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ABSTRACT 
 

The Power of the Test in Three-Level Designs*

 
Field experiments that involve nested structures may assign treatment conditions either to 
entire groups (such as classrooms or schools), or individuals within groups (such as 
students). Since field experiments involve clustering, key aspects of their design include 
knowledge of the intraclass correlation structure and the sample sizes necessary to achieve 
adequate power to detect the treatment effect. This study provides methods for computing 
power in three-level designs, where for example, students are nested within classrooms and 
classrooms are nested within schools. The power computations take into account clustering 
effects at the classroom and at the school level, sample size effects (e.g., number of 
students, classrooms, and schools), and covariate effects (e.g., pre-treatment measures). 
The methods are generalizable to quasi-experimental studies that examine group differences 
in an outcome, or associations between predictors and outcomes. 
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Statistical Power in Three-Level Designs 

Many populations of interest in psychology, education, and the social sciences exhibit 

multilevel structure.  For example, students are nested within classrooms and classrooms are 

nested within schools, employees are nested within departments, which are nested within firms, 

individuals are nested within neighborhoods, which are nested within cities.  Because individuals 

within aggregate units are often more alike than individuals in different units, this nested 

structure induces an intraclass correlation structure (often called clustering in the sampling 

literature, see, e.g., Kish, 1965) that needs to be taken into account.  In particular, experiments 

that involve populations with nested structures must take this structure into account in both 

experimental design and analysis. 

Field experiments that involve nested population structures, may assign treatment 

conditions either to individuals or to entire groups (such as classrooms, or schools). Because pre-

existing aggregate groups often exhibit statistical clustering, designs that assign intact groups to 

treatment are often called cluster randomized or group randomized designs.  Treatments are 

sometimes assigned to groups because the treatment is naturally administered to intact groups 

(such as a curriculum to a classroom or a management system to a firm).  In other cases, the 

assignment of treatments to groups is a matter of convenience, being much easier to implement 

than assignment to individuals. Analytic strategies for the analysis of designs involving nesting 

have long been available (see, e.g., Kirk, 1995 and references therein).  Such designs involve 

nested factors (or blocks), which are often considered to have random effects.  Cluster 

randomized trials have also been used extensively in public health and other areas of prevention 

science and medicine (see, e.g., Donner and Klar, 2000; and Murray, 1998). The use of cluster 

randomized experiments has increased recently in educational research, mainly because of the 

increased interest in experiments to evaluate educational interventions (see, e.g., Mosteller and 
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Boruch, 2002).  An example of cluster randomized trials in education is Project STAR, a large 

scale randomized experiment, where within each school students were randomly assigned to 

classrooms of different sizes (see Nye, Hedges, and Konstantopoulos, 2000).  

One of the most critical issues in designing experiments is to ensure that the design is 

sensitive enough to detect the intervention effects that are expected if the researchers’ hypotheses 

were correct. In other words, a critical task in planning experimental studies involves making 

decisions about sample sizes to ensure sufficient statistical power of the test for the treatment 

effect. Power is defined as the probability of detecting a treatment effect when it exists. There is 

an extensive literature on the computation of statistical power, (e.g., Cohen, 1988; Kraemer & 

Thiemann, 1987; Lipsey, 1990; Murphy & Myors, 2004). Much of this literature involves the 

computation of power in studies that use simple random samples and hence ignore clustering 

effects. Recently, software for computing statistical power in single-level designs has become 

widely available (Borenstein, Rothstein, & Cohen, 2001).  

However, the computation of statistical power in designs that involve clustering entails 

two significant challenges.  First, since nested factors are usually taken to have random effects, 

power computations usually involve variance components structures (often expressed via 

intraclass correlations) of those random effects.  Second, there is not one sample size, but sample 

sizes at each level of nesting, and these sample sizes at different levels of nesting will affect 

power differently. For example, in education, the power of the test used to detect a treatment 

effect depends not only on the sample size of the students within a classroom or a school, but on 

the sample size of classrooms or schools as well. This design involves nesting at the school or at 

the classroom level, and is called a two-level design. The last decade the development of 

advanced statistical methods that account for clustering has equipped social science researchers 
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with appropriate tools for handling data with nested structures (Goldstein, 2003; Raudenbush & 

Bryk, 2002). In addition, statistical theory for computing power in two-level designs has been 

well documented and statistical software for two-level designs is currently available (e.g., 

Raudenbush, 1997; Raudenbush & Bryk, 2002; Raudenbush & Liu, 2000, 2001; Snijders & 

Bosker, 1993, 1999).  

The work on power analysis for nested designs with random effects has focused thus far 

solely on designs with two levels of clustering, for example students within schools, or repeated 

measurements over time within individuals (see Raudenbush & Liu, 2000, 2001). However, 

designs and data have often more complicated structures that may involve three levels of nesting. 

For example, in education, students are nested within classrooms, and classrooms are nested 

within schools. In medicine, patients are nested within wards, and wards are nested within 

hospitals. These examples are three-level designs where nesting occurs naturally at two levels 

(classrooms and schools) regardless of whether both sources of clustering are taken into account 

in the design and the analysis part of the study. For example, an educational researcher may 

choose to ignore one level of clustering and conduct an experimental study in education 

following a two-level design (students nested within classrooms, or students nested within 

schools), and analyze the data obtained using two-level models. However, a more appropriate 

design and analysis would involve three levels, since clustering effects exist naturally at the 

classroom and at the school level. Ignoring the three-level structure will result in an inaccurate 

estimate of power of the test for the treatment effect in the design stage, and an incorrect estimate 

of the standard error of the treatment effect in the analysis. In three-level designs the 

computation of power is even more complex than in two-level designs, since there are clustering 

effects at the second or middle level (e.g., classrooms) and clustering effects at the third of top 
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level (e.g., schools). The power in these designs is, among other things, a function of three 

different sample sizes: the number of students within a classroom, the number of classrooms 

within a school, and the overall number of schools that participate in the experiment. The power 

is also a function of two different intraclass correlations (at the school and at the classroom level) 

and the effect size (e.g., the magnitude of the treatment effect). Thus far, methods for computing 

power and sample size requirements in experiments that involve three-level designs are not 

available.  

  In addition, the analyses of nested data do not always involve two levels. For example, it 

is not uncommon in education to conduct analyses assuming three-level models (e.g., Bryk & 

Raudenbush, 1988; Nye, Konstantopoulos, & Hedges, 2004). It is crucial that the design and 

analyses of experimental studies are in congruence, since ignoring or including clustering effects 

will impact power differently. Analyses that ignore clustering effects provide incorrect estimates 

of the standard errors of the regression coefficients. Findings from previous work that discuss 

power in two-level designs (e.g., Hedges & Hedberg, 2006; Raudenbush, & Liu, 2000) indicate 

that the proportion of the variance in the outcome between schools or clusters is inversely related 

to the power of the test for the treatment effect. In other words, the larger the clustering effect, 

the lower the power of the test for the treatment effect. Now consider the case where one more 

level is added to the hierarchy (e.g., classrooms within schools). If we assume that the clustering 

effect at the classroom level is different than zero, and the clustering effect at the school level is 

virtually unchanged, then the total clustering effects are larger than in two-level designs and 

hence the power has to be smaller.  

This paper provides methods that facilitate the computation of statistical power of tests 

for treatment effects in three-level designs. We provide examples drawn from the field of 
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education to illustrate the power computations. The remaining of the paper is structured as 

follows. First, we review the effects of clustering on power. Second, we outline the three-level 

designs that will be discussed, and we explain the notation we use throughout the paper. Then, 

we present methods and examples for computing power separately for each design. Finally, we 

summarize the usefulness of the methods and draw conclusions.   

Clustering in Three-Level Designs 

Previous methods for power analysis in two-level designs involved the computation of 

the non-centrality parameter of the non-central F-distribution (Raudenbush & Liu, 2000). The 

power is a function of the non-centrality parameter and higher values of this parameter 

correspond to higher values of statistical power. The non-centrality parameter in turn is a 

function of the clustering effect, which is typically expressed as an intraclass correlation. For 

example, suppose that in a two-level design the total variance of the outcome in a population 

with nested structure (students nested within schools) is 2
Tσ . The total variance is decomposed 

into a between-school variance 2ω  and a within-school variance 2
eσ , so that 2 2

T e= + 2σ σ ω . Then 

2 / T= 2ρ ω σ  is the intraclass correlation and indicates the proportion of the variance in the 

outcome between schools.  

