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ABSTRACT 
 

Pinning Down the Value of Statistical Life*

 
Our research addresses fundamental long-standing concerns in the compensating wage 
differentials literature and its public policy implications: the econometric properties of 
estimates of the value of statistical life (VSL) and the wide range of such estimates from 
about $0.5 million to about $21 million. We address most of the prominent econometric 
issues by applying panel data, a new and more accurate fatality risk measure, and 
systematic selection of panel estimator in our research. Controlling for measurement error, 
endogeneity, individual heterogeneity, and state dependence yields both a reasonable 
average level and narrow range for the estimated value of a statistical life of about $5.5–$7.5 
million. 
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1. Introduction 

The value of statistical life (VSL) concept based on econometric estimates of wage-

fatality risk tradeoffs in the labor market is well established in the economics literature. 

The method provides the yardstick that the U.S. Office of Management and Budget 

(OMB) requires agencies to use in valuing fatality risks reduced by regulatory programs.1 

More recently, VSL estimates have also provided the basis for assessing the mortality 

costs of the Iraq war (Wallsten and Kosec 2005, Bilmes and Stiglitz 2006). 

Notwithstanding the wide use of the VSL approach, there is still concern over excessively 

large/small estimates and wide range of the estimates for VSL. One approach to the 

dispersion of VSL estimates that has been used by the U.S. Environmental Protection 

Agency has been to rely on meta analyses of the labor market VSL literature. Our 

research demonstrates how using the best available data and econometric practices pins 

down the estimated VSL to a greater degree of refinement than in previous studies.  

Our paper works within the econometrically familiar framework of the hedonic 

wage equation used in the value of statistical life literature. For worker i (i = 1,…,N) in 

industry j (j = 1,…,J) and occupation k (k = 1,…,K) at time t (t = 1,…,T) the hedonic 

tradeoff between the wage and risk of fatality is  

 0 1ln ijkt i jkt ijkt t ijktw X uα α π β δ= + + + + , (1) 

where ln wijkt is the natural log of the hourly wage rate, and πjkt is the industry and 

occupation specific fatality rate; Xijkt is a vector containing dummy variables for the 

worker’s one-digit occupation (and industry in some specifications), region of residence, 

plus the usual demographic variables: worker education, age, race, marital status, and 

                                                 
1 See U.S. Office of Management and Budget Circular A-4, Regulatory Analysis (Sept. 17, 2003). 
Available at http://www.whitehouse.gov/omb/circulars/a004/a-4.pdf. 
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union status. Finally, tδ  is a vector of time effects, and uijkt is an error term allowing an 

individual-specific effect plus conditional heteroskedasticity and within industry by 

occupation autocorrelation.2  Our research will subsequently expand the structure 

summarized by equation (1) in a variety of ways, many of which will exploit the 

capabilities of panel data by using the Panel Study of Income Dynamics in conjunction 

with fatality risk measures that vary by year. 

The apparent instability of the labor market VSL estimates has generated a series 

of prominent econometric controversies reviewed by Viscusi and Aldy (2003). The 

underlying hedonic model for equation  (1) is that it traces out the locus of labor market 

equilibria involving the offer curves of firms and the supply curves of workers. Many of 

the most salient concerns involve the fatality risk variable, which ideally should serve as 

a measure of the risk beliefs of workers and firms for the particular job. Broadly defined 

risk measures, such as those pertinent to one’s industry or general occupation, may 

involve substantial measurement error. There have been concerns regarding the potential 

endogeneity of the job risk measure as well as state dependence. Equation (1) may also 

omit important characteristics of the job or the worker, leading to omitted variables bias. 

Here we will exploit the capabilities of a very refined risk measure defined over time and 

by occupation and industry, coupled with panel data on workers’ labor market decisions, 

                                                 
2 The econometric structure in (1) is different than Brown’s (1980) panel data model where the job risk 
variable was the same in all years and was given by the 1967 Society of Actuaries data, which provided 
information on overall mortality risks for people in 37 relatively high risk occupational groups and 
produced a VSL of only about $1.9 million. Moreover, the time variation in risk in his model arose from 
changes in occupation over time. In contrast, our research uses a highly refined fatality risk measure for 
720 industry-occupation cells for which there is variation across time as well as variation that arises as 
workers change either their occupation or industry. Finally, we adopt a parametric specification of the 
regression model representing hedonic equilibrium in (1) for comparison purposes with the existing 
literature. An important emerging line of research is how more econometrically free-form representations 
of hedonic labor markets facilitates identification of  underlying fundamentals, which would further 
generalize estimates of VSL (Ekeland, Heckman, and Nesheim 2004). 
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to resolve many of the most prominent issues in the hedonic labor market literature. Our 

focus is on the average VSL across a broad sample of workers and will consequently not 

explore emerging concerns regarding the heterogeneity of VSL by age and other personal 

characteristics. 

 We devote particular attention to the measurement error issue emphasized by 

Black and Kniesner (2003) and Ashenfelter (2006). While we do not have information on 

subjective risk beliefs, we will use very detailed data on objective risk measures. 

Published industry risk beliefs are strongly correlated with subjective risk values3 and we 

will follow the standard practice of matching to workers in the sample an objective risk 

measure. Where we differ from most previous studies is the pertinence of the risk data to 

the worker’s particular job, and ours is the first study to account for the variation of the 

more pertinent risk level within the context of a panel data study. 

