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1 Introduction

It has long been recognized that measurement error is pervasive in applied economic research (e.g.,

Bound, Brown, and Mathiowetz 2001). When a continuous regressor is mis-measured, it is well-

known that standard instrumental variables (IV) estimation will yield a consistent estimate if the

measurement error is “classical,” i.e., uncorrelated with the true regressor. However, the same

approach does not work with a binary regressor because the measurement error associated with a

misclassified binary variable will be negatively correlated with the true regressor. To address this

issue, a number of empirical strategies have been developed to consistently estimate the impact of

a misclassified binary regressor, many of which make use of an instrumental variable (e.g., Card

1996; Kane, Rouse, and Staiger 1999; Black, Berger, and Scott 2000; Frazis and Lowenstein 2003;

Mahajan 2006; Lewbel 2007; Hu 2008; Chen, Hu, and Lewbel 2008a,b; Battistin, De Nadai, and

Sianesi 2014; DiTraglia and Garcia-Jimeno 2019; Calvi, Lewbel, and Tomassi 2017; Yanagi 2019).

A key identifying assumption used in the prior literature is that the conditional probabilities of

misclassifying the binary regressor, or the “misclassification rates,” do not depend upon the value of

the instrumental variable.1 However, this seemingly innocuous assumption is, in fact, rather strong.

For example, in the literature that examines the impact of Medicaid (e.g., Currie and Gruber 1996;

Gross and Notowidigdo 2011), the observed binary indicator for Medicaid eligibility is constructed

(primarily) by determining whether measured household income is below a given threshold (e.g.,

a state-specific threshold that depends on family size) and changes in the threshold across states

and over time are used to construct an instrumental variable. Intuitively, misclassification of

Medicaid eligibility will be driven by those with true income that is relatively close to the eligibility

threshold and, thus, are more likely to have their measured income fall on the wrong side of the

threshold. Since the share of households close to the threshold, and therefore most at risk of being

misclassified, can vary as the threshold moves through the income distribution, the misclassification

rates of Medicaid eligibility can vary across values of the instrumental variable. Consistent with

this intuition, we present evidence from multiple empirical settings illustrating that misclassification

rates vary in this way.

1Specifically, the misclassification rates are the probability of misclassifying the binary regressor conditional on
the true value of the indicator.
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We refer to misclassification rates that vary with the instrumental variable as “varying mis-

classification” in contrast to the standard “fixed misclassification” assumption used in the prior

literature.2 Prior instrumental variables-related solutions that assume fixed misclassification are

inconsistent when binary regressors suffer from varying misclassification. In addition, prior research

has shown that standard IV estimation will overestimate the parameter of interest under the fixed

misclassification assumption and have suggested using the IV estimator as an upper bound (Kane,

Rouse, and Staiger 1999; Black, Berger, and Scott 2000).3 In contrast to this earlier analysis,

standard IV estimation can produce either overestimates or underestimates with varying misclassi-

fication. Because prior estimators are inconsistent and IV estimation does not yield an upper bound

with varying misclassification, it is important to develop new estimation methods that account for

this type of misclassification.

In this paper, we present an estimator that consistently estimates the impact of a misclassified,

binary regressor, even when the misclassification rate varies across instrument values. Identification

requires a discrete instrumental variable that takes on three or more values. Our key identifying

assumption, which we discuss in detail below, places a restriction on the form of the varying

misclassification that is suggested by our empirical examples. It is straightforward to include

covariates in our framework, and we can allow the misclassification rates to vary with the covariates.

We also provide a new lower bound for the impact of the misclassified binary regressor when

instruments are available.

The estimating equations that identify our model can be implemented with Generalized Method

of Moments (GMM). However, the GMM estimator can fail to converge when the instrument is

weak and/or the true impact of the binary indicator is small (i.e., close to zero).4 To address

this concern, we add parameter bounds via inequality constraints to our set of moment conditions.

