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1 Introduction

Economic growth takes place at uneven rates across different sectors of the economy.

This paper has two objectives related to this fact, (a) to derive the implications

of different sectoral rates of total factor productivity growth for structural change,

the name given to the shifts in industrial employment shares that take place over

long periods of time, and (b) to show that even with ongoing structural change,

the aggregate variables can be on a balanced growth path. The restrictions needed

to yield structural change consistent with the facts and constant growth are weak

restrictions on functional forms that are frequently imposed by macroeconomists in

related contexts.

We obtain our results in a baseline model of many consumption goods and a sin-

gle capital good, supplied by a sector that we label manufacturing and that produces

also a consumption good. Our results, however, are consistent with the existence of

many capital goods and many intermediate goods under some reasonable restrictions.

Production functions in our model are identical in all sectors except for their rates

of TFP growth and each sector produces a differentiated good that enters a constant

elasticity of substitution (CES) utility function. We show that a low (below one)

elasticity of substitution across final goods leads to shifts of employment shares to

sectors with low TFP growth. In the limit the employment share used to produce con-

sumption goods vanishes from all sectors except for the slowest-growing one, but the

employment shares used to produce capital goods and intermediate goods converge to

non-trivial stationary values. If the utility function in addition has unit inter-temporal

elasticity of substitution, during structural change the aggregate capital-output ratio

is constant and the aggregate economy is on a steady-state growth path.

Our results contrast with the results of Echevarria (1997), Laitner (2000), Caselli

and Coleman (2001) and Gollin et al. (2002) who derived structural change in a two-

or three-sector economy with non-homothetic preferences. Our results also contrast

with the results of Kongsamut et al. (2001) and Foellmi and Zweimuller (2004), who

derived simultaneous constant aggregate growth and structural change. Kongsamut

et al. obtain their results by imposing a restriction that maps some of the parameters

of their Stone-Geary utility function onto the parameters of the production functions,

violating one of the most useful conventions of modern macroeconomics, the complete

independence of preferences and technologies. Foellmi and Zweimuller (2002) obtain

their results by assuming endogenous growth driven by the introduction of new goods

2



into a hierarchic utility function. Our restrictions are quantitative restrictions on a

conventional CES utility function that maintains the independence of the parameters

of preferences and technologies.

Our results confirm Baumol’s (1967) claims about structural change. Baumol

divided the economy into two sectors, a “progressive” one that uses new technology

and grows at some constant rate and a “stagnant” one that uses labor as the only

input and produces services as final output. He then claimed that the production

costs and prices of the stagnant sector should rise indefinitely, a process known as

“Baumol’s cost disease,” and labor should move in the direction of the stagnant

sector. Baumol controversially also claimed that the economy’s growth rate will be

on a declining trend, as more weight is shifted to the stagnant sector, a claim that

contrasts with our finding that the economy is on a steady-state growth path.1

In the more recent empirical literature two competing explanations (which can

coexist) have been put forward for structural change. Our explanation, which is

sometimes termed “technological” because it attributes structural change to different

rates of sectoral TFP growth, and a utility-based explanation, which requires different

income elasticities for different goods and can yield structural change even with equal

TFP growth in all sectors. Baumol et al. (1985) provide empirical evidence at the

2-digit industry level, consistent with our model, to support Baumol’s (1967) claims

about employment reallocations between progressive and stagnant sectors. Kravis et

al. (1983) also present evidence that favours the technological explanation, at least

when the comparison is between manufacturing and services. Two features of their

data that are satisfied by the technological explanation proposed in this paper are

(a) relative prices reflect differences in TFP growth rates and (b) real consumption

shares vary a lot less over time than nominal consumption shares. Our model is

also consistent with observed positive correlation between employment growth and

relative price inflation across two-digit sectors2 and with historical OECD evidence

presented by Kuznets (1966) and Maddison (1980) for one-digit sectors.

Section 2 describes our model of growth with many sectors and sections 3 and 4

respectively derive the conditions for structural change and the conditions for bal-

anced aggregate growth equilibrium. In sections 5 and 6 we study two extensions of

1Ironically, we get our result because we include capital in our analysis, a factor left out by
Baumol (1967, p.417) “primarily for ease of exposition ... that is [in]essential to the argument”.

2These correlations are shown in a longer version of this paper that circulated as working paper.
See Ngai and Pissarides (2004).
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our benchmark model, one where consumption goods can also be used as intermediate

inputs and one where there are many capital goods.

2 An economy with many sectors

The benchmark economy consists of an arbitrary number of m sectors. Sectors i =

1, ...,m − 1 produce only consumption goods. The last sector, which is denoted

by m and labeled manufacturing, produces both a final consumption good and the

economy’s capital stock. Manufacturing is the numeraire.3

We derive the equilibrium as the solution to a social planning problem. The

objective function is

U =

Z ∞

0

e−ρtv (c1, .., cm) dt, (1)

where ρ > 0, ci ≥ 0 are per-capita consumption levels and the instantaneous utility
function v (.) is concave and satisfies the Inada conditions. The constraints of the

problem are as follows.

The labor force is exogenous and growing at rate ν and the aggregate capital stock

is endogenous and defines the state of the economy. Sectoral allocations are controls

that satisfy Pm
i=1 ni = 1;

Pm
i=1 niki = k, (2)

where ni ≥ 0 is the employment share and ki ≥ 0 is the capital-labor ratio in sector i,
and k ≥ 0 is the aggregate capital-labor ratio. There is free mobility for both factors.
All production in sectors i = 1, ...,m− 1 is consumed but in sector m production

may be either consumed or invested. Therefore:

ci = F i (niki, ni) ∀i 6= m (3)

k̇ = Fm(nmkm, nm)− cm − (δ + ν) k (4)

where δ > 0 is the depreciation rate, production function F i (., .) is constant return to

scale, has positive and diminishing returns to inputs, and satisfies Inada conditions.

The social planner chooses the allocation of factors ni and ki across m sectors

through a set of static efficiency conditions,

vi/vm = Fm
K /F i

K = Fm
N /F i

N ∀i. (5)

3The label manufacturing is used for convenience. Although in the standard industrial classi-
fications our capital-goods producing sector belongs to manufacturing, some sectors classified as
manufacturing in the data (e.g. food and clothing) fall into the consumption category of our model.
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The allocation of output to consumption and capital are chosen through a dynamic

efficiency condition,

−v̇m/vm = Fm
K − (δ + ρ+ ν) . (6)

where F i
N and F

i
K are the marginal products of labor and capital in sector i.

4 By (5),

the rates of return to capital and labor are equal across sectors.

In order to focus on the implications of different rates of TFP growth across sectors

we assume production functions are identical in all sectors except for their rates of

TFP growth:

F i = AiF (niki, ni) ; Ȧi/Ai = γi; ∀i, (7)

With these production functions, we show in the Appendix that static efficiency and

the resource constraints (2) imply

ki = k; pi = vi/vm = Am/Ai; ∀i, (8)

where pi is the price of good i in the decentralized economy (in terms of the price of

the manufacturing good, pm ≡ 1).
Utility function has constant elasticities both across goods and over time:

v (c1, ..., cm) =
φ (.)1−θ − 1
1− θ

; φ (.) =
³Pm

i=1 ωic
(ε−1)/ε
i

´ε/(ε−1)
(9)

where θ, ε, ωi > 0 and Σωi = 1. Of course, if θ = 1, v(.) = lnφ(.) and if ε = 1,

lnφ(.) =
Pm

i=1 ωi ln ci. In the decentralized economy demand functions have constant

price elasticity −ε and unit income elasticity. With this utility function, (8) becomes:
pici
cm

=

µ
ωi

ωm

¶εµ
Am

Ai

¶1−ε
≡ xi ∀i. (10)

The new variable xi is the ratio of consumption expenditure on good i to consump-

tion expenditure on the manufacturing good and will prove useful in the subsequent

analysis. We also define consumption expenditure and output per capita in terms of

the numeraire:

c ≡
Pm

i=1 pici; y ≡
Pm

i=1 piF
i (11)

Using static efficiency we derive:

c = cmX; y = AmF (k, 1) (12)

where X ≡
Pm

i=1 xi.We note that although k is the ratio of the economy-wide capital

stock to the labor force, the technology parameter for output is TFP in manufacturing

and not an average of all sectors’ TFP.

4The corresponding transversality condition is lim
t−→∞

k exp
³
−
R t
0
(Fm

k − δ − ν) dτ
´
= 0.
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3 Structural change

We define structural change as the state in which at least some of the labor shares

are changing over time, i.e., ṅi 6= 0 for at least some i. We derive in the Appendix
(Lemma 7) the employment shares:

ni =
xi
X

µ
c

y

¶
∀i 6= m, (13)

nm =
xm
X

µ
c

y

¶
+

µ
1− c

y

¶
. (14)

The first term in the right side of (14) parallels the term in (13) and so represents

the employment needed to satisfy the consumption demand for the manufacturing

good. The second bracketed term is equal to the savings rate and represents the

manufacturing employment needed to satisfy investment demand.

Condition (13) implies that the ratio of employment in sector i to employment in

sector j is equal to the ratio xi/xj (for i, j 6= m). By differentiation we obtain that

the growth rate of relative employment depends only on the difference between the

sectors’ TFP growth rates and the elasticity of substitution between goods:

ṅi
ni
− ṅj

nj
= (1− ε)

¡
γj − γi

¢
∀i, j 6= m. (15)

But (8) implies that the growth rate of the relative price of good i is:

ṗi/pi = γm − γi ∀i 6= m (16)

and so,
ṅi
ni
− ṅj

nj
= (1− ε)

µ
ṗi
pi
− ṗj

pj

¶
∀i, j 6= m (17)

Proposition 1 The rate of change of the relative price of good i to good j is equal

to the difference between the TFP growth rates of sector j and sector i. In sectors

producing only consumption goods, relative employment shares grow in proportion to

relative prices, with the factor of proportionality given by one minus the elasticity of

substitution across goods.5

5All derivations and proofs, unless trivial, are collected in the Appendix.
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The dynamics of the individual employment shares satisfy:

ṅi
ni

=
c/̇y

c/y
+ (1− ε) (γ̄ − γi) ; ∀i 6= m (18)

ṅm
nm

=

"
c/̇y

c/y
+ (1− ε) (γ̄ − γm)

#
(c/y) (xm/X)

nm
+

Ã
−c/̇y

(1− c/y)

!µ
1− c/y

nm

¶
(19)

where γ̄ ≡
Pm

i=1 (xi/X) γi is a weighted average of TFP growth rates.
6

Equation (18) gives the growth rate in the employment share of each consumption

sector as a linear function of its own TFP growth rate. The intercept and slope of this

function are common across sectors but although the slope is a constant, the intercept

is in general a function of time because both c/y and γ̄ are in general functions of

time. Manufacturing, however, does not conform to this rule, because its employment

share is made up of two components, one for the production of the consumption good

(which behaves similarly to the employment share of consumption sectors) and one

for the production of capital goods, which behaves differently.

The properties of structural change follow immediately from (18) and (19). Con-

sider first the case of equality in sectoral TFP growth rates, i.e., let γi = γm ∀i. Our
economy in this case is one of balanced TFP growth, with relative prices remaining

constant but with many differentiated goods. Because of the constancy of relative

prices all consumption goods can be aggregated into one, so we effectively have a two-

sector economy, one sector producing consumption goods and one producing capital

goods. Structural change can still take place in this economy but only between the

aggregate of the consumption sectors and the capital sector, and only if c/y changes

over time. If c/y is increasing over time, the savings and investment rate are falling

and labor is moving out of the manufacturing sector and into the consumption sectors.

Conversely, if c/y is falling over time labor is moving out of the consumption sectors

and into manufacturing. In both cases, however, the relative employment shares in

consumption sectors are constant.

If c/y is constant over time, structural change requires ε 6= 1 and different rates
of sectoral TFP growth rates. It follows immediately from (16), (18) and (19) that

if c/̇y = 0, ε = 1 implies constant employment shares but changing prices. With

constant employment shares faster-growing sectors produce relatively more output

6Note that this weighted average is not the average TFP growth rate for the economy as a
whole, because the weights take into account only production for consumption purposes, ignoring
production for investment purposes.
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over time. Price changes in this case are such that consumption demands exactly

absorb all the output changes that are due to the different TFP growth rates. But if

ε 6= 1, prices still change as before and consumption demands are either too inelastic
(in the case ε < 1) to absorb all the output change, or are too elastic (ε > 1) to be

satisfied merely by the change in output due to TFP growth. So if ε < 1 employment

has to move into the slow-growing sectors and if ε > 1 it has to move into the fast-

growing sectors.

Proposition 2 If γi = γm ∀i 6= m, a necessary and sufficient condition for structural

change is ċ/c 6= ẏ/y. The structural change in this case is between the aggregate of

consumption sectors and the manufacturing sector.

If ċ/c = ẏ/y, necessary and sufficient conditions for structural change are ε 6= 1
and ∃i ∈ {1, ..,m− 1} s.t. γi 6= γm. The structural change in this case is between all

sector pairs with different TFP growth rates. If ε < 1 employment moves from the

sector with the higher TFP growth rate to the sector with the lower TFP growth rate;

conversely if ε > 1.

Proposition 2 for ε < 1 confirms Baumol’s (1967; Baumol et al. 1985) claims

about structural change. When demand is price inelastic, the sectors with the low

productivity growth rate attract a bigger share of labor, despite the rise in their price.

The lower the price elasticity, the less the fall in demand that accompanies the price

rise, and so the bigger the shift in employment needed to satisfy the high relative

consumption. The behavior of the output and consumption shares is obtained from

the static efficiency results in (8) and (10):

piF
iPm

i=1 piF
i
= ni;

piciPm
i=1 pici

=
xi
X
; ∀i. (20)

The nominal output shares are equal to the employment shares, so the results ob-

tained for employment shares also hold for them. From (13), nominal consumption

shares also exhibit similar dynamic behavior to employment shares, but relative real

consumptions satisfy

ċi/ci − ċj/cj = ε
¡
γi − γj

¢
; ∀i, j, (21)

an expression also satisfied by real output shares ∀i, j 6= m.

A comparison of (15) with (21) reveals that a small ε can reconcile the small

changes in the relative real consumption shares with the large changes in relative
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nominal consumption shares found by Kravis et al. (1983). More recently Sichel

(1997) found the same pattern for relative output shares. This finding led Kravis

et al. (1983) to conclude that the evidence favored a technological explanation for

structural change.

4 Aggregate growth

We now study the aggregate growth path in this economy, with the objective of finding

a sufficient set of conditions that satisfy structural change as derived in the preceding

section, and in addition satisfy the Kaldor stylized facts of aggregate growth. Recall

that for the analysis of structural change we imposed a Hicks-neutral technology. It

is well-known that with this type of technology, the economy can be on a steady state

only if the production function is Cobb-Douglas. We therefore begin by assuming

F (niki, ni) = (niki)
α n1−αi , α ∈ (0, 1) .7 With TFP in each sector growing at some

rate γi, the aggregate economy will also grow at some rate related to the γis. The

following Proposition derives the evolution of the aggregate economy:

Proposition 3 Given any initial k0, the equilibrium of the aggregate economy is de-
fined as a path for the pair {c, k} that satisfies the following two differential equations:

k̇/k = Amk
α−1 − c/k − (δ + ν) , (22)

θċ/c = (θ − 1) (γm − γ̄) + αAmk
α−1 − (δ + ρ+ ν) . (23)

Recalling the definition of γ̄ following equation (19), the key property of our equi-

librium is that the contribution of each consumption sector i to aggregate equilibrium

is through its weight xi in γ̄. Note that because each xi depends on the sector’s relative

TFP level (Ai/Am), the weights here are functions of time.

We define an aggregate balanced growth path such that aggregate output, con-

sumption and capital grow at the same rate. On this path the capital-output ratio

k/y is constant, which, by the aggregation in (12), requires Amk
α−1 to be constant;

i.e., k, and therefore y and c, grow at constant rate gm ≡ γm/(1 − α), the rate of

labor-augmenting technological growth in the capital-producing sector.

7Proposition 1 can be modified to allow for different capital shares. Equation (17) remains true
but (15) contains an additional term (1− ε) (αj − αi) k̇m/km and (16) contains an additional term
(αm − αi) k̇m/km.
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A necessary and sufficient condition for the existence of an aggregate balanced

growth path is that the expression (θ − 1) (γm − γ̄) be a constant. To show this, let:

(θ − 1)(γm − γ̄) ≡ ψ constant. (24)

Define aggregate consumption and the capital-labor ratio in terms of efficiency units,

ce ≡ cA
−1/(1−α)
m and ke ≡ kA

−1/(1−α)
m . The dynamic equations (22) and (23) become

ċe/ce =
£
αkα−1e + ψ − (δ + ν + ρ)

¤
/θ − gm (25)

k̇e = kαe − ce − (gm + δ + ν) ke. (26)

Equations (25) and (26) parallel the two differential equations in the control and

state of the one-sector Ramsey economy, making the aggregate equilibrium of our

many-sector economy identical to the equilibrium of the one-sector Ramsey economy

when ψ = 0, and trivially different from it otherwise. Both models have a saddlepath

equilibrium and stationary solutions
³
ĉe, k̂e

´
that imply balanced growth in the three

aggregates. As anticipated in the aggregate production function (12), a key result

is that in our economy the rate of growth of our aggregates in the steady state is

equal to the rate of growth of labor-augmenting technological progress in the sector

that produces capital goods: the ratio of capital to employment in each sector and

aggregate capital per worker grow at rate gm. When nominal output is deflated by

the price of manufacturing goods, output per worker and aggregate consumption per

worker also grow at the same rate.

Proposition 2 and the requirement that ψ be constant yield the important Propo-

sition:

Proposition 4 Necessary and sufficient conditions for the existence of an aggregate
balanced growth path with structural change are:

θ = 1, (27)

ε 6= 1; and ∃i ∈ {1, ..,m} s.t. γi 6= γm.

Under the conditions of Proposition 4, ψ = 0, and our aggregate economy becomes

formally identical to the one-sector Ramsey economy. There are two other conditions

that give a constant ψ and so yield balanced aggregate growth: γi = γm ∀i or ε = 1.
But as Proposition 2 demonstrates neither condition permits structural change on

the balanced growth path, where c/y is constant.8

8Proposition 4 brings out the crucial role played by capital goods in aggregate growth, in contrast,
for example, to Baumol’s claim, who concluded that the economy’s growth rate is on an indefinitely
declining trend.
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Proposition 4 requires the utility function to be logarithmic in the consumption

composite φ, which implies an intertemporal elasticity of substitution equal to one,

but be non-logarithmic across goods, which is needed to yield non-unit price elastic-

ities. A noteworthy implication of Proposition 4 is that balanced aggregate growth

does not require constant rates of growth of TFP in any sector other than manufac-

turing. Because both capital and labor are perfectly mobile across sectors, changes in

the TFP growth rates of consumption-producing sectors are reflected in immediate

price changes and reallocations of capital and labor across sectors, without effect on

the aggregate growth path.

To give intuition for the logarithmic intertemporal utility function we recall that

balanced aggregate growth requires that aggregate consumption be a constant frac-

tion of aggregate wealth. With our homothetic utility function this can be satisfied

either when the interest rate is constant or when consumption is independent of the

interest rate. The relevant interest rate here is the rate of return to capital in con-

sumption units, which is given by the net marginal product of capital in terms of

the manufacturing numeraire, αy/k− δ, minus the change in the relative price of the

consumption composite, γm− γ̄. The latter is not constant during structural change.

In the case ε < 1, γ̄ is falling over time (see Lemma 8 in the Appendix for proof),

and so the real interest rate is also falling, and converging to αy/k − δ. With a non-

constant interest rate the consumption-wealth ratio is constant only if consumption

is independent of the interest rate, which requires a logarithmic utility function.9

Our claim that constant growth for the economy’s aggregates requires the use of

manufacturing price as numeraire, in contrast to the published aggregate series nor-

mally studied by macroeconomists, which use some other average price. However, at

the level of “stylized facts” there is not much to differentiate growth in our aggregate

economy from growth in the more commonly studied one-sector economy. Our ag-

gregate per capita income in (11) is, in nominal terms, pmy. So, if national statistics

report real incomes deflated by some other implicit or explicit index p̃, reported real

income in our notation is pmy/p̃. The difference between our aggregate y and the re-

ported one is the ratio of the price of our manufacturing good to the deflator, pm/p̃. In

9In contrast to one-sector models, a constant capital-output ratio in our model does not imply
that the rate of return to capital in consumption units is constant. Under our set of restrictions it is
mildly decreasing during structural change and converging to a lower bound. After re-examining the
data, Barro and Sala-i-Martin (2004, p.13) concluded, consistent with our model, “it seems likely
that Kaldor’s hypothesis of a roughly stable real rate of return should be replaced by a tendency for
returns to fall over some range as an economy develops.”
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our model, the average relative price of all goods does not grow at precisely constant

rate, even on our aggregate balanced growth path, because the relative sector shares

that are used to calculate it are changing during structural change. But because

sector shares do not change rapidly over time, visually there is virtually nothing to

distinguish the “stylized fact” of constant growth in reported per capita GDP with

another “stylized fact” of constant growth in our per capita output variable.10

Next, we characterize the set of expanding sectors (ṅi ≥ 0) , denoted Et, and the

set of contracting sectors (ṅi ≤ 0) , denoted Dt, at any time t. We establish

Proposition 5 Both in the aggregate balanced growth path and in the transition from
a low initial capital stock, the set of expanding sectors is contracting over time and

the set of contracting sectors is expanding over time:

Et0 ⊆ Et and Dt ⊆ Dt0 ∀t0 > t

Asymptotically, the economy converges to an economy with

n∗m = σ̂ = α

µ
δ + ν + gm

δ + ν + ρ+ gm

¶
; n∗l = 1− σ̂

σ̂ is the investment rate along the aggregate balanced growth path and sector l denotes

the sector with the smallest (largest) TFP growth rate if and only if goods are poor

(good) substitutes.

In order to give some intuition for the proof (which is in the Appendix), consider

the dynamics of sectors on the aggregate balanced growth path. Along this path, the

set of expanding and contracting sectors satisfy:

Et = {i ∈ {1, ...,m} : (1− ε) (γ̄ − γi) ≥ 0} ; (28)

Dt = {i ∈ {1, ...,m} : (1− ε) (γ̄ − γi) ≤ 0} .

Consider the case ε < 1,the one for ε > 1 following by a corresponding argument.

For ε < 1, sector i expands if and only if its TFP growth rate is smaller than γ̄,

and contracts if and only if its growth rate exceeds it. But if ε < 1, the weighted

average γ̄ is decreasing over time (see Lemma 8 in the Appendix). Therefore, the set

10Kaldor (1961, p.178) spoke of a “steady trend rate” of growth in the “aggregate volume of
production.” In Ngai and Pissarides (2004, Fig.4) we plot our series of per capital real incomes
and the published chain-weighted series for the United States since 1929, and show that they are
virtually indistinguishable from each other.
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of expanding sectors is shrinking over time, as more sectors’ TFP growth rates exceed

γ̄. This feature of the model implies that sectors with intermediate TFP growth rates

below the initial γ̄ exhibit a hump-shaped employment share, an implication that we

believe is unique to our model. These employment shares first rises but once γ̄ drops

down to their own γi they start to fall.

In contrast to each sector’s employment share, once the economy is on the aggre-

gate balanced growth path output and consumption in each consumption sector (as

a ratio to the total labor force) grows according to

Ḟ i

F i
=

Ȧi

Ai
+ α

k̇i
k
+

ṅi
ni
= εγi + αgm + (1− ε) γ̄. (29)

Thus, if ε 6 1 the rate of growth of consumption and output in each sector is positive,
and so sectors never vanish, even though their employment shares in the limit may

vanish. If ε > 1 the rate of growth of output may be negative in some low-growth

sectors, and since by Lemma 8 γ̄ is rising over time in this case, their rate of growth

remains indefinitely negative until they vanish.

Finally, we examine briefly the implications of θ 6= 1. When θ 6= 1 balanced

aggregate growth cannot coexist with structural change, because the term ψ =

(θ − 1) (γm − γ̄) in the Euler condition (25) is a function of time. But as shown

in the Appendix Lemma 8, γ̄ is monotonic. As t →∞, ψ converges to the constant
(θ − 1) (γm − γl), where γl is the TFP growth rate in the limiting sector (the slowest

or fastest growing consumption sector depending on whether ε < or > 1). There-

fore, the economy with θ 6= 1 converges to an asymptotic steady state with the same
growth rate as the economy with θ = 1.

What characterizes the dynamic path of the aggregate economy when θ 6= 1? By
differentiation and using Lemma 8 in the Appendix, we obtain

ψ̇ = (θ − 1)(1− ε)
Pm

i=1 (xi/X) (γi − γ̄)2 (30)

which is of second-order compared with the growth in employment shares in (15),

given that the γ0s are usually small numbers centered around 0.02. Therefore, the

rate of growth of the economy during the adjustment to the asymptotic steady state

with θ 6= 1 is very close to the constant growth rate of the economy with θ = 1,

despite ongoing structural change in both economies.
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5 Intermediate goods

Our baseline model has no intermediate inputs and has only one sector producing

capital goods. We now generalize it by introducing intermediate inputs and (in the

next section) by allowing an arbitrary number of sectors to produce capital goods. The

key difference between intermediate goods and capital goods is that capital goods are

re-usable while intermediate goods depreciate fully after one usage. The motivation

for the introduction of intermediate inputs is that many of the sectors that may be

classified as consumption sectors produce in fact for businesses. Business services is

one obvious example. Input-output tables show that a large fraction of output in

virtually all sectors of the economy is sold to businesses.11

As in the baseline model, sectors are of two types. The first type, which consists of

sectors such as food and services, produces perishable goods that are either consumed

by households or used as intermediate inputs by firms. We continue referring to these

sectors as consumption sectors for short. The second type of sector consists of sectors

such as engineering and metals and produces goods that can be used as capital. For

generality’s sake, we assume that the output of the capital-producing sector can also

be processed into both consumption goods and intermediate inputs.

The output of consumption sector i is now ci + hi, where hi is the output that

is used as an intermediate good. Manufacturing output can be consumed, cm, used

as an intermediate input, hm, or used as new capital, k̇. We assume that all inter-

mediate goods hi are used as an input into an aggregate CES production function

Φ(h1, ..., hm) =
hPm

i=1 ϕih
(η−1)/η
i

iη/(η−1)
that produces a single intermediate good

Φ, with η > 0, ϕi ≥ 0 and Σϕi = 1. The production functions are modified to

F i = Ainik
α
i q

β
i , ∀i, where qi is the ratio of the intermediate good to employment in

sector i and β is its input share, with α, β > 0 and α+β < 1. When β = 0, we return

to our baseline model. We show in the Appendix that a necessary and sufficient con-

dition for an aggregate balanced growth path with structural change requires η = 1,

i.e. Φ(.) to be Cobb-Douglas.12 When Φ(.) is Cobb-Douglas, our central results from

11According to input-output tables for the United States, in 1990 the percentage distribution of
the output of two-digit sectors across three types of usage, final consumption demand, intermediate
goods and capital goods was 43, 48 and 9 respectively. In virtually all sectors, however, a large
fraction of the intermediate goods produced are consumed by the same sector.
12Oulton (2001) claims that if there are intermediate goods, and if the elasticity of substitution

between the intermediate goods and labor is bigger than 1, Baumol’s stagnationist results could be
overturned (in the absence of capital). No such possibility arises with Cobb-Douglas production
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the baseline model carry through, with some modifications.

The aggregate equilibrium is similar to the one in the baseline model:

ċ/c = αAkα/(1−β)−1 − (δ + ρ+ ν) , (31)

k̇ = (1− β)Akα/(1−β) − c− (δ + ν) k (32)

where A ≡
h
Am (βΦm)

β
i1/(1−β)

and Φm is the marginal product of the manufacturing

good inΦ.The growth rate ofA is constant and equal to γ = γm+(β
Pm

i=1 ϕiγi) / (1− β) ,

where ϕi is the input share of sector i in Φ. Therefore, we can define aggregate con-

sumption and the aggregate capital-labor ratio in terms of efficiency units and obtain

an aggregate balanced growth path with growth rate (γm + β
Pm

i=1 ϕiγi) / (1− α− β) ,

which is the sum of labor-augmenting technological growth rate in the capital-producing

sector plus β fraction of the labor-augmenting technological growth rate in all sectors

that produce intermediate goods. Recall the aggregate growth rate in the baseline

model depended only on the TFP growth rate in manufacturing. In the extended

model with intermediate goods, the TFP growth rates in all sectors contribute to

aggregate growth, but growth is still constant. If β = 0 the model collapses to the

baseline case.

The employment shares (13) and (14) are now generalize to:

ni =
xi
X

µ
c

y

¶
+ ϕiβ; ∀i 6= m (33)

nm =

∙
xm
X

µ
c

y

¶
+ ϕmβ

¸
+

µ
1− β − c

y

¶
. (34)

For the consumption sectors, the extra term in (33) captures the employment re-

quired for producing intermediate goods. ϕi is the share of sector i’s output used

for intermediate purposes and β is the share of the aggregate intermediate input in

aggregate output. For the manufacturing sector, the terms in the first bracket parallel

those of the consumption sectors. The second term captures the employment share

for investment purposes.

The relative employment shares across consumption sectors are no longer equal

to xi/xj (as in the baseline model) because of the presence of intermediate goods.

Therefore, Proposition 1 holds for relative prices as in the baseline, but the expres-

sion for relative employment needs to be modified. The modification, however, is

functions.
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straightforward because ϕiβ is constant, and the results about the direction of struc-

tural change hold as in the baseline model. Employment dynamics are now given

by,
ṅi

ni − ϕiβ
=

Ã
c/̇y

c/y
+ (1− ε) γ̄

!
− (1− ε)γi; ∀i 6= m. (35)

We note that as in the baseline model the right-hand side is made up of a term that is

a function of time but is common to all sectors and a second term that is proportional

to the sector’s own TFP growth rate. When the sector’s share of intermediate good

production is small the left-hand side is approximately equal to the rate of growth

of the sector’s employment share. Combining (16) and (35) we obtain the following

relation between employment growth and prices

ṅi
ni − ϕiβ

=

Ã
c/̇y

c/y
+ (1− ε) γ̄ − γm

!
+ (1− ε)

ṗi
pi
; ∀i 6= m, (36)

and so (17) now generalizes to:

ṅi
ni − ϕiβ

− ṅj
nj − ϕjβ

= (1− ε)

µ
ṗi
pi
− ṗj

pj

¶
∀i, j 6= m. (37)

The asymptotic results in Proposition 5 are also modified. Asymptotically, the

employment share used for the production of consumption goods still vanishes in all

sectors except for the slowest growing one (when ε < 1), but the employment share

used to produce intermediate goods, ϕiβ, survives in all sectors.

6 Many capital goods

In our second extension we allow an arbitrary number of sectors to produce capital

goods. We study this extension with the baseline model without intermediate inputs.

We suppose that there are κ different capital-producing sectors, each supplying

the inputs into a production function G, which produces a capital aggregate that

can be either consumed or used as an input in all production functions F i. Thus,

the model is the same as before, except that now the capital input ki is not the

output of a single sector but of the production function G. The Appendix derives

the equilibrium for the case of a CES function with elasticity µ, i.e., when G =hPκ
j=1 ξmj

(Fmj)(µ−1)/µ
iµ/(µ−1)

, where µ > 0, ξmj
≥ 0 and Fmj is the output of each
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capital goods sector mj. G now replaces the output of the “manufacturing” sector in

our baseline model, Fm.

It follows immediately that the structural change results derived for the m − 1
consumption sectors remain intact, as we have made no changes to that part of

the model. But there are new results to derive concerning structural change within

the capital-producing sectors. The relative employment shares across the capital-

producing sectors satisfy:

nmj/nmi =
³
ξmj

/ξmi

´µ ¡
Ami/Amj

¢1−µ
; ∀i, j = 1, .., κ (38)

ṅmj

nmj

− ṅmi

nmi

= (1− µ)
³
γmi
− γmj

´
; ∀i, j = 1, .., κ (39)

If µ = 1 (G is Cobb-Douglas), then the relative employment shares across capital-

producing sectors remain constant over time. If µ > 1 (< 1) , then more productive

capital-producing sectors increase (decrease) their employment share over time.

Comparing the new results to the results derived for consumption sectors in the

baseline model, the Am of the baseline model is replaced by GmjAmj , where Gmj

denotes the marginal product and Amj
denotes TFP of capital good mj. This term

measures the rate of return to capital in the jth capital-producing sector, which is

equal across all κ sectors because of the free mobility of capital. Defining Am ≡
Gm1Am1 we derive the growth rate:

γm =
Pκ

j=1 ζjγmj
; ζj ≡ ξµmj

A(µ−1)mj
/
¡Pκ

i=1 ξ
µ
mi
A(µ−1)mi

¢
, (40)

which is a weighted average of TFP growth rates in all capital-producing sectors. The

dynamic equations for c and k are the same as in the baseline model, given the new

definition of γm.

If TFP growth rates are equal across all capital-producing sectors, c and k grow

at a common rate in the steady state. But then all capital producing sectors can be

aggregated into one, and the model reduces to one with a single capital-producing

sector. If TFP growth rates are different across the capital-producing sectors and

µ 6= 1, there is structural change within the capital-producing sectors along the

transition to the asymptotic state. Asymptotically, only one capital-producing sector

remains. In the asymptotic state, c and k again grow at common rate, so there exists

an asymptotic aggregate balanced growth path with only one capital-producing sector.

A necessary and sufficient condition for the coexistence of an aggregate balanced

growth path and multiple capital-producing sectors with different TFP growth rates
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is µ = 1. The aggregate growth rate in this case is γm/ (1− α) and (40) implies

γm =
Pκ

j=1 ξmj
γmj

. Using (38), the relative employment shares across capital-

producing sectors are equal to their relative input shares in G. There is no structural

change within the capital producing sectors, their relative employment shares remain-

ing constant independently of their TFP growth rates.

The extended model with ε < 1 and µ = 1 has clear contrasting predictions about

the relation between the dynamics of sectoral employment shares and TFP growth

(or relative prices). Sectors that produce primarily consumption goods should exhibit

a well-defined linear relation between their employment share growth and their TFP

growth rate; sectors that produce many intermediate goods should still have a positive

linear relation, but less well-defined, and sectors that produce primarily capital goods

should exhibit no linear relation at all between their employment share growth and

their relative TFP growth rate.13

7 Conclusion

We have shown that predicted sectoral change that is consistent with the facts re-

quires low substitutability between the final goods produced by each sector. Balanced

aggregate growth requires in addition a logarithmic intertemporal utility function.

Underlying the balanced aggregate growth there is a shift of employment away from

sectors with high rate of technological progress towards sectors with low growth, and

eventually, in the limit, all employment converges to only two sectors, the sector pro-

ducing capital goods and the sector with the lowest rate of productivity growth. If

the economy also produces intermediate goods the sectors that produce these goods

also retain some employment in the limit, for similar reasons.

Our results are consistent with the observation of simultaneous growth in the rela-

tive prices and employment shares of stagnant sectors such as personal services, with

the near-constancy of real consumption shares when compared with nominal shares,

and with the long-run evidence of Kuznets (1966) and Maddison (1980) concerning

the decline of agriculture’s employment share, the rise and then fall of the manufac-

turing share and the rise in service share.14 The key requirement for these results

13Preliminary tests reported in Ngai&Pissarides (2004) confirm their ranking.
14Kuznets (1966) documented structural change for 13 OECD countries and the USSR between

1800 and 1960 and Maddison (1980) documented the same pattern for 16 OECD countries from
1870 to 1987. They both found a pattern with the same general features as the predictions that we
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is again a low substitutability between final goods. Of course, at a finer sector de-

composition the elasticity of substitution between two goods may reasonably exceed

unity; as for example between the output of the sector producing typewriters and the

output of the sector producing word processors. Our model in this case predicts that

labor would move from the sector with low TFP growth to the one with the high TFP

growth. The approach that we suggested for intermediate and many capital goods,

namely the existence of subsectors that produce an aggregate that enters the utility

function is an obvious approach to the analysis of these cases. Within the subsectors

there is structural change towards the high TFP goods but between the aggregates

the flow is from high to low TFP sectors.

We have not undertaken a full empirical test of our model because there are still

many features of the data that need to be modeled, as for example, barriers to factor

mobility that slow down adjustment, changes in labor supply and trade.15 However,

our baseline model appears to be consistent with the broad facts of growth and

structural change, respectively known sometimes as the Kaldor and Kuznets stylized

facts of growth.
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Appendix: Proofs

Lemma 6 Equations (2), (5) and (7) imply equation (8).

Proof. Define f (k) ≡ F (k, 1) , omitting subscript i, (7) implies FK = Af 0 (k) and

FN = A [f (k)− kf 0 (k)] . So FN/FK = f (k) /f 0 (k) − k, which is strictly increasing in

k. Hence, (5) implies ki = km ∀i 6= m, and together with (2), results follow.

Lemma 7 ∀i 6= m, ni satisfy (13) and (18), and nm satisfy (14), and (19).

Proof. ni follows from substituting F i into (10) , and nm is derived from (2) . Given

ẋi/xi = (1− ε) (γm − γi) and Ẋ =
Pm

i=1 ẋi = (1− ε) (γm − γ̄)X, result follows for

ṅi/ni, i 6= m. Using (2) , ṅm = −
P

i6=m ṅi, so

ṅm = −c/̇y
c/y

(1− nm)− (1− ε)

µ
c/y

X

¶P
i6=m xi (γ̄ − γi)

=
c/̇y

c/y

µ
c/y

X
− c

y

¶
+ (1− ε)

µ
c/y

X

¶
(γ̄ − γm) ,

so result follows for ṅm.

Proposition 3. Proof. Use (2) and (8) to rewrite (4) as k̇/k = Amk
α−1(1−

P
i6=m ni)−

cm/k − (δ + ν) . But pi = Am/Ai and by the definition of c, k̇/k = Amk
α−1 − c/k −

(δ + ν) . Next, φ is homogenous of degree one: φ =
Pm

i=1 φici =
Pm

i=1 piciφm = φmc.

But φm = ωm (φ/cm)
1/ε and c = cmX, thus φm = ω

ε/(ε−1)
m X1/(ε−1) and vm = φ−θφm =³

ω
ε/(ε−1)
m X1/(ε−1)

´1−θ
c−θ, so (6) becomes (23).

21



Lemma 8 dγ̄/dt ≶ 0⇔ ε ≶ 1.

Proof. Totally differentiating γ̄ as defined in Proposition 3

dγ̄/dt =
Pm

i=1 (xi/X) γi (ẋi/xi −
Pm

i=1 ẋj/X)

= (1− ε)
Pm

i=1 (xi/X) γi
£
γm − γi −

Pm
i=1 (xi/X)

¡
γm − γj

¢¤
= (1− ε)

¡
γ̄2 −

Pm
i=1 (xi/X) γ

2
i

¢
= −(1− ε)

Pm
i=1 (xi/X) (γi − γ̄)2.

Since the summation term is always positive the result follows.

Proof of Proposition 5

Lemma 9 Along the aggregate balanced growth path (ABGP), if ε ≶ 1, ni is non-monotonic
if and only if γ̄0 ≷ γi, ∀i 6= m. The non-monotonic ni first increases at a decreasing rate

for t < ti, then decreases and converges to constant n∗i asymptotically, where ti is such that

γ̄ti = γi. The monotonic ni are decreasing and converge to zero asymptotically. Moreover,

define sector s and f such that γs = min {γi}i=1,.,m and γf = max {γi}i=1,..,m. , then

ts (tf)→∞ if ε < (>) 1.

Proof. ∀i 6= m, Lemma 7 implies along the ABGP, ṅi/ni = (1− ε) (γ̄t − γi) > 0 if

and only if γ̄t > γi. Lemma 8 implies ni eventually decreases. So ni is non-monotonic if

and only if γ̄0 > γi.

To establish Proposition 5, assume, without loss of generality, ε < 1, γ1 > ... > γm−1
and γm > γm−1. Define sector h s.t. γm < γh ≤ γ̄0 < γh+1 where 1 < h < m − 1. We
first prove the results hold along the ABGP. Lemma 9 implies ti = 0 ∀i ≤ h, and i ∈ E0

∀i ≥ h, moreover, Eth+1 ∪ {h+ 1} = E0 and Dth+1 = D0 ∪ {h+ 1} , thus Eth+1 ⊆ E0

and D0 ⊆ Dth+1 . Result follows ∀t > 0. Next, we prove that the economy converges

to a two-sector economy asymptotically. Given X/xi =
Pm

i=1 (ωj/ωi)
ε (Ai/Aj)

1−ε , and

Ai/Aj → 0 if and only if γi < γj, so X/xs → 1. So asymptotically, n∗s = ĉek̂
−α
e and

n∗m = 1− n∗s. We now prove the results hold also in the transition to the ABGP from any

small k0. Let z ≡ ce/ke, (25) and (26) (with ψ = 0 and θ = 1) imply:

ż/z = (α− 1) kα−1e + z − ρ, k̇e/ke = kα−1e − z − (δ + ν + gm) .

A phase diagram can be drawn with ż < 0 along the transition. For c/y, we have:

c/̇y

c/y
=

ċe
ce
− α

k̇e
ke
= αz − ρ− (1− α) (δ + ν + gm) .
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Since c/̇y = 0 along the ABGP but ż < 0 in the transition, thus c/̇y > 0 and c/̈y < 0 in

the transition. ∀t, ∀i 6= m,

ṅi/ni = αz − ρ− (1− α) (δ + ν + gm) + (1− ε) (γ̄ − γi) ,

which decreases in the transition given lemma 8 and ż < 0. Thus, given any small k0, if

i ∈ E0 then ṅi > 0, n̈i < 0, and if i 6= s, i ∈ Et ∀t < ti, and i ∈ Dt ∀t ≥ ti, where ti is

defined in Lemma 9. If i ∈ D0, then i ∈ Dt ∀t. So Lemma 9 holds in the transition.

Intermediate goods ∀i, F i ≡ Ainiki
αqβi , α, β ∈ (0, 1) , α+ β < 1. We have

Fm = cm + hm + (δ + ν) k + k̇, (KA)

and F i = ci + hi,∀i 6= m. The planner’s problem is similar to the baseline with (KA)

replacing (4), {hi, ci, qi}i=1,..,m as additional controls and
Pm

i=1 niqi = Φ (h1, .., hm) as an

additional constraint, where Φ is homogenous of degree one, Φi > 0 and Φii < 0. The

static efficiency conditions are:

vi/vm = Fm
K /F i

N = Fm
N /F i

N = Fm
Q /F i

Q = Φi/Φm; ∀i, (SE)

which implies ki = k, qi = Φ, pi = Am/Ai, ∀i, y = Amk
αΦβ, and

Φ =
Pm

i=1Φihi =
Pm

i=1Φmpihi = Φmh, where h ≡
Pm

i=1 pihi. Optimal conditions for hm
and qm imply βΦmAmk

αΦβ−1 = 1, so h = βy and (KA) becomes

k̇ = Amk
αΦβ

³
1−

P
i6=m ni

´
− hm − cm − (δ + ν) k = h (1− β) /β − c − (δ + ν) k.

The dynamic efficiency condition is −v̇m/vm = αAmk
α−1Φβ − (δ + ρ+ ν) , so

ċ/c = αh/ (βk)− (δ + ρ+ ν) , k̇/k = (1− β)h/ (βk)− c/k − (δ + ν) . (DE)

Constant ċ/c requires constant h/k and constant k̇/k requires constant c/k. Thus, ḣ/h

must be constant. To derive constant ḣ/h, consider a CES Φ =
³Pm

i=1 ϕih
(η−1)/η
i

´η/(η−1)
,

then (SE) imply

pihi/hm = (ϕi/ϕm)
η (Am/Ai)

1−η ≡ zi, ∀i. (zi)

So h = Zhm, Φm = ϕ
η/(η−1)
m Z1/(η−1), and Φ =

³
βAmk

αϕ
η/(η−1)
m Z1/(η−1)

´1/(1−β)
, where

Z ≡
Pm

i=1 zi. Hence, h = Φ/Φm = (βAmk
α)1/(1−β)

³
ϕ
η/(η−1)
m Z1/(η−1)

´β/(1−β)
, and so

(1− β) ḣ/h =
³
γm + αk̇/k

´
+ β (

Pm
i=1 (zi/Z) γi − γm) ,
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which is constant if
Pm

i=1 ziγi is constant. Given γi are not the same across all i, using

(zi), constancy requires η = 1, and so Φ =
Qm

i=1 h
ϕi
i , Z = 1/ϕm, and zi = ϕi/ϕm, ∀i.

(SE) imply Φ = hm
Qm

i=1 (ziAi/Am)
ϕi and so Φm = ϕmΦ/hm =

Qm
i=1 (ϕiAi/Am)

ϕi . But

Φ = [βAmk
αΦm]

1/(1−β) , so h = Φ/Φm = (βAmk
α)1/(1−β)Φ

β/(1−β)
m . (DE) becomes:

ċ/c+ δ + ρ+ ν = αAkα/(1−β)−1; k̇ + c+ (δ + ν) k = (1− β)Akα/(1−β),

where A ≡
h
Am (βΦm)

β
i1/(1−β)

. Define ce ≡ cA−(1−β)/(1−α−β), ke ≡ kA−(1−β)/(1−α−β),

and γ ≡ Ȧ/A = [γm + β
Pm

i=1 ϕi (γi − γm)] / (1− β) = γm + (β
Pm

i=1 ϕiγi) / (1− β) ,

ċe/ce = αkα/(1−β)−1e − (δ + ρ+ ν + g) ; k̇e = (1− β) kα/(1−β)e − ce− (δ + ν + g) ke,

which imply existence and uniqueness of an ABGP. The growth rate is

g ≡ (1− β) γ/ (1− α− β) = (γm + β
Pm

i=1 ϕiγi) / (1− α− β). We obtain ni using

F i = ci + hi, ∀i 6= m, i.e. Ainik
αΦβpi = pi (ci + hi) = xicm + zihm = cxi/X + ϕih.

Substitute pi and h to obtain niy = cxi/X + ϕiβy, finally obtain (33) and (34).

Many capital-producing sectors ∀j, Fmj ≡ Amjnmjk
α
mj
, which together produce

good m through G =
hPκ

j=1 ξmj
(Fmj)(µ−1)/µ

iµ/(µ−1)
, ξmj

> 0, µ > 0, andPκ
j=1 ξmj

= 1. The planner’s problem is similar to the baseline model with

k̇ = G− cm − (δ + ν) k replacing (4), and
¡
kmj

, nmj

¢
j=1,.,κ

as additional controls.

The static efficiency conditions are F i
K/F

i
N = F

mj

K /F
mj

N , ∀i 6= m, ∀j,
so ki = kmj = k. Also Gmj/Gmi = Fmi

K /F
mj

K = Ami/Amj , ∀i, j, which implies

nmj/nmi =
³
ξmj

/ξmi

´µ ¡
Ami/Amj

¢1−µ
and grows at rate (1− µ)

¡
γmi
− γmj

¢
.

Let nm ≡
Pκ

j=1 nmj , we have nm = nm1

Pκ
j=1

³
ξmj

/ξm1

´µ ¡
Am1/Amj

¢1−µ
.

Next, pi = vi/vm = Am/Ai, ∀i 6= m, where Am ≡ Gm1Am1. Thus, ni/nj and pi/pj

are the same as in the baseline.

To derive the aggregate equilibrium, note that G =
Pκ

j=1 F
mjGmj = Amk

αnm, so

ċ/c and k̇/k are the same as the baseline, so the equilibrium is the same as the baseline

if γm ≡ Ȧm/Am is constant, which we now derive. Given Gm1 = ξm1
(G/Fm1)1/µ and

G/Fm1 =
hPκ

j=1 ξmj

¡
Amjnmj/ (Am1nm1)

¢(µ−1)/µiµ/(µ−1)
, using the result on nmj/nm1

we have G/Fm1 =
hPκ

j=1 ξ
µ
mj

¡
ξm1

Am1

¢1−µ
A
(µ−1)
mj

iµ/(µ−1)
, thus Am = Gm1Am1 =hPκ

j=1 ξ
µ
mj
A
(µ−1)
mj

i1/(µ−1)
and γm =

Pκ
j=1 ζjγmj

, where ζj ≡ ξµmj
A
(µ−1)
mj /

³Pκ
j=1 ξ

µ
mj
A
(µ−1)
mj

´
.

So γm is constant if (µ− 1)
Pκ

j=1 ζj

³
γmj
− γm

´2
= 0, i.e. if (1) γmi

= γmj
, ∀i, j,
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or (2) µ = 1. If (1) is true, the model reduces to only one capital-producing sector.

Thus, coexistence of multiple capital-producing sectors and an ABGP requires (2), i.e.,

G =
Qκ

j=1 (F
mj)ξj and γm =

Pκ
j=1 ξmj

γmj
.
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