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I.  Introduction 

 Economists and policymakers are always interested in efficiency, especially as related to 

performance in the public sector. The purpose of this paper is to study the efficiency of public 

hospitals. Using the 1997–1998 New South Wales public-hospitals comparison data, we study the 

relative efficiency and performance of public hospitals in New South Wales (NSW), Australia. 

 The escalating cost of health services in Australia has prompted the government and other 

hospital funding agencies in NSW to increase their efforts in monitoring and planning of hospital 

service provision over the last decade. Nonetheless, because there are two levels of government 

in NSW responsible for health-care policy, funding decisions, and hospital care regulations, the 

non-market factors make some of the hospitals consistently earn positive profits and therefore 

have little incentive to expand their capacity and to attract more patients, or to remove their 

excess capacity and staff (Palmer and Short, 1994). 

 The intent of this paper is to address both hospital structure and hospital-level efficiency. 

Applying a stochastic-frontier multiproduct cost function, we can study relative efficiency at the 

hospital level. This approach also allows us to test whether there are scale effects and scope 

effects. 

 In the literature, measuring the output of a hospital is always difficult because a hospital’s 

true final output, improvement in the health of patients, is unobservable. Researchers have been 

using measures of throughputs or intermediate outputs, such as the number of cases treated, 

number of patient-days served per hospital department, and number of outpatient consultations, 

to proxy for the true output. However, this strategy raises a set of problems related to the 

heterogeneity of hospital outputs. Two aspects of the heterogeneity that have attracted 

widespread attention are the case mix and the quality of care. In order to mitigate this problem, 
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we use a flexible translog cost function, which includes direct measures of inpatient case mix and 

hospital complexity indicators to reduce the measurement errors of the output of hospitals.1  

 The main findings in this paper are: First, inefficiency accounts for 9.3% of total hospital 

costs in large hospitals, and 11.3% in small hospitals, controlling for complexity indicators. 

Second, diseconomies of scale exist in very large hospitals, whereas scale economies appear in 

very small hospitals. Third, scope effects are found in both large and small hospitals. Fourth, 

small hospitals are more labor-intensive than large hospitals are.  

 The remainder of the paper is organized as follows. Section 2 outlines the stochastic-

frontier multiproduct cost-function approach. Section 3 describes the data set and the variables 

used in the paper. That section also discusses the empirical issues in estimating a hospital cost 

function. Section 4 gives the empirical results and the policy implications. Section 5 concludes 

the paper. 

 

II. Analytical Framework  

 There are two main methods to estimate relative efficiency. One is data envelopment 

analysis approach, which evaluates the relative efficiency by comparing each producer with the 

best producer. The other is the stochastic-frontier multiproduct cost-function approach, which 

calculates an efficiency score for each individual producer. Based on the score, the inefficient 

producer(s) can be identified. 

 This paper applies the stochastic-frontier multiproduct cost-function approach with translog 

specification. The advantage of stochastic-frontier approach is that if the data are from those 

hospitals that minimize their cost for given level of outputs, input prices, and fixed factors, and if 

                                                           
 
1 Scott and Parkin (1995) investigate the role of translog cost function in estimating the hospitals efficiency. 
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the specification of the cost function is flexible enough, this approach can identify the “true” 

structure of the variable-cost function through the estimation process, provided that the list of 

regressors is complete.2 However, the results may not be valid globally (Vita, 1990). 

 Since Christensen et al. (1973) and Brown et al. (1979), the specification of the cost 

function has usually been in translog form because of its flexibility and its having fewer 

parameters than some other flexible functional forms. For n outputs and m inputs, the translog 

cost function has (m+n) (m+n+1)/2 parameters (see Brown et al., 1979).  

 Given I variable inputs, T fixed factors, and N outputs, a variable-cost function with a 

transcendental logarithmic specification has the form 

ln cν∗=α0+∑
=

I

i 1
αI ln wi*+∑

=

N

n 1
βn ln yn*+∑

=

T

t 1
γt ln kt*                                

             +
2
1 ∑∑

= =

I

i

I

j1 1

αij ln wi* ln wj*+
2
1 ∑∑

= =

N

n

N

m1 1
βnm ln yn* ln ym*+

2
1 ∑∑

= =

T

t

T

s1 1
γts ln kt* ln ks* 

                 +∑∑
= =

I

i

N

n1 1
ρin ln wi* ln yn*+∑∑

= =

I

i

T

t1 1
δi t ln wi* ln kt*+∑∑

= =

N

n

T

t1 1
θnt ln yn* ln kt* +ξx + v+u                       

             (1)   

where ln cν∗, ln wi
∗ for i=1,...,I, ln yn* for n=1,...,N, and ln kt* for t=1,...,T are the natural 

logarithms of the mean-scaled values of the variable costs, input  prices, output levels,  and fixed 

factors, respectively; x is a vector of hospital complexity indicators; v is the measurement errors 

of output variables; and u is other random factors. Aiger et al. (1977) assumed that v is an 

independently and identically distributed (i.i.d.) normal variable with mean 0 and variance σv
2, 

and u is an i.i.d. half-normal random variable. 

                                                           
2 A recent review on this literature can be found in Worthington (2004). 
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 To be a well-behaved cost function, equation (1) must be linearly homogeneous and 

concave in factor prices, convex in output levels, and nondecreasing and continuous in both 

output levels and factor prices. Mathematically, we have following restrictions: 

  αij=αji     for all i and j    (2) 

 βnm=βmn     for all n and m     (3)  

 ∑
=
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i 1
αi=1,      ∑

=

I

j 1
αij=0,  i=1, 2,…,I     (4) 
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i 1
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 si=αi≥0,  i=1,2, …,I    (7)                   

 ∂ ln cv/∂ ln yn=βij≥0,  n=1, 2,…,N    (8)  

where si=wi*xi/cv* is the share of the ith input in variable costs. 

 Equations (2) and (3) ensure continuity in factor prices and output levels. Equations (4) to 

(6) are from linear homogeneity (or constant returns to scale). Equations (7) and (8) are from 

monotonicity in factor prices and in output levels. These inequalities hold at the sample means.  

 Using Shepherd’s lemma, we have the following additional restrictions, usually called input 

share equations: 

 ∂ ln cv*/∂ ln wi*=si=αi+ *ln*ln*ln
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 Imposing these share equations can improve efficiency as well as circumvent the degree-of-

freedom problem when the sample size is small. The above model can be estimated by seemingly 
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unrelated least-squares regression (SUR). Since the cost shares must sum to 1, one of the cost-

share equations has to be deleted in estimation.  

 

III. Data Set and Empirical Issues 

 The data set used in this paper is the NSW public-hospitals comparison data (PHCD) for 

the 1997–1998 fiscal year. There are 114 acute public hospitals in the data. Based on the size and 

complexity of the hospitals, we classify them as large hospitals and small hospitals. Large 

hospitals include principal referral, specialist pediatric, ungrouped acute, major metropolitan, and 

major nonmetropolitan hospitals. Small hospitals are district hospitals. 

 The main variables are the total variable cost, average salary of medical labor services, 

average salary of nonmedical labor services, inpatient service index, occasions of services, 

average available beds, same-day separations as a percentage of total separations, average length 

of stay for acute episodes, and so on (see Table 1). 

 When estimating a stochastic-frontier function for a hospital, there are several difficulties 

related to case mix, aggregation of throughputs, and measurement of hospital output.  

 Labor is a predominant input of hospitals. Our data set contains aggregate wage indices for 

medical staff and supporting staff separately. We define variable costs as the total expenditure on 

both medical and nonmedical labor services in a hospital. Annual salary is calculated for two 

categories of labor inputs:  (1) medical and visiting medical officers, and (2) nonmedical labor 

inputs such as nurses, other personal care staff, administrative and clerical staff, diagnostic and 

allied health staff, domestics, etc. 