2Although earlier papers allow misclassification rates to vary with other observable characteristics, they do not
allow the misclassification rates to vary with the instrumental variable. Recent exceptions are Ura (2018) and Yanagi
(2019). Below we show how to extend our results to allow for misclassification that varies both with other observable
characteristics and the instrumental variable.

3Ura (2018) develops an alternative upper bound based on differences in the joint distribution of the outcome
and the misclassified regressor between groups with different values of the instrument. Nguimkeu, Denteh, and
Tchernis (2019) show that the IV estimator will not be an upper bound in the case of endogenous misreporting. The
OLS regression of an outcome on a misclassified binary regressor yields a corresponding lower bound (Aigner 1973;
Bollinger 1996).

4DiTraglia and Garcia-Jimeno (2019) highlight this issue in context of misclassified binary regressors.
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While the methods found in Andrews and Soares (2010) can be applied to construct confidence

sets for the model parameters after including these inequality moments, we apply the method of

Bugni, Canay, and Shi (2017) to construct the marginal confidence set for the parameter on the

binary indicator, which is typically the parameter of interest.

A variety of methodological approaches have been developed to estimate the impact of a mis-

measured binary regressor. Our paper is most closely related to those which point identify the

parameter of interest using an instrumental variable (Frazis and Lowenstein 2003; Mahajan 2006;

Lewbel 2007; Hu 2008; DiTraglia and Garcia-Jimeno 2019); however, these papers require fixed

misclassification. Another set of papers relies on the availability of multiple measures of the mis-

classified treatment (Card 1996; Kane, Rouse, and Staiger 1999; Black, Berger, and Scott 2000;

Battistin, De Nadai, and Sianesi 2014), but still require assumptions analogous to fixed misclassi-

fication. Recent papers require both an instrumental variable and at least one additional variable

which provides information on the measurement error in order to achieve identification (Calvi,

Lewbel, and Tomassi 2017; Yanagi 2019), whereas our approach only requires a single instrumen-

tal variable. Several other papers have utilized restrictions on higher order moments to achieve

identification (e.g., Chen, Hu, and Lewbel 2008a,b; DiTraglia and Garcia-Jimeno 2019), but these

approaches introduce arguably strong assumptions on the distribution of the errors which we are

able to circumvent.5 Finally, we contribute a new lower bound on the parameter of interest, follow-

ing a long tradition in this literature (Aigner 1973; Bollinger 1996; Black, Berger, and Scott 2000;

Kreider et al 2012; Ura 2018).

Two recent papers allow for varying misclassification. Ura (2018) bounds the impact of a mis-

measured treatment allowing for general forms of misclassification. While his main result assumes

that misclassification is independent of the instrument, he also provides an additional result which

allows misclassification to be correlated with the instrument. Yanagi (2019) point identifies the

impact of a mismeasured binary regressor, but requires both an instrumental variable and an ad-

ditional covariate that provides identifying information on the measurement error process. In this

paper we are able to point identify the impact of a mismeasured binary regressor in the presence

of varying misclassification using only a single discrete valued instrument.

5DiTraglia and Garcia-Jimeno (2019) use both an instrumental variable and and higher order moment restrictions.
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The paper is set out as follows. In the next section, we provide motivating empirical examples

to illustrate the importance of allowing for misclassification rates to vary with the instrumental

variable. We then develop our main theoretical result. After discussing model estimation, we

provide a Monte Carlo simulation study to illustrate our main findings. The final section concludes.