We address the pivotal issue of measurement error in several ways. The fatality 

risk variable is not by industry or occupation alone, as is the norm in almost all previous 

studies, but is a refined measure based on 720 industry-occupation cells. We use not only 

one-year but also three-year averages to reduce the influence of random year-to-year 

fluctuations.4 Because the fatality rate data are available by year, workers in our panel 

who do not change jobs can have a different fatality risk in different years. In contrast, 

the only previous panel-based labor market VSL study used the same occupational risk 

measure for 37 narrowly defined high risk occupations for all years, so that all possible 

variation in risk was restricted to job changers (Brown 1980). Our research also explores 

                                                 
3  See Viscusi and Aldy (2003) for a review. 
4 The only previous use of the fatality rate data at our level of disaggregation and for different periods of 
time is in Viscusi (2004). Kniesner, Viscusi, and Ziliak (2006) also used the 720 cell measure but not the 
multi-year averages. 
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using adjacent year first differences as well as long differences, for which the influence 

of measurement error should be less pronounced. We also examine how instrumental 

variable estimates for each approach attenuates measurement error and endogeneity bias. 

Finally, our dynamic first-difference estimates make it possible to include longer-run 

worker adaptations to changes in their job risk level that may occur if they are not 

perfectly informed about the risk initially. 

Many studies have noted that potential biases in VSL estimates arise due to 

possible omitted variables, such unmodeled worker productivity and safety-related 

productivity.5 We infer the role of omitted variables through a variety of estimation 

approaches, most of which exploit the capabilities of our large panel data set. Fixed effect 

models sweep out the individual effects for both the adjacent year differences and the 

long differences. In each instance, we use the pertinent instrumental variables estimator, 

following Griliches and Hausman (1986). Our work also distinguishes job movers from 

job stayers. We find that most of the variation in risk and most of the evidence of positive 

VSLs stems from people changing jobs across occupations or industries possibly 

endogenously rather than from variation in risk levels over time in a given job setting. 

Our econometric refinements using panel data have a substantial effect on the 

estimated VSL levels. They reduce the estimated VSL by more than 75 percent from the 

implausibly large cross-section PSID-based VSLs of $18–$21 million. We demonstrate 

how careful econometric practice narrows the estimated value of a statistical life from 

                                                 
5 Hwang, Reed, and Hubbard (1992) hypothesize that unobserved worker productivity biases VSL estimates 
downwards. Viscusi and Hersch (2001) examine safety-related productivity, but do not offer any 
directional hypothesis regarding the induced bias. Shogren and Stamland (2002) theorize that unobservable 
worker skill in promoting safety leads VSL estimates to be too high, but their result stems from analysis of 
infra-marginal workers who will not be captured in market evidence. 
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about $0.5–$21 million (Viscusi and Aldy 2003) to only about $5.5–$7.5 million, which 

greatly clarifies the choice of the proper VSL to be used in policy evaluations. 

2. Panel Data Econometric Framework 

 Standard panel-data estimators permitting latent worker-specific heterogeneity 

through person-specific intercepts in (1) are the deviation from time-mean (within) 

estimator and the time-difference (first-differences) estimator. The fixed effects include 

all person-specific time-invariant differences in tastes and all aspects of productivity, 

which may be correlated with the regressors in X. The two estimators yield identical 

results when there are two time periods and when the number of periods converges 

towards infinity. With a finite number of periods (T > 2), estimates from the two different 

fixed-effects estimators can diverge due to possible non-stationarity in wages, 

measurement error, or model misspecification (Wooldridge 2002). Because wages from 

longitudinal data on individuals have been shown to be non-stationary in other contexts 

(MaCurdy 1982; Abowd and Card 1989), we adopt the preferred first-difference model as 

a baseline. 

 The first-difference model eliminates any time-invariant effect by estimating the 

changes over time in hedonic equilibrium 

   1ln ijkt jkt ijkt t ijktw X uα π β δΔ = Δ + Δ + + Δ ,    (2) 

where Δ  refers to the first-difference operator and tδ  is a re-normalized vector of time 

dummies (Weiss and Lillard 1978). 

 The first-difference model could exacerbate errors-in-variables problems relative 

to the within model (Griliches and Hausman (1986). If the fatality rate is measured with a 
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classical error, then the first-difference estimate of 1α̂  may be attenuated relative to the 

within estimate. An advantage of the regression specification in (2), which considers 

intertemporal changes in hedonic equilibrium outcomes, arises because we can use so-

called wider (2+ year) differences. If Δ ≥ 2 then measurement error effects are mitigated 

in (2) relative to within-differences regression (Griliches and Hausman 1986). As 

discussed in the data section below, we additionally address the measurement error issue 

in the fatality rate by employing multi-year averages of fatalities. For completeness we 

also note how the first-difference estimates compare to the within estimates. 