 The input price of a salaried medical officer is defined as the total annual salary of all 

medical officers divided by the number of equivalent full-time medical officers. The salaries of 
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medical officers and visiting medical officers account for 15.3% of total expenditure for large 

hospitals and 14.2% for the small ones. The salaries of nonmedical officers are 43.9% of the total 

expenditures for large hospitals and 42.9% for small ones. 

 Other major inputs are general materials and supplies. Unfortunately, we have no 

information on these. However, given the purchasing power of most hospitals, it is reasonable to 

assume that the price of materials is the same across hospitals. Other expenses, including those 

for superannuation, drug supplies, medical and surgical supplies, food, domestic services, repair 

and maintenance, patient transportation, administration, depreciation, and other nonsalary, are 

assumed quasi-fixed. 

 For a hospital, a case refers to a situation exhibiting a variety of illness that is treated in a 

hospital setting. 

 When estimating cost functions, we have two difficulties. 

 One difficulty is that if hospitals do not administer the same kind of ailments (or if they 

follow radically different treatment protocols), then their productions and costs are bound to be 

different. These hospitals ought not to be treated as belonging to the same class of firms. 

 The number of diseases and conditions for which patients seek treatment is large. Some 

form of aggregation of the hospital throughputs is necessary to avoid running out of degrees of 

freedom. Unfortunately, what is the best method to aggregate is still an unsettled issue; there is 

no shortage of proposals in the literature. 

 Breyer (1987) suggests handling the case mix by grouping patients into an arbitrary 

(manageable) number of diagnostic categories and by specifying that each diagnostic group raises 

total costs only by a constant. Wagstaff and Barnum (1992) note that Breyer’s approach assumes 

away the possibility of economies of scope. The usual technique to aggregate hospital 
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throughputs is to include a case-mix index in the hospital cost function (Ellis, 1992). Ellis 

cautions since diagnosis-related group (DRG) costs are designed to measure the cost of hospital 

resources used in each diagnostic group, the case-mix index commingles output variables with 

measures of inputs.  

 The other difficulty is that the correct specification of the cost function requires all outputs 

of hospitals to be included as regressors. 

 Breyer (1987) argues that the true output of a hospital is the improvement in patients’ 

health. Defined in this way, output is impossible to measure. Breyer recommends using 

observable intermediate products as proxies for output. In particular, he suggests three important 

hospital intermediate outputs: number of cases (as a proxy for medical services), number of 

inpatient days (as a proxy for nursing, accommodation, and other “hotel” services), and number 

of beds.  

 Like the case-mix problem, quality of care has not been satisfactorily dealt with in the 

empirical literature. As Ellis (1992) points out, hospitals with higher mortality rates and 

readmission rates ought not to be regarded as having the same outputs as those with lower rates. 

Yet this kind of misspecification is exactly what happens when quality of care is not controlled 

for in the cost function.  By using only throughputs as measures of hospital outputs, one will miss 

vital information on the effectiveness of treatments. Some measures of quality that have been 

proposed or used in the literature are: the teaching status of hospitals, the number or proportion of 

specialists on the medical staff, the location and accessibility of the hospital, the prevalence of 
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amenities (e.g., cleanliness of facilities, hospitality of the staff, and quality of food), and the 

occupancy rate of hospitals.3  

 Our measures of hospital output are an index for the number of inpatient services, and one 

for the number of occasions of service (OOS). We construct a case-mix index following Vita 

(1990) and Grannemann et al. (1986). They recognize there are two ways that a hospital can 

produce more days of care. It either can increase admission, holding average length of stay 

constant, or can increase length of stay, holding admission constant. Thus, relationships between 

separation and average length of stay for all the inpatient activities need to be included in the cost 

function.4 Following Dor and Farley (1996), we calculate inpatient service index as follows:  

 Mh= d
d h

dh S
X
X∑     (10) 

where  

 X is the number of separations  

 h is a dummy indicator of large or small hospital 

 d is an index for the diagnostic category (AN-DRGs,5 version 3.1) 

 dS  is a weight corresponding to the average length of stay for separations with conditions 

given by indices of the diagnostic category. 

 We use AN-DRG-weighted separations and corresponding average lengths of stay as 

measures of the output or quality of the hospital. Therefore, Mh can be appropriately defined to 

capture the usage of hospital resources. We use OOS as our proxy for outpatient care, since there 

is no better alternative information in the data. 

                                                           
3 The occupancy rate of hospitals was used by Friedman and Pauly (1981) as a measure of quality, on the argument 
that as admissions approach the hospital’s full capacity, the resources of the hospitals have to be spread more thinly, 
and this results in lower quality overall. 
4 Separation is used here to refer to the general admissions. 
5 Australian National Diagnosis-Related Groups. 
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 Notwithstanding the above issues, estimating hospital cost functions has generally 

proceeded under the assumption that hospitals are a class of multiproduct firms whose common 

objective is to minimize cost subject to an output constraint. We also adopt the cost-minimizing 

assumption, for the following reasons: first, public acute hospitals are nonprofit organizations in 

NSW, and therefore these hospitals have objectives other than profit maximization; second, cost 

minimization is a necessary condition for profit- and budget-constrained output maximization 

and therefore a legitimate objective under a wide variety of circumstances; third, it is contended 

that hospitals do not exercise monopolistic powers over inputs. 

 

IV. Results and Sensitivity Analysis 

1. Empirical Results 

Table 2 and Table 3 are estimates of translog variable cost functions for small hospitals and 

for large hospitals, respectively.  

 Cost Share and Cost Elasticity of Outputs. The input price coefficients are the intercepts 

of the cost-share equations. Since the variables in the translog variable cost function are mean-

scaled, when the share equations are evaluated at the sample means, the coefficients also 

represent the cost shares of the various input categories. So the coefficients of input prices (αi’s) 

must lie in the unit interval. 

 In small hospitals, nonmedical labor input has the highest estimated share of variable costs 

(64.8% with a 5% statistical significance level), and medical labor input accounts for the 

remaining 35.2%. In large hospitals, nonmedical labor input accounts for 80.7% of variable cost 

with 1% significance level, and medical labor input accounts for 19.3%. These results suggest 

that small hospitals are more labor-intensive than large hospitals. 
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 The coefficients of outputs can be interpreted as the output elasticity of variable costs 

(which are monotonic transformations of marginal costs) evaluated at the sample means. The lack 

of statistical significance of 1β̂ and the significant but small magnitude of 2β̂  indicate that the 

variable cost is fairly unresponsive to small increases in outputs. For instance, 2β̂ =0.298 for 

small hospitals implies that if the number of OOSs of a hospital doubled, variable costs would 

increase only about 29.8% on average. This can happen on the declining portion of the standard 

textbook short-run average-cost curve.  

 Economies of Scale. An important application of hospital cost functions is testing for 

economies of scale. For multiple-output firms, the most commonly used concept of economies of 

scale is the ray, or overall, economy of scale, which measures the response of total cost to a 

proportional change in all output categories, holding all other variables constant at their means.6 

For a translog variable-cost function, this translates to 
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where '∗tk  and  '∗sk  are the mean-scaled long-run optimal levels of the tth and sth fixed inputs. 

Since 0lnlnln === ∗∗∗
tni kyw  for all i, n, and t at the point of approximation, the index of ray 

scale economies at that point is reduced to the following, where it is evaluated at the sample 

means: 

                                                           
6 Cowing et al. (1983) note that when the firm’s scale of operation is expanded, outputs along the same ray are not 
always on the firm’s least-cost path. 
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 Economies of scale exist if ε>1. Each hospital should expand its operation when economies 

of scale exist in the short run. When ε<1, diseconomies of scale exists. 