2 Examples of Varying Misclassification

To illustrate the potential importance of varying misclassification, we present examples using mul-

tiple data sources. We first use data from the March 1973 Current Population Survey (CPS) that

is linked both to tax returns filed with the Internal Revenue Service (IRS) (Social Security Admin-

istration 2005).6 The earnings data are for the prior calendar year, 1972. A drawback to the IRS

earnings data is that these are taken directly from tax filings, which only contains a single, combined

earnings measure for all household members. As such, we restrict our sample to men and women

whose marital filing status on their tax return is listed as single and for whom the match between

the CPS and the administrative sources is designated as “good.” We further restrict the analysis

to men and women who report in the CPS that they are privately employed, have positive IRS and

CPS earnings, and have non-imputed CPS earnings. We use the sample weights, which account for

both selection into the CPS as well as the match between the CPS and the administrative records.7

The top panel of Figure 1 shows the probability density function of both (log) administrative

and self-reported earnings in 1972 for our sample of 8,031 single men and women. We treat the

IRS earnings data as the individual’s “true” earnings E∗, and the CPS earnings report as the

mis-measured earnings E that researchers typically have available for their analysis. The two

distributions appear quite similar throughout, with the most noticeable differences occurring in the

middle of the distributions.

For this example, we construct a hypothetical program eligibility measure T ∗, which equals one

for all individuals with true earnings E∗ at or below a threshold c, and equals zero otherwise. At

6The data also contain Social Security (SS) Earnings records. We use the IRS earnings data because the available
SS earnings records are top-coded at the annual ceiling for earnings subject to the SS tax, which censors earnings
for nearly half of privately employed men. The IRS earnings data as well as self-reported earnings in the CPS are
top-coded at $50,000, which affects less than one-half of one percent of privately employed men in the data.

7More details on the CPS linked data and sample selection criteria are provided in Appendix Section A.1.
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the threshold c1, represented by the leftmost vertical line in the top panel of Figure 1, 39.1 percent

of individuals have earnings at or below threshold, and thus are coded as T ∗ = 1.8 Of course,

the researcher will typically only have access to the analogous measure T , which is determined by

whether E is at or below c. With the threshold set a c1, T = 1 for 40.4 percent of individuals.

As we will discuss in detail below, the misclassification rates are key inputs determining the

extent to which standard OLS and IV estimators are biased due to misclassification. These con-

ditional probabilities are defined as α0 = P [T = 1|T ∗ = 0] and α1 = P [T = 0|T ∗ = 1]. When the

threshold is at c1, we calculate that α0 = 0.068 and α1 = 0.072. At c2, the second threshold shown

in the top panel of Figure 1, T ∗ = 1 for 87.2 percent of sample members while T = 1 for 87.7

percent. However, the misclassification rates found at c2, α0 = 0.149 and α1 = 0.016, are markedly

different from those found at c1.

The bottom panel of Figure 1 plots the misclassification rates for numerous values of c, placing

P [T ∗ = 1] on the horizontal axis. Notice that α1 is decreasing in P [T ∗ = 1]. Intuitively, when

a larger fraction of the population is eligible for the program (T ∗ = 1), the share of eligible

individuals who are close to the eligibility threshold is smaller. For analogous reasons, α0 increases

with P [T ∗ = 1].

In a typical program eligibility setting, such as the Medicaid example mentioned in the Intro-

duction, changes in the eligibility threshold are the basis for an instrumental variable. For example,

Currie and Gruber (1996) treat the change in a state’s eligibility threshold as an exogenous source of

variation for the fraction of individuals in the state who have access to program benefits. However,

as with the example shown in Figure 1, the misclassification rates for the observed, binary regres-

sor T will systematically vary as these thresholds change. Such changes in the misclassification

rates run counter to the fixed misclassification assumption needed for consistency of the estimation

methods found in the prior literature.

In addition, the distinction between varying and fixed misclassification has important implica-

tions for interpreting the results from standard IV estimation. The standard IV estimator for the im-

pact of T ∗ on Y when using Z as an instrument is equivalent to COV (Y,Z)/COV (T ∗, Z). If we only

8This threshold, log(c1) = 7.65, is approximately $2,100 which was the poverty line for a single, unrelated indi-
vidual in 1972.
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have access to the mis-measured regressor, T , the standard IV estimator is COV (Y, Z)/COV (T,Z).

Because the numerators of these two quantities are identical, any inconsistency that arises by apply-

ing IV estimation to T instead of T ∗ is due to differences in the denominators of these expressions.

