
IZA DP No. 3039

Simplified Implementation of the Heckman
Estimator of the Dynamic Probit Model and a
Comparison with Alternative Estimators

Wiji Arulampalam
Mark B. Stewart

D
I

S
C

U
S

S
I

O
N

 P
A

P
E

R
 S

E
R

I
E

S

Forschungsinstitut
zur Zukunft der Arbeit
Institute for the Study
of Labor

September 2007



 
Simplified Implementation of the 

Heckman Estimator of the Dynamic 
Probit Model and a Comparison with 

Alternative Estimators 
 
 

Wiji Arulampalam 
University of Warwick 

and IZA  
 

Mark B. Stewart 
University of Warwick 

 
 

Discussion Paper No. 3039 
September 2007 

 
 
 

IZA 
 

P.O. Box 7240   
53072 Bonn   

Germany   
 

Phone: +49-228-3894-0  
Fax: +49-228-3894-180   

E-mail: iza@iza.org
 
 
 
 
 

Any opinions expressed here are those of the author(s) and not those of the institute. Research 
disseminated by IZA may include views on policy, but the institute itself takes no institutional policy 
positions. 
 
The Institute for the Study of Labor (IZA) in Bonn is a local and virtual international research center 
and a place of communication between science, politics and business. IZA is an independent nonprofit 
company supported by Deutsche Post World Net. The center is associated with the University of Bonn 
and offers a stimulating research environment through its research networks, research support, and 
visitors and doctoral programs. IZA engages in (i) original and internationally competitive research in 
all fields of labor economics, (ii) development of policy concepts, and (iii) dissemination of research 
results and concepts to the interested public.  
 
IZA Discussion Papers often represent preliminary work and are circulated to encourage discussion. 
Citation of such a paper should account for its provisional character. A revised version may be 
available directly from the author. 

mailto:iza@iza.org


IZA Discussion Paper No. 3039 
September 2007 

 
 
 
 
 
 
 
 
 
 
 
 

ABSTRACT 
 

Simplified Implementation of the Heckman Estimator of the 
Dynamic Probit Model and a Comparison with 

Alternative Estimators*

 
This paper presents a convenient shortcut method for implementing the Heckman estimator 
of the dynamic random effects probit model using standard software. It then compares the 
three estimators proposed by Heckman, Orme and Wooldridge based on three alternative 
approximations, first in an empirical model for the probability of unemployment and then in a 
set of simple simulation experiments. 
 
 
JEL Classification: C23, C25, C13, C51 
  
Keywords: dynamic discrete choice models, initial conditions, dynamic probit, panel data 
 
 
Corresponding author: 
 
Wiji Arulampalam 
Department of Economics 
University of Warwick 
Coventry, CV4 7AL 
United Kingdom 
E-mail: wiji.arulampalam@warwick.ac.uk   
   
 
                
 

                                                 
* Wiji Arulampalam is grateful for financial support from the ESRC under Research Grant no. RES-000-22-0651. 

mailto:wiji.arulampalam@warwick.ac.uk


 1

1. Introduction 

The initial conditions problem is well-recognised in the estimation of dynamic discrete choice 

models. Its cause is the presence of both the past value of the dependent variable and an 

unobserved heterogeneity term in the equation and the correlation between them. The strict 

exogeneity assumption for regressors, standardly used in static discrete choice models in 

order to marginalise the likelihood function with respect to the unobserved heterogeneity, 

cannot be used in a dynamic setting due to the presence of the lagged dependent variable. 

The standard estimator in this context is that suggested by Heckman (1981a, 1981b), 

who was the first to explicitly address this problem.  His approach involves the specification 

of an approximation to the reduced form equation for the initial observation and maximum 

likelihood estimation using the full set of sample observations and allowing cross-correlation 

between the main and initial period equations. However, use of the estimator has been limited 

by its requiring separate programming, since standard packages have not included it. (See 

Arulampalam and Bhalotra (2006) and Stewart (2007) for recent applications). This has led to 

the suggestion of alternative estimators that have the advantage of requiring only standard 

software. The estimators suggested by Orme (1997, 2001) and Wooldridge (2005), based on 

alternative approximations, are commonly used in place of the Heckman estimator for this 

reason. The main merit claimed by both Orme and Wooldridge for their estimators relative to 

Heckman’s is that theirs can be straightforwardly estimated using standard software. 

 This paper presents a convenient shortcut method for implementing the Heckman 

estimator of the dynamic random effects discrete choice model using standard software 

designed for the estimation of static random effects models with heteroskedastic random 

effects (such as the gllamm program in Stata) or constrained random coefficient models. The 

increased ease and availability of the Heckman estimator that this provides removes the need 

for simpler alternatives. However since the Heckman estimator is itself based on an 
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approximation, this raises the question of the relative finite sample performance of these three 

approximation-based estimators. This paper therefore also provides an examination of the 

relative merits of the Heckman, Orme and Wooldridge estimators in the absence of the 

software issue. It examines differences between the three estimators first in the context of an 

empirical illustration using a model for the probability of unemployment and then presents a 

small-scale Monte Carlo experiment of their finite sample performance in circumstances 

favourable to the Heckman estimator. The Orme and Wooldridge estimators are found to 

perform as well as, and in some aspects better than, the Heckman estimator. 

 

2. Econometric Model and Estimators 

The model for the observed dependent variable yit is specified as 

 [ ]1 1Pr 1| , , ( ' )it it it i it it iob y y yα γ− −= = Φ +x x β α+

i

 (1) 

where i=1,…, N; t=2,…, Ti (the panel may be unbalanced), x is a vector of strictly exogenous 

observed explanatory variables and β is the vector of coefficients associated with x. The 

model includes the observed status of the dependent variable in the previous period, yit-1. The 

model also has a random intercept αi to account for individual-specific unobserved 

characteristics. Φ is the cumulative distribution function of a standard normal variate. 

 The standard uncorrelated random effects model assumes αi uncorrelated with xit. 

Alternativel, following Mundlak (1978), correlation between αi and the observed 

characteristics can be allowed by assuming a relationship of the form 

 i ix aα ε′= +  

where xi = (xi1,…,xiT) and with εi independent of xi. (Averages of the x-variables over t have 

also been used.) Thus the model can be written as 

 [ ]1 1Pr 1| , , ( ' )it it it i it it i iob y y y x aα γ− −
′= = Φ + +x x β ε+  (1a) 
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To simplify notation, specification (1) will be used here, with the understanding that when the 

Mundlak correlated random effects (CRE) model is used, xit in (1) implicitly subsumes a full 

set of period-specific versions of the (time-varying) x-variables. 

 

The Initial Conditions Problem and Heckman’s Estimator 

Correlation between αi and yit-1 makes the latter endogenous in equation (1).  Heckman 

suggested the use of an approximation to the process generating the first period observations 

using the same form of equation as for the rest of the observations but with some restrictions.  

Specifically he proposed the use of 

 Prob(yi1=1|αi) = Φ[zi
′λ + θ αi ] i=1,…,N (2) 

where zi  is a vector of exogenous covariates. This would be expected to include xi1 and 

additional variables that can be viewed as “instruments” such as pre-sample variables. 

Exogeneity corresponds to θ = 0 and can be tested accordingly. The distribution function is 

assumed to be the same as in (1).   

 Equations (1) and (2) together specify a complete model for the process. In this model 

the contribution to the likelihood function for individual i is given by  

    (3)                 ( )( ) ( )( )1 1
2

' θα 2 1 γ α 2 1  (α ) α
iT

i i i it it i it
t

L y y y−
=

⎛ ⎞
= Φ + − Φ + + −⎡ ⎤ ⎡ ⎤⎜ ⎟⎣ ⎦ ⎣ ⎦

⎝ ⎠
∏∫ i1z λ x 'β i ig d

where g(α) is the probability density function of the unobservable individual-specific 

heterogeneity. In the standard case considered here, α is taken to be normally distributed and 

the integral in (3) can be evaluated using Gaussian--Hermite quadrature (Butler and Moffitt, 

1982). 
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Shortcut Setup for Implementing Heckman’s Estimator 

The simplified implementation procedure proposed here involves the creation of a dummy 

variable, Dit = 1 if the observation belongs to period 1, Dit = 0 otherwise.  Equations (1) and 

(2) can then be combined to give 

 [ ] ( )1 1 1 1Pr 1 | , , , ( ' ) * (1 ) ' θ *it it it i i it it i it i i itob y y y D Dα γ α α− −= = Φ + + − + +⎡ ⎤⎣ ⎦x z x β z λ  

  (4) 

This can be rewritten as 

[ ] { }1 1 1 1Pr 1 | , , , (1 ) (1 ) ' ' 1 (θ 1)it it it i i it it it it it i it iob y y D y D D Dα γ α− −= = Φ − + − + + + −⎡ ⎤⎣ ⎦x z x β z λ  

  (5) 

This can be viewed as a standard random effects specification, but with a heteroskedastic 

factor loading for the random effect in period 1. Software that allows this form of 

heteroskedasticity, such as the gllamm program in Stata, can be used to estimate (5). 

Alternatively the model can be viewed as a constrained random coefficients model, by 

rewriting it again as 

[ ] [ ]1 1 1 1Pr 1 | , , , (1 ) (1 ) ' ' (θ 1)it it it i i i it it it it it i i itob y y D y D D Dα α γ α− −= = Φ + − + − + + −x z x β z λ  

  (6) 

Unobserved heterogeneity αi can be thought of as a random intercept term in the model and 

in this formulation the coefficient on D can be viewed as a random coefficient, with a unit 

correlation with the random intercept, but a different variance. Software for estimating 

random coefficient models that allows this form of restriction can therefore also be used. 

 

Orme’s two-step estimator 

This is in the spirit of Heckman’s two-step procedure for addressing the issue of endogenous 

sample selection. Since the cause of the initial conditions problem is the correlation between 
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the regressor yit-1 and the unobservable αi, Orme (1997) uses an approximation to substitute 

αi  with another unobservable component that is uncorrelated with yit-1. First write   

αi = δηi+ wi (7) 

where, ηi, and wi are orthogonal by construction. Substitution for αi in (1) gives 

Prob[yit=1|yit-1,…, yi1, xi, wi]  =  Φ(xij
′β + γyij-1 + δ ηi + wi)              t=2,…, Ti (8)    

which has two unobserved components, ηi and wi. Since E(wi|yi1)=0 by construction, there is 

no initial conditions problem if we can take care of ηi in (8). Orme notes that under the 

assumption that  (αi , ηi) are distributed as bivariate normal, ( ) iii eyE =1η , where 

( ) ( ) { }( )1 1 12 1 ' 2 1 'i i i ie y z y zϕ λ λ= − Φ − 1i  is the generalised error (inverse Mill’s ratio) from the 

first period probit equation similar to (2), analogous to that used in Heckman’s sample 

selection procedure, and φ and Φ are the Normal density and distribution functions 

respectively. Hence we can estimate (8) as a RE probit model using standard software with ηi 

replaced with an estimate of ei after the estimation of (2). A potential problem is that, 

although E(wi|yi1)=0, the conditional variance of wi is not constant, but depends upon the 

correlation between  αi and ηi. However, Orme shows that the approximation works 

reasonably well even when this correlation is fairly different from zero. 

 

Wooldridge’s Conditional ML estimator 

The Heckman estimator approximates the joint probability of the full observed y sequence. 

Wooldridge (2005) has proposed an alternative Conditional Maximum Likelihood (CML) 

estimator that considers the distribution conditional on the initial period value (and 

exogenous variables). Instead of specifying a distribution for Prob(y1|α), Wooldridge 
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specifies an approximation for Prob(α|y1). Thus a specification such as the following is 

assumed in the case of the random effect probit,    

 ai|yi1, zi ~ Normal(ζ0 + ζ1 yi1 +  zi
’ζ , σ2

a) (9) 

where αi = ζ0 + ζ1 yi1 +  zi
’ζ + ai (10) 

zi includes variables that are correlated with the unobservable α.  The appropriate z may differ 

from that in the Heckman specification. The idea here is that the correlation between yi1 and 

α is handled by the use of (10) giving another unobservable individual-specific heterogeneity 

term a that is uncorrelated with the initial observation y1.  Wooldridge in fact specifies zi to 

be xi as in (1a) above (although only for periods 2 to T), but alternative specifications of it 

would also be possible. 

 Substituting (10) into (1) gives 

 Prob(yit=1|ai,yi1) = Φ[ xij
′β + γyij-1 + ζ1 yi1 +  zi ζ + ai ] t=2,…, Ti (11) 

In this model, the contribution to the likelihood function for individual i is given by  

  (12) ( )(1 1 1
2

γ ' 2 1  (a )
iT

i it it i i it
t

L y y a yς ς−
=

⎛ ⎞
= Φ + + + + −⎡⎜ ⎟⎣

⎝ ⎠
∏∫ ix 'β z ) ai ig d⎤⎦

where g(a) is the normal probability density function of the new unobservable individual-

specific heterogeneity given in (9). Since this is the standard random effects probit model 

likelihood contribution for individual i one can proceed with the maximisation using standard 

software. Note that if xi is used for zi this means the Wooldridge estimator for the 

uncorrelated random effects specification and for the Mundlak correlated random effects 

specification are the same, since xi is already included in the model to be estimated. 

 

3. Empirical Illustration 

The empirical illustration uses data from the first six waves of the British Household Panel 

Survey (BHPS), covering the period 1991-1996, to examine the unemployment dynamics of 
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British men.1 The data used are a sub-sample of those used in Stewart (2007). The sample is 

restricted to those who were in the labour force (employed or unemployed) at each of the six 

waves. The ILO/OECD definition of unemployment is used, under which a man is 

unemployed if he does not have a job, but had looked for work in the past four weeks and is 

available for work. 

 Results for different estimators for a model for the probability of unemployment of 

the form of equation (1) above are given in Table 1. Column [1] gives the pooled probit 

estimates. Additional education, more labour market experience and being married reduce the 

probability of unemployment. Being in poor health or living in a travel to work area with a 

high unemployment-vacancy ratio raise the probability. Being unemployed at t-1 strongly 

increases the probability of being unemployed at t. 

 Column [2] gives the equivalent standard random effects probit estimates, treating 

lagged unemployment as exogenous. The coefficients on all the x-variables are increased, 

while that on yt-1 is reduced relative to the pooled probit estimates. However the random 

effects probit and pooled probit models involve different normalizations. To compare 

coefficients those from the random effects estimator need to be multiplied by an estimate of 

√(1- ρ), where ρ is the constant cross-period error correlation (see Arulampalam, 1999). The 

scaled coefficient estimate on unemployment at t-1 in column [2] is 1.35. Compared with the 

pooled probit estimator, the estimate of γ is reduced by a quarter in the random effects model, 

but remains strongly significant. 

 The corresponding results for the Heckman estimator are given in column [3], with 

the initial period equation including two exogenous pre-labour market instruments and the 

full set of period-specific versions of the time-varying x-variables. (Only the married, poor 

health and local unemployment-vacancy ratio variables are treated as time-varying. There are 
                                                 
1  The BHPS contains a nationally representative sample of households whose members are re-interviewed 

each year. The sample used here contains only Original Sample Members, is restricted to those aged 18-64 
and excludes full-time students. 
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very few changes in the years of education variable in the sample.) The estimate of θ is 0.88, 

significantly greater than zero, rejecting the exogeneity of the initial conditions. (In fact θ is 

insignificantly different from 1.) Compared to the random effects estimator treating the initial 

conditions as exogenous, the Heckman estimator shows a fall in the estimate of γ of about a 

third and a near doubling in the estimate of ρ. In terms of scaled coefficient estimates, γ(1-

ρ)½, the standard random effects probit with the initial conditions treated as exogenous gives 

1.35, while the Heckman estimator gives 0.79. 

 The Orme two-step estimates for the same model are given in column [4]. The 

estimator uses two exogenous pre-labour market instruments in conjunction with xit for all 

time periods in zi in the initial period equation as in the Heckman estimator. Relative to the 

Heckman estimator, the Orme estimator gives a slightly higher estimate of γ: 1.11 compared 

with 1.05 and a slightly lower estimate of ρ: 0.35 compared with 0.43. 

 The corresponding Wooldridge CML estimates are given in column [5]. The equation 

estimated contains xit for all time periods. This gives an estimate of γ of 1.06, between the 

other two estimates and close to the Heckman estimate, and an estimate of ρ of 0.36, also 

between the other two estimates and close to the Orme estimate. In terms of scaled coefficient 

estimates, γ(1-ρ)½, the Wooldridge estimator gives 0.88, about half way between 0.79 for the 

Heckman estimator and 0.89 for the Orme estimator. However all three of these estimates are 

fairly close together. The Wooldridge estimates of the elements of β corresponding to 

education, experience and the local unemployment/vacancy ratio are fairly similar to those 

from the other estimators. However this is not the case for the coefficients on married and 

health limits. The latter is cut by about half, the former by about two-thirds. Their standard 

errors are also appreciably higher than for the other estimators and both are insignificantly 

different from zero with this estimator. The reason for this is seen in the next paragraph. 
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 Estimates for the corresponding correlated random effects model, using the Mundlak 

specification resulting in equation (1a), are given in Table 2. This results in the full set of 

period-specific versions of the time-varying x-variables being added to the main equation. 

Recall that the Wooldridge estimator is the same in both cases. The estimates of γ using the 

Heckman and Orme estimators both fall slightly when this specification is used. The 

estimates of the coefficients on education and experience are little changed, but those on the 

(time-varying) married and health limits variables fall considerably and now match closely 

those from using the Wooldridge estimator. 

 As indicated above, other specifications of both the z-vector and the relationship 

between α and the x-variables have been proposed and can be used as alternatives. However 

the contenders considered here have little effect on the estimates in Tables 1 and 2. To 

illustrate, using only xi1 rather than the whole of xi in the initial period equation (in addition 

to the two exogenous pre-labour market instruments) reduces the Heckman estimate of γ in 

Table 1 from 1.048 to 1.047 and increases the estimate of ρ from 0.430 to 0.433. Replacing 

the full xi by the time means changes the estimate of γ to 1.049 and that of ρ to 0.431. Similar 

very small differences are found for the elements of β, for the other estimators and for the 

correlated random effects estimates in Table 2. 

 

4. Simulation Illustration 

In this section we present a small-scale simulation experiment, to provide a comparison of the 

estimators in a situation where the true values of the parameters are known. The analysis is 

limited in scope and considers a specification that makes assumptions favourable to the 

Heckman estimator. 

 The set-up for the experiments is as follows. Data is generated for 3,000 observations 

(N=500, T=6). The model used to generate the data is 
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 yit = 1[(γ yit-1 + β0 + β xit + αi + uit) > 0]  for t=2,…,T 

 yi1 =  1[(π0 + π1 xi1 + π2 zi + θ αi + ui1) > 0] 

Thus the approximation used in the Heckman estimator is assumed to be the data generating 

process. The start of the stochastic process is assumed to coincide with the start of the sample 

period. The objective of the analysis in this section is to examine the situation where the 

Heckman specification does not involve an approximation for the model for the initial period, 

and ask how the finite sample performance of the Orme and Wooldridge estimators compares 

with that of the Heckman estimator in this particular case. 

 The covariate x is generated as follows. xi1* = χ2
2/2, xit* = 0.6 xit-1* +0.8 N(0,1) for 

t ≥ 2, x = 0.5 x* + 2.5 1[x* < 0]. The variable z is generated as a standard uniform. Guided by 

the indications of the empirical illustration in the previous section, the average of x over the 

six time periods is included both in the main equation to allow for correlated random effects 

and in the initial period instrument set. The individual effect α is generated in the experiments 

as N(0, σα2) and u as N(0, 1). The inter-period error correlation is therefore given by 

ρ = σα2/(1+σα2). Hence σα2 = ρ/(1-ρ). Different experiments are conducted for different values 

of γ, β, ρ and θ. The following parameters are fixed in all experiments: β0 = -2, π0 = -1, π1 = 

1.5, π2 = 0.5. Each of the experiments reported in Tables 3 and 4 is based on 100 Monte Carlo 

replications. 

 Table 3 gives the relative average bias and relative root mean square error (both in 

percentage terms and both relative to the true value) for the estimates of γ and β using the 

Heckman, Wooldridge and Orme estimators in each of the first set of experiments. In the 

base experiment the main parameter values are set to γ = 1.2, β = 1.0, ρ = 0.4 and θ = 0.8. 

This implies an estimate of σα of 0.816, similar to the standard deviation of x (and hence of 

βx in this experiment) of 0.862. The relative bias in this experiment for all three estimators is 

fairly small. The Heckman and Orme estimators give an absolute relative bias in the estimate 
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of γ of just under 2%. The Wooldridge estimator dominates these two for γ with a relative 

bias of only 0.2%. The relative bias in the estimate of β is less than 1% for all three 

estimators, but the Heckman estimator has the smallest relative bias for β. The root mean 

square errors for both γ and β are fairly similar for all three estimators. 

 The remaining experiments in Table 3 (experiments 2 – 6) retain the same values of 

γ, β and θ and examine various values of ρ. These experiments shift the balance between the 

variance of the individual-specific effect, α, and the exogenous variation in the specification 

(that in βx). In the base experiment, the ratio of the variance of α to the variance of βx is 0.9. 

Experiment 2 lowers ρ to 0.3, which reduces this ratio of variances to 0.6. The other four 

experiments in Table 3 increase ρ and hence this variance ratio. Experiments 3 – 6 use values 

of ρ of 0.5, 0.6, 0.7 and 0.8, giving values of this variance ratio of 1.3, 2.0, 3.2 and 5.4 

respectively. 

 For all these values of ρ the Heckman estimator gives the smallest relative bias for the 

estimate of β. The Wooldridge estimator gives the largest relative bias and the Orme 

estimator lies between them in these terms. It is also clear that in broad terms relative bias 

rises as ρ does for all three estimators (although this is not quite monotonic). The root mean 

square error for the estimate of β is fairly similar for the three estimators in each case. 

 The relative biases for the estimate of γ present a somewhat different picture. For low 

values of ρ the Wooldridge estimator continues to give the smallest relative bias of the three 

estimators (as it did in the base experiment). However in broad terms this relative bias rises 

with ρ, which is not the case for the Heckman and Orme estimators. As a result it is 

dominated by the Heckman estimator for ρ = 0.7 and the Orme estimator for both ρ = 0.7 and 

ρ = 0.8. There is however a large rise in the relative bias of the Heckman estimator when ρ is 

increased from 0.7 to 0.8. For this latter experiment, the Heckman estimator of γ has a 
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relative bias of 5%, compared with 2.5% for the Wooldridge estimator and 0.2% for the 

Orme estimator. 

 In broad terms the relative bias of the Orme estimator improves as ρ is increased. This 

is rather surprising, since the Orme estimator is based on an approximation around ρ = 0. One 

should of course be cautious about reading too much into a single set of simulation 

experiments. 

 The experiments reported in Table 4 use modifications to the values of γ, β and θ used 

in the data generating process. Experiment 7 doubles the value of β used compared to the 

base experiment: from 1.0 to 2.0. The performance of all three estimators deteriorates for 

both γ and β. When the value of β is halved in experiment 8, this is not universally the case. 

Experiments 9 and 10 increase and decrease γ respectively, while experiments 11 and 12 

increase and decrease θ respectively. In these seven experiments retaining ρ = 0.4 (including 

the base experiment), the Wooldridge estimator of γ dominates the other two in six cases out 

of seven in terms of relative bias. The Heckman estimator has the largest relative bias (in 

absolute terms) in five of these seven experiments. In contrast to this, for the estimation of β, 

the Heckman estimator has the smallest relative bias (in absolute terms) in four of the seven 

experiments and the Wooldridge estimator the largest in five of the seven experiments. 

Clearly no estimator dominates the others overall in this set of experiments. 

 Of the six experiments based on increasing or decreasing γ, β or θ relative to the base 

experiment, the increase of β to 2.0 in experiment 7 seems to have the largest impact overall. 

The final experiment therefore examines the effect of this in conjunction with increasing ρ 

from 0.4 to 0.8 (i.e. two changes relative to the base experiment). Relative to experiment 7, 

the increase in ρ worsens the Heckman and Wooldridge estimates of γ and the Wooldridge 

and Orme estimates of β in relative bias terms. It increases the root mean square error for all 

three estimators of both parameters. Relative to experiment 6, the increase in β worsens the 
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Heckman and Orme estimates of γ and all three estimates of β in relative bias terms. It 

increases the root mean square error for the Wooldridge and Orme estimators of both 

parameters. In this final experiment the Wooldridge estimator has the largest relative bias and 

root mean square error for both γ and β. 

 Judged across the full set of experiments conducted, none of the three estimators 

dominates the other two in all cases, or even in a majority of cases. 

 

5. Conclusions 

This paper presents a convenient shortcut method for implementing the Heckman estimator 

of the dynamic random effects probit model using standard software. This removes the need 

for separate programming and puts this estimator on a similar footing to the simpler 

estimators suggested by Orme and Wooldridge based on alternative approximations. The 

choice between these estimators can therefore be based on performance rather than 

availability of ease of use. An empirical illustration has been presented in section 3 and a set 

of simulation experiments in section 4. The former suggests that it is advantageous to allow 

for correlated random effects using the approach of Mundlak (1978), but that once this is 

done, the three estimators provide similar results. The simulation experiments suggest that 

none of the three estimators dominates the other two in all cases. 
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TABLE 1: Unemployment probability model: Alternative estimators 

 

 [1] [2] [3] [4] [5] 
 Probit RE probit Heckman Orme Wooldridge 

      
Unem(t-1) 1.837 1.536 1.048 1.107 1.062 
 [0.074] [0.122] [0.130] [0.115] [0.115] 
Education -0.043 -0.050 -0.058 -0.054 -0.055 
 [0.011] [0.014] [0.017] [0.016] [0.017] 
Experience -0.048 -0.068 -0.072 -0.064 -0.066 
 [0.030] [0.037] [0.045] [0.043] [0.045] 
Married -0.186 -0.236 -0.309 -0.280 -0.092 
 [0.066] [0.082] [0.100] [0.093] [0.227] 
Health limits 0.429 0.503 0.585 0.569 0.289 
 [0.093] [0.114] [0.133] [0.126] [0.185] 
Local u/v 0.654 0.849 0.941 0.919 0.880 
 [0.229] [0.268] [0.306] [0.292] [0.396] 
λ    0.459  
    [0.076]  
Unem(1)     1.016 
     [0.161] 
      
ρ  0.225 0.430 0.354 0.357 
  [0.065] [0.063] [0.044] [0.043] 
θ   0.882   
   [0.189]   
      
LogL -1052.00 -1044.81 -1341.14 -1024.24 -1014.01 

 
 
Estimators: 
[1] Pooled Probit 
[2] Standard Random Effects Probit (takes initial condition to be exogenous) 
[3] Heckman estimator, with x in all periods and 2 exog instruments in initial period equation 
[4] Orme estimator, with x in all periods and 2 exog instruments in initial period equation 
[5] Wooldridge estimator, with x in all periods included in z 
 
Notes: 
1. Sample size = 10,092. 
2. LogL in [3] is for joint model for all periods. Those in other columns are for 2-T only. 



 15

TABLE 2: Unemployment probability model: Alternative estimators with Mundlak 
correction for correlated individual effects 
 
 

 [1] [2] [3] [4] [5] 
 Probit RE probit Heckman Orme Wooldridge 

      
Unem(t-1) 1.811 1.500 1.009 1.074 1.062 
 [0.075] [0.124] [0.130] [0.115] [0.115] 
Education -0.044 -0.052 -0.060 -0.056 -0.055 
 [0.012] [0.015] [0.018] [0.017] [0.017] 
Experience -0.050 -0.072 -0.077 -0.070 -0.066 
 [0.031] [0.040] [0.048] [0.045] [0.045] 
Married -0.041 -0.063 -0.095 -0.090 -0.092 
 [0.194] [0.212] [0.231] [0.226] [0.227] 
Health limits 0.211 0.254 0.299 0.287 0.289 
 [0.158] [0.174] [0.189] [0.185] [0.185] 
Local u/v 0.633 0.900 0.896 0.873 0.880 
 [0.338] [0.378] [0.406] [0.396] [0.396] 
λ    0.469  
    [0.076]  
Unem(1)     1.016 
     [0.161] 
      
ρ  0.232 0.439 0.357 0.357 
  [0.066] [0.063] [0.044] [0.043] 
θ   0.885   
   [0.189]   
      
LogL -1044.03 -1044.81 -1332.14 -1015.40 -1014.01 

 
 
Notes: 
1. Estimators as in Table 1 with x in all periods added to main equation. 
2. Sample size = 10,092. 
3. LogL in [3] is for joint model for all periods. Those in other columns are for 2-T only. 
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TABLE 3: Simulation Results: Base Experiment and Variations in ρ 

 

  γ γ β β 

Experiment Estimator 
Relative 
Bias (%) 

Relative 
RMSE (%) 

Relative 
Bias (%) 

Relative 
RMSE (%) 

      
1) Base Heckman -1.850 7.664 0.073 5.668 
 Wooldridge 0.218 7.483 0.752 5.705 
 Orme -1.733 7.634 0.152 5.669 
      
2) ρ = 0.3 Heckman -1.563 7.426 0.129 5.165 
 Wooldridge 0.255 7.389 0.581 5.200 
 Orme -1.504 7.404 0.167 5.165 
      
3) ρ = 0.5 Heckman -1.700 7.620 0.475 5.962 
 Wooldridge 0.575 7.521 1.330 6.094 
 Orme -1.522 7.598 0.610 5.967 
      
4) ρ = 0.6 Heckman -1.259 8.396 0.565 6.279 
 Wooldridge 1.026 8.353 1.700 6.562 
 Orme -1.127 8.346 0.870 6.379 
      
5) ρ = 0.7 Heckman -0.012 10.083 0.331 6.809 
 Wooldridge 1.614 10.245 2.083 7.147 
 Orme -0.483 10.010 1.098 6.906 
      
6) ρ = 0.8 Heckman 4.881 10.873 -1.141 7.363 
 Wooldridge 2.453 10.551 2.740 7.973 
 Orme 0.188 10.011 1.934 7.921 

 
Notes: 
1.  Data generating process for base experiment (experiment 1) has γ=1.2, β=1.0, ρ=0.4, θ=0.8 in 

addition to the specification given in the text. 
2.  Data generating processes for experiments 2 – 6 as for base experiment except for specified value of 

ρ given in Column 1. 
3.  100 Monte Carlo replications used in each experiment. 
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TABLE 4: Simulation Results: Additional Experiments 

 

  γ γ β β 

Experiment Estimator 
Relative 
Bias (%) 

Relative 
RMSE (%) 

Relative 
Bias (%) 

Relative 
RMSE (%) 

      
1) Base Heckman -1.850 7.664 0.073 5.668 
 Wooldridge 0.218 7.483 0.752 5.705 
 Orme -1.733 7.634 0.152 5.669 
      
7) β = 2.0 Heckman -2.557 7.988 2.702 6.276 
 Wooldridge -0.309 7.648 2.415 6.037 
 Orme -2.569 8.017 2.561 6.186 
      
8) β = 0.5 Heckman -1.837 8.265 0.897 9.541 
 Wooldridge 0.040 8.246 2.542 9.942 
 Orme -1.815 8.230 0.974 9.545 
      
9) γ = 2.4 Heckman -2.033 4.911 0.874 6.565 
 Wooldridge -0.133 4.586 0.836 6.654 
 Orme -1.979 4.899 0.926 6.585 
      
10) γ = 0.6 Heckman -1.755 13.569 -0.369 5.250 
 Wooldridge 1.504 13.523 0.498 5.312 
 Orme -1.550 13.534 -0.288 5.253 
      
11) θ = 1.2 Heckman -1.102 7.713 0.265 5.651 
 Wooldridge 1.285 7.803 1.171 5.764 
 Orme -0.877 7.700 0.436 5.669 
      
12) θ = 0.4 Heckman -1.753 7.419 0.047 5.514 
 Wooldridge -0.117 7.313 0.285 5.511 
 Orme -1.691 7.416 0.061 5.511 
      
13) β = 2.0 Heckman 3.787 10.647 2.647 7.084 
and  ρ = 0.8 Wooldridge 4.459 11.433 5.259 8.866 
 Orme 1.558 10.521 4.854 8.532 

 
Notes: 
1. Data generating process for base experiment (experiment 1) has γ=1.2, β=1.0, ρ=0.4, θ=0.8 in 

addition to the specification given in the text. 
2. Data generating processes for experiments 7 – 11 as for base experiment except for specified 

parameter values given in Column 1. 
3. 100 Monte Carlo replications used in each experiment. 
 



 18

References 

Arulampalam, W. (1999) A Note on estimated effects in random effect probit models”, 

Oxford Bulletin of Economics and Statistics, 61(4), 597-602. 

Arulampalam, W. and Bhalotra, S. (2006) Sibling death clustering in India: genuine scarring 

vs unobserved heterogeneity, Journal of the Royal Statistical Society Series A, 169, 

829-848.

Butler, J. S. and Moffitt, R. (1982) A computationally efficient quadrature procedure for the 

one-factor multinomial probit model, Econometrica, 50, 761-4. 

Heckman, J. J. (1981a) Heterogeneity and state dependence, in S. Rose (ed.), Studies in 

Labor Markets, Chicago Press, Chicago, IL. 

Heckman, J. J. (1981b). The incidental parameters problem and the problem of initial 

conditions in estimating a discrete time-discrete data stochastic process, in C. F. Manski 

and D. McFadden (eds), Structural Analysis of Discrete Data with Econometric 

Applications, MIT Press, Cambridge, MA, 114-178. 

Mundlak, Y (1978). On the pooling of time series and cross section data. Econometrica, 46, 

69-85. 

Orme, C. D. (1997) The initial conditions problem and two-step estimation in discrete panel 

data models, mimeo, University of Manchester. 

Orme, C. D. (2001) Two-step inference in dynamic non-linear panel data models, mimeo, 

University of Manchester. 

Stewart, M. B. (2007) Inter-related dynamics of unemployment and low-wage employment, 

Journal of Applied Econometrics, 22, 511-531. 

Wooldridge, J. (2005). Simple solutions to the initial conditions problem in dynamic, 

nonlinear panel data models with unobserved heterogeneity, Journal of Applied 

Econometrics, 20, 39-54. 


	Simplified Implementation of the Heckman Estimator of the Dynamic Probit Model and a Comparison with Alternative Estimators 
	 1. Introduction 
	2. Econometric Model and Estimators 
	3. Empirical Illustration 
	4. Simulation Illustration 
	5. Conclusions 