The same logic holds for three-level designs. The power is a function of the non-

centrality parameter, which is a function of the clustering effects. The only difference is that 

clustering in three-level designs occurs in more than one level. Consider a three-level structure 

where students are nested within classrooms, and classrooms are nested within schools. The total 

variance in the outcome is now decomposed into three variances: the between-student-within-

classroom and school variance, 2
eσ , the between-classroom-within-school variance, 2τ , and the 
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between-school variance, 2ω . Then, the total variance in the outcome is defined as 

2 2 2
T e

2σ σ τ ω= + + . Hence, in three-level designs we define two intraclass correlations:  

2

2c
T

τρ
σ

=

2

2s
T

ωρ
σ

=

 

           (1) 

 

at the classroom level and  

 

           (2) 

 

at the school level. These intraclass correlations indicate the effects of clustering at the classroom 

and at the school level respectively. The subscripts c and s indicate the levels of the hierarchy 

(e.g., classroom or school).  

The computation of statistical power in cluster randomized trials requires knowledge of 

the intraclass correlations. One way to obtain information about reasonable values of intraclass 

correlations is to compute these values from cluster randomized trials that have been already 

conducted. Murray and Blitstein (2003) reported a summary of intraclass correlations obtained 

from 17 articles reporting cluster randomized trials in psychology and public health and Murray, 

Varnell, and Blitstein (2004) give references to 14 very recent studies that provide data on 

intraclass correlations for health related outcomes.  Another strategy is to analyze sample surveys 

that have used a cluster sampling design. Gulliford, Ukoumunne, and Chinn (1999) and Verma 

and Lee (1996) presented values of intraclass correlations based on surveys of health outcomes. 
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A recent study provided plausible values of clustering for educational outcomes using recent 

large-scale studies that surveyed national probability samples of elementary and secondary 

students in America (Hedges & Hedberg, 2006). The present study uses intraclass correlation 

values that are reported in Hedges and Hedberg (2006).   

Three-Level Designs 

In this study we use examples from education to illustrate the nested structure of the 

designs. Hence, we use students, classrooms, and schools to define the three levels of the 

hierarchy. We make use of the terminology of education because it makes the differentiation 

between smaller and larger units, and the hierarchical structure more obvious. We also assume 

that the outcome of interest is academic achievement. Nonetheless, the designs and methods 

discussed here can be used for any hierarchical design with three levels of nesting and it is not 

restricted to educational designs or data.  

In two-level designs either students within schools or entire schools are randomly 

assigned to one of two or more treatment conditions. This indicates that random assignment can 

occur either at the individual or at the school level. In three-level designs however, the nested 

structure is more complex, since either students within classrooms, classrooms within schools, or 

entire schools can be randomly assigned to treatment conditions. This study discusses three-level 

designs where randomization can occur at any level: student, classroom, or school. In the first 

design the random assignment is at the school level (the largest unit), that is, schools are assigned 

to a treatment and a control group. In the second design the random assignment is that classroom 

level (the second largest unit), that is, within each school classrooms are randomly assigned to a 

treatment and a control group. In the third design the random assignment is at the student level 

(the smallest unit), that is, within each school and classroom students are random assigned to a 
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treatment and a control group. In each design we illustrate the general case, which includes 

covariates at all levels of the hierarchy, and the restricted case where covariates are not included 

in the model.  

For simplicity, in each design we assume that there is one treatment and one control 

group. We also assume that the designs are balanced. In the first design, entire schools are 

randomly assigned to two groups (treatment and control). We represent the number of schools 

within each group (treatment or control) by m, the number of classrooms within a school by p, 

and the number of students within each classroom by n. Then, the sample size for the treatment 

and the control groups is  and the total sample size is . In 

the second design, classrooms within schools are assigned to treatment and control conditions. In 

this case we represent the total number of schools across groups by m, the number of classrooms 

within each group (treatment or control) within each school by p, and the number of students 

within each classroom by n. The sample size for the treatment and the control groups is again 

 and the total sample size is 

t cN N mp= = n

n n

2t cN N N mpn= + =

t cN N mp= = 2t cN N N mp= + =

2t cN N N mpn

. In the third design, students 

within classrooms and schools are assigned to treatment and control conditions. In this case we 

represent the total number of schools across groups by m, the number of classrooms within each 

school by p, and the number of students within each group (treatment or control) within each 

classroom by n. The sample size for the treatment and the control groups is again 

 and the total sample size is t cN N mp= = n = + = . In addition, in each design, we 

consider the case where q school-level covariates, w classroom-level covariates, and r student-

level covariates are included in the analysis. This indicates that in design one for example q (0 ≤  

q < 2(m – 1)) school-level covariates, w (0 ≤ w < 2mp – q – 2) classroom-level covariates, and r 

(0 ≤ r < 2mpn – q – w - 2) student-level covariates can be included in the analysis. We assume 
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that the covariates at the student and at the classroom level are centered around their classroom 

and school means respectively (group-mean centering). This ensures that predictors explain 

variation in the outcome only at the level at which they are introduced. Since including 

covariates in the model will adjust the intraclass correlations and the treatment effect we use the 

subscript A to indicate adjustment due to covariates. We also use the subscript R to indicate 

residual variation.  

Defining the Effect Size Parameter 

In power analysis it is common to define an effect size parameter (or standardized mean 

difference) that is independent of sample size or the scale of the outcome to examine whether the 

null hypothesis is true or not. The effect size typically used is Cohen’s d (δ for a population 

parameter), and is expressed in standard deviation units, namely δ = (α1 – α2)/σ where α1 and α2 

are the treatment effect parameters from the usual analysis of variance (ANOVA) model (defined 

precisely below) and σ is the population standard deviation. In cluster randomized experiments, 

there are several possible choices for the definition of σ since there are multiple standard 

deviations (e.g., Tσ , ω , τ , and eσ ) which could be used for the standardization. In academic 

achievement data, typically, most of the variation in achievement is typically between students 

within classrooms, and hence the total variation in achievement, 2
Tσ , is closer to the error 

variance in achievement at the student level, 2
eσ . The between classroom variation, 2τ , and the 

between school variation, 2ω , in achievement are typically much smaller than 2
Tσ . For example, 

let’s assume that 70 percent of the variation is between students within classrooms, 15 percent 

between classrooms within schools, and 15 percent between schools (roughly these are estimates 

from project STAR). Then, the student-level error term variance is eσ = 0.84 Tσ , and the 
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variances of the school and classroom random effects are ω =τ =0.39 Tσ . In this study, we 

assume that achievement is the potential outcome and use the total standard deviation in 

achievement to standardize the mean difference in achievement between the two groups. The 

standard deviation σT has the advantage that it is the total standard deviation in the population. 

Hence, we define the effect size parameter as  

 

21

T

α - αδ =
σ

.          (3) 

  

We follow Cohen’s (1988) rules of thump about what constitutes a small and a medium 

effect size. For example, Cohen considered effect sizes of 0.20 (the treatment effect is 1/5 of a 

standard deviation) and 0.50 (the treatment effect is ½ of a standard deviation) as small and 

medium respectively. In this study we compute power for small and medium effect sizes. We 

focus on the power of treatment contrasts, not omnibus (multiple-degree of freedom) treatment 

effects, because in our experience, multilevel designs are chosen to ensure the power of 

particular treatment contrasts. Even when several treatments are being compared, there is 

typically one contrast that is most important and the design is chosen to ensure adequate 

sensitivity for that contrast. 

Design I: Treatment is Assigned at the School Level  

In this design, schools are nested within treatment, and classrooms are nested within 

schools and treatment (see Kirk, 1995, p. 488). In the discussion that follows, we assume that 

both schools and classrooms are random effects. 
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A structural model for a student outcome Y , the lijkl
th student in the kth classroom in the jth 

school in the ith treatment can be described in ANCOVA notation as  

 

( )Ai A(i)j A(ij)k ijk lµ + α β + γ + εT T T
ijkl I ijkl C ijk S ij AY θ θ θ Ψ= + + + +X Z ,   (4) 

 

where µ is the grand mean, αAi is the (fixed) effect of the ith treatment (i = 1,2), T
Iθ  = (θI1, …, θIr) 

is a row vector of r individual-level covariate effects, T
Cθ  = (θC1, …, θCw) is a row vector of w 

classroom-level covariate effects, T
Sθ  = (θS1, …, θSq) is a row vector of q school-level covariate 

effects, Xijkl is a column vector of r classroom mean-centered individual-level covariates (e.g., 

student characteristics) in the kth classroom in the jth school in the ith treatment, Zijk is a column 

vector of w school mean-centered classroom-level covariates (e.g., classroom or teacher 

characteristics) in the jth school in the ith treatment, Ψij is a column vector of q school level 

covariates (e.g., school characteristics) in the ith treatment, and the last three terms are school, 

classroom, and student random effects respectively. Specifically, ( )A i jβ  is the random effect of 

school j (j = 1,…,m) within treatment i, ( )A ij kγ  is the random effect of classroom k (k = 1,…,p) 

within school j within treatment i, and ( )A ijk lε  is the error term of student l (l = 1,…,n) within 

classroom k, within school j, within treatment i. The subscript A indicates adjustment due to 

covariate effects. The treatment effect may be adjusted by the effects of the covariates. In 

principle however, assuming randomization works, the treatment effect is orthogonal to the 

covariates and the error term, and the adjustment should be zero. The classroom and school 

random effects are adjusted by classroom and school-level covariates respectively and the 

student error term is adjusted by student-level covariates. We assume that the adjusted student 
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error term as well as the adjusted classroom and school random effects are normally distributed 

with a mean of zero and residual variances 2 2,Re R ,σ τ  and 2
Rω  respectively.  

00
T

q +Ψ A

In a multi-level framework the above ANCOVA model can be expressed as  

 

0
T

jkl jk rjk rjkl AjklY u e= + +u X , 

 

the level two model for the intercept is 

 

, 0 00 0π ζT
jk j wj wjk A jku +π= + Z 0

j

 

and the level three model for the intercept is 

 

00 000 001 00π δ δ ξj A qjTREATMENT δ= + +  

 

where TREATMENTi is a dummy variable (treatment is 1, otherwise zero), ζA0jk is the classroom 

random effect adjusted by the effects of the classroom predictors Z, 00A kξ  is the school random 

effect adjusted by the effects of the school predictors Ψ, and  is a student error term adjusted 

by the effects of the student predictors X. The student level covariates are treated as fixed, 

namely 

jkle

, .rjk rwj rwj rwqπ π δ= =u

0 0 .wj wq

Similarly the classroom level covariates are treated as fixed, 

namely π δ=  The student residual as well as the adjusted classroom, and school random 

effects are normally distributed with a mean of zero and residual variances 2 2,Re R ,σ τ  and 2
Rω  

respectively. With the appropriate constraints on the ANCOVA model (i.e., setting αi = 0 for the 
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control group), these two models are identical and there is a one to one correspondence between 

the parameters and the random effects in the two models.  That is, 000µ δ= , 001A=α δ , I rwqθ δ= , 

0C wqθ δ= , 00S qθ δ= , A A=β ξ , A = Aγ ζ , and A Ae=ε .  

2 2, ,Re R
2
Rσ τ ω 2

RTσ 2
R R

2
RT = + +σ ω

2

2
R

RT

=
τρ
σ

2

2
R

RT

=As
ωρ
σ

Indexes of Clustering: The Adjusted Intraclass Correlation 

When covariates are included in the model the four variances of the outcome are defined 

as , and , where 2 2
Reσ τ . The subscript R indicates residual variances 

(smaller in magnitude because of the adjustment of the covariates). There are two parameters 

that summarize the associations between these four variances and indicate the clustering effects 

at the classroom and at the school level: the adjusted intraclass correlation at the classroom level  

 

Ac           (5) 

 

and the adjusted intraclass correlation at the school level  

 

,          (6) 

 

where the subscript A indicates that the intraclass correlations are adjusted for the effects of the 

covariates and are computed using the residual variances (subscript R). The unadjusted intraclass 

correlations indicate the effects of clustering, while the adjusted intraclass correlations indicate 

the remaining effects of clustering, net of the effects of covariates.  
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Estimation 

In balanced designs (that is equal sample sizes for the experimental and the control 

group) the estimate of the treatment effect is the difference in the means between the treatment 

and the control group namely 1A AY− 2Y ... ... . The standard error of the estimate of the treatment 

effect is defined as  

 

( ) ( ) ( )2 2 2
1 2

2 2 1 1 1A A R R Re RT AsSE Y Y pn n pn n
mpn mpn

− = + + = + − + −... ... Acω τ σ σ ρ ρ , 

 

where m is the number of schools within each condition, p is the number of classrooms within 

each school, n  is the number of students within each classroom, and all other terms have been 

defined previously. 

Hypothesis Testing 

 The objective is to examine the statistical significance of the treatment effect net of the 

possible effects of covariates, which means to test the hypothesis 

H0: 1 2A = Aα α  or 1 2 0A A− =α α  

or equivalently 

H0: 001 0A =δ . 

Suppose that the researcher wishes to test the hypothesis and carries out the usual t-test.  

This involves computing the test statistic 

( )1 22 A A

A
A

mpn Y Y
t

S

−
=

... ...
,      
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where SA is defined by  

 

( ) ( )2 2
1 1 2 2

1 1
2 2

m m
A i A A i A

i i
A

Y Y Y Y
S

m q
= =

 
− + − 

 =
− −

∑ ∑ii iii ii iii pn
, 

 

and AijiiY  is the adjusted mean of the jth school in the ith treatment group, and AiiiiY  is the 

adjusted mean of the ith treatment group. When the null hypothesis is true, the test statistic t has a 

Student’s t-distribution with 2m-q-2 degrees of freedom.   

Computing Power  

 When the null hypothesis is false, the test statistic tA has the non-central t-distribution 

with 2m-q-2 degrees of freedom and non-centrality parameter Aλ . The non-centrality parameter 

is defined as the expected value of the estimate of the treatment effect divided by the square root 

of the variance of the estimate of the treatment effect namely  

 

( ) ( )
1 2 1

2 1 1 1
A A

A
RT As Ac

mpnλ .
pn n

−
=

+ − + −
α α
σ ρ ρ

   

 

Notice that the new adjusted effect size parameter may not be known when computing the 

power. Typically, the effect size estimate that is expressed in units of the unadjusted standard 

deviation, that is 1 2 T/−α α σ , is more likely to be known than 1 2A A / RT−α α σ

1 2 1 2A A

. In principle, in 

randomized trials including covariates should not adjust the treatment effect estimate since the 

treatment is orthogonal to all covariates. This means that − = −α α α α . However that the 
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standard deviation (the denominator) changes when covariates are included, and is now a 

residual standard deviation. This means that the effect size is not the same as the unadjusted 

effect size in equation 3. The covariates will adjust the variances at each level and ultimately the 

total variance. Hence, we express the non-centrality parameter as a function of the unadjusted 

effect size and the unadjusted intraclass correlations, namely  

 

( ) ( )

( ) ( )

1 2 1
2 1 1 1

1
2

T
A

T RT As Ac

e s e s c e c

mpnλ
pn n

mpn .
pn n

−
= =

+ − + −

=
+ − + −

α α σ
σ σ ρ ρ

δ
η η η ρ η η ρ

    (7)  

 

where  

 

2 2 2 2 2 2
s R c R e Re/ , / , / eη ω ω η τ τ η σ σ= = = .      (8) 

 

The η s indicate the proportion of the variances at each level of the hierarchy that is still 

unexplained (percentage of residual variation). For example when eη = 0.25, this indicates that 

the variance at the student level decreased by 75 percent due to the inclusion of covariates such 

as pre-treatment measures. In the case where no covariates are included the non-centrality 

parameter reduces to 

 

( ) ( )
1

2 1 1 1s c

mpnλ ,
pn n

=
+ − + −

δ
ρ ρ

      (9) 
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since 1e c s= = =η η η . 

When the clustering at the classroom level, cρ , is zero, then equations 7 and 9 reduce to 

the non-centrality parameter used to compute power in two-level designs. For example, when the 

clustering at the classroom level is zero, 0cρ = , the two-level design involves students nested 

within schools where the treatment is assigned at the school level.  

 The equations 7 and 9 indicate that the non-centrality parameter of the t-test is a function 

of the number of students, classrooms, schools, and the intraclass correlations at the classroom 

and at the school level. Power is inversely related to the clustering effects, that is the larger the  

intraclass correlations the smaller the non-centrality parameter, and the power. The factor 

( ) ( )1 1 1s cpn nρ ρ+ − + −  in equation 9 can be thought of as a design effect since it reflects the 

factor by which the variance of the mean difference from a clustered sample exceeds the 

variance computed from a simple random sample of the same total sample size. Notice that when 

the intraclass correlations are zero (no clustering) equation 9 reduces to 2λ mpn / δ=  and this 

holds for all three designs considered in this study. 

  The power of the one-tailed t test at level α is p1 = 1 – Η[c(α, 2m-q-2), (2m-q-2), λA],   

where c(α, ν) is the level α one-tailed critical value of the t-distribution with ν degrees of 

freedom [e.g., c(0.05,20) = 1.72], and Η(x, ν, λ) is the cumulative distribution function of the 

non-central t-distribution with ν degrees of freedom and non-centrality parameter λA.   

The power of the two-tailed test at level α is p2 = 1 – Η [c(α/2, 2m-q-2), (2m-q-2), λA] + Η 

[-c(α/2, 2m-q-2), (2m-q-2), λA]. In the case of no covariates (that is q, w, r = 0) the degrees of 

freedom for the t-test are slightly changed, and so is the non-centrality parameter λA = λ. 

Alternatively and equivalently, the test for the treatment effect and statistical power can be 

computed using the F-statistic. In this case the F-statistic has a non-central F-distribution with 1 
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degree of freedom in the numerator and 2m – q – 2 degrees of freedom in the denominator and 

non-centrality parameter 2
Aλ  or 2λ .  

  How Does Power Depend on Student, Classroom, and School Units? 

In three-level designs, the number of units at different levels of the hierarchy will have 

different effects on power. In two-level designs we know that the number of schools have a 

larger impact on power than the number of students within schools (see Raudenbush & Liu, 

2000). Similarly, in three-level designs schools, classrooms, and students will impact power 

differently. One way to examine this impact is to compute the non-centrality parameter when the 

number of units at each level of the hierarchy gets infinitely large. The power is a direct function 

of the non-centrality parameter, and hence, other things being equal, when the non-centrality 

parameter converges to a real number, the power is smaller than one, and when the non-

centrality parameter gets infinitely large the power approaches one. We illustrate the effect of the 

number of students, classrooms, and schools on statistical power in figures 1 to 3.  

 Figure 1 illustrates that, as the number of students in each classroom becomes larger, 

power increases, but then levels off at a value that is smaller than one.  This suggests that for a 

fixed number of schools and classrooms, increasing student sample size beyond a certain point 

has only a small effect on statistical power. In fact, as the number of students in each class 

becomes indefinitely large, the value of the non-centrality parameter tends to 

 

( ) ( )
1

2stmax
s s c c

mp
p

=
+

λ δ
η ρ η ρ

 

 

and in the case of no covariates to  
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( ) ( )
1

2stmax
s c

mp
p

=
+

λ δ
ρ ρ

. 

 

Therefore the maximum power for a design with m schools per condition and p classrooms per 

school is the power associated with ( )stmaxλ , which is less than one. Figure 1 illustrates power 

computations for one tailed t-tests at the 0.05 level for small and medium effect sizes (0.2 and 

0.5 SD) with and without covariates as a function of the number of students per classroom 

holding constant the number of classrooms per school and the number of schools per condition 

(p = 2, m = 8). 

 Figure 2 illustrates that, as the number of classrooms in each school becomes larger, 

power increases, but then levels off at a value that is smaller than one.  This suggests that for a 

fixed number of schools and students in each classroom, increasing classroom sample size 

beyond a certain point has a small effect on statistical power.  In fact, as the number of 

classrooms in each school becomes indefinitely large, the value of the non-centrality parameter 

tends to 

 

( )
1

2cmax
s s

mn
n

=λ δ
η ρ

 

 

and in the case of no covariates to 

 

( )
1

2cmax
s

mn
n

=λ δ
ρ

. 
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Therefore the maximum power for a design with m schools per condition and n students in each 

classroom is the power associated with ( )cmaxλ , which is less than one. Figure 2 illustrates power 

computations for one tailed t-tests at the 0.05 level for small and medium effect sizes (0.2 and 

0.5 SD) with and without covariates as a function of the number of classrooms per school 

holding constant the number of students per classroom and the number of schools per condition 

(n = 10, m = 8).  

Figure 3 illustrates that, as the number of schools becomes larger, power increases 

dramatically, and approaches one.  This suggests that for a fixed number of classrooms in each 

school and students in each classroom, increasing school sample size has a substantial effect on 

statistical power.  In fact, as the number of schools becomes indefinitely large, the value of the 

non-centrality tends to infinity ( )smax →∞λ . Therefore the maximum power for a design with p 

classrooms per school and n students in each classroom is the power associated with ( )smaxλ , 

which tends to one. This indicates that the number of schools impacts power much more than the 

number of classrooms and the number of students. Notice that the number of schools influences 

power via the degrees of freedom of the test statistic as well, and this holds for all three designs. 

Corresponding results hold for two-level designs (e.g., students are nested within schools, and 

schools are assigned to treatments). The power again depends much more on the number of 

schools than the number of students in each school. Raudenbush and Liu (2000) have 

demonstrated empirically that for a fixed number of schools, the power did not tend to one when 

the number of students becomes large. In contrast, for a fixed number of students in each school, 

the power tends to one when the number of schools becomes large. Figure 3 illustrates power 

computations for one tailed t-tests at the 0.05 level for small and medium effect sizes (0.2 and 
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0.5 SD) with and without covariates as a function of the number of schools holding constant the 

number of students per classroom and the number of classrooms per school (n = 10, p = 2).   

To select plausible values of clustering at the school level, we follow the findings of a 

recent study that computed a large amount of intraclass correlations in two-level designs (where 

students are nested within schools) using recent large-scale studies that surveyed national 

probability samples of elementary and secondary students in America (Hedges & Hedberg, 

2006). The results indicated that most of the school-level intraclass correlations ranged between 

0.1 and 0.2. Evidence from two-level analysis (where students are nested within schools) of the 

National Assessment of Educational Progress (NAEP) trend data, and Project STAR data also 

points to school-level intraclass correlations between 0.1 and 0.2. Hence, we compute power 

using two values for the intraclass correlation at the school level: 0.1 and 0.2. In addition, 

evidence from NAEP main assessment and Project STAR using three-level models (where 

students are nested within classrooms and classrooms are nested within schools) indicate that the 

clustering at the classroom level is nearly 2/3 as large as the clustering at the school level. Hence, 

we compute power using two values for the intraclass correlation at the classroom level: 0.067 

and 0.134.  

Including covariates also influences power. Specifically, the larger the proportion of the 

variation explained at the student, classroom, and school level, the larger the value of the non-

centrality parameter and in turn the higher the power. Again, following Hedges and Hedberg 

(2006) we assume that five covariates are included at each level of the hierarchy (e.g, q = w = r 

= 5), and that the covariates explain 50 percent of the variation in achievement at each level. 

Hence we compute power for 1e c s= = =η η η , and for 0 5e c s .= = =η η η . The power 

computations illustrated are for one-tailed tests for all three designs discussed. It is plausible to 
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hypothesize that the treatment effect is positive and that the mean outcome of the treatment 

group will be larger than the mean outcome of the control group (one-directional research 

hypothesis). The power computations of two-tailed tests yield smaller values of power.   

The following patterns are consistent in figures 1 to 3. First, the power increases as the 

effect size increases, other things being equal. For example, consider a design with a total sample 

size of 640, where there are 20 students per classroom, two classrooms per school, and eight 

schools per treatment condition. When no covariates are included, the clustering effects of 

schools and classrooms are respectively sρ  = 0.1 and cρ = 0.067, and the effect size is δ  = 0.2 

SD, the power of a one-tailed test is 0.16, and nearly four times larger, 0.66, when the effect size 

is δ  = 0.5 SD. Second, the power decreases as the intraclass correlations increase, other things 

being equal. In the previous example, when the effect size is δ  = 0.5 SD, the intraclass 

correlations at the school and classroom level are respectively sρ  = 0.2 and cρ = 0.134, and all 

else is equal, the power of a one-tailed test is 0.42 (an absolute decrease of 24 percent from 

0.66). Third, the number of classrooms has a larger impact on power than the number of 

students, other things being equal. For example, when the total number of schools is 16, there are 

eight classrooms per school and five students per classroom, no covariates are included, the 

intraclass correlations at the school and at the classroom level are respectively sρ  = 0.2 and cρ = 

0.134, and the effect size is δ  = 0.5 SD, the power of a one-tailed test is 0.49. This indicates a 

relative increase in power of 17 percent (from 0.42 to 0.49).  

Fourth, the number of schools influences power much more than the number of 

classrooms and the number of students. For example, when the total number of schools is 32, 

there are two classrooms per school, 10 students per classroom, no covariates are included, the 

intraclass correlations at the school and at the classroom level are respectively sρ  = 0.2 and cρ = 
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0.134, and the effect size is δ  = 0.5 SD, the power of a one-tailed test is 0.70 (a 67 percent 

relative increase from 0.42 to 0.70). When the total number of schools is 32, there is one 

classroom per school, 20 students per classroom, no covariates are included, the intraclass 

correlations at the school and at the classroom level are respectively sρ  = 0.2 and cρ = 0.134, 

and the effect size is δ  = 0.5 SD, the power of a one-tailed test is 0.62 (nearly a 50 percent 

relative increase from 0.42 to 0.62). When the total number of schools is 22, there are two 

classrooms per school, 20 students per classroom, and the clustering effects for classrooms and 

schools are respectively sρ  = 0.1 and cρ = 0.067, the power of a one-tailed test is just above 

0.80, the threshold established by Cohen (1992). Fifth, as one would expect, the power is higher 

when covariates are included in the model. For example, when the total number of schools is 16, 

there are two classrooms per school, 20 students per classroom, five covariates are included at 

each level, 50 percent of the variance is explained by the covariates at each level, the intraclass 

correlations at the school and at the classroom level are respectively sρ  = 0.1 and cρ = 0.067, 

and the effect size is δ  = 0.5 SD, the power of a one-tailed test is 0.89. This indicates a 35 

percent relative increase in power from 0.66 (no covariates) to 0.89. Overall, the larger the 

proportion of variance explained at each level, the higher the power, other things being equal. 

Also, the smaller the number of covariates at the school level the larger the power, other things 

being equal.  

------------------------------------------ 

Insert Figures 1 to 3 About Here 

------------------------------------------ 
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Design II: Treatment is Assigned at the Classroom Level 

In this design, schools and treatments are crossed, and classrooms are nested within 

treatments and schools (see Kirk, 1995, p. 491). Within each school, classrooms are randomly 

assigned to a treatment and a control group. Since classrooms within schools are assigned to 

treatment and control groups, p in this design is the number of classrooms in each condition in 

each school. In the discussion that follows, we assume that schools, classrooms, and the 

treatment by school interaction are random effects. 

The structural model in ANCOVA notation is  

 

( )Ai Aj Aij A(ij)k ijk lµ + α β + αβ + γ + εT T T
ijkl I ijkl C ijk S j AY θ θ θ= + + + +X Z Ψ ,   (10)  

  

where the last four terms represent school, treatment by school, classroom, and student random 

effects respectively and all other terms are as defined previously. The new term, αβ , is the 

treatment by school random effect and follows a normal distribution with a mean of zero and a 

variance 

Aij

2
Rtω  (the subscript t indicates treatment).  

In a multi-level framework the model becomes  

 

0
T

jkl jk rjk rjkl AjklY u e= + +u X , 

 

the level two model for the intercept is 

 

0 00 01 0π π ζT
jk j A j jk wj wjk A jku Treatment +π= + + Z 0 , 
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and the level three model for the intercept and the treatment effect is 

 

00 000 00 00

01 010 01 01

π δ ξ

π δ ξ .

T
j q qj A

T
A j A q qj A j

δ

δ

= + +

= + +

Ψ

Ψ
j  

 

where 01A jξ  is the treatment by school random effect, and all other parameters are as defined in 

the first design. All covariates are treated as fixed as in the first design. 

Estimation 

 As in the first design, the estimate of the treatment effect is the difference in the means 

between the treatment and the control group, 1A AY− 2Y ... ... .  and the standard error of the estimate 

of the treatment effect in the second design is defined as  

 

( ) ( ) ( )2 2 2
1 2

2 2 1 1 1A A Rt R Re RT Rs As AcSE Y Y pn n pn n
mpn mpn

− = + + = + − + −... ... ω τ σ σ ϑ ρ ρ ,  

 

where 2
Rtω  is the treatment by school random effect residual variance, and 2 /Rs Rt R

2ϑ ω ω=  is the 

proportion of the treatment by school random effect residual variance to the total between-school 

residual variance and 0 1Rsϑ≤ ≤ , m is the total number of schools, p is the number of classrooms 

within each condition in each school, n  is the number of students within each classroom, and all 

other terms have been defined previously. 

Hypothesis Testing 

As previously we test the hypothesis 
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H0: 1 2A = Aα α  or 1 2 0A A− =α α  

or equivalently 

H0: 010 0Aδ = . 

In this design, an exact test does not exist. However, two modified tests for the treatment 

effect can be computed (see Kirk, 1995). First, when the null hypothesis is true and the variance 

of the treatment by school random effect ( j ) is zero, the test statistic t that examines the 

significance of the treatment effect has a Student’s t-distribution with 2m(p-1)-w degrees of 

freedom. Second, when the null hypothesis is true and the variance of the classroom random 

effect ( ) is zero, the test statistic t that examines the significance of the treatment effect has 

a Student’s t-distribution with m-q-1 degrees of freedom. However, the restrictions in both tests 

are quite strong. That is, even if the treatment effect is consistent across schools and the variance 

of the treatment by school interaction is not significant, it does not mean that it is exactly zero. 

Similarly, it is highly unlikely that the variance of the classroom random effect is exactly zero. 

Hence an approximate t-test is employed instead within the maximum likelihood estimation 

framework. This t-test involves dividing the estimate of the treatment effect by its standard error. 

When the null hypothesis is true, this ratio has approximately a t-distribution with m-q-1 degrees 

of freedom.  

( )j iαβA

A(ij)kγ

Computing Power  

When the null hypothesis is false the test statistic that examines the significance of the 

treatment effect has approximately a non-central t-distribution with m-q-1 degrees of freedom 

and a non-centrality parameter Aλ . As in design one, we express the non-centrality parameter as 

a function of the unadjusted intraclass correlations and the unadjusted effect size, namely,  
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( ) ( )
1

2A
e Rs s e s c e

mpnλ
pn n

δ
cη ϑ η η ρ η η ρ

=
+ − + −

.    (11)  

 

The adjusted intraclass correlation at the school level is defined as 2 2 2 2/ /As Rs RT Rt Rs RTρ ω σ ω ϑ σ= = , 

the adjusted intraclass correlation at the classroom level is as defined in equation 5, and the ηs 

are as defined previously in equation 8. In the case where no covariates are included the non-

centrality parameter becomes 

 

( ) ( )
1

2 1 1 1s s c

mpnλ
pn n

δ
ϑ ρ ρ

=
+ − + −

,       (12) 

 

where 2 / 2
s t sϑ ω ω=  is the proportion of the treatment by school random effect variance to the 

total between-school variance. The power in design two should typically be larger than the 

power in design one for two reasons. First, s Rs,ϑ ϑ  are typically less than one, that is, the 

between-school variance of the treatment effect is typically smaller than the total between-school 

variance. Second, the term p*n in design two is always a smaller number than in design one, 

since the number of classrooms within schools in design one is larger than the number of 

classrooms per condition in design two and the number of students per classroom remains the 

same.  

The power of the one-tailed t test at a significance level α is p1 = 1 – Η[c(α, m-q-1), (m-q-

1), λA], where c(α, ν) is the level α one-tailed critical value of the t-distribution with ν degrees of 

freedom [e.g., c(0.05,20) = 1.72], and Η (x, ν, λ) is the cumulative distribution function of the 

non-central t-distribution with ν degrees of freedom and non-centrality parameter λA.  The power 
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of the two-tailed t test at level α is p2 = 1 – Η[c(α/2, m-1-q), (m-q-1), λA] + Η[-c(m-1-q), (m-q-1), 

λA]. When no covariates are included at any level (that is q, w, r = 0) the degrees of freedom for 

the t-test are slightly changed, and λA = λ. Alternatively and equivalently, the test for the 

treatment effect and statistical power can be computed using the F-statistic. In this case the F-

statistic has a non-central F-distribution with 1 degree of freedom in the numerator and m – q – 1 

degrees of freedom in the denominator and non-centrality parameter 2
Aλ  or 2λ .  

How Does Power Depend on Student, Classroom, and School Units? 

As in design one, we illustrate the effect of the number of students, classrooms, and 

schools on statistical power in figures 4 to 6. Figure 4 illustrates that, as the number of students 

in each classroom becomes larger, power increases, but then as in design one it levels off at a 

value that is less than one. Nonetheless the trajectory is steeper than that in design one. This 

suggests that for a fixed number of schools and classrooms, increasing student sample size 

beyond a certain point has a small effect on statistical power.  In fact, as the number of students 

in each class becomes indefinitely large, the value of the non-centrality parameter tends to 

 

( ) ( )
1

2stmax
Rs s s c c

mp
p

=
+

λ δ
ϑ η ρ η ρ

 

 

and in the case of no covariates to 

 

( ) ( )
1

2stmax
Rs s c

mp
p

=
+

λ δ
ϑ ρ ρ

. 

 31



Statistical Power in Three-Level Designs 

Therefore the maximum power for a design with m schools and p classrooms per condition per 

school, is the power associated with ( )stmaxλ , which is smaller than one. Figure 4 illustrates power 

computations for one tailed t-tests at the 0.05 level when the effect size is 0.2 or 0.5 SD as a 

function of the number of students per classroom holding constant the number of classrooms per 

condition per school and the number of schools (p = 1, m = 16). 

 Figure 5 illustrates that, as the number of classrooms in each school becomes larger, 

power increases, but then levels off at a value that is less than one.  This suggests that for a fixed 

number of schools and students in each classroom, increasing classroom sample size beyond a 

certain point has a small effect on statistical power.  Nonetheless the trajectory is steeper than 

that in design one. In fact, as the number of classrooms in each school becomes indefinitely 

large, the value of the non-centrality parameter tends to 

 

( )
1

2cmax
Rs s s

mn
n

=λ δ
ϑ η ρ

 

 

and in the case of no covariates to 

 

( )
1

2cmax
Rs s

mn
n

=λ δ
ϑ ρ

. 

 

Therefore the maximum power for a design with m schools and n students in each classroom is 

the power associated with ( )cmaxλ , which is less than one. Figure 5 illustrates power computations 

for one tailed t-tests at the 0.05 level when the effect size is 0.2 or 0.5 SD as a function of the 
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number of classrooms per condition per school holding constant the number of students per 

classroom and the number of schools (n = 10, m = 16).  

Figure 6 illustrates that, as the number of schools becomes larger, power increases 

dramatically, and approaches one. This suggests that for a fixed number of classrooms per 

condition per school and students in each classroom, increasing school sample size has a 

substantial effect on statistical power.  In fact, as the number of schools becomes indefinitely 

large, the value of the non-centrality tends to infinity ( )smax →∞λ . Therefore the maximum 

power for a design with p classrooms per condition per school and n students in each classroom 

is the power associated with ( )smaxλ , which tends to one. This indicates that as in design one the 

number of schools impacts power more than the number of classrooms and the number of 

students. Nonetheless in design two the impact of students and classrooms is more evident than 

in design one. Figure 6 illustrates power computations for one tailed t-tests at the 0.05 level when 

the effect size is 0.2 or 0.5 SD as a function of the number of schools holding constant the 

number of students and classrooms per condition (n = 10, p = 1).  

The patterns observed in figures 4 to 6 are generally similar to those in figures 1 to 3. 

Overall, other things being equal, the power in the second design is higher than the power in the 

first design since the between-school variance of the treatment effect is typically smaller than the 

overall between-school variance, that is, sϑ  or Rsϑ  is typically smaller than one. Evidence from 

project STAR indicates that the between-school variance of the treatment effect is nearly 1/7 of 

the overall between-school variance (and this is the estimate used in our computations). It 

appears that in the second design the number of classrooms impacts power much more than the 

number of students (compared to the first design). For example, assume a design with a total 

sample size of 600, where there are overall 10 schools (m = 10), one classroom within each 
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condition in each school (p = 1) and 30 students per classroom (n = 30). When there are no 

covariates, the intraclass correlations at the school and classroom level are respectively sρ  = 0.2, 

and cρ = 0.134, and the effect size is δ  = 0.5 SD, the power of a one-tailed test is 0.64. 

However, when the number of classrooms per condition increases to three, the number of student 

per classroom reduces to 10 (that is the total sample size remains 600) and all other values are 

the same the power of a one-tailed test is 0.90 (a 40% relative increase from 0.65 to 0.90). Also, 

as in the first design the number of schools has the largest impact on power.  

------------------------------------------ 

Insert Figures 4 to 6 About Here 

------------------------------------------ 

Design III: Treatment is Assigned at the Student Level 

In this design classrooms are nested within schools, and the treatment is crossed with 

classrooms and schools (see Kirk, 1995, p. 489). Specifically, students are randomly assigned to 

treatment and control conditions within classrooms and schools. In this case, n is the number of 

students within each condition within each classroom. In the discussion that follows, we assume 

that schools, classrooms, the treatment by school and the treatment by classroom interactions are 

random effects.  

The structural model in ANCOVA notation is  

 

( ) ( )Ai Aj Aij A(j)k Ai j k ijk lµ + α β + αβ + γ + αγ + εT T T
ijkl I ijkl C ijk S j AY θ θ θ= + + + +X Z Ψ ,  (13) 

 

where the last five terms represent school, treatment by school, classroom, treatment by 

classroom, and student random effects respectively and all other terms are defined previously. 
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The new term ( )Ai j kαγ  is the treatment by classroom random effect which follows a normal 

distribution with a mean of zero and variance 2
Rtτ  (the subscript t indicates treatment). 

In a multi-level framework the model becomes  

 

0 1
T

jkl jk A jk jkl rjk rjkl AjklY u u TREATMENT e= + + +u X , 

 

the level two model for the intercept and the treatment effect is 

 

0 00 0 0

1 10 1

π ζ

π ζ

T
jk j wj wjk A jk

T
A jk A j wj wjk A jk

u +

u +

π

π

= +

= +

Z

Z 1

j

, 

 

and the level three model for the intercept and the treatment effect is 

 

00 000 00 00

10 010 01 01

π δ ξ

π δ ξ .

T
j q qj A

T
A j A q qj A j

δ

δ

= + +

= + +

Ψ

Ψ
 

 

where  is the treatment by classroom random effect, and all other terms have been defined 

in designs one and two. As in designs one and two the covariates are treated as fixed.  

1ζ A jk

Estimation 

As in the first two designs the estimate of the treatment effect is the difference in the means 

between the treatment and the control group, 1A AY− 2Y ... ... . The standard error of the estimate of 

the treatment effect in the third design is defined as  
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( ) ( ) ( )2 2 2
1 2

2 2 1 1 1A A Rt Rt Re RT Rs As RcSE Y Y pn n pn n
mpn mpn

− = + + = + − + −... ... Acω τ σ σ θ ρ θ ρ ,  

 

where 2
Rtτ  is the treatment by classroom random effect residual variance, 2 /Rc Rt R

2ϑ τ τ=  is the 

proportion of the treatment by classroom random effect residual variance to the total between-

classroom residual variance and 0 1Rcϑ≤ ≤ , m is the total number of schools, p is the number of 

classrooms within each school, n is the number of students within each condition in each 

classroom, and all other terms have been defined previously. 

Hypothesis Testing 

The goal is to examine the statistical significance of the treatment effect net of the 

possible effects of covariates, that is to test the hypothesis 

H0: 1 2A = Aα α  or 1 2 0A A− =α α  

or equivalently 

H0: 010 0Aδ = . 

The t-test involves computing the test statistic 

 

( )1 22 A A

A
A

mpn Y Y
t

S

−
=

iii iii
,      

 

where SA is defined by  
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( ) ( )2 2
1 1 2 2

1 1 1 1 1 1
1

p pm n m n
Aij k Aij Aij k Aij

i j k i j k
A

Y Y Y Y
S

m q
= = = = = =

− + −

=
− −

∑ ∑ ∑ ∑ ∑ ∑i i
, 

 

and AjkilY  is the adjusted y value of the lth student in the ith treatment in the kth classroom in the 

jth school, and AjkiiY  is the adjusted mean of the ith treatment in the kth classroom in the jth 

school. If the null hypothesis is true, the test statistic t has Student’s t-distribution with m–q-1 

degrees of freedom.  

Computing Power  

When the null hypothesis is false, the test statistic t that examines the significance of the 

treatment effect has a non-central t-distribution with m-q-1 degrees of freedom and non-

centrality parameter Aλ . As in designs one and two, the non-centrality parameter can be 

expressed as a function of the unadjusted intraclass correlations and the unadjusted effect size, 

namely,  

 

( ) ( )
1

2A
e Rs s e s Rc c e

mpn

c

λ .
pn n

=
+ − + −

δ
η ϑ η η ρ ϑ η η ρ

    (14) 

 

The adjusted intraclass correlation at the classroom level is 2 2 2 2/ /Ac R RT Rt Rc RTρ τ σ τ ϑ σ= = , the 

adjusted intraclass correlation at the school level is as defined in design two, and the ηs are as 

defined previously in equation 8. In the case where no covariates are included the non-centrality 

parameter reduces to 
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( ) ( )
1

2 1 1 1s s c

mpnλ
pn n

δ
cϑ ρ ϑ ρ

=
+ − + −

,     (15) 

 

where 2 /c t
2ϑ τ τ=  is the proportion of the treatment by classroom random effect variance to the 

total between-classroom variance, and all other terms are defined previously. Notice that the 

power in design three should always be larger than the power in designs one and two, so long as 

s c Rs ,, ,ϑ ϑ ϑ  and Rcϑ  are smaller than one. When the clustering at the classroom level, cρ , is 

zero,  equations 14 and 15 reduce to the non-centrality parameter used to compute power in two-

level designs where students are nested within schools and the treatment is assigned at the 

student level.  

 The power of the one-tailed t test at level α is p1 = 1 – Η[c(α, m-q-1), (m-q-1), λA], where 

c(α, ν) is the level α one-tailed critical value of the t-distribution with ν degrees of freedom [e.g., 

c(0.05,20) = 1.72], and Η(x, ν, λ) is the cumulative distribution function of the non-central t-

distribution with ν degrees of freedom and non-centrality parameter λA.  The power of the two-

tailed test at level α is p2 = 1 – Η [c(α/2, m-q-1), (m-q-1), λA] + Η [-c(α/2, m-q-1), (m-q-1), λA]. 

When no covariates are included at any level (that is q, w, r = 0) the degrees of freedom for the t-

test are slightly changed, and λA = λ. Alternatively and equivalently, the test for the treatment 

effect and statistical power can be computed using the F-statistic. In this case the F-statistic has a 

non-central F-distribution with 1 degree of freedom in the numerator and m – q – 1 degrees of 

freedom in the denominator and non-centrality parameter 2
Aλ  or 2λ .  

How Does Power Depend on Student, Classroom, and School Units? 

As in designs one and two, as the number of students in each classroom becomes larger, 

power increases, but then levels off at a value that is less than one.  Nonetheless the trajectory is 
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steeper than those in designs one and two. In fact, as the number of students in each class 

becomes indefinitely large, the value of the non-centrality parameter tends to 

 

( ) ( )
1

2stmax
Rs s s Rc c c

mp
p

=
+

λ δ
ϑ η ρ ϑ η ρ

  

 

and in the case of no covariates to 

 

( ) ( )
1

2stmax
Rs s Rc c

mp
p

=
+

λ δ
ϑ ρ ϑ ρ

. 

 

Therefore the maximum power for a design with m schools and p classrooms per school is the 

power associated with ( )stmaxλ , which is less than one.  

Similarly, as the number of classrooms in each school becomes larger, power increases, 

but then levels off at a value that is less than one. Nonetheless the trajectory is steeper than those 

in designs one and two. In fact, as the number of classrooms in each school becomes indefinitely 

large, the value of the non-centrality parameter tends to 

 

( )
1

2cmax
Rs s s

mn
n

=λ δ
ϑ η ρ

 

 

and in the case of no covariates to  
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( )
1

2cmax
Rs s

mn
n

=λ δ
ϑ ρ

. 

Therefore the maximum power for a design with m schools and n students in each condition in 

each classroom is the power associated with ( )cmaxλ , which is less than one.  Notice that ( )cmaxλ  is 

identical to that in the second design. 

Finally, as the number of schools becomes larger, power increases dramatically, and 

approaches one. In fact, as the number of schools becomes indefinitely large, the value of the 

non-centrality tends to infinity ( )smax →∞λ . Therefore the maximum power for a design with p 

classrooms and n students in each condition in each classroom is the power associated with 

( )smaxλ , which tends to one. Corresponding results are true in two-level designs (e.g., when 

students are nested within schools, and students within schools are assigned to treatments). The 

power in this case depends much more on the number of schools than the number of students in 

each school. Nonetheless, overall, in this design the impact of students and classrooms on power 

is more evident than in designs one and two.  

The power computations in the third design follow overall very similar patterns with the 

first and the second design. As in designs one and two the number of classrooms within schools 

has a larger impact on power than the number of students per classroom. As in designs one and 

two the number of schools has the largest impact on power computations. In addition, the smaller 

sϑ  or Rsϑ  and cϑ  or Rcϑ  are, the higher the power of the test. The power in the third design is 

always larger that the power in the first design if sϑ  or Rsϑ , and cϑ  or Rcϑ are smaller than one.  

In addition, the terms p*n and n are always larger in design one since the number of students per 

classroom is always larger than the number of students within a condition. Similarly, if sϑ  or 
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Rsϑ  and cϑ  or Rcϑ  are smaller than one, the power in design three is always higher than the 

power in design two. In addition, the term n is always larger in design two since the number of 

students per classroom is always larger than the number of students within a condition.  The 

same logic holds for two-level models. Specifically, the power is typically higher in two-level 

models where the treatment is assigned at the lowest level or unit (e.g., student), other things 

being equal.    

The Importance of Conducting Three-Level Power Analysis 

 Power computations that ignore a level of clustering will always overestimate the power 

of tests in multilevel designs (unless the intraclass correlation of the omitted level is exactly 

zero). The most dramatic example is the well-known and large overestimation in statistical 

power that takes place when one ignores the effects of clustering in two-level designs.  Of 

course, in three-level designs it could be that the effects of clustering on statistical power are 

mainly due to the first or one level of clustering (e.g., either classrooms or schools), and that 

other levels of clustering have little additional effect. If so, power computations in three-level 

designs that ignore a level of clustering might produce only slight overestimates of the actual 

power. One way to address this question is to compare estimates from power computations in 

three-level designs to power computations in two-level designs that ignore one level of 

clustering. The examples below illustrate the degree of overestimation of statistical power that 

can arise when one of the levels of clustering in the design is ignored.   

 In this section we examine power computations in the first design, where schools are 

randomly assigned to treatment conditions. First, we compute power estimates when the school 

level is omitted (e.g., students are nested within classrooms), and then when the classroom level 

is omitted (e.g., students are nested within schools). Suppose that we have a three-level design 
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where randomization occurs at the school level and involves 30 schools, two classrooms per 

school, and 20 students per classroom (the total sample size is 1200 students). Suppose that no 

covariates are included at any level, that the effect size is δ  = 0.5 SD, and that the intraclass 

correlations at the classroom and at the school level are cρ = 0.2 and sρ  = 0.2 respectively.  

 First consider the consequences for statistical power if we ignore clustering at the 

classroom level.  If we were to ignore the classroom level in this design and consider it as if it 

were a two-level design, we would still have 30 schools randomly assigned to treatment 

conditions with 40 students per school (for a total sample size of 1200 students). There would 

still be no covariates, the effect size would be δ = 0.5, and let’s assume that the school-level 

intraclass correlation would still be ρS = 0.2.  If we computed the power of the one-tailed test in 

this design assuming only two levels (by ignoring clustering at the classroom level), we would 

obtain a power of 0.80.  However, if we computed the power of the test by correctly recognizing 

the three levels in the design, the power would be only 0.65. Thus there is a 15 percent absolute 

difference in power, and a 23 percent relative increase in power from 0.65 to 0.80. This is not a 

trivial difference in power.  

 Now consider the consequences for statistical power if we ignore clustering at the school 

level.  If we were to ignore the school level in this design and consider it as if it were a two-level 

design, there would still be 60 classrooms in 30 schools (30 classrooms per condition), and 20 

students per classroom (the total sample size is again 1200 students). There would still be no 

covariates, the effect size would be δ  = 0.5 SD, and let’s assume that the classroom-level 

intraclass correlation would still be sρ  = 0.2. If we computed the power of a one-tailed test in 

this design assuming only two levels (by ignoring clustering at the school level), we would 

obtain a statistical power of 0.97. Thus, there is a 32 percent absolute difference in power 
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between this design and the three-level design described above, and nearly a 50 percent relative 

increase in power from 0.65 to 0.97.  This is a very substantial difference in power.  

 These power computations are intuitive. Specifically, in a three-level design where 

schools are assigned to treatments and there are no covariates, when the null hypothesis is false 

the t-test has a non-centrality parameter ( ) ( )2 1 1 1 13L s cλ mpn / / pn n= + − + −δ ρ ρ  and 2m – 

2 degrees of freedom (where m is the number of schools within each condition, each school with 

p classrooms, and each classroom with n students).  When the school-level clustering is ignored 

and no covariates are included, the t-test has a non-centrality parameter 

( )2 1 1 12LC cλ mpn / / n= + −δ ρ  and 2mp – 2 degrees of freedom (where p is the number of 

classrooms within each condition in each school and m is the total number of schools). When the 

classroom-level clustering is ignored and no covariates are included, the t-test has a non-

centrality parameter ( )2 1 1 12LS sλ mpn / / pn= + −δ ρ

2LS

 and 2m – 2 degrees of freedom (where 

m is the number of schools within each condition). When comparing the non-centrality 

parameters of the two-level designs to the non-centrality parameter of the three-level design, it is 

evident that 3Lλ λ<  and 3L 2LCλ λ< , and hence the power computed when one level of 

clustering is ignored will always be larger than that of a design including both levels of 

clustering.  The above comparisons assume that the intraclass correlations in two and three-level 

designs remain unchanged and are larger than zero. In addition, since 2LS 2LCλ λ<  when c s≤ρ ρ  

and p > 1, and 2mp-2 > 2m-2 since p > 1 the power computed when clustering at the school level 

is ignored will always be larger than that computed when clustering at the classroom level is 

ignored.  
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 These results indicate that, in designs that involve naturally three levels (e.g., students 

nested within classrooms, and classrooms nested within schools), ignoring a level of clustering 

can lead to substantial overestimates of statistical power. The amount of overestimation of power 

depends on the intraclass correlation structure (and the degrees of freedom). If a researcher 

chooses to ignore a level of clustering (even though it is present in the design) our computations 

indicate that, with intraclass correlations that are plausible in educational achievement data, the 

power computations are less overestimated when the classroom (lowest) level of clustering is 

ignored. However, in other areas and with different kinds of outcome data, it is not obvious 

which omitted level of clustering will produce more optimistic power estimates.  

Conclusion 

 Three-level designs are increasingly common in educational research. Experiments that 

involve multiple schools with multiple classrooms in each school are inherently three-level 

designs, whether or not the investigators choose to treat them as such.  The appropriate power 

computations of three-level data structures need to include clustering effects at all levels. 

Similarly, the appropriate analyses of three-level data need to take into account this multi-level 

structure, because otherwise the standard errors of estimates and statistical tests of such analyses 

are incorrect.  Specifically, the standard errors of treatment effect estimates ignoring clustering 

are typically smaller, which translates to higher values of t-tests and higher probabilities of 

finding a significant effect. The correct analyses would take into account clustering at all levels 

of the hierarchy (e.g., the classroom and school level). The present study provided methods for 

computing power of tests for treatment effects in various three-level designs where clustering 

occurs at two levels (e.g., classrooms and schools).  
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 Several interesting findings emerged from this study. First, other things being equal,  the 

number of classrooms impacts power more than the number of students, and the number of 

schools influences power more than the number of classrooms and the number of students and 

this holds for all three designs. For example, in a design with a total sample size of 640, where 

schools are randomly assigned to treatments (and students and classrooms are nested within 

schools) assume that there are no covariates, that the school and classroom level intraclass 

correlations are respectively sρ  = 0.1 and cρ = 0.067, and that the effect size is δ  = 0.5 SD.  If 

the total sample size of 640 is obtained by allocating n = 20 students per classroom, p = 2 

classrooms per school, and m = 8 schools per treatment group, the power of a one-tailed test is 

0.66. If the total sample size of 640 is obtained by doubling the number of classrooms and 

halving the number of students per classroom so that p = 4 and n = 10 and everything else is 

unchanged the power is 0.71 (an eight percent relative increase). However, if the total sample 

size of 640 is obtained by doubling the number of schools and halving the number of students 

per class so that m = 16, p = 2, and n = 10 and everything else is unchanged the power of a one-

tailed test is 0.91 (an additional relative increase of 28 percent). Thus, if we keep the total sample 

size constant, doubling the number of schools results in a 38 percent relative increase in power 

(from 0.66 to 0.88), whereas doubling the number of classrooms only resulted in an eight percent 

relative increase (from 0.66 to 0.71). This indicates clearly that even though the number of 

classrooms matters in computing power, the number of schools overwhelms the computation of 

power in three-level designs. In addition, the number of schools impacts power via the degrees of 

freedom of the t-test. In designs that assign treatments to classrooms or individual students 

within classrooms (that is designs two and three) however, the difference in the impact on power 

between the number of schools and the number of classrooms per school is smaller.  
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 Second, power is typically higher in three-level designs that assign treatments at lower 

levels or units (e.g., classrooms or students), but the gain in power will depend on the magnitude 

of the variance of the treatment effect across classrooms and schools.  For example, in a design 

that assigns classrooms to treatments the smaller the variance of the treatment effect across 

schools the higher the power. Similarly, in a design that assigns treatments to students within 

classrooms the smaller the variances of the treatment effects across classrooms and schools the 

higher the power. In addition, useful covariates increase power dramatically.  

 Third, power computations that ignore one level of clustering in the design will always 

overestimate the power of a three-level design (unless the intraclass correlation of the omitted 

level is exactly zero). Moreover our computations indicated that the degree of overestimation of 

statistical power may be substantial. When clustering occurs naturally at two levels (e.g., 

classrooms and schools), three-level power computations are the most appropriate and accurate. 

Avoiding bias due to omitting a level of clustering in computations of statistical power is 

particularly important, since there are often other reasons to think that power computations in 

field experiments are likely to be optimistic (Boruch & Gomez, 1977). 

 The methods provided here apply to both experimental designs and any non-experimental 

studies that involve nesting and estimate either the association between a predictor and an 

outcome or group differences in the outcome. The logic of power computations remains the same 

and one can compute the power of a test that examines an association or a group difference of 

interest using the results presented in this study.    

 Although the present study provides methods for computing power in experimental 

designs with three levels of nesting, additional methodological work concerning power in these 

designs is needed. First, even though this study provided methods for computing power in three 
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level designs, it did not account for the costs involved in designing nested studies. It would be 

useful for future work to provide estimates of power within an optimal design framework and 

extend previous work (see e.g., Hedrick & Zumbo, 2005; Raudenbush, 1997; Raudenbush & Liu, 

2000). Second, the computation of power for tests that examine the consistency of the treatment 

effect across classrooms and schools within a three-level design would also be useful. Finally, 

extensions of the methods presented here to longitudinal studies or growth curve modeling 

would be valuable.  
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Figure 1. The power of the treatment effect in design one as a function of the number of 
students within classrooms holding constant the number of classrooms per school and the 
number of schools per condition. A: No covariates at any level. B: Including five 
covariates at each level (50% reduction in the variances at each level).    
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Figure 2. The power of the treatment effect in design one as a function of the number of 
classrooms within schools holding constant the number of students per classroom, and 
the number of schools per condition. A: No covariates at any level. B: Including five 
covariates at each level (50% reduction in the variances at each level).    
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Figure 3. The power of the treatment effect in design one as a function of the number of 
schools holding constant the number of students per classroom and the number of 
classrooms per school. A: No covariates at any level. B: Including five covariates at each 
level (50% reduction in the variances at each level).    
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Figure 4. The power of the treatment effect in design two as a function of the number of 
students per classroom holding constant the number of classrooms per condition per 
school and the number of schools.   
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Figure 5. The power of the treatment effect in design two as a function of the number of 
classrooms within conditions within schools holding constant the number of students per 
classroom, and the number of schools. 
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Figure 6. The power of the treatment effect in design two as a function of the number of 
schools holding constant the number of students per classroom and the number of 
classrooms per condition per school.    

 
 