To gain insight into the differences between the denominators of these IV estimators, consider

the case where Z is a binary instrument. In this case, COV (T ∗, Z) = P [T ∗ = 1|Z = 1] − P [T ∗ =

1|Z = 0] and COV (T,Z) = P [T = 1|Z = 1] − P [T = 1|Z = 0]. Thus, the relationship between

the IV estimator with T versus T ∗ is determined by how P [T = 1] changes relative to P [T ∗ = 1]

between the two instrument values.

Figure 2 plots the relationship between P [T = 1] and P [T ∗ = 1] under the assumption of fixed

misclassification (the line labeled “Hypothetical Fixed Misclassification” in the top panel) and for

what is observed in the actual data (the line labeled “Actual P [T = 1]” in the bottom panel).9

For the fixed misclassification case shown in the top panel, the slope of the line is constant and

always less than one (i.e., flatter than the 45 degree line). As such, a given change in a threshold

c will always result in a smaller change in P [T = 1] than the corresponding change in P [T ∗ = 1].10

Thus, when using T instead of T ∗, the standard IV estimator with fixed misclassification will have

a smaller denominator (COV (T,Z) < COV (T ∗, Z)) and therefore will overestimate the impact of

T ∗ on Y .11

However, as we see in the bottom panel of Figure 2, the actual relationship between P [T = 1]

and P [T ∗ = 1] is non-linear. Around P [T ∗ = 1] = 0.5, the slope of this curve is less than one, similar

to what occurs in the fixed misclassification case. On the other hand, at both small and large values

of P [T ∗ = 1], the change in P [T = 1] is larger than the corresponding change in P [T ∗ = 1]. In these

ranges, applying the standard IV estimator to T will underestimate the impact of T ∗ on Y . Thus,

contrary to the received wisdom from the prior literature, IV estimation may either overestimate

or underestimate the true parameter when misclassification varies with the instrument.

We find comparable evidence of varying misclassification if we construct similar hypothetical

9For the hypothetical fixed misclassification case, we use α0 = 0.068 and α1 = 0.072, which are the values
corresponding the c1 threshold shown in Figure 1.

10Since P [T = 1] = α0 + (1 − α0 − α1)P [T ∗ = 1], the slope of this line will be less than one unless T is perfectly
measured. In addition, under the standard assumption that α0 + α1 < 1, which is routinely made in this literature,
T and T ∗ will be positively correlated and the slope of this line will exceed zero.

11See, e.g., Kane, Rouse, and Staiger 1999; Black, Berger, and Scott 2000; Ura 2018
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program eligibility measures using wage data from matched employer-employer reports in the Jan-

uary 1977 CPS.12 These data have been used previously to examine misclassification in union status

(Freeman 1984; Card 1996) and measurement error in wages (Mellow and Sider 1983; Angrist and

Krueger 1999). The top panel of Figure 3 demonstrates that the misclassification rates are varying

as the threshold moves through the wage distribution. Interestingly, the bottom panel of Figure

3 shows that changes in P [T = 1] are nearly identical to changes in P [T ∗ = 1], suggesting that

IV using T rather than T ∗ will yield roughly consistent estimates throughout much of the wage

distribution.

While our motivating examples thus far have focused on earnings, similar patterns can emerge

in starkly different settings. For example, consider a binary variable based on height and weight

data from the 1999-2016 waves of the Continuous National Health and Nutrition Examination

Survey (Continuous NHANES). Survey participants first undergo a detailed in-home interview

during which self-reported height (in inches) and weight (in pounds) are recorded. Participants

then undergo a detailed medical exam about two weeks later at a mobile examination center.