 Lillard and Weiss (1979) demonstrated that earnings functions may not only have 

idiosyncratic differences in levels but also have idiosyncratic differences in growth. To 

correct for wages that may not be difference stationary as implied by equation (2) we 

estimate a double differenced version of (2) that is  

  2 2 2 2
1ln ijkt jkt ijkt t ijktw X uα π β δΔ = Δ + Δ + + Δ ,    (3) 

where 2
1t t−Δ = Δ −Δ , commonly known as the difference-in-difference operator, and tδ  

is a re-normalized vector of time dummies. We also estimate a dynamic version of (2) by 

adding γΔ ln wijkt−1 to the right-hand side and using the first-difference instrumental 

variables estimator recommended in Arellano (1989). As is standard in the dynamic panel 

literature our dynamic estimator uses the two-period lagged level of the dependent 

variable as an identifying instrument for the one-period lagged difference in the 

dependent variable. The lagged dependent variable controls for additional heterogeneity 

and serial correlation plus sluggish adjustment to equilibrium (state dependence). We 
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therefore compare the estimated short-run effect, 1α̂ , to the estimated long-run effect, 

1ˆ ˆ/(1 )α γ− , and their associated VSLs. 

2.1 Comparison Estimators 

If [ | , ] 0ijk jk ijkE u Xπ = , which is the standard zero conditional mean assumption of 

least squares regression, then OLS estimation of the hedonic equilibrium in (1) using 

pooled cross-section time-series data is consistent. If the zero conditional mean 

assumption holds, which is unlikely to be the case, then the two basic estimators 

frequently employed with panel data, the between-groups estimator and the random-

effects estimator, will yield consistent coefficient estimates. 

The between-groups estimator is a cross-sectional estimator using individuals’ 

time-means of the variables 

 1ln ijk jk ijk ijkw X uα π β δ= + + + ,     (4) 

with 
1

1ln ln
T

ijk ijkt
t

w w
T =

= ∑ and other variables similarly defined. A potential advantage of 

the between-groups estimator is that measurement-error induced attenuation bias in 

estimated coefficients may be reduced because averaging smoothes the data generating 

process. Because measurement error affects estimates of the VSL (Black and Kniesner 

2003; Ashenfelter 2006), the between-groups estimator is likely to provide improved 

estimates of the wage-fatal risk tradeoff over OLS estimates of equation (1). 

 The random-effects model differs from the OLS model in (1) by specifying 

components of the overall error as ijkt i ijktu μ υ= + , where iμ  is person-specific and time-

invariant unobserved heterogeneity, and ijktυ  is an independently and identically 
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distributed random error component. The random-effects estimator is a weighted average 

of the between-groups variation and the within-groups variation. 

 Consistency of the random-effects estimator requires [ | , ] 0i jkt ijktE Xμ π =  and 

[ | , ] 0ijkt jkt ijktE Xυ π = . The first condition implies that the time-invariant unobserved 

heterogeneity is randomly distributed in the population. The implication is that selection 

into possibly risky occupations and industries on the basis of unobserved productivity and 

tastes is purely random across the population of workers. Although both the pooled least 

squares and between-groups estimators remain consistent in the presence of random 

heterogeneity, the random-effects estimator will be more efficient because it accounts for 

person-specific autocorrelation in the wage process. 

 Finally, suppose that selection into a particular industry and occupation is not 

random with respect to time-invariant unobserved productivity and risk preferences. In 

the non-random selection case, estimates of VSL based on the pooled cross-section, 

between-groups, or random-effects estimators will be biased and inconsistent; the IV 

first-differences and double-differences estimators in equations (2) and (3) and the IV 

dynamic first-difference estimator can be consistent despite non-random job switching. 

2.2 Research Objective 

The focal parameter of interest in each of the regression models we estimate is 1α̂

, which is used in constructing estimates of the value of a statistical life. Accounting for 

the fact that fatality risk is per 100,000 workers and that the typical work-year is about 

2000 hours, the estimated value of a statistical life at the mean level of wages is   

  1
ˆ ˆ( ) 2000 100,000wVSL wα
π
∂⎡ ⎤= = × × ×⎢ ⎥∂⎣ ⎦

.   (5) 
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Although the VSL function in (5) can be evaluated at various points in the wage 

distribution, most studies report only the mean effect. To highlight the differences in 

estimates of the VSL with and without controls for unobserved individual differences, we 

follow the standard convention of focusing on VSL  in our estimates presented below. 

Our primary objective is to examine how following systematic econometric practices for 

panel data models reduces the estimated range and pins down VSL. 

3. Data and Sample Descriptions 

 The main body of our data come from the 1993–2001 waves of the Panel Study of 

Income Dynamics (PSID), which provides individual-level data on wages, industry and 

occupation, and demographics. The PSID survey has followed a core set of households 

since 1968 plus newly formed households as members of the original core have split off 

into new families. 

3.1 PSID Sample 

 The sample we use consists of male heads of household ages 18–65 who are in 

the random Survey Research Center (SRC) portion of the PSID, and thus excludes the 

oversample of the poor in the Survey of Economic Opportunity (SEO) and the Latino 

sub-sample. The male heads in our regressions (i) worked for hourly or salary pay at 

some point in the previous calendar year, (ii) are not permanently disabled or 

institutionalized, (iii) are not in agriculture or the armed forces, (iv) have a real hourly 

wage greater than $2 per hour and less than $100 per hour, and (v) have no missing data 

on wages, education, region, industry, and occupation. 
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Beginning in 1997 the PSID moved to every other year interviewing. For 

consistent spacing of survey response we use data from the 1993, 1995, 1997, 1999, and 

2001 waves. We do not require individuals to be present for the entire sample period; we 

have an unbalanced panel where we take missing values as random events.6 Our sample 

filters yield 2,106 men and 7,931 person-years. About 40 percent of the men are present 

for all five waves (nine years); another 25 percent are present for at least four waves. 

