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We address the estimation of sample selection and endogenous treatment models with 

social interactions. To model the interaction between individuals in an internally consistent 

matter we employ a game theoretic approach based on the use of a discrete Bayesian 

game. We overcome the substantial computational burden this introduces through a 

sequential version of the nested fixed point algorithm. We describe how our methodology 

can be applied to a large class of commonly employed models. We employ our approach to 

examine the impact of an individual’s frequency of exercise on her level of self esteem in a 

setting where an individual’s exercise frequency is treated as endogenous and is potentially 

influenced by her belief of her friends’ exercise frequency.
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1 Introduction

Several methodological papers by James Heckman (see, for example Heckman, 1974,
1978, 1979) on the estimation of sample selection and endogenous treatment models
have been greatly influential in both the theoretical and empirical microeconometrics
literatures. The former includes extensions of the original estimators via the
relaxation of distributional and parametric assumptions, incorporating alternative
selection/treatment rules, employing various identification schemes, the capacity to
estimate models with categorical outcome dependent variables, and the adaption of
the estimators to a large range of data structures (see, for example, Manski, 1990, Das,
Newey, and Vella, 2003, Honoré and Hu, 2020). A feature of these methodological
extensions is their focus on statistical rather than economic considerations. One
economic aspect which has been largely ignored but merits attention is the inherent
equilibrium and peer effects, capturing the interaction between the individuals whose
behavior is being modelled, operating in the selection or treatment decision. (see,
for example, Manski, 1993, 2000, Brock and Durlauf, 2001a,b, Heckman and Vytlacil,
2007).1

Sample selection and endogenous treatment models feature an equation
characterizing the individual’s treatment decision and equation(s) describing the
outcome for the respective treated and non treated groups. In selection models the
outcomes are generally only observed for the treated.2 The presence of selection
and endogeneity reflects that the unobservables in the treatment equation are not
independent of those in the outcome equation(s) and one cannot consistently estimate
the outcome equation without an explicit consideration of the treatment decision.
While the model can be estimated jointly by maximum likelihood while incorporating
the correlation across equations, the more frequently employed approach in empirical
work is a two step procedure. The first step estimates the treatment equation from
which the appropriate control function(s) are constructed. The second step estimates
the outcome equation(s) with the inclusion of the control function as a conditioning
variable.

An underlying assumption of these models is that the individual’s treatment
decision does not explicitly incorporate his/her expectation of the other agents’
choices. A well known example is the Willis and Rosen (1979) investigation of

1We use the terms “peer effects” and “social interactions” interchangeably.
2To simplify terminology across the range of models we consider we refer to the equation describing

whether the individual decides to participate or be treated as the treatment equation.
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whether individuals optimally invest in college education. Their approach requires the
estimation of separate wage equations for those attending and not attending college
while accounting for the selection bias arising from the non college/college choice.
This requires the first step estimation of the college decision. However, Willis and
Rosen impose that the individual’s expectation of the other individuals’ behavior is
irrelevant. This might be problematic if a determinant of an individual’s college
decision is their belief of their friends’ choices. Moreover, the friends’ choices are likely
to be influenced by their beliefs of their friends’ choices. It seems necessary to account
for this interaction to appropriately control for the correlation between the outcome
and treatment equations.

One challenge in including "social interactions" into the Heckman methodology is
in introducing the interdependence between the agents’ expected behavior into the
treatment decision. This reflects the need to model the interaction between individuals
in an internally consistent matter. We incorporate a game-theoretic approach into
these models to capture the simultaneity of the individuals’ choices when there is a
large number of individuals in a large social network. The associated computational
burden is addressed through a Bayesian game which solves for the simultaneity of
peers’ choices. This is done by projecting individual’s choices onto a potentially large
exogenous space containing the relevant individual’s characteristics, the individual’s
friends’ characteristics, the characteristics of the friends of friends, and so on. We
propose estimation via a sequential version of the fixed point algorithm (see Rust,
1987, Aguirregabiria and Mira, 2007, Lin and Xu, 2017).

We consider two types of estimators which capture agent interaction in the
treatment decision. The first adapts the Heckman (1974) approach and constructs
the appropriate likelihood function to jointly model the treatment and outcome
equations and the correlation in the unobservables across the two equations. The
second corresponds to the Heckman (1979) two step estimator which accounts for the
inherent endogeneity via the appropriate control function from the treatment equation.
The paper contributes to two literatures. First, we use a game theoretic approach
to model how an individual’s choice is affected by his/her belief of his/her friends’
choices in a large class of models. While some of the issues are addressed in Lin
and Xu (2017), Xu (2018), Hu and Lin (2020), this is the first paper to employ them
in the endogenous treatment and sample selection context. Second, we implement
our estimator to examine how an individual’s level of weekly exercise influences their
level of self esteem. This is an important research area given the relationship between
an individual’s self esteem and their mental, physical and economic well being. Our
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empirical investigation establishes that exercise has a positive impact on self esteem
and accounting for its simultaneity increases this estimated impact. Moreover, we find
that an individual’s belief of the exercise frequency of their peers has a statistically
significant impact on their own.

While we cover a large class of models there are four important issues we do not
address. First is the nature of the information available to the agents in forming their
beliefs. By assuming the relevant unobserved information is private, we construct
expectations such that they are uncorrelated with the other unobservables in the
model. However, in many settings there may also be publicly shared unobserved
information. This introduces an additional source of endogeneity which we do not
account for. A second restriction is the large social network which we assume to be
exogenous. This is a strong assumption although it is frequently employed in the social
interactions literature (see, for example, Manski, 1993, Brock and Durlauf, 2001a, Lee,
2007, Bramoullé, Djebbari, and Fortin, 2009, Calvó-Armengol, Patacchini, and Zenou,
2009, Lee, Liu, and Lin, 2010, Goldsmith-Pinkham and Imbens, 2013, Lee, Li, and Lin,
2014). The third issue is the parametric nature of approach. We noted above that
many of the theoretical advances in the sample selection and endogenous treatment
literatures are related to the relaxation of parametric assumptions. While many of these
advances are likely to be applicable we do not pursue them. We introduce and apply
our methodology in a setting which is commonly employed and and well understood.
We delay the extensions to more general structures, in addition to the issues regarding
the exogeneity of the network and the source of information, to future work. Finally,
in the models we consider we only allow for interactions in the treatment decision.
That is, we do not extend our analysis to incorporate social interactions in the outcome
equation. For many of the models we consider the more difficult challenge is to include
them in the treatment choice but we acknowledge there are likely to be many empirical
settings in which they should be included in both the treatment and outcome equations.
We also delay this issue to future research.

The following section outlines the large class of models we cover. Section 3 describes
the explicit manner in which social interactions enter the model and discusses the
employed Bayesian Nash equilibrium concept. Estimation issues are addressed in
Section 4. The empirical investigation of the impact of an individual’s frequency of
physical exercise on their level of self esteem is examined in Section 5. Section 6
concludes. Proofs and simulation evidence are provided in the Appendix.
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2 Model

The models we consider fall into two broad categories. The first correspond to the
endogenous treatment model and have the form:

Y∗i = X′iβO + γDi + ui

Di = 1{Z′iβD + αVi + vi > 0}

Yi = h(Y∗i )

where Y∗i is a latent outcome of a variable of interest with corresponding observed
counterpart Yi obtained via the censoring function h(.); 1{·} is the indicator function
and D is a binary outcome; X and Z are vectors of exogenous variables; the β, γ and
α are parameters; u and v are potentially correlated error terms and Vi is a variable
capturing individual ı́′s belief regarding the treatment choice of i′s friends. We assume
there are n individuals and each has Ni direct friends which also appear in the sample.
The construction of Vi is described below but note it is a known function of the
expectation of the D′js where the individuals denoted with the subscript j are members
of i′s network. The second is the sample selection model:

Y∗i = X′iβO + ui

Di = 1{Z′iβD + αVi + vi > 0}

Yi = h(Y∗i ) ∗Di.

The endogenous treatment model focuses on the estimation of the treatment parameter
γ. The sample selection focuses on the estimation of βO. The econometric challenge
is accounting for the correlation between u and v while constructing Vi. We delay
the explicit discussion of this issue to the following section and first highlight some
popular special cases of the two general models above.

1. Case 1: The generalized Roy model with peer effects in treatment participation:
Yi is observed:

Yi =

 Y∗0i = X′0iβ0 + u0i, if Di = 0
Y∗1i = X′1iβ1 + u1i, if Di = 1

D = 1{Z′iβD + αVi + vi > 0}

2. Case 2: Endogenous treatment model: Yi = Y∗i and outcome variable observed
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for whole sample:

Di = 1{Z′iβD + αVi + vi > 0}

Y∗i = X′iβ + γDi + ui

3. Case 3: Multivariate binary choice with peer effects:3 There are two binary
potential outcome equations:

Di = 1{Z′iβD + αVi + vi > 0}

Yi =

 1{Y∗0i > 0} = 1{X′0iβ0 + u0i > 0}, if Di = 0
1{Y∗1i > 0} = 1{X′1iβ1 + u1i > 0}, if Di = 1

4. Case 4: Bivariate binary choice with peer effects: Yi = 1{Y∗i > 0} is observed and
covariate effects of non-intercept observable characteristics are the same for the
two potential outcome equations:

Di = 1{Z′iβD + αVi + vi > 0}

Yi = 1{X′iβ + γDi + ui > 0}

5. Case 5: Sample selection model: Yi = Y∗i and outcome variable observed for
observations for which Di = 1 :

Y∗i = X′iβ1 + ui

Di = 1{Z′iβD + αVi + vi > 0}

Yi = Y∗i ∗Di

This is a subset of the models we cover noting that in some instances we require
specific normalizations on the error variances for identification. An important
implication of the assumptions that follow is that even in the presence of selection
and/or treatment endogeneity the Vi can be treated as exogenous.

3 Incorporating Social Interactions in the Treatment

Equation

To construct the belief variable Vi we adopt a game theoretic approach. Let Fi j = 1
denote that individual i considers j a friend. We set Fii = 0 by convention and denote
Fi = { j ∈ I : Fi j = 1} as the set of i′s peers. The number of i′s friends is then Ni = #(Fi).
We assume the ui and vi each represent private information only known to agent i. The

3Carrasco (2001) refers to this as the switching probit model.
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remaining sources of information (denoted as I = {Xi,Zi,Fi}i∈I) are treated as public.
This private information assumption is important not only for the construction of the
belief but also has implications for the nature of the endogeneity of the treatment
decision.

We consider an incomplete information structure and a Bayesian game for social
interactions in treatment choices. We follow Manski (2000) to conceptualize individuals
as decision makers endowed with preferences, who form expectations and face
constraints. Individuals make simultaneous treatment choices. With incomplete
information, individuals do not observe the actions of their peers but form a belief
of these choices (see, for example, Brock and Durlauf, 2001a, Lin and Xu, 2017, Xu,
2018, Hu and Lin, 2020). The belief, E(D j|I), rather than the observed choices, D j,
affect i′s decision.4 We then construct the social interactions term, discussed above, as
Vi = 1

Ni

∑
i∈Fi

E(Di|I). This represents a form of summary statistic regarding the belief
of i′s peers which ignores the members’ identities. An advantage of this approach is
that it allows a tractable equilibrium characterization of the simultaneous treatment
choices, while the Bayesian Nash equilibrium (contraction fixed point) facilitates the
estimation of the high dimensional exogenous space.

The use of E(D j|I), rather than the observed choices D j, in the treatment equation
reflects that individuals are simultaneously making decisions and do not see the choices
of the others in the network. The private information assumption implies that the
endogeneity of the peers choices operate through these expectations. This excludes
the influence of unobserved factors which influence both the individual’s and their
peers’ choices. Including the observed choices in the treatment equation implies that
there are unobserved factors which influence both the choices of i in addition to those
of the other network members. This would result in the choices being endogenous
even after the inclusion of Vi. We do not address this issue. Similar approaches and
results can be found in Lin and Xu (2017), Xu (2018), Hu and Lin (2020) for treatments of
large network games. There is a large litereature in theoretical microeconomics which
studies this type of incomplete information game (see, for example, Morris and Shin,
2003, Bergemann and Morris, 2013) and it is also commonly used in the theoretical
econometric literature whose focus is discrete games with incomplete information
structures (see, for example, Aradillas-López, 2010, 2012, 2020, De Paula and Tang,
2012, Wan and Xu, 2014, Lewbel and Tang, 2015).

4The choice variables of peers are endogenous due to the simultaneity in the Bayesian game. The
replacement of D j by E(D j|I) mimics the IV approach of projecting the endogenous variable D j onto the
exogenous space, I.
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3.1 Bayesian Nash Equilibrium Characterization

To proceed with estimation we describe how Vi is generated in an equilibrium setting.
The following assumptions characterize the employed Bayesian Nash Equilibrium
(BNE).

Assumption 1. The error terms ui and vi are independent across individuals and vi follows a
standard normal distribution.

Combining Assumption 1 and the treatment rule equation gives the conditional
choice probability:

P(Di = 1|I) = Φ(Z′iβD + αVi), .i ∈ I.

Vi contains the belief of peers’ treatment decisions and this conditional choice
probability characterizes the Bayesian equilibrium in n simultaneous equations of
P∗ = (P(D1 = 1|I), · · · ,P(Dn = 1|I).

Multiplicity of the game hampers the coherency of econometric models (see Tamer,
2003). When the number of players is small the total number of equilibria is also small
and a partial identification approach enables interval estimation (see, for example,
Tamer, 2003, Chernozhukov, Hong, and Tamer, 2007, Ciliberto and Tamer, 2009, Tamer,
2010, Balat and Han, 2020, Ciliberto, Murry, and Tamer, 2020). When the number of
players is an increasing n, the number of equilibria goes exponentially to infinity and
partial identification is not sufficient or possible for inference. In a large network, data
from one equilibrium is observed even though there are multiple equilibria.

We make the following assumption to establish the uniqueness of the Bayesian
game.

Assumption 2. (i) There exists M > 0 such that 0 < max Ni < M. (ii) The social influence
is moderate; i.e., 0 ≤ α <

√
2π.

Assumption 2 is a sufficient condition to establish the contraction mapping
condition of the BNE and its uniqueness. The upper bound corresponds to the
standard normal distribution. With general CDF and PDF, F(·) and f (·), the upper
bound is 1

supc f (c) . In the large single network, combining Assumptions 1 and 2 implies
another important feature. Namely, the weak dependence of the data which is required
for feasible inference. For more details on the moderate social influence (MSI) and the
uniqueness of the equilibrium, see Brock and Durlauf (2001a), Glaeser and Scheinkman
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(2003), Horst and Scheinkman (2006), Lee, Li, and Lin (2014), Lin and Xu (2017), Xu
(2018), Hu and Lin (2020), Jackson, Lin, and Yu (2020), Lin (2020).

Denote P ≡ (P1, · · · ,Pn)′ as an arbitrary choice probabilities profile and define
Vi(P) ≡ 1

Ni

∑
j∈Fi

P j. Define the best response function

Γi(P) ≡ Φ
(
Z′iβD + αVi(P)

)
. (1)

Let Γ ≡ (Γ1, · · · ,Γn)′.

Proposition 1. When Assumptions 1 and 2 hold, Γ is a contraction mapping in [0, 1]n with
respect to the metric ∆(P,P′) ≡ maxi∈I |Pi −P′i | and there exists a unique BNE in the Bayesian
game.

Proof. See Appendix A. �

The MSI condition further establishes the weak dependence of the conditional
choice probabilities in the social network. The requirement of weak dependence is to
facilitate inference. Denote Nh

i as the subnetwork centering at i and all members are
within social distance of h from i. We allow h to grow to infinity, although at a slower
rate than n. Let Ihi denote the public information of the subnetwork Nh

i .

Proposition 2. When Assumptions 1 and 2 hold, we have the following approximation:

|P(Di = 1|I) − P(Di = 1|Ihi )| → 0

as n→∞.

Proof. See Appendix A. �

We focus on cases 1 and 4 above for illustrative purposes and note that the results
for cases 2 and 3 are straightforward extensions. When the Bayesian game has a unique
equilibrium the conditional choice probabilities, i.e., P(Di = 1|I) are identifiable from
the data. Thus Vi can be treated as observable and the identification results of Case 1-5
follow directly from various treatments of these models (see, for example, Eisenhauer,
Heckman, and Vytlacil, 2015, Heckman, 1974, 1978, 1979, Heckman and Vytlacil, 1999,
2001, 2005, 2007, Lewbel, 2007). We make the following assumptions for identification
of structural parameters and treatment effects parameters.

Assumption 3. (ui, vi) are independent of (Xi,Zi).

Assumption 4. The population mean E|Y| is finite.
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4 Estimation Strategy

We now provide estimation methods for a range of models including the five cases
described above. Although we propose one strategy which involves joint estimation
of the treatment and outcome equations by MLE and another which involves the
sequential estimation of the two equations, the complication for both is the presence
of Vi in the treatment equation. Thus for joint MLE estimation the likelihood function
Ln(θ; P) is for both the treatment and outcome equations while for the sequential
estimator the likelihood function is for the treatment equation. Accordingly we denote
the parameter θ ≡ (θS, θO) where θS is the treatment equation parameter and θO is
the outcome equation parameter. To characterize the correlation between u and v we
assume:

Assumption 5. The error terms u and v are normally distributed with variances σ2
u, σ2

v = 1
and covariance σuv.

Write the pseudo likelihood as Ln(θ; P) ≡ 1
n

∑n
i=1 li(θ,P) where P denotes an arbitrary

choice of the probabilities profile. The associated pseudo social interaction term is
defined as Vi(P) = 1

Ni

∑
j∈Fi

P j. Before we introduce the nested pseudo joint likelihood
method consider the challenges in estimating the model by MLE. The estimator is
given as:

θ̂MLE = arg max
θ∈Θ

Ln(θ; P) s.t. P = Γ(θ,P). (2)

To implement MLE one can employ the nested fixed point algorithm of Rust (1987)
which requires; i) repeated solution of the model for each trial value of the parameters
(for example, for θ̃ in the Newton-Raphson method); ii) solution of fixed points
P̃(θ̃) from the equilibrium, and iii) computation of the likelihood value. The cost
of estimating the model via this algorithm is high or possibly infeasible due to the
large dimension of the equilibrium characterization. Even in the single agent dynamic
discrete choice model (see Aguirregabiria and Mira, 2002) and the dynamic discrete
game with a fixed number of players (see Aguirregabiria and Mira, 2007), there is a
high computational burden of solving fixed points in the nested fixed point algorithm.
It is more computationally intensive here as the dimension of the Bayesian game is
the network size, n, and this is allowed to go to infinity in our asymptotic analysis.
To overcome these issues we define a nested pseudo joint likelihood (NPJL) estimator
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which only solves the model once, with the cost of several outer iterations:

θ̂ = arg max
θ∈Θ

Ln(θ; P) and P = Γ(θS,P). (3)

Implementation of the NPJL method is as follows:

1. Initiation: Conjecture the conditional choice probabilities in the Bayesian Nash
equilibrium and denote these P(0).5 Construct V(0)

i (P(0)) = 1
Ni

∑
j∈Fi

P(0)
j .

2. Iteration: Given V(K)(P(K)), obtain estimate θ̂(K+1) =
(
θ̂(K+1)

S , θ̂(K+1)
O

)
via MLE using

the likelihood Ln(θ,P(K)). Update the choice probabilities in each iteration as:

P(K+1) = Γ
(
θ̂(K+1)

S ,P(K)
)
.

3. Convergence: Iterate until the specified convergent criterion based on ‖P(K)
−

P(K+1)
‖ is satisfied. Denote the K-th estimate as θ̂ and P̂.

We now use a subscript in the choice probabilities profile to denote its dimension,
i.e., P[n]. Denote θ0 as the true parameter. Let:

L0(θ,P[n]) ≡ E
[
li(θ,P[n])

]
,

θ̃0(P[n]) ≡ arg max
θ∈Θ

L0(θ,P[n]),

ψ0(P[n]) ≡ Γ(θ̃0(P[n]),P[n]),

θ̃n(P[n]) ≡ arg max
θ∈Θ

Ln(θ,P[n]),

ψn(P[n]) ≡ Γ(θ̃n(P[n]),P[n]).

Define the population NPJL fixed points set as Λ0n ≡ {(θ,P[n]) ∈ (Θ,Pn) : θ =

θ̃(P[n]),P[n] = ψ0(P[n])} and the NPJL fixed points set of sample size n as Λn ≡ {(θ,P[n]) ∈
(Θ,P[n]) : θ = θ̃n(P[n]),P[n] = ψn(P[n])}. LetN denote a closed neighborhood of (θ0,P∗[n]).
Let Z̃i ≡ (Z′i ,Vi).

To establish the
√

n consistency and asymptotic normality of θ̂ in the treatment
equation we impose the following rank and regularity conditions.

Assumption 6. (i)E(Z̃iZ̃′i) has full rank and E(XiX′i ) has full rank.

Assumption 7. (i) Θ is compact, θ0 is an interior point of Θ, and Pn is a compact and convex
subset of (0, 1)n; (ii) (θ0,P∗[n]) is an isolated population NPJL fixed point; i.e., it is either unique

5These can be obtained, for example, via probit estimation for the selection equation ignoring the
social interactions term.
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or there is an open ball around it that does not contain any other element of Λ0; (iii)
∂2
L0(θ,P∗[n])

∂θ∂θ′

is a nonsingular matrix; (iv) the operator ψ0(P[n]) − P[n] has a nonsingular Jacobian matrix
at P∗[n]; (v) I −

(
∂Γ(θ0;P∗)

∂P

)′
is invertibale for n sufficiently large; (vi) there exist non-singular

matrices V1(θ0) and V2(θ0) such that:

E

[
∂2
L(θ0,P∗)
∂θ∂θ′

+
∂2
L(θ0,P∗)
∂θ∂P′

·

[
I −

(∂Γ(θ0; P∗)
∂P

)′]−1
·
∂Γ(θ0; P∗)
∂θ′

]
→ Ω1(θ0),

E

[
n
∂L(θ0,P∗)

∂θ

∂L(θ0,P∗)
∂θ′

]
→ Ω2(θ0).

Moreover, Ω1(θ0) is negative definite.

Theorem 1. When Assumptions 1 to 6 and Assumption 7(i)-(iv) hold, θ̂
p
−→ θ0. When

additionally, Assumption 7 (v) also holds, we have:

√
n(θ̂ − θ0) d

−→ N
(
0,Ω1(θ0)Ω−1

2 (θ0)Ω′1(θ0)
)
.

The proof is similar to that of Hu and Lin (2020) and omitted here.

Remark 1. For cases 1, 2 and 5 we can also implement the estimation by the two-step method.
For brevity we illustrate the Nested pseudo two-step method for case 2.

1. Initiation: Conjecture the conditional choice probabilities P(0) in the Bayesian Nash
equilibrium and construct V(0)(P(0)) = 1

Ni

∑
j∈Fi

P(0)
j ..

2. Iteration: Probit MLE of Di on Zi and V(K)
i (P(K)) to get β̂(K+1)

D and α̂(K+1). Update the
choice probabilities by:

P(K+1) = Γ
(
Z′i β̂

(K+1)
D + α̂(K+1)Vi(P(0))

)
,

3. Convergence: Iterate until the specified convergent criterion based on ‖P(K)
− P(K+1)

‖ is
satisfied. Denote the K-th estimate as β̂D, α̂ and P̂. Construct the generalized residual:

GRi = Di ×

φ
[
Z′i β̂D + α̂Vi(P̂)

]
Φ
[
Z′i β̂D + α̂Vi(P̂)

] + (1 −Di) ×

 −φ
[
Z′i β̂D + α̂Vi(P̂)

]
1 −Φ

[
Z′i β̂D + α̂Vi(P̂)

]
4. Outcome Equation: Least squares regression of Y on X, D and GR to get estimates β̂O,
γ̂ and ρ̂ .

Appendix C provides simulation evidence that the proposed estimators perform
well.6

6The simulations also examine the capacity of the proposed procedures to identify the presence of
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5 Exercise and Self-Esteem

We now investigate the impact of an individual’s frequency of exercise on their level of
self-esteem. Self-esteem is considered an important aspect of quality of life and mental
well-being. Campbell (1984) refers to self-esteem as the "First Law of Human Nature"
and improvement in self esteem is frequently the primary objective in studies of health
intervention. While acknowledging that the process determining an individual’s self
esteem is extremely complicated, empirical evidence suggests that an individual’s level
of physical exercise is considered to be one of its more important determinants (see,
for example, Sonstroem, 1984, Sonstroem and Morgan, 1989, Sonstroem, Harlow, and
Josephs, 1994). This is based on evidence from existing studies utilizing randomized
controlled trials and/or experiments (see, for example, Ekeland, Heian, and Hagen,
2005, Fox, 2000b, Tiggemann and Williamson, 2000). One proposed mechanism is that
exercise affects an individual’s sense of autonomy and personal control over one’s
physical appearance and functioning (Fox, 2000a). A substantial empirical literature is
devoted to exploring the relationship (see, for example, Fox, 2000a, Spence, McGannon,
and Poon, 2005). A challenge in estimating the impact of exercise is that it is likely
to be endogenous to self-esteem. That is, the same unobservable factors are likely to
determine both and it is possible that causation runs in both directions (see Furnham,
Badmin, and Sneade, 2002, Strelan, Mehaffey, and Tiggemann, 2003).

To examine this relationship we estimate the following model:

Sel f -Esteemi = X′iβO + γExercisei + ui

Exercisei = 1{X′iβS + αVi + vi > 0}

where Exercise is measured by an indicator function denoting that the individual’s
level of weekly exercise is above some specified frequency threshold; Sel f -Esteem is
a measure of self reported self-esteem described below; the X′s denote a vector of
exogenous explanatory variables and the V denotes the network effect. The primary
parameter of interest is the treatment effect γ.

An important aspect of this relationship which has been ignored in this literature is
the role of peer effects. An individual’s exercise frequency is likely to be influenced by
their expectation of that of their friends’. This may capture peer pressure, other forms
of motivation, or simply the capacity to participate in exercise which requires multiple
participants. The impact of these peer effects is captured by the parameter α. As the

selection and/or endogeneity and the bias which arises if the observed value of D′js, are mistakenly
employed.

13



level of Exercise reflects an individual choice it is likely that it jointly determined with
Sel f -Esteem. Thus it is necessary to accommodate both this simultaneity and the joint
determination of the network variable in estimating the treatment effect. Following a
description of the data we estimate the model in two ways. As the Exercise variable
is an endogenous binary treatment we first estimate a model where the self esteem
variable is treated as a continuous outcome. We then consider a empirical model
where Sel f -Esteem is treated as a binary outcome denoting the individual is above or
below some level on the continuous measure. Although each of the models are reliant
on the same distributional assumptions we estimate both to illustrate the applicability
of our approach.

5.1 Data

We examine data from the Wave I of National Longitudinal Study of Adolescent Health (Add
Health) dataset which was conducted in 1994-1995 and surveys students in grades 7-12
from sample of representative schools. The survey collects information on a number of
student characteristics including academic performance, health conditions and socio-
economic demographic variables. The survey asks each student to list as many as five
best female and five best male friends. We construct the friendship network using
these responses.

Our measure of self-esteem measure is constructed using six items in the Add Health
dataset based on the Rosenberg (2015) self-esteem scale. These questions ask students
to state their level of agreement with the following six statements regarding their self-
perception or self-worth: i) “You have a lot of good qualities”; ii) “You have a lot to
be proud of”; iii) “You like yourself just the way you are”; iv) “You feel like you are
doing everything just about right”; v) “You feel socially accepted”; and vi) “You feel
loved and wanted”. The permitted responses are “strongly agree”, “agree”, “neither
agree nor disagree”, “disagree”, and “strongly disagree” and each answer is coded 0- 4
with the higher score indicating greater self-esteem. This produces a self-esteem scale
ranges from 0 to 24.

The exercise variable is constructed using responses to the question “How many
times in a normal week to you work, play, or exercise hard enough to make you sweat
and breathe heavily?”. The possible responses are: i) “never”; ii) “1 or 2 times”; iii)
“3 to 5 times”; iv) “6 or 7 times”; and v) “more than 7 times”. We initially define the
exercise variable as an indicator function taking the value 1 if the individual responds
either “6 or 7 times” or “more than 7 times” and zero otherwise. We employ this
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definition to create a binary treatment variable.7

Table 1 provides the summary statistics of variables we employ in our empirical
investigation. A small majority of the sample is female and over sixty percent are
white. The self esteem variable has a mean of nearly 19 indicating an average response
of "agree" to the various statements. The mean is reassuring and the first quartile of the
distribution of responses is 17 indicating a large fraction in this sample reporting levels
of self-esteem above the mean. However there are many individuals reporting a very
low value of self esteem. The exercise variable has an average value of .4 indicating
that 40 percent of the sample exercises at least 6 times a week. This may appear high
but as the sample comprises adolescents at high school it is not surprising.

5.2 Main Results

We begin by regressing the continuous measure of Sel f -Esteem on the binary exercise
variable and a number of background variables such as the individual’s GPA, the
individual’s age and gender, family income, and a self reported intelligence measure.
These results are reported in Table 2 and show that a number of the regressors have a
statistically significant impact on the level of Sel f -Esteem. We delay a discussion of the
impact of these other regressors until we determine the preferred specification. The
estimate of the impact of exercise in this model is .733. The estimate is statistically
significant but surprisingly small in magnitude. Given the construction of Sel f -Esteem
this corresponds to less than the difference in the level of response to one sub-questions.

We now estimate the model accounting for the possible endogeneity and the
presence of peer effects. We estimate the model by joint MLE and the two step approach
which requires the construction and use of the control function. We include the same
variables in the exercise equation noting the model is identified by the inclusion of the
peer effects variable which is a function of the X′s of the other members in the network.
We estimate the Exercise equation both separately and jointly with the Sel f -Esteem
equation. We only discuss the results for the joint MLE estimation of the Exercise
equation, in Table 5, noting that the estimates for the separate estimation, reported in
Table 3, are almost identical.

A number of features of the estimates from the Exercise equation are of interest
as several of the explanatory variables are statistically significant. Exercise decreases

7We acknowledge that this choice is arbitrary. As the variable is also employed in constructing
the network variable it is also of interest to examine the impact of choosing other threshold values.
This would then estimate the impact of different peer effects and alternative exercise treatments on self
esteem. Although we do not report the results here an initial investigation revealed that at low levels of
frequency there is neither a peer effect nor an exercise effect.
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with age although there is not a great deal of variation in age across individuals in
our sample. Females exercise less and students who respond that they are white
exercise more. The estimated female effect seems large. Higher GPA and family
incomes increase the probability that the individual exercises more than 5 times a
week. The most interesting coefficient is that associated with the expected behavior
of the individual’s peers. As the coefficient value is .172, and mean and the standard
deviation of this variable are 0.205 and 0.225 respectively, the impact on the probability
of exercising more than 5 times a week is not small given that each individual nominates
10 friends. The marginal impact of going from the lowest to highest value of V is to
increase the probability of exercise from .397 to .438. This is not surprising given the
various different ways such an effect is likely to occur. Moreover, the coefficient is
statistically different from zero at conventional testing levels. Note that the magnitude
of the marginal effect is consistent with our assumption 2 regarding the level of social
influence.

We now focus on the estimation of the Sel f -Esteem equation. Table 4 reports the
results from two step estimation of the model in which the generalized residual from
the Exercise equation is included as an additional regressor. A number of coefficients
are of interest but we limit attention to those associated with the exercise variable
and the generalized residual. The Exercise coefficient has now increased to 4.686 and
continues to be statistically significant. This not only represents a large increase in
comparison to the unadjusted OLS estimate but also represents a very large impact of
frequency of exercise on an individual’s self esteem. The cause of this large increase
is the large coefficient on the generalized residual. This coefficient is also statistically
significant providing clear evidence of endogeneity. The coefficient value of -2.472
indicates that the unobservables which increase the probability of exercising more
than 5 times weekly are negatively correlated with one’s level of self esteem. While
the coefficient on the Exercise variable appears high it does seem consistent with
previous findings (see, for example Furnham, Badmin, and Sneade, 2002). The negative
correlation between the unobservables appears reasonable although the direction of
this relationship appears to be an empirical matter given the variety of mechanisms
and factors which may be generating it.

We also estimated the treatment and outcome equations jointly by MLE and
the results for the outcome equation from this procedure are in Table 6. They
are generally similar to the two step procedure although there are some notable
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exceptions.8 The exercise coefficient is 2.357 and is statistically significant at the 5
percent level. Although this is half the value of that for the two step procedure the
impact continues to be large and indicates that exercise has a substantial impact on
an individual’s level of self esteem. The statistically significant negative estimate of
the correlation coefficient supports the presence of endogeneity and suggests that the
unobservables are negatively correlated across equations. This is consistent with the
two step estimates.

In addition to the magnitude of the Exercise coefficient there are other notable
differences across the two sets of estimates. The most remarkable difference is the
larger and statistically significant effect for the female variable. The estimates from
the joint MLE procedure are generally more similar to the unadjusted OLS estimates
although the exercise effect is much larger for the joint MLE estimates. While we do
not test it formally it is possible that the two adjusted estimates are not statistically
different. Although it is beyond the scope of this paper to investigate this issue, it is
possible that the joint MLE procedure’s heavier reliance on normality is responsible
for the difference across the estimates.

Given the somewhat arbitrary metric imposed on the self esteem variable, and to
also illustrate the applicability of our proposed procedure, we conclude the empirical
investigation by re-estimating the model by bivariate probit after constructing a binary
self esteem outcome variable which indicates that the individual is above the mean
sample value of the continuous measure. The estimates from this procedure support
those from based on the continuous measure. That is, exercising more than 5 times a
week has a large and statistically significant impact on self esteem and there is clear
evidence of endogeneity with a negative relationship between the unobservables. This
conclusion is based on the coefficient on the exercise variable of 1.275 and an estimate
of the correlation measure of -.679. The estimated average treatment effect is .467.

6 Conclusion

We provide a methodology to incorporate the presence of social interactions in a large
class of models which estimate endogenous treatment effects or parameters in the
presence of sample selection bias. We do so by adapting several of the estimators
inspired by the seminal work of Heckman to incorporate a role for the individual’s
peers’ treatment choices on their own and vice versa. This is done by incorporating

8The mean and standard deviation of V from this model are 0.202 and 0.222 respectively. Thus they
are very similar to those from estimating the model jointly.
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a game-theoretic approach via a discrete Bayesian game into these models to capture
the simultaneity of individuals choices in the treatment equation. Accounting for the
implicit interaction between choices introduces a computational burden in estimation
which we address via a nested pseudo joint likelihood (NPJL) estimator. We describe
how the procedure can be applied to a large number of models which are frequently
employed in empirical work. Our estimator represents the first procedure to tackle
these issues in the presence of social interactions and is likely to be applicable to a large
number of settings. We provide simulation evidence that the estimators perform well
in terms of the capacity to accurately estimate the parameters of interest and identify
selection bias and endogeneity. We also apply our procedure to estimate the impact of
an individual’s level of exercise on their self esteem. We find that an individual’s level
of exercise is influenced by their expectation of their peer’s exercise activity. Moreover,
our procedure provides statistical evidence that exercise is endogenous to self esteem
and that accounting for this endogeneity increases the impact of exercise on self esteem.
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Appendix A Proofs

Proof of Proposition 1. Start with any P,P′ ∈ [0, 1]n and let P̃ = Γ(P) and P̃′ = Γ(P′). For
every i ∈ I, it follows that

|P̃i − P̃′i | = |Φ[Z′iβD + αVi(P)] −Φ[Z′iβD + αVi(P′)]|

= φ[Z′iβD + αVi(P̄)]| ·
∣∣∣∣α 1

Ni

∑
j∈Fi

(P j − P′j)
∣∣∣∣

≤
1
√

2π
α ·max

j∈Fi
|P j − P′j|

< max
j∈I
|P j − P′j|

where P̄ = (P̄1, · · · , P̄n) is between P and P′. Taking maximization over I on the left
hand side, we obtain:

max
i∈I
|P̃i − P̃′i | < max

j∈I
|P j − P′j|

which is a contraction. By the contraction mapping theorem, there exists a unique
fixed point for Γ in [0, 1]n , say P∗. So P∗ = Γ(P∗). Since P = Γ(P) if and only if P describes
an equilibrium, P∗ is the unique equilibrium of the Bayesian game. The proof takes a
very conservative expansion of terms and the violation of MSI assumption does not
necessarily cause multiple equilibria. �

Proof of Proposition 2. Denote P∗i = P(Di = 1|I) and Pi = P(Di = 1|Ihi ). For every j ∈ Nh
i ,

by the mean value theorem, it follows that:

|P∗j − P j| = φ[Z′jβD + αV j(P̃)] · α ·

∣∣∣∣∣∣∣∣ 1
N j

∑
j′∈F j

(P∗j′ − P j′)

∣∣∣∣∣∣∣∣
≤ φ[Z′jβD + αV j(P̃)] · α ·

∣∣∣∣∣∣max
j′∈F j

(P∗j′ − P j′)

∣∣∣∣∣∣
where P̃ is some real number between P∗ and P. Because for every j ∈ Nh−1

i , any
influencer j′ of j belongs to Nh

i , it follows that:

|P∗j′ − P j′ | ≤ φ[Z′j′βD + αV j′(P̃)] · α · max
j′′∈F j′ , j′∈F j

|(P∗j′′ − P j′′)|

By induction, for any q ≤ h, it follows that:

max
j∈F(i,h−q)

|P∗j − P j| ≤ φ[Z jβD + αV j(P̃)] · αq+1
· 1.

Since i ∈ N0
i , we have:

22



|P∗i − Pi| ≤
αh+1

√
2π
→ 0

as h→∞ by Assumption 2 (ii).
�

Appendix B Tables

Table 1: Statistic Summary of Variables
Variable Mean Standard Deviation

Age 15.638 1.635
Female 0.525 0.518

GPA 2.834 0.797
Intelligence (1&2) 0.048 0.214
Intelligence (3&4) 0.589 0.492
Intelligence (5&6) 0.363 0.481

White 0.619 0.486
Family Income 0.049 0.055

Exercise 0.408 0.491
Self-Esteem 18.763 3.559

Table 2: OLS Estimation of Self-Esteem (Continuous Self-Esteem)
Variable Estimate Standard Error

Age -0.106** 0.022
Female -0.832** 0.073

GPA 0.133** 0.049
Intelligence (3&4) 0.910 0.172
Intelligence (5&6) 2.042 0.179

White -0.224** 0.76
Family Income -0.287 0.667

Exercise 0.733** 0.077
Intercept 19.064** 0.421

**: 5% Significance; *: 10% Significance
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Table 3: Exercise Equation with Peer Effects
Variable Estimate Standard Error

Age -0.109** 0.009
Female -0.665** 0.028

GPA 0.049** 0.019
Intelligence (3&4) 0.030 0.066
Intelligence (5&6) 0.092 0.068

White 0.228** 0.029
Family Income 0.671** 0.253

Intercept 1.375** 0.159
Peer Effects 0.153** 0.062

Table 4: Two-Step Adjusted Self-Esteem Equation (Continuous Self-Esteem)
Variable Estimate Standard Error

Age 0.051 0.057
Female 0.148 0.331

GPA 0.061 0.054
Intelligence (3&4) 0.848** 0.173
Intelligence (5&6) 1.890** 0.186

White -0.559** 0.134
Family Income -1.255* 0.739

Exercise 4.686** 1.306
GR -2.417** 0.797

Intercept 15.030** 1.396

Table 5: Joint MLE Estimation of Exercise Equation with Peer Effects (Continuous
Self-Esteem)

Variable Estimate Standard Error
Age -0.107** 0.009

Female -0.667** 0.027
GPA 0.050** 0.018

Intelligence (3&4) 0.028 0.065
Intelligence (5&6) 0.090 0.068

White 0.228** 0.029
Family Income 0.663** 0.250

Intercept 1.366** 0.159
Peer Effects 0.172** 0.060
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Table 6: Joint MLE Estimation of Self-Esteem Equation (Continuous Self-Esteem)
Variable Estimate Standard Error

Age -0.042 0.031
Female -0.430** 0.153

GPA 0.104** 0.051
Intelligence (3&4) 0.885** 0.177
Intelligence (5&6) 1.980** 0.185

White -0.362** 0.090
Family Income -0.684 0.695

Exercise 2.357** 0.543
Intercept 17.407** 0.697

σ 3.519** 0.061
ρ -0.282** 0.089

Table 7: Joint MLE Estimation of Exercise Equation with Peer Effects (Binary Self-
Esteem)

Variable Estimate Standard Error
Age -0.106** 0.009

Female -0.660** 0.023
GPA 0.049** 0.018

Intelligence (3&4) 0.024 0.064
Intelligence (5&6) 0.085 0.067

White 0.225** 0.029
Family Income 0.660** 0.250

Intercept 1.373** 0.157
Peer Effects 0.149** 0.057

Table 8: Joint MLE Estimation of Self-Esteem Equation (Binary Self-Esteem)
Variable Estimate Standard Error

Age -0.003 0.015
Female 0.076 0.080

GPA -0.014 0.019
Intelligence (3&4) 0.144** 0.063
Intelligence (5&6) 0.480** 0.082

White -0.170** 0.030
Family Income -0.228 0.244

Exercise 1.275** 0.208
Intercept -0.738** 0.307

Dependence -0.679** (-0.877,-0.291)
For the dependence parameter, confidence interval is reported.
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Appendix C Simulation Evidence

We now examine the performance of the proposed both joint MLE and two step
estimators via simulation exercises.

C.1 Endogenous Treatment Model in the Presence of Social

Interactions

Consider the following model:

S : Di = 1
{
βS0 + βS1X1i + βS2X2i + αSVi + εSi > 0

}
, i ∈ I,

O : Yi = βO0 + βO1X1i + βO2X2i + γDi + εOi, i ∈ I,

where Vi ≡
1

Ni

∑
j,i Fi jE(D j|I), X1i is drawn from the standard normal distribution and

X2i is drawn from uniform distribution over [−1, 1]. The X′i s are independent of the
error terms generated as:  εSi

εOi

 ∼ N  0
0

 ,  1 ρ

ρ 1

 .
The parameters are set as βO = (−1, 1,−1), βS = (−0.5, 0.5,−0.5), ρ = 0.6 and γ = 1. We
consider the case that α = 1.9 We generate a random social network of n individuals as
follows. Each individual i has a degree independently drawn from Ni ∈ {0, 1, · · · , 10}
with equal likelihood on each degree. We randomly choose Ni of the other n − 1
individuals as individual’s friends. The network is directed since j can influence i
without requiring (but not precluding) that i influences j. We could simulate alternative
network structures but the one adopted simplifies the data generating process.

The model has a binary outcome for the treatment equation and a continuous
outcome with a constant treatment effect γ. The selection model arises if the outcomes
were only observed for one of the D values. In addition to the non-linearity induced
in the mapping from the conditioning values to the control function the model is also
identified from the inclusion of Vi which is constructed via a non linear mapping
from the X j. As Vi is only a function of exogenous variables there is no issue of
endogeneity of the explanatory variables in the treatment equation. Vi is generated by
the summing over the expected choices (conditional choice probabilities) of individual
i′s friends where these probabilities are solved in the fixed point algorithm with known
parameters in the treatment equation.

9We also investigate the performance of the model with α = 2. The results are qualitatively similar
to those with α = 1.
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We estimate the parameters via joint MLE and the two step estimator. The results
for the two step estimator are reported under the heading Endogenous Treatment 2 step
(ET2S) and we assess estimator performance by an examination of average bias and
mean squared error (MSE). The joint MLE estimator is presented under the heading
Endogenous Treatment MLE (ETML). We also provide the unadjusted OLS estimates of
the outcome equation and the results for the two step estimator which replaces Vi with
ADi ≡

1
Ni

∑
j,i Fi jD j, (i.e. average behavior of i’s peers) in the treatment equation under

the heading Endogenous Treatment AD (ETAD).
We begin with the unadjusted OLS estimates for the outcome equation. Table 9

indicates that the bias for all of the coefficients is large with the bias for the
treatment coefficient almost 100 percent. This indicates that the design is generating
substantial treatment endogeneity. Table 10 reports the bias and MSE for the binary
selection/treatment equation. The ET2S and ETML each perform very well and are
almost identical with respect to the degree of bias. The ETML appears slightly more
efficient. The performance of ETAD is poor and this reflects the endogeneity bias
resulting from the inappropriate replacement of V with AD. Table 11 reports the
performance of the estimation of outcome equations associated with these procedures.
The ET2S estimator shows remarkably little bias even at sample size 200. The ETML
does poorly at the smaller sizes in estimating the treatment effect parameter. At sample
size 800 each of these estimators perform well and again there are signs, suggested by
the MSE, that the ETML is more efficient. Each of the estimators does well in estimating
the parameter associated with the cross equation correlation although there is some
bias in the ETML estimate of ρ at the smaller samples. Somewhat surprisingly the
performance of the ETAD estimator is not as poor as the first step suggested. There
are signs of bias at the smaller samples and while the performance is inferior to the
ET2S and ETML estimators there is relatively little bias at sample size 800. As with all
simulation exercises this reflects the design and does not suggest that V can be replaced
by AD without implications for the accuracy of the second step. Although we do not
explore it here it is likely that an alternative design could be constructed to produce a
worse performance for ETAD.

We also explore the ability of the procedures to identify the presence of selection
of bias. This is conducted via the test of statistical significance that the coefficients for
GR and ρ are different from zero. This test is particularly important as an examination
of Table 9 and Table 11 reveals that the adjusted and unadjusted estimates are very
different. This performance is reported in Table 12. The ET2S and ETML estimators
both do reasonably well in correctly identifying the presence of selection. The ETML
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does particularly well and by sample size 800 it is correctly identifying the presence
of selection in 86 percent of the replications. This compares with 53 percent for the
ET2S. The corresponding test for the ETAD estimator is only identifying selection in
25 percent of the cases at sample size 800. Thus, while the inappropriate use of AD
as a conditioning variable does not result in substantial bias for the outcome equation
the inability to identify selection would result in the appropriate use of the unadjusted
OLS estimates. In addition to incorrect inference in the first step the use of AD may
lead to incorrect inference in the second step.

Table 9: OLS Estimate
n OLS Average Bias

βO γ
200 -0.469 -0.167 0.167 0.978
400 -0.461 -0.162 0.168 0.966
800 -0.465 -0.166 0.168 0.973

OLS MSE
βO γ

200 0.228 0.033 0.041 0.974
400 0.217 0.028 0.034 0.942
800 0.218 0.029 0.031 0.951

Table 10: Selection Equation
n ET2S ETAD ETML

Average Bias
βS αS βS αS βS αS

200 -0.008 0.014 -0.005 0.015 0.289 0.009 0.000 -0.667 -0.016 0.016 -0.007 0.035
400 0.004 0.009 -0.013 -0.007 0.292 0.004 -0.007 -0.667 -0.008 0.01 -0.013 0.02
800 0.003 0.002 0.001 -0.01 0.292 -0.003 0.006 -0.672 -0.002 0.002 0.001 0.002

Mean Squared Error
βS αS βS αS βS αS

200 0.07 0.013 0.031 0.331 0.114 0.013 0.031 0.559 0.069 0.013 0.031 0.329
400 0.035 0.006 0.015 0.162 0.099 0.006 0.015 0.499 0.032 0.006 0.015 0.145
800 0.015 0.003 0.007 0.072 0.092 0.003 0.007 0.478 0.013 0.002 0.007 0.064
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Table 11: Outcome Equation
n ET2S ETAD ETML

Average Bias
βO γ GR βO γ GR βO γ ρ

200 -0.025 -0.011 0.012 0.053 -0.029 -0.098 -0.037 0.037 0.206 -0.127 -0.112 -0.042 0.043 0.235 -0.194
400 0.022 0.011 -0.007 -0.046 0.023 -0.009 -0.001 0.006 0.021 -0.023 -0.059 -0.017 0.021 0.124 -0.093
800 -0.005 -0.002 0.004 0.010 -0.006 -0.021 -0.008 0.01 0.044 -0.032 -0.037 -0.013 0.015 0.077 -0.050

Mean Squared Error
βO γ GR βO γ GR βO γ ρ

200 0.393 0.05 0.066 1.683 0.629 0.602 0.075 0.09 2.609 0.976 0.235 0.032 0.046 1.003 0.227
400 0.161 0.023 0.027 0.697 0.258 0.317 0.040 0.048 1.388 0.515 0.080 0.012 0.017 0.345 0.094
800 0.068 0.010 0.011 0.293 0.109 0.147 0.019 0.021 0.635 0.236 0.030 0.005 0.007 0.124 0.039

Table 12: Detection of Selection Bias
n ET2S ETAD ETML

200 0.175 0.102 0.549
400 0.287 0.166 0.711
800 0.504 0.256 0.862

C.2 Bivariate Probit Model in the Presence of Peer Effects

We now consider estimation of a bivariate probit model with peer effects using a similar
data generating process. The model has the form:

Y1i = 1{β10 + β11X1i + β21X2i + αVi + εSi > 0}

Y2i = 1{β20 + β21X2i + γY1i + εOi > 0}

where X1,X2 ∼N(0, 1) and:  εS

εO

 ∼N  0
0

 ,  1 ρ

ρ 1

 .
We set β1 = (−1, 1, 1), β2 = (−1, 1), ρ = 0.6 and γ = 1 and again consider α = 1. We also
continue to present the performance of the estimator when V is incorrectly replaced
with AD.

Table 13 reports the results in terms of the average bias and the MSE. Our procedure,
using V, is denoted BPV while that employing AD is denoted BPAD. With respect to
the estimation of the parameters in the selection/treatment equation there is very little
difference across procedures. The coefficient α is estimated reasonably accurately with
both procedures. This clearly reflects the high level of correlation between V and AD.
The biggest difference across the procedures is the estimation of the constant term in
the selection equation. The estimation of the outcome equation’s parameters is very
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similar across the two procedures although the inaccurate estimation of the selection
equation constant is also manifested in a biased estimate of the outcome constant.
Table 6 illustrates that both procedures identify endogeneity.

Table 13: Model Estimates
n BPV BPAD

Outcome Selection Outcome Selection
Average Bias

β2 γ β1 α β2 γ β1 α
200 -0.04 0.05 0.05 0.03 -0.02 0.03 0.03 0.13 0.03 0.04 -0.46 -0.02 0.03 0.02
400 -0.01 0.02 0.02 0.00 0.00 0.02 0.00 0.14 0.01 0.01 -0.48 0.00 0.02 0.00
800 0.00 0.01 0.01 -0.02 0.00 0.01 0.00 0.15 0.00 0.00 -0.48 0.00 0.01 0.00

Mean Squared Error
β2 γ β1 α β2 γ β1 α

200 0.06 0.03 0.03 0.37 0.05 0.03 0.19 0.06 0.03 0.03 0.41 0.05 0.03 0.19
400 0.03 0.01 0.01 0.18 0.02 0.02 0.09 0.04 0.01 0.01 0.32 0.02 0.02 0.09
800 0.01 0.01 0.01 0.08 0.01 0.01 0.04 0.03 0.01 0.01 0.28 0.01 0.01 0.04

Table 14: Detection of Selection Bias
n BPV BPAD

200 0.547 0.519
400 0.885 0.873
800 0.995 0.991

The evidence suggests that the estimators work well in the settings we examined. It
also appears that ignoring the process by which the peer effects operate and employing
the observed behavior will frequently lead to incorrect inference.
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