During this examination, each participant’s height (in centimeters) and weight (in kilograms) are

measured by survey staff. Analogous to our use of the earnings data above, we create a binary

variable indicating whether an individual’s height or weight is less than a particular threshold using

both the self-reported data and the clinically-obtained data.13

Figure 4 shows height results separately for men and women.14 The misclassification rates for

men, shown in the top left panel, vary with P [T ∗ = 1] in ways that closely mirror those found

in the previous two examples. Moreover, the relative movements in P [T = 1] and P [T ∗ = 1]

are comparable to the first example in that slope of the line is less than one near the middle

of the distribution but exceeds one towards the ends of the distribution. Such patterns indicate

that the IV estimate may either overestimate or underestimate the true impact of a change in the

dichotomous variable on the outcome of interest, depending upon which points in the distribution

12We thank David Card, Hank Farber, and Alan Krueger for making this data available to us.
13We limit the sample to men and women between the ages of 25 and 54, inclusive. For each outcome, we restrict

the sample to individuals who have both self-reported and measured data. Our height samples have 11,004 men and
12,100 women while our weight sample has 10,694 men and 11,756 women. We did not include weight observations
for the small fraction of individuals who were flagged for being weighed while wearing their clothing.

14Appendix Figure A1 present an analogous figure for weight.
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are being compared.

The height patterns for women are different. As shown in the top right panel of Figure 4, while

α0 (α1) is increasing (decreasing) with P [T ∗ = 1] as in the prior examples, α0 exceeds α1 much

further to the left in the distribution. As shown in the bottom right panel, underreporting of height

occurs, on average, throughout the distribution as we find that P [T = 1] always exceeds P [T ∗ = 1].

We find that the relationship between P [T = 1] and P [T ∗ = 1] moves much further from the 45

degree line than in the other examples, which implies much larger deviations between the change

in P [T = 1] and the change in P [T ∗ = 1]. At various points in the distribution, IV will generate

larger underestimates and overestimates as compared to the previous examples.15

Overall, these examples yield two main implications. First, the misclassification rates vary

with the instrument (here, the threshold), a finding that is at odds with the predominate fixed

misclassification assumption in the prior literature.16 Second, changes in P [T = 1] may be greater

than, less than, or very close to changes in P [T ∗ = 1] when moving between thresholds. As such,

the IV estimator is no longer guaranteed to yield an upper bound for the true impact of T ∗ on the

outcome of interest. These findings are in contrast to the standard, fixed misclassification case.

3 The Model and Identification

The equation relating the outcome Y to the true, binary regressor T ∗ = {0, 1} is17

Y = γ + βT ∗ + ε (1)

However, instead of observing T ∗, we observe T , which is subject to misclassification, i.e., T is also

a binary variable in which either T = T ∗ or T = 1− T ∗.
15The patterns found for weight, as shown in Appendix Figure A1 are broadly comparable to those for height

with regards to the relationships between P [T ∗ = 1] and the misclassifications and in that the relationship between
P [T = 1] and P [T ∗ = 1] deviates further from the 45 degree line for women than for men.

16While our motivating examples focus on misclassification rates varying when a threshold varies, the results we
present in the next section apply more generally to whenever misclassification rates vary with an instrument. See
Bound, Brown, and Mathiowetz (2001) for an exhaustive review of validation studies for labor market outcomes,
including for evidence of when misclassification rates vary.

17Our key identification result can be extended to a non-parametric regression framework such as that used in
Mahajan (2006) and Lewbel (2007). We adopt a parametric regression framework for parsimony of notation and for
ease in adding covariates.
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Let Z be a discrete-valued instrumental variable with J + 1 values, j = 0, 1, . . . , J . To allow for

varying misclassification, define the misclassification rates, α0j and α1j , j = 0, 1, . . . , J , as

α0j = P [T = 1|T ∗ = 0, Z = j],

α1j = P [T = 0|T ∗ = 1, Z = j]

Defining p∗j = P [T ∗ = 1|Z = j], it follows that pj = P [T = 1|Z = j] = (1− α1j) p
∗
j +α0j

(
1− p∗j

)
=

α0j + (1− α0j − α1j) p
∗
j .

We make use of the following two assumptions for the majority of our analysis.