 The focal variable from the PSID in our models of hedonic labor market 

equilibrium is the hourly wage rate. For workers paid by the hour the survey records the 

gross hourly wage rate. The interviewer asks salaried workers how frequently they are 

paid, such as weekly, bi-weekly, or monthly. The interviewer then norms a salaried 

worker's pay by a fixed number of hours worked depending on the pay period. For 

example, salary divided by 40 is the hourly wage rate constructed for a salaried worker 

paid weekly. We deflate the nominal wage by the personal consumption expenditure 

deflator for 2001 base year. We then take the natural log of the real wage rate to 

minimize the influence of outliers and for ease of comparison with others’ estimates. 

 The demographic controls in the model include years of formal education, a 

quadratic in age, dummy indicators for region of country (northeast, north central, and 

west with south the omitted region), race (white = 1), union status (coverage = 1), marital 

status (married = 1), and one-digit occupation. Table 1 presents summary statistics. 

3.2 Fatality Risk Measures 

 We use the fatality rate for the worker’s two-digit industry by one-digit 

occupation group. We distinguished 720 industry-occupation groups using a breakdown 
                                                 
6 Ziliak and Kniesner (1998) show that if nonrandom attrition is present our differenced data models should 
sweep it out along with the other time-invariant factors. 
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of 72 two-digit SIC code industries and the 10 one-digit occupational groups. After 

constructing codes for two-digit industry by one-digit occupation in the PSID we then 

matched each worker to the relevant industry-occupation fatality risk. We constructed a 

worker fatality risk variable using proprietary U.S. Bureau of Labor Statistics data from 

the Census of Fatal Occupational Injuries (CFOI) for 1992–2002.7 

 The CFOI provides the most comprehensive inventory to date of all work-related 

fatalities. The CFOI data come from reports by the Occupational Safety and Health 

Administration, workers’ compensation reports, death certificates, and medical examiner 

reports. In each case there is an examination of the records to determine that the fatality 

was in fact a job-related incident.  

 The underlying assumption in our analysis and almost the entire hedonic literature 

more generally is that the subjective risk assessments by workers and firms can be 

captured by objective measures of the risk. Workers and firms use available information 

about the nature of the job and possibly the accident record itself in forming risk beliefs. 

The models do not assume that workers and firms are aware of the published risk 

measures at any point in time. Rather, the objective measures serve as a proxy for the 

subjective beliefs. Previous research reviewed in Viscusi and Aldy (2003) has indicated a 

strong correlation between workers’ subjective risk beliefs and published injury rates. 

Because our fatality risk variable is by industry and by occupation, it will provide a much 

more pertinent measure of the risk associated with a particular job than a more broadly 

based index, such as the industry risk alone, which is the most widely used job risk 

variable. For example, miners and secretaries in the coal mining industry face quite 

                                                 
7 The fatality data can be obtained on CD-ROM via a confidential agreement with the U.S. Bureau of Labor 
Statistics. Our variable construction procedure follows that in Viscusi (2004), which describes the 
properties of the 720 industry-occupation breakdown in greater detail. 
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different risks, so that taking into account the occupation as well as the industry as we do 

here substantially reduces the measurement error in the fatality risk variable. 

 The importance of the industry-occupation structure of our risk variable is 

especially great within the context of a panel data analysis. The previous panel study by 

Brown (1980) used a time-invariant fatality risk measure for 37 relatively high risk 

occupations. By using a fatality risk variable that varies over time and is defined for 720 

industry-occupation groups, we greatly expand the observed variance in workers’ job 

risks across different periods.  

We construct two measures of fatal risk, which differ according to the numerator. 

The first measure simply uses the number of fatalities in each industry-occupation cell. 

The second measure uses a three-year average of fatalities surrounding each PSID survey 

year (1992–1994 for the 1993 wave, 1994–1996 for the 1995 wave, and so on). The 

denominator for each measure used to construct the fatality risk is the number of 

employees for that industry-occupation group in survey year t. Both of our two measures 

of the fatality risk are time-varying because of changes in both the numerator and the 

denominator.8 

We expect there to be less measurement error in the 3-year average fatality rates 

relative to the annual rate because the averaging process will reduce the influence of 

random fluctuations in fatalities as well as mitigate the small sample problems that arise 

from many narrowly defined job categories. We also expect less reporting error in the 

industry information than in the occupation information, so even our annual measure 

should have less measurement error than if the worker’s occupation were the basis for 

                                                 
8 We used the bi-annual employment averages from the U.S. Bureau of Labor Statistics, Current Population 
Survey, unpublished table, Table 6, Employed Persons by Detailed Industry and Occupation for 1993–
2001.  
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matching (Mellow and Sider 1983, Black and Kniesner 2003). Table 1 lists the means 

and standard deviations for both fatality risk measures. The sample mean fatality risk for 

the annual measure is 5.7/100,000. As expected, the variation in the annual measure 

exceeds that of the 3-year average. 

 Our research also avoids a problem plaguing past attempts to estimate the wage-

fatal risk tradeoff with panel data. If the fatality rate is an aggregate by industry or 

occupation the within or first-difference transformation leaves little variation in the 

fatality risk measure to identify credibly the fatality parameter. Most of the variation in 

aggregate fatal risk is of the so-called between-groups variety (across occupations or 

industries at a point in time) and not of the within-groups variety (within either 

occupations or industries over time). Although cross-group variation exceeds within-

group variation (Table 2), the within variation in our more disaggregate measures is 

sufficiently large (about 50 percent of the between variation) so that it may be feasible to 

identify the fatal risk parameter and VSL in our panel data models. Finally, we also 

address the issue that cross-group variation in fatality risk may be generated by 

endogenous job switching. 

4. Wage Equation Estimates 

 Although we suppress the coefficients for ease of presentation, each regression 

model we use controls for a quadratic in age, years of schooling, indicators for region, 

marital status, union status, race, one-digit occupation, and year effects. Because of the 

substantial heterogeneity of jobs in different occupations, the regressions include a set of 

one-digit occupation dummies. The equations do not include industry dummy variables 

as well because doing so would introduce substantial multicollinearity with respect to the 
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fatality risk variable, which involves matching workers to fatality risk based on their 

industry and occupation. Reported standard errors are clustered by industry and 

occupation and are also robust to the relevant heteroskedasticity and serial correlation. 

Note that our first-difference regressions automatically net out the influence of industry 

and other job characteristics that do not change over time, and the double-difference 

regressions net out additional trending factors.  

Because our primary focus is on the panel estimates, we do not include variables 

that exhibit little variation across the time periods. Because few workers move out of 

state, we do not include a workers’ compensation variable. Studies that have included 

workers’ compensation generally use a variable based on the state’s maximum benefit 

level, which exhibits little variation for our panel sample.  

4.1 Focal Estimates from Panel Data 

 The baseline first-difference estimates from equation (2) appear in Table 3. The 

results are our basic attempt to address systematically not only latent heterogeneity and 

possibly trended regressors, but also measurement error. Comparing estimates both down 

a column and across a row reveals the effect of measurement error. The results are 

reasonable from both an econometric and economic perspective and provide the 

comparison point for our core research issue, which is how badly VSL can be mis-

represented if certain basic econometric issues are mis-handled. 

 The VSL implied by the coefficient for the annual fatality rate in Table 3 using the 

sample mean wage of $21 is $6.1 million. We emphasize that a novel aspect of our 

research is that it helps clarify the size of possible measurement error effects. If 

measurement error in fatality risk is random it will attenuate coefficient estimates and 
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should be reduced by letting the fatality rate encompass a wider interval. Compared to 

VSL from the more typical annual risk measure, the estimated VSL in Table 3 is about 20 

percent larger when fatality risk is a three-year average. The last two columns of Table 3 

report the results for widest possible differences ( 2001 1993ln lnw w− ) as well as difference-

in-differences from equation (3), which should remove possible spurious estimated 

effects from variables that are not difference stationary. The main message from Table 3 

is that correcting for measurement error enlarges estimated VSL, and that even for the 

relatively basic panel models using differencing, the range for VSL is not large, $5.8–$7.6 

million. 

 An issue seldom addressed in panel wage equations producing VSL is endogeneity 

of the fatality change regressor, which may result from dynamic decisions workers make 

to change jobs (Solon 1986, 1989; Spengler and Schaffner 2006). Some changes in 

fatality risk will occur because of within industry-occupation cell changes and others will 

occur because workers switch industry-occupation cells. Within the context of potentially 

hazardous employment, much of the mobility stems from workers learning about the 

risks on the job and then quitting if the compensating differential is insufficient given that 

information (Viscusi 1979). Within the context of multi-period Bayesian decisions, this 

desire to switch does not require that workers initially underestimated the risk, as 

imprecise risk beliefs can also generate a greater willingness to incur job risks than is 

warranted by the mean risk level. Interestingly, for the job changers in our sample, 55 

percent switch to lower fatality risk jobs and 45 percent switch to higher fatality risk jobs 

so that on balance there is some effort to sort into safer employment. 
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We examine the practical importance for panel based estimation in Table 4, where 

we stratify the data by whether Δπt is due to within or between cell changes, including 

immediately before and after a worker changes cell. The main econometric contribution 

to compensating differentials for fatality risk comes from workers who generate 

differences in risk over time by switching industry-occupation cells. The difference in 

estimated VSL in Table 4 comes from the fact that 2
tπ

σ is at least 6 times larger for 

switchers (see Table 2). There is too little within-cells variation to reveal much of a 

compensating differential. More important, because so much of the variation producing 

the wage differential in Table 3 comes from job changers, and the variation for switchers 

may be related to wages, it is important to treat Δπ  as endogenous. 

 The estimated range for VSL narrows even further when we allow for endogeneity 

and instrument the change in fatality risk. The instrumental variables regressions in Table 

5 control for both classical measurement errors and endogeneity. We limit the focus to 

the annual fatality rate so as to have enough lagged fatality and fatality differences as 

instruments.9 The main result is a very narrow range of estimated VSL, $5.6–$5.7 million 

when we instrument the annual change in fatality risk. 

Table 6 presents our final focal panel results from dynamic first-difference 

regressions. The short-run effects from the dynamic model appear in column 1 and the 

long-run (steady state) estimates appear in column 2. Note that our first-differences 

estimator focuses on changes in wages in response to changes in risk. The mechanism by 

which the changes will become reflected in the labor market hinges on how shifts in the 

                                                 
9 The instrument set we use is standard and well-established in the econometric literature on dynamic panel 
models and will not be discussed further here. The interested reader should consult Arellano (1989) for 
elaboration. 
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risk level will affect the tangencies of the constant expected utility loci with the market 

offer curve. To the extent that the updating of risk beliefs occurs gradually over time, 

which is not unreasonable because even release of the government risk data is not 

contemporaneous, one would expect the long-run effects on wages of changes in job risk 

to exceed the short-run effects. Limitations on mobility will reinforce a lagged influence 

(state dependence). As one would then expect, the steady state estimates of VSL after the 

estimated three-year adjustment period in the results in Table 6 are larger than the short-

run estimates. The difference between the short-run and long-run VSL is about $7–8 

million versus $10–11 million. Again, the range of VSL estimates is not wide when panel 

data are used with state-of-the-art estimators appropriate for the issues of endogeneity, 

measurement error, latent heterogeneity and possible state dependence. 

4.2 Comparison Results From Cross-Section Estimators 

 Table 7 presents the comparison models, which flesh out the most salient 

econometric issues when compared to the focal results from Tables 3–6 just presented. 

 One problematic result in the literature is the regularly occurring large value for 

VSL when the PSID is used as a cross-section (Viscusi and Aldy 2003). Notice that the 

cross-section estimators in columns 1 and 2 produce large implied VSLs, which also have 

a much numerically larger range than the panel estimates, $16–22 million. 

 In contrast, column 3 of Table 7 reports estimates from the panel random-effects 

estimator. Recall that the random-effects estimator accounts for unobserved 

heterogeneity, which is assumed to be uncorrelated with observed covariates. It is fairly 

common in labor-market research to reject the assumption of no correlation between 

unobserved heterogeneity and observed covariates; we find a similar rejection here. This 
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implies that the simple fixed effects within estimator in the last column is preferred over 

the simple random effects estimator, with an estimated VSL of about $5.5 million. 

Allowing for the possibility of unobserved productivity and preferences for risk, even if it 

is improperly assumed to be randomly distributed in the population, reduces the 

estimated VSL by up to 75 percent relative to a model that ignores latent heterogeneity 

(the pooled least squares estimates). The difference in estimated VSL with versus without 

latent individual heterogeneity in the model is consistent with the theoretical prediction in 

Shogren and Stamland (2002) that failure to control for unobserved skill results in a 

potentially substantial upward bias in the estimated VSL. Taking into account the 

influence of individual heterogeneity implies that, on balance, unobservable person-

specific differences in safety-related productivity and risk preferences are a more 

powerful influence than unobservable productivity generally, which Hwang, Reed, and 

Hubbard (1992) hypothesize to have the opposite effect. 

5. Conclusion and Policy Implications 

 Obtaining reliable estimates of compensating differential equations has long been 

challenging because of the central roles of individual heterogeneity and state dependence 

in affecting both the market offer curve and individual preferences. The often conflicting 

influence of different unobservable factors has led to competing theories with predictions 

of different direction. The first-difference estimation results reported here use more 

refined fatality risk measures than employed in earlier studies, making it possible to 

control for measurement errors and workplace safety endogeneity when examining the 

wage-fatality risk tradeoff. Comparison of the various first-difference results with various 

cross-section estimates implies that controlling for latent worker-specific heterogeneity 
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reduces the estimated VSL by up to 75 percent and narrows greatly the VSL range to 

about $5.5–$7.5 million.  

 The wide variation of VSL estimates in the literature also has generated concern 

that underlying econometric problems may jeopardize the validity of those estimates. The 

range for VSL in the existing literature is extremely wide, from $0.5 million to $21 

million. Previous studies using the Panel Study of Income Dynamics have often yielded 

extremely high VSL estimates around $20 million. Earlier research did not control for the 

host of econometric problems we address here. The econometrically most general first-

difference estimates we report range from $5.5 million to $7.5 million.  

Narrowing VSL as we do here has substantial benefits for policy evaluation. In its 

Budget Circular A4 (Sept. 17, 2003), the U.S. Office of Management and Budget requires 

that agencies indicate the range of uncertainty around key parameter values used in 

benefit-cost assessments. Attempting to bound the VSL based on a meta analysis 

produces a wide range of estimates for $0.5 to $21 million. Moreover, there is always the 

issue of what studies should be included in the meta analysis given the differences in data 

sets, specifications, and study quality. As a consequence of the associated 

indeterminacies, agencies often have failed to provide any boundaries at all to the key 

VSL parameter in their benefit assessments. 

The advantage of using our VSL range in policy assessments can be illustrated 

using Figure 1. Using VSL estimates from the previous literature, policies with a cost per 

life saved of $500,000 or less are desirable, those with a cost per life saved over $21 

million fail a benefit-cost test, and the desirability of policies in the intermediate range is 

unclear. Based on our results, denoted by KVWZ, policies with a cost per life saved at or 
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below $5.5 million are in the acceptable range, those with a cost per life saved above $7.5 

million fail a benefit-cost test, and policies in the intermediate range have unclear 

economic desirability. For a hypothetical distribution of policies indicated by the bell 

shaped curve in Figure 1 with a mean VSL of $10 million, it is clear that the range of 

indeterminacy is greatly reduced by application of our VSL range. 

The implications of this hypothetical example are also borne out for the 

distribution of U.S. health and safety regulations. Using the widely cited estimates from 

the U.S. Office of Management and Budget cited by Breyer (1993), among others, and 

updating the values to $2001, illustrates the tremendous reduction of policy uncertainty 

achievable by application of our estimates. Applying the meta analysis VSL range, 10 

policies pass a benefit-cost test, 20 fail a benefit-cost test, and 23 are in the indeterminate 

zone. Using our estimated VSL range, the distributions becomes 27 policies that clearly 

pass a benefit-cost test, 25 that fail a benefit-cost test, with only 1 policy in the 

indeterminate range. Our narrowing of the acceptable cost-per-life-saved range greatly 

reduces the range of indeterminacy and is of substantial practical consequence given the 

actual distribution of regulatory policy performance.  

From a more conceptual standpoint, our research has resolved the econometric 

issues giving rise to the very high/low levels and wide ranges of published VSL estimates. 

The disparate results in previous studies may reflect the influence of omitted 

unobservable effects, among other repairable econometric specification errors. Failure to 

address the underlying econometric issues may have produced continuing controversy in 

the economics literature over the hedonic methodology and unduly muddled the policy 

debate over the use of VSL estimates in benefit calculations for government policies.
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Table 1:  Selected Summary Statistics 

  Mean 
Standard 
Deviation 

Real Hourly Wage 21.058 13.352 
Log Real Hourly Wage 2.881 0.570 
Age 40.895 8.450 
Marital Status (1=Married) 0.820 0.384 
Race (1=White) 0.764 0.425 
Union (1=member) 0.230 0.421 
Years of Schooling 13.585 2.216 
Live in Northeast 0.177 0.382 
Live in Northcentral 0.288 0.453 
Live in South 0.372 0.483 
Live in West 0.163 0.370 
   
One-Digit Industry Groups:   
Mining 0.008 0.087 
Construction 0.106 0.308 
Manufacturing 0.259 0.438 
Transportation and Public Utilities 0.109 0.311 
Wholesale and Retail Trade 0.130 0.337 
Fire, Insurance, and Real Estate 0.045 0.208 
Business and Repair Services 0.066 0.248 
Personal Services 0.009 0.097 
Entertainment and Professional Services 0.169 0.375 
Public Administration 0.098 0.297 
   
One-Digit Occupation Groups:   
Executive and Managerial 0.187 0.390 
Professional 0.162 0.368 
Technicians 0.058 0.234 
Sales 0.032 0.177 
Administrative Support 0.066 0.248 
Services 0.086 0.280 
Precision Production Crafts 0.207 0.405 
Machine Operators 0.078 0.268 
Transportation 0.080 0.272 
Handlers and Labors 0.045 0.208 
   
Annual Fatality Rate (per 100,000) 5.704 8.973 
3-Year Fatality Rate (per 100,000) 5.565 8.414 
   
Number of Men = 2,106   
Number of Person Years = 7,931     

 

  



 

 

23

 

Table 2:  Between and Within Group Variation for Industry by 
Occupation Fatality Rates 

    

 
Overall 

Variance 

Between 
Group 

Variance 

Within 
Group 

Variance 
Annual Fatality Rate 
(per 100,000) 80.519 52.484 28.035 
3-Year Fatality Rate 
(per 100,000) 70.801 50.298 20.503 
    
    
Never Change Industry-Occupation    
Annual Fatality Rate 
(per 100,000) 75.696 70.032 5.664 
3-Year Fatality Rate 
(per 100,000) 71.667 69.452 2.215 
    
Ever Change Industry-Occupation    
Annual Fatality Rate 
(per 100,000) 82.574 45.031 37.543 
3-Year Fatality Rate 
(per 100,000) 70.439 42.164 28.275 
    
Only When Change Industry-Occupation    
Annual Fatality Rate 
(per 100,000) 88.309 53.274 35.035 
3-Year Fatality Rate 
(per 100,000) 71.669 49.001 22.668 
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Table 3: First-Difference Estimates of Wage-Fatal Risk Tradeoff 

  

Original Static 
First Difference 

Estimates 

First-Difference 
Estimator for 

2001minus1993  

Difference in 
Differences 
Estimator 

       
Annual Fatality Rate x 1,000  1.4425 1.6646 1.5553 
  (0.4175) (1.3584) (0.5091) 
     

Implied VSL ($Millions)  6.1 7.0 6.6  
     
3-Year Fatality Rate x 1,000  1.7531 1.3834 1.7979 
  (0.5276) (1.4344) (0.6142) 
     

Implied VSL ($Millions)  7.4 5.8 7.6 
     

Number of Observations  5242 1255 
  

3373 
Notes:  Standard errors are recorded in parentheses. Standard errors are robust to 
heteroskedasticity and within industry-by-occupation autocorrelation. Each model controls for a 
quadratic in age, years of schooling, indicators for region, marital status, union status, race, one-
digit occupation, and year effects. To construct the VSL using equation (5) the coefficients in the 
table are divided by 1,000. 
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Table 4: Estimates of Wage-Fatal Risk Tradeoff by Job Change Status 

  Static First-Difference 

First-Difference 
Estimator for 2001 

minus 1993  
Never Change Industry-Occupation   
Annual Fatality Rate x 1,000 0.3306 -0.1188 
 (1.2132) (2.8783) 
   

Implied VSL ($Millions) 1.4 −0.5 
  

3-Year Fatality Rate x 1,000 -0.5653 2.1041 
 (2.2522) (3.9626) 
   

Implied VSL ($Millions) −2.4 8.9 
   
Number of Person-Years 1493 330 
Ever Change Industry-Occupation   
Annual Fatality Rate x 1,000 1.5483 1.9423 
 (0.4473) (1.4353) 
   

Implied VSL ($Millions) 6.5 8.2 
   
3-Year Fatality Rate x 1,000 1.8660 1.4322 
 (0.5352) (1.5141) 
   

Implied VSL ($Millions) 7.9 6.0 
   
Number of Person-Years 3749 925 
Only When Change Industry-Occupation  
Annual Fatality Rate x 1,000 1.7252 1.7662 
 (0.4996) (1.4580) 
   

Implied VSL ($Millions) 7.3 7.4 
   
3-Year Fatality Rate x 1,000 2.0045 1.3121 
 (0.5604) (1.5303) 
   

Implied VSL ($Millions) 8.4 5.5 
   
Number of Person-Years 1033 745 
Notes:  Standard errors are recorded in parentheses. Standard errors for the pooled times series 
cross-section estimator and the first difference estimator are robust to heteroskedasticity and 
within industry-by-occupation autocorrelation. Each model controls for a quadratic in age, years 
of schooling, indicators for region, marital status, union status, race, one-digit occupation, and 
year effects. To construct the VSL using equation (5) the coefficients in the table are divided by 
1,000. 
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Table 5: Instrumental Variables Estimates of Wage-Fatal Risk Tradeoff 

 

First-Difference IV 
Estimator, t−1 and t−3  
Fatality as Instruments 

First-Difference IV 
Estimator, Lag 

Differenced Fatality as 
Instrument 

   
Annual Fatality Rate x 1,000 1.3377 1.3417 
 (0.6676) (0.6677) 
   

Implied VSL ($Millions) 5.6 5.7 
   
   
First Stage Results   
   

t−1 fatality rate 0.6528  
(0.0114)  

  
t−3 fatality rate −0.6512  

 (0.0113)  
   

(t−1 rate) − (t−3 rate)  0.6520 
  (0.0103) 
   

R2 0.54 0.54 
  
  

Number of Observations 5242 5242 
Notes:  Standard errors are recorded in parentheses. Standard errors are robust to 
heteroskedasticity and within industry-by-occupation autocorrelation. Each model controls 
for a quadratic in age, years of schooling, indicators for region, marital status, union status, 
race, one-digit occupation, and year effects. First stage regressions include all exogenous 
explanatory variables in addition to the noted instruments. To construct the VSL using 
equation (5) the coefficients in the table are divided by 1,000. 
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Table 6: Dynamic First Difference Estimates of Wage-Fatal Risk Tradeoff 

 
Dynamic First-Difference 

Estimates   
 with lag wage instrumented   
   
      
      

 
Short-Run 

Effect Long-Run Effect    
      
Annual Fatality Rate x 1,000 1.7583  2.4825     
 (0.5390) [0.0024]    
      

Implied VSL ($Millions) 7.4 10.5    
      
3-Year Fatality Rate x 1,000 1.8154  2.5623     
 (0.6629) [0.0088]    
      

Implied VSL ($Millions) 7.6  10.8    
      
Number of Observations 3373    
Notes:  Standard errors are recorded in parentheses and p-values of the null hypothesis that the long-run 
effect is zero are recorded in square brackets. Standard errors are robust to heteroskedasticity and within 
industry-by-occupation autocorrelation. Models control for a quadratic in age, years of schooling, indicators 
for region, marital status, union status, race, one-digit occupation, and year effects. One and two year lags of 
the independent variables, except for the fatality rates, are included as instruments for the lag wage. To 
construct the VSL using equation (5) the coefficients in the table are divided by 1,000. 
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Table 7:  Cross Section and Panel Data Estimates of Wage-Fatal Risk Tradeoff 

  

Pooled Cross 
Section Time 

Series 
Estimator 

Between-
Group 

Estimator 

Random-
Effects 

Estimator 
Fixed-Effects 

Estimator 
     
Annual Fatality Rate x 1,000 3.8702  5.2443  1.7401  1.2498  
 (0.9972) (1.5944) (0.5185) (0.5382) 
     

Implied VSL ($Millions) 16.3 22.1 7.3 5.3 
     
3-Year Fatality Rate x 1,000 4.3338  5.0506  2.0445  1.3352  
 (1.0316) (1.5811) (0.6074) (0.6452) 
     

Implied VSL ($Millions) 18.3 21.3 8.6 5.6 
     
Number of Observations 7928 2106 7928 7737 
Notes:  Standard errors are recorded in parentheses. Standard errors for the pooled times series 
cross-section estimator and the first difference estimator are robust to heteroskedasticity and within 
industry-by-occupation autocorrelation. Each model controls for a quadratic in age, years of 
schooling, indicators for region, marital status, union status, race, one-digit occupation, and year 
effects. To construct the VSL using equation (5) the coefficients in the table are divided by 1,000. 
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Figure 1: VSL Range and Program Evaluation 
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