 Do average variable costs decline, increase, or keep pace with outputs if hospitals expand 

the scale of their operation (while maintaining the relative proportions of their outputs)? This 

question can be answered using the index of ray scale economies ε at the long-run optimum level 

of fixed input. For T=1 and N=2, the ray scale is 
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 The value of ε depends on k*′ , the mean-scaled long-run optimal number of hospital beds, 

which unfortunately is unknown. But k*′ can be solved for if ε=1 to derive relative ranges of 

economies or diseconomies of scale. Using the sample mean for small numbers of hospital beds 

(40), we have 
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Similarly, for large hospitals, 
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Very small hospitals (k*′ << 43) may exhibit economies of scale, while very large hospitals (k*′ 

>> 175) may exhibit diseconomies of scale 
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 Economies of Scope. For a multiple-product firm, economies of scope exist if the outputs 

produced jointly are cheaper than the outputs produced separately. Formally, scope economies 

exist if  

 C(y1, y2,…, yN) < c(y1, 0, …, 0) + c(0, y2, …, 0)+ … + c(0, 0, …, yN)  (16) 

 Diseconomies of scope can be defined in a similar way; that is, outputs when produced 

jointly are more expensive than when produced separately.  

 With a translog variable-cost function, the condition for scope economies is simplified to 

 Cnm=βnm+βnβm<0       for n≠m   (17) 

 Hospital output categories that are cheaper to produce jointly should be available in one 

hospital. Hospital outputs that are more expensive to produce jointly should be offered in 

separate and specialized hospitals. 

 Should hospitals offer both inpatient and OOS facilities? The index of scope economies for 

small hospitals is 0.226, and for large hospitals is 0.184. Both are significantly different from 

zero based on the Wald test (xsmall
2=37.4, xlarge

2=28.2). Thus, it is apparently cheaper for both 

small and large public acute hospitals to offer both inpatient services and OOSs jointly. 

 Bed Capacity. Given the widespread concern over escalating medical care costs, one issue 

that has attracted much attention in the hospital cost literature is whether hospitals employ fixed 

inputs according to their long-run cost-minimizing level. More specifically, we want to 

investigate whether hospitals have too much capital equipment, since overinvesting in capital 

equipment is often blamed for cost increases. 

Wagstaff and Barnum (1992) argue that the problem is not whether outputs should be 

expanded to fully utilize the fixed inputs, which is a question of economies of scale, but is 

whether optimal amounts of fixed inputs are employed given the output levels of hospitals.  
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To examine this point, Cowing et al. (1983) propose checking whether ∂cv/∂k is statistically 

different from −wk
* or not. If −∂cv/∂k< kw , then fixed input k is overemployed, since savings in 

variable costs due to the employment of an additional unit of capital are less than the marginal 

cost of capital. Otherwise, fixed input k is underemployed 

Wagstaff and Barnum (1992) suggest using the following total-cost equation: 

  c = wvxv + wkk = cv(wv,v,k) + wkk                                  (18) 

If ŵ k=0 then ∂c/∂kt=∂cv(wk,y,k)/∂kt=0. This implies that the level of the fixed assets 

employed is consistent with their long-run cost-minimizing levels. If ŵ k>0, then 

∂c/∂kt=0>∂cv(wk,y,k)/∂kt, which suggests that hospitals have underemployed fixed inputs; ŵ k<0 

suggests that hospitals have overemployed fixed inputs 

Wagstaff and Barnum’s specification may be subject to serious collinearity problems, since 

the fixed factors enter the specification twice, both as arguments of the variable-cost function cv , 

and as components of the fixed cost wkk.  

In this paper we use a variable-cost function specification to assess the cost structure of the 

NSW public hospitals. We estimate a short-run variable-cost function, since the NSW acute 

public hospitals are regulated. The fixed factors of hospitals, such as beds, have to be 

commissioned by the NSW Department of Health. Although a hospital manager is able to adjust 

staff levels rapidly, it takes a considerably longer time to change bed numbers or to construct a 

new ward. It is unlikely that a hospital is able to choose the optimal fixed factor accordingly. 

There is no evidence suggesting that hospitals are in long-run equilibrium.  

 Whether there is too much capital stock in the hospital system given the levels of outputs of 

hospitals is usually investigated by seeing whether ∂c/∂kt<0 [or equivalently, 
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∂cv(wk,y,k)/∂kt=γ<0], since along the same isoquant, the utilization of variable inputs must 

decrease as the amount of the fixed factor increases. 

 For small hospitals, the coefficient of the number of beds is γ̂ =0.450, but is not significant 

(Table 2). This means that small hospitals are not overcapitalized. In contrast, large hospitals are 

overcapitalized ( γ̂ =0.542, significant at the 5% level; see Table 3). The result for large hospitals 

is similar to those of Cowing et al. (1983) and Alba (1995). However, Wagstaff and Burnum 

(1992) point out that ∂c/∂kt>0 (the partial derivative of total costs with respect to capital stock) 

does not necessarily indicate overcapitalization. They argue that ∂c/∂kt>0 is instead evidence that 

variable costs have not been totally rid of fixed costs. 

 There is also another possible interpretation for ∂c/∂kt>0. When new capital equipment 

becomes available in hospitals, it may well be that doctors change the procedures and favor using 

the new machine. If so, variable costs will be positively affected by increasing the hospitals’ 

stock of capital. In other words, it is possible that when a hospital purchases new equipment, it 

not only increases the capital stock but also changes the hospital’s technology. 

 Technical Inefficiency. Farrell (1957) first introduced the efficiency frontier technique, 

which is an alternative approach to the regression technique. It tends to take account of outliers. 

Following Farrell (1957), technical efficiency is defined as the ability of a hospital to obtain 

maximum output from a given set of inputs. The technical efficiency of the ith firm is defined by 

TEi = exp(ui). Once the parameters in equation (1) are estimated, the mean inefficiency can be 

calculated, since the mean of the stochastic error term v is zero. The mean value of u is then 

added to the fitted level of cost for each firm i. The resulting sum is the predicted value of the 

total cost C. The difference between the predicted C and the observed C is the composite error 

term e=u+v. 
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 Jondrow et al. (1982) show that the expected value of u for each observation, given the 

estimated composite error term and the normal or half-normal distribution of v and u, is 

 
( / )

[ | ] { }
1 ( / )

ei AE u e ei i i A ei A

φ γ σ
γ σ

γ σ
= − +

−Φ
                           (19) 

where σA = 2)1( Sσγγ − , ei = ln yi − xiβ, and φ(⋅) is the standard normal density function. 

 As in Coelli (1996), we estimate the efficiency with FRONTIER Version 4.1. Table 4 

presents the analysis of the effect of model specification on inefficiency scores. The results show 

that the measured inefficiency is largest when cost is treated solely as a function of output levels 

and input prices. In this specification, the mean inefficiency is 11.6% of total costs in small 

hospitals. Adding output complexity indicators slightly decreases the degree of inefficiency, to 

11.3%. The correlation coefficient r=0.65 indicates the estimates from different specifications are 

highly correlated. It suggests that the model with output complexity indicators is highly 

correlated with the basic cost function. The basic model specification is appropriate for 

measuring the inpatient case mix and OOSs with reduced measurement errors.  

 For large hospitals, the mean inefficiency of the total variable cost is 9.6% (Table 4). After 

controlling for hospital complexity, it reduces to 9.3%. The high correlation coefficient r = 0.851 

indicates that the basic model specification is appropriate for estimating the efficiency of 

multiproduct hospitals. 

 Our results are comparable to the ones discussed in Zuckerman et al. (1994), which 

suggests that the average level of inefficiency across all hospitals is in the range of 10–14%. 

They also suggest that the stochastic-frontier approach is appropriate for estimating inefficiency 

over a wide range of scenarios. 
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2.  Sensitivity Analysis 

 Different specifications of the cost functions are estimated by the SUR and full-information 

maximum-likelihood methods. We also have tried different forms of variables, such as log-

normal and normal-log; have experimented with second-order terms, i.e., squared and interaction 

terms; and have changed the measurement units of the input prices. The estimates are robust to 

these different settings. 

 

V. Conclusions 

 The empirical results in this study appear reasonable and consistent with findings in the 

literature. The variable-cost function is consistent with the theoretical requirements of a cost 

function. Key coefficient estimates, such as the cost of the share of inputs ( iα̂ ) and the output 

elasticity of variable costs ( nβ̂ ), have the expected signs with reasonable magnitudes and 

significance levels. 

 The estimates of 1γ , the coefficient for beds, are positive and insignificant for small 

hospitals, but positive and significant for large hospitals. One explanation for this is that small 

and large hospitals adopt new technology at different speeds when they expand their operations.  

We find on average the optimal bed capacity is about 43 beds for small hospitals and 175 

beds for large hospitals. This implies that if the scale of hospital operation were doubled, the 

long-run average cost for small hospitals with fewer than 43 beds would decrease. The same is 

true for large hospitals with fewer than 175 beds.    

Efficiency estimation shows that technical inefficiencies are 11.3% for small hospitals 

and 9.3% for large hospitals after controlling for the complexity indicator. 
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 However, given the large size of the NSW public hospital sector, and the unique 

opportunities it affords us for developing and testing econometric models in an environment 

where nonprice rationing devices dominate, it is important and should be fruitful to carry out 

further work to explore efficiency and equity issues.  

In our future research, we plan to develop a translog variable-cost-function model to 

explore the issue of distributive efficiency and to decompose the inefficiency into “pure” 

technical inefficiency and scale inefficiency. 
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Small 
hospitals

Large 
hospitals

Small 
hospitals

Large 
hospitals

Cost (000’s) Total variable (operation) costs 5115.37 53666.69 349.23 47685.74

Average salary of medical labor services Average salary of medical officer and visiting medical officers 238106.22 343948.42 218.81 149.93
Average salary of non-medical labor services Average salary of non-medical labor input 45437.20 42921.27 6224.37 2521.21

Inpatient Service index The proportion of a hospital’s separations times a weight
corresponding to the average length of stay of separations with
AN-DRG category

4.77 5.69 2.15 1.69

Occasion of Services The number of occasions on which one or more health care 
professionals provides a service to a non-inpatient.

24533.52 259027.00 22084.50 210333.10

Average available beds The number of beds available in the hospital excluding beds in 
CRCs on any one day of the year.

40.82 260.06 19.79 189.35

Same day seps % total seps The proportion of all separations at the same day. 25.01 39.36 10.32 8.53
ALOS of acute episodes The average length of stay for all acute separations excluding

same day patients.
4.74 5.36 0.79 0.94

Cost per Outpatient OOS (Program 2.3) The average cost of an occasion of service provided under the 
Outpatient Services program

101.10 72.63

Cost per emergency OOS (3.1) The average cost of an occasion of service provided under the
Emergency Services program (3.1)

120.43 37.47

Presentations to emergency department Presentations are reported in admitted, non-admitted and did
not wait categories.

26511.81 9729.26

Source: NSW Public Hospitals Comparison Data - 1997/98

Table 1 Definitions and Descriptive Statistics of Variables used in the Analysis

Hospital outputs

Mean

Input prices

Standard deviation

(Input prices are in 1997 financial year Australian dollar)

Variables Definitions
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Variables Parameters Estimates t-stat
District Group1 0.02 0.32
District Group2 0.01 0.24
Community Acute 0.001 0.18
Constant α0 0.17 0.95
ln(Salary of Salaried Medical Officers & Visiting Medical Officers) α1 0.35 1.34
ln(Salary of Non Medical Labour Inputs) α2 0.65 2.46*
ln(Case-mix Inpatient Index)] β1 0.22 0.92
ln(Total Occasions of Service (OOS)) β2 0.3 3.25**
ln(Average Available Beds) γ1 0.45 1.85

ln[(Salary of Medical Officers & Visiting Medical Officers)2] α11 -0.15 -1.37

ln[(Salary of Non Medical Labour Inputs)2] α22 -6.39 -1.18

ln[(In-patient case-mix Index)2] β11 0.28 0.68

ln[(Total Occasions of Service (OOS))2] β22 0.14 1.92

ln[(Average Available Beds)2] γ11 0.25 0.75
ln(Salary of Medical Officers & Visiting Medical 
Officers) * ln(Salary of Non Medical Labour Input)
ln(In-patient case-mix Index) * ln((Total Occasions of Service (OOS)) β12 0.16 1.15
ln(Salary of Medical Officers & Visiting 
Medical Officers) *  ln(In-patient case-mix Index) 
ln(Salary of Medical Officers & Visiting Medical 
Officers) * ln((Total Occasions of Service (OOS )) 
ln(Salary of Non Medical Labour Inputs * ln(In-patient case-mix Index) ρ21 -0.84 -1.17
ln(Salary of Non Medical Labour Inputs) * ln((Total Occasions of ρ22 0.84 1.17
ln(Salary of Medical Officers & Visiting Medical 
Officers) * ln(Average Available Beds) 
ln(Salary of Non Medical Labour Inputs) * ln(Average Available Beds) δ21 0.14 0.34
ln(In-patient case-mix Index) * ln(Average Available Beds)  θ11 -0.83 -1.18
ln(Total Occasions of Service (OOS)) * ln(Average Available Beds) θ21 -0.16 -0.67
ln(Same Day separations % Total Separations) 0.45 2.59*
ln(ALOS of Acute Episode) -0.6 -1.77
ln((Cost per Outpatient (program 2.3)) 0.08 1.03

R2 0.95
Log-likelihood Function 351.43
Number of Observations 52

Note: *Significant at 5% level
           **Significant at 1% level

Table 2 Translog Variable Cost Function for Small Hospitals

1.37

ρ11 0.06 0.48

α12 0.15

ρ12 -0.06 -0.48

δ11 -0.14 -0.346
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Variables Parameters Estimates t-stat
Ungroup acute 0.10 1.57
Major metropolitan 0.10 1.16
Major nonmetropolitan 0.02 1.10
Constant α0 0.26 1.21
ln(salary of salaried medical officers & visiting medical officers) α1 0.19 1.07
ln(salary of nonmedical labor inputs) α2 0.81 4.50**
ln(case-mix inpatient index) β1 0.27 0.99
ln[total occasions of service (OOS)] β2 0.28 2.68**
ln(average available beds) γ1 0.54 2.03*

[ln[(salary of medical officers & visiting medical officers)2] α11 0.06 0.45

ln[(salary of nonmedical labor inputs)2] α22 -2.94 -0.39

ln[(inpatient case-mix index)2] β11 0.66 1.49

ln[total occasions of service (OOS)2] β22 0.06 3.428**

ln[(average available beds)2] γ11 0.25 1.29
ln(salary of medical officers & visiting medical 
officers) * ln(salary of nonmedical labor input)
ln(inpatient case-mix index) * ln[(total occasions of service (OOS)] β12 0.11 0.59
ln(salary of medical officers & visiting medical officers) *  ln(inpatient ρ11 0.01 0.08
ln(salary of medical officers & visiting medical 
officers) * ln[(total occasions of service (OOS)] 
ln(salary of nonmedical labor inputs * ln(inpatient case-mix index) ρ21 0.48 1.66
ln(salary of nonmedical labour inputs) * ln[(total occasions of service ρ22 -0.48 -1.66
ln(salary of medical officers & visiting medical 
officers) * ln(average available beds) 
ln(salary of nonmedical labor inputs) * ln(average available beds) δ21 0.25 2.17*
ln(inpatient case-mix index) * ln(average available beds)  θ11 -0.43 -1.73
ln[total occasions of service (OOS)] * ln(average available beds) θ21 -0.15 -2.02
ln(same-day separations % total separations) 0.25 2.112*
ln(ALOS of acute episode) -0.45 -1.25
ln[(cost per outpatient (Program 2.3)] 0.16 1.73

R 2 0.96
Log-likelihood function 374.43
Number of Observations 61.00

Note: *Significant at 5% level
           **Significant at 1% level

-0.45

Table 3 Translog Variable Cost Function for Large Hospitals

α12 -0.06

ρ12 0.00 -0.08

δ11 -0.25 -2.17*
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Small Hospital Large Hospital Small Hospital Large Hospital
Basic cost function 12.6 9.8
Basic cost function with complexity 11.3 9.3 0.65 0.73

Model Specifications Mean Inefficiency Correlation

Table 4 Impact of Model Specifications on Measurement of Inefficiency

 