Assumption 1 The following conditions are assumed to hold

i. There is a discrete instrumental variable, Z, with (at least) three values, i.e., J ≥ 2

ii. E [Y |Z = j] = γ + βp∗j , ∀j

iii. 0 < p∗j < 1, ∀j; p∗j 6= p∗k, ∀ j 6= k

iv. E [Y |T, T ∗, Z] = E [Y |T ∗, Z]

v. α0j + α1j < 1, ∀j

Assumption 1.ii is the usual instrumental variable exclusion condition and Assumption 1.iii

is the usual instrumental variable relevance condition. The last two parts of Assumption 1 are

standard in the prior literature (e.g., Frazis and Loewenstein 2003; Mahajan 2006; Lewbel 2007;

DiTraglia and Garcia-Jimeno 2019). Assumption 1.iv states that there is no additional independent

information contained in the mis-measured regressor once the true value of the regressor is known,

which is often referred to as “non-differential” measurement error. This assumption is analogous

to the standard classical measurement error assumption that the measurement error is random.18

Assumption 1.v requires that there is not “too much” misclassification. With this restriction, the

OLS regression of Y on T using observations with the same value of Z will yield an estimated

coefficient on the mis-measured binary regressor that is of the same sign as β.

18A recent exception is Nguimkeu, Denteh, and Tchernis (2019) which allows for differential measurement error.
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Assumption 2 For all j, E [Y |T ∗ = t, Z = j] = E [Y |T ∗ = t]

Assumption 2 requires the expected value of the outcome Y for a given value of the true regressor

T ∗ to be the same across all values taken on by the instrument Z. The same assumption is made by

Mahajan (2006) when using a binary instrumental variable to identify the impact of a misclassified

binary regressor when there is fixed misclassification. Similar assumptions have been made for

other proposed estimators in this literature (e.g., Kane, Rouse, and Staiger 1999, Black, Berger,

and Scott 2000; Frazis and Loewenstein 2003). More recently, this assumption has been proposed

as a test of no selection bias in the literature on instrumental variables (Black et al. 2015; Brinch,

Mogstad, and Wiswall 2017). While T ∗ is exogenous under Assumption 2, we relax this assumption

below to admit some forms of endogeneity.

3.1 Identification

For a discrete instrumental variable Z that takes on exactly three discrete values, Assumption 1.ii

yields three equations based on the exclusion restriction

E [Y |Z = 0] = γ + βp∗0

E [Y |Z = 1] = γ + βp∗1

E [Y |Z = 2] = γ + βp∗2

(2)

Assumption 2 yields two equations for any pair of instrument values, j and k

E [Y |T ∗ = 1, Z = j] = E [Y |T ∗ = 1, Z = k] (3)

E [Y |T ∗ = 0, Z = j] = E [Y |T ∗ = 0, Z = k] (4)

Equations (3) and (4) are based on unobserved quantities. For a given value of Z, the expected

value of the outcome Y conditional on T is a weighted average of these unknown quantities, with the

weights based on the misclassification rates. As shown in Appendix Section A.2, these relationships

can be inverted to yield expressions for the unknown quantities in (3) and (4) in terms of observed

10



quantities and the misclassification rates. The resulting expressions are

E [Y |T ∗ = 1, Z = j] =
COV (Y, T |Z = j)

pj − α0j
+ E [Y |Z = j] (5)

E [Y |T ∗ = 0, Z = j] = E [Y |Z = j]− COV (Y, T |Z = j)

1− pj − α1j
(6)

where COV (Y, T |Z = j) is the covariance of Y and T among those observations where Z = j.

Subtracting equation (4) from equation (3) and then inserting equations (5) and (6) into the

resulting expression yields (as shown in Appendix Section A.3)19

1

(1− α0j − α1j)
· COV (Y, T |Z = j)

p∗j

(
1− p∗j

) =
1

(1− α0k − α1k)
· COV (Y, T |Z = k)

p∗k
(
1− p∗k

) (7)

For a discrete instrument with three values, these substitutions provide five equations: three

equations found in (2) and two additional equations by applying (7) to two pairs of instrument

values. However, eleