be found in the lower tail

of the wage distribution, whereas the second programme impacts on the upper tail, policy makers

would probably favour the former programme. Another example which has received considerable

public interest is educational equality, where many societies would prefer to provide every child

with a fair chance into adult live. Here, Y is a measure of cognitive ability (e.g. obtained from

math and language tests) and D may be the introduction of computers in classroom (teaching).

Quantile treatment e¤ects (QTE) are then appealing to characterize the heterogeneous impacts

of the treatment at di¤erent points of the outcome distribution.

Frölich and Melly (2007) derived the quantile treatment e¤ects for the compliers. Here we are

interested in the quantile treatment e¤ects on the treated (QTET). The QTET is de�ned as

Q�Y 1jD=1 �Q
�
Y 0jD=1.

The �rst part is trivially identi�ed as the quantile of Y in the D = 1 population as this is the

factual outcome. More di¢ cult is the counterfactual outcome Q�Y 0jD=1. We �rst identify the

distribution of the counterfactual outcome of the treated and then invert the distribution.
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Corollary 3 Under Assumption 1

QTET � = Q�Y jD=1 � F
�1
Y 0jD=1(�) with

FY 0jD=1(u) =

Z
E [1 (Y � u) jX;Z = z0] + E [1 (Y � u) � (D � 1) jX]

Pr (D = 1)
� dFX .

Straightforward nonparametric estimators exist for all elements appearing in Corollary 2. An

alternative that may be fruitful when we want to estimate the whole distribution (or at least for

a large number of u) consists in estimating the conditional quantile function by local quantile

regression and then to invert this function. Instead of using kernel weights, nearest neighbors

estimators may also be used to estimate all conditional functions.

3.2 Weighting representation

The identi�cation result of Theorem 1 can be considered as a regression (or matching) represen-

tation of the estimands. Estimators based on it require the (nonparametric) estimation of the

conditional expected value or conditional distribution of Y as a function of X and Z. Theorem

2 will show that an alternative weighted representation exists. The estimation of the weights

requires the estimation of fZjX (z0 jx). Therefore, estimators based on this representation are

especially useful when this function is easier to estimate than the regression function, e.g. when

Z is randomized and we know the randomization function. It has also the advantage of providing

an explicit representation for the counterfactual quantiles.

Theorem 4 (Weighting) Let g (�) be any real measurable function such that E
��g �Y 0��� < 1.

Under Assumption 1

E
�
g
�
Y 0
�
jD = 1

�
=

1

Pr (D = 1)
E

�
g (Y ) � (1�D)

1 (Z = z0)� fZjX (z0jX)
fZjX (z0jX)

�

In the case where the instrument is binary and z0 = 0, the result of Theorem 2 specializes to

E
�
g
�
Y 0
�
jD = 1

�
=

1

Pr (D = 1)
E

�
g (Y ) � (1�D) Pr (Z = 1jX)� Z

1� Pr (Z = 1jX)

�
.

This result can be used directly to obtain a weighted representation for the ATET:
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Corollary 5 Under Assumption 1

E
�
Y 1 � Y 0jD = 1

�
=

1

Pr (D = 1)
E

�
Y �

�
D � (1�D)

1 (Z = z0)� fZjX (z0jX)
fZjX (z0jX)

��

Theorem 2 can also be used to obtain a representation of the QTET as a di¤erence between

the solutions of two weighted quantiles

Corollary 6 Under Assumption 1

Q�Y 1jD=1 = argmin
q1

E [�� (Y � q1) jD = 1] (3)

Q�Y 0jD=1 = argmin
q0

E

�
�� (Y � q0) �

1 (Z = z0)� fZjX (z0jX)
fZjX (z0jX)

jD = 0

�
where �� (u) = u � f� � 1 (u < 0)g.

The quantile Q�Y 1jD=1 can thus be obtained by a simple unweighted quantile regression on a

constant in the D = 1 subsample, whereas a weighted quantile regression on a constant in the

D = 0 subsample identi�es Q�Y 0jD=1. Given a (nonparametric) estimate of fZjX (z0 jx), natural

estimators are

Q̂�Y 1jD=1 = argmin
q1

X
i:Di=1

�� (Y � q1) (4)

Q̂�Y 0jD=1 = argmin
q0

X
i:Di=0

�� (Y � q0) �
1 (Z = z0)� f̂ZjX (z0 jx)

f̂ZjX (z0 jx)
.

Again, these estimators for QTET are di¤erent from the quantile treatment e¤ect for all compliers,

as derived in Frölich and Melly (2007). Asymptotic properties of the estimators of QTET could

be derived by extending their results.

4 Missing outcome data

A particularly important case where including control variables even in a fully randomized trial

is important relates to missing data. As Frangakis and Rubin (1999) observe �Randomised ex-

periments with human subjects often su¤er from two major complications, namely noncompli-

ance to treatment assignment and missing outcomes�. Di¤erent identi�cation assumptions can
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be exploited, which in a �rst stage require conditioning on certain control variables. Finally, how-

ever, we are interested in the treatment e¤ect on all treated, e.g. for a cost-bene�t analysis. We

will cover di¤erent sets of identifying assumptions, whose plausibility needs to be assessed in the

particular application. For the sake of brevity, we will derive only the regression representation

forms of the identi�ed potential outcomes (as in Section 3.1), and note that weighting represen-

tations as in Section 3.2 could be derived similarly.

We will maintain throughout Assumption 1. Therefore, although we focus here on the missing

data issue, we still permit that the assignment probability might vary with X. Suppose that data

on Z, X and D is observed for all individuals, but the outcome variable Y is observed only for

some individuals. Let the response indicator Ri = 1 if Yi is observed.

We examine �rst, the assumption of missingness at random conditional on all observed co-

variates:

Y??RjX;Z;D. (5)

Under this assumption we identify the potential outcomes for the treated as follows

Corollary 7 Under Assumptions 1 and (5), the potential outcomes for the treated are identi�ed

as

E
�
g
�
Y 0
�
jD = 1

�
=

Z
E [g (Y ) jX;R = 1; Z = z0]� E [g (Y ) jX;Z;R = 1; D = 0]Pr (D = 0jX;Z)

Pr (D = 1)
� dFX;Z

E
�
g
�
Y 1
�
jD = 1

�
=

Z
E [g (Y ) jX;Z;R = 1; D = 1]Pr (D = 1jX;Z)

Pr (D = 1)
� dFX;Z .

Note that this result is similar to Theorem 1, but the exact formula di¤ers since the response

indicator does not enter in all conditioning sets.

The MAR restriction (5) assumes that the response behaviour is a function of the received

treatment D (in addition to the covariates X and Z). Receiving or not receiving the treatment

impacts on the individuals� probability to respond. Frangakis and Rubin (1999) argued that

in many studies it is not the treatment receipt that determines response behavior but rather

the unobserved type of the individual. To relate ourselves to the common terminology in the

literature, we de�ne Di;z as the potential treatment status if Zi were hypothetically set to z.

For any particular value of z, there will be two types of individuals: those with Di;z = 0 and

those with Di;z = 1. If the instrumental variable is binary and we choose z = 1 (z0 = 0), the

former group is usually referred to as the �never-takers�while the latter group is referred to as

10



the �compliers�. When Z is non-binary, we can think of Di;z as de�ning compliance status when

Z takes the value z vis-a-vis z0.

We replace now the MAR assumption (5), which assumed independence conditional on the

observed D, by the latent ignorability assumption of Frangakis and Rubin (1999), which requires

independence conditional on the unobserved type Dz:

For any value z 2 Supp (Z)

Y??RjX;Z;Dz (6)

Since the type is only revealed when Z = z is observed, we need one further assumption to

disentangle the response probabilities when Z = z0. For the case when Z is binary, Frangakis

and Rubin (1999) assume that the response is independent of the instrument for the never-

takers. Since this population does not receive the treatment irrespective of the value of Z, it may

be reasonable to assume that Z also does not a¤ect their response behaviour. On the other hand,

we do not restrict the response behavior of the compliers, which is permitted to be dependent on

Z. To permit for non-binary Z we state this assumption of Frangakis and Rubin (1999) as:

For any value z 2 Supp(Z)

Z??RjX;Dz = 0. (7)

Corollary 8 Under assumptions 1, (6) and (7), the potential outcomes for the treated are iden-

ti�ed as

E
�
g
�
Y 0
�
jD = 1

�
=

Z
E [g (Y )RjX;Z = z0]� E [g (Y )R(1�D)jX;Z]

E [RjX;Z = z0]� E [R(1�D)jX;Z]
� dFX;ZjD=1

E
�
g
�
Y 1
�
jD = 1

�
=

Z
E [g (Y ) jX;Z;R = 1; D = 1] � dFX;ZjD=1.

Identi�cation of the potential outcomes in the previous theorem relied on the ignorability of

response for the never-takers (7), which is a plausible assumption particularly in double-blind

studies. As an alternative, we can make this ignorability condition for the compliers. Mealli,

Imbens, Ferro, and Biggeri (2004) observe that this latter assumption might be more plausible

in certain circumstances. Although never-takers never receive the treatment irrespective of the

value of Z such that their outcomes are plausibly una¤ected by Z, they do not comply with

the treatment assignment. If the study is not double-blind, never-takers who happen to be
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assigned to Z = 1 and decided to not comply with their assignment might have a di¤erent

(perhaps lower) response probability than those never-takers who happen to be assigned to Z = 0.

The choice to refuse the active treatment if o¤ered, might also compromise their willingness

to participate in follow-up surveys. The compliers, on the other hand, are willing to comply

with their treatment assignment and might thus be equally willing to provide follow-up data,

irrespective of the treatment actually received. In this situation, (8) might be more plausible.

To permit for non-binary Z we state this assumption as: For any value z 6= z0 2 Supp(Z)

Z??RjX;Dz = 1. (8)

Corollary 9 Under assumptions 1, (6) and (8), the potential outcomes for the treated are iden-

ti�ed as

E
�
g
�
Y 0
�
jD = 1

�
=

Z
E [g(Y )RjX;Z = z0]� E [g(Y )jX;Z;R = 1; D = 0] � (E [RjX;Z = z0]� E [RDjX;Z])

E [RjX;Z;D = 1]Pr (D = 1)
�dFX;Z

E
�
g
�
Y 1
�
jD = 1

�
=

Z
E [g (Y ) jX;Z;R = 1; D = 1] � dFX;ZjD=1.

5 Conclusions

In this note, we have shown that instrumental variables identify treatment e¤ects not only for

the compliers but also for the treated when there is only one-sided noncompliance. Without any

control variables, ATET=LATE, but when control variables are included, the estimands di¤er.

New estimators have been suggested that allow for the presence of continuous and discrete control

variables and instruments. We also show identi�cation of treatment e¤ects on the treated in the

presence of missing outcomes under three alternative sets of assumptions.
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A Appendix

A.1 Proof of Theorem 1

As a preliminary, note that by Assumptions 1 (i) and (iii) for any z

E [g (Y ) jX;Z = z0] = E
�
g
�
Y 0
�
jX;Z = z

�
= E

�
g
�
Y 0
�
jX;Z = z;D = 1

�
� Pr (D = 1jX;Z = z)

+ E
�
g
�
Y 0
�
jX;Z = z;D = 0

�
� Pr (D = 0jX;Z = z)

such that the counterfactual outcome, conditional on X, is identi�ed as

E
�
g
�
Y 0
�
jX;Z = z;D = 1

�
=
E [g (Y ) jX;Z = z0]� E [g (Y ) jX;Z = z;D = 0] � Pr (D = 0jX;Z = z)

Pr (D = 1jX;Z = z) .

(9)
Now we examine the unconditional counterfactual outcome using Assumption 1(i) and (9)

E
�
g
�
Y 0
�
jD = 1

�
=

Z Z
E
�
g
�
Y 0
�
jX = x;Z = z;D = 1

�
� dFZjD;X (z j1; x) � dFXjD (x j1)

=

Z Z
E [g (Y ) jX = x;Z = z0]� E [g (Y ) jX = x;Z = z;D = 0] � Pr (D = 0jX;Z = z)

Pr (D = 1jX;Z = z)
�dFZjD;X (z j1; x) � dFXjD (x j1)

=

Z Z
E [g (Y ) jX = x;Z = z0]� E [g (Y ) � (1�D) jX = x;Z = z]

Pr (D = 1)
� dFZjX (z jx) � dFX (x)

=

Z
E [g (Y ) jX = x;Z = z0]� E [g (Y ) � (1�D) jX = x]

Pr (D = 1)
� dFX (x)

A.2 Proof of Corollary 2

Apply Theorem 1 with g
�
Y 0
�
= Y 0

E
�
Y 1 � Y 0jD = 1

�
=

Z
E [Y jX;D = 1] � dFXjD=1 � E

�
Y 0jD = 1

�
=

Z
E [Y jX;D = 1] � Pr (D = 1jX)

Pr (D = 1)
� dFX � E

�
Y 0jD = 1

�
=

Z
E [Y DjX]
Pr (D = 1)

� dFX � E
�
Y 0jD = 1

�
=

Z
E [Y jX]� E [Y jX;Z = z0]

Pr (D = 1)
dFX .

A.3 Proof of Corollary 3

Apply Theorem 1 with g
�
Y 0
�
= 1

�
Y 0 � u

�
.
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A.4 Proof of Theorem 4

Note that by iterated expectationsZ
E [g (Y ) jX;Z = z0] dFX =

Z Z
g (y) � fY jX;Z (y jx; z0 ) dydFX (x)

=

Z Z
g (y) �

fY;ZjX (y; z0 jx)
fZjX (z0 jx)

dydFX (x)

=

Z Z Z
g (y) �

1 (Z = z0) � fY;ZjX (y; z jx)
fZjX (z0 jx)

dydzdFX (x)

= E

�
g (Y ) � 1 (Z = z0)
fZjX (z0jX)

�
= E

�
g (Y ) � (1�D) � 1 (Z = z0)

fZjX (z0jX)

�
Starting from Theorem 1 and using the just derived result and the fact that the event 1 (Z = z0) �
D = 1 occurs with probability zero by Assumption 1(i), one can now derive an expression for
E
�
g
�
Y 0
�
jD = 1

�
by appropriate weighting of the observations.

E
�
g
�
Y 0
�
jD = 1

�
=

Z
E [g (Y ) jX;Z = z0]� E [g (Y ) � (1�D) jX]

Pr (D = 1)
� dFX

=
1

Pr (D = 1)

Z
E

�
g (Y ) � (1�D) 1 (Z = z0)

fZjX (z0jX)

�
� E [g (Y ) � (1�D) jX] � dFX

=
1

Pr (D = 1)
E

�
g (Y ) � (1�D)

1 (Z = z0)� fZjX (z0jX)
fZjX (z0jX)

�
.

A.5 Proof of Corollary 5

Note that E
�
Y 1jD = 1

�
= E[Y �D]

Pr(D=1) and apply theorem 2 with g (Y ) = Y .

A.6 Proof of Corollary 6

By de�nition, Q�
Y djD=1 = argmin

q1
E
�
�� (Y

d � q1) jD = 1
�
: We obtain the result for Q�Y 1jD=1 by

noting that Y 1 = Y for the treated subsample. We obtain the result for Q�Y 0jD=1 by applying
theorem 2 with g (Y ) = �� (Y � q).

A.7 Proof of Corollary 7

For any value z 2 Supp(Z) and a real measurable and absolutely integrable function g we have

E [g(Y )jX;R = 1; Z = z0]
= E [g(Y )jX;R = 1; Z = z0; D = 0] = E [g(Y )jX;Z = z0; D = 0]

= E
�
g(Y 0)jX;Z = z0; D = 0

�
= E

�
g(Y 0)jX;Z = z0

�
= E

�
g(Y 0)jX;Z = z

�
= E

�
g(Y 0)jX;Z = z;D = 1

�
Pr (D = 1jX;Z = z) + E

�
g(Y 0)jX;Z = z;D = 0

�
Pr (D = 0jX;Z = z) .

E [g(Y )jX;R = 1; Z = z;D = 1] = E [g(Y )jX;Z = z;D = 1] = E
�
g(Y 1)jX;Z = z;D = 1

�
E [g(Y )jX;R = 1; Z = z;D = 0] = E [g(Y )jX;Z = z;D = 0] = E

�
g(Y 0)jX;Z = z;D = 0

�
.
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Combining these results we obtain

E
�
g(Y 0)jD = 1

�
=

Z
E
�
g(Y 0)jX;Z;D = 1

�
� dFX;ZjD=1

=

Z
E [g(Y )jX;R = 1; Z = z0]� E [g(Y )jX;R = 1; Z;D = 0]Pr (D = 0jX;Z)

Pr (D = 1jX;Z) � dFX;ZjD=1

=

Z
E [g(Y )jX;R = 1; Z = z0]� E [g(Y )jX;R = 1; Z;D = 0]Pr (D = 0jX;Z)

Pr (D = 1)
� dFX;Z

and

E
�
g(Y 1)jD = 1

�
=

Z
E [g(Y )jX;R = 1; Z;D = 1] � dFX;ZjD=1

=

Z
E [g(Y )jX;R = 1; Z;D = 1]Pr (D = 1jX;Z)

Pr (D = 1)
� dFX;Z .

A.8 Proof of Corollary 8

For any value z 2 Supp(Z) and a real measurable and absolutely integrable function g we have

E [g(Y )jX;R = 1; Z = z0; Dz = 1]
= E [g(Y )jX;Z = z0; Dz = 1] = E

�
g(Y 0)jX;Z = z0; Dz = 1

�
= E

�
g(Y 0)jX;Z = z;Dz = 1

�
= E

�
g(Y 0)jX;Z = z;D = 1

�
and analogously

E [g(Y )jX;R = 1; Z = z0; Dz = 0] = E
�
g(Y 0)jX;Z = z;D = 0

�
.

It follows that

E [g(Y )jX;R = 1; Z = z0]
= E [g(Y )jX;R = 1; Z = z0; Dz = 1] � Pr (Dz = 1jX;R = 1; Z = z0)

+E [g(Y )jX;R = 1; Z = z0; Dz = 0] � Pr (Dz = 0jX;R = 1; Z = z0)
= E

�
g(Y 0)jX;Z = z;D = 1

�
� Pr (Dz = 1jX;R = 1; Z = z0)

+E
�
g(Y 0)jX;Z = z;D = 0

�
� Pr (Dz = 0jX;R = 1; Z = z0) .

We also note that

E [g(Y )jX;R = 1; Z = z;D = 1] = E [g(Y )jX;R = 1; Z = z;Dz = 1]
= E [g(Y )jX;Z = z;Dz = 1]
= E

�
g(Y 1)jX;Z = z;D = 1

�
and analogously

E [g(Y )jX;R = 1; Z = z;D = 0] = E
�
g(Y 0)jX;Z = z;D = 0

�
. (10)
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Furthermore, by Bayes�formula

Pr (Dz = 0jX;R = 1; Z = z0)

=
Pr (R = 1jX;Dz = 0; Z = z0) Pr (Dz = 0jX;Z = z0)

Pr (R = 1jX;Z = z0)

=
Pr (R = 1jX;Dz = 0; Z = z) Pr (Dz = 0jX;Z = z)

E [RjX;Z = z0]

=
Pr (R = 1jX;D = 0; Z = z) Pr (D = 0jX;Z = z)

E [RjX;Z = z0]
=
E [R(1�D)jX;Z = z]
E [RjX;Z = z0]

.

Combining these results we obtain after a few calculations:

E
�
g(Y 0)jD = 1

�
=

Z
E
�
g(Y 0)jX;Z;D = 1

�
� dFX;ZjD=1

=

Z
E [g(Y )jX;R = 1; Z = z0]� E

�
g(Y 0)jX;Z;D = 0

�
� Pr (Dz = 0jX;R = 1; Z = z0)

Pr (Dz = 1jX;R = 1; Z = z0)
� dFX;ZjD=1

=

Z
E [g(Y )RjX;Z = z0]� E [g(Y )R(1�D)jX;Z]

E [RjX;Z = z0]� E [R(1�D)jX;Z]
� dFX;ZjD=1.

and

E
�
g(Y 1)jD = 1

�
=

Z
E [g(Y )jX;Z;R = 1; D = 1] � dFX;ZjD=1.

A.9 Proof of Corollary 9

The calculations are the same as in the previous proof up to (10).
Furthermore, by Bayes�formula

Pr (Dz = 1jX;R = 1; Z = z0)

=
Pr (R = 1jX;Dz = 1; Z = z0) Pr (Dz = 1jX;Z = z0)

Pr (R = 1jX;Z = z0)

=
Pr (R = 1jX;Dz = 1; Z = z) Pr (Dz = 1jX;Z = z)

E [RjX;Z = z0]

=
Pr (R = 1jX;D = 1; Z = z) Pr (D = 1jX;Z = z)

E [RjX;Z = z0]
=
E [RDjX;Z = z]
E [RjX;Z = z0]

.
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Combining these results we obtain after a few calculations:

E
�
g(Y 0)jD = 1

�
=

Z
E
�
g(Y 0)jX;Z;D = 1

�
� dFX;ZjD=1

=

Z
E [g(Y )jX;R = 1; Z = z0]� E

�
g(Y 0)jX;Z;D = 0

�
� Pr (Dz = 0jX;R = 1; Z = z0)

Pr (Dz = 1jX;R = 1; Z = z0)
� dFX;ZjD=1

=

Z
E [g(Y )RjX;Z = z0]� E [g(Y )jX;Z;R = 1; D = 0] � (E [RjX;Z = z0]� E [RDjX;Z])

E [RDjX;Z] � dFX;ZjD=1

=

Z
E [g(Y )RjX;Z = z0]� E [g(Y )jX;Z;R = 1; D = 0] � (E [RjX;Z = z0]� E [RDjX;Z])

E [RjX;Z;D = 1]Pr (D = 1)
� dFX;Z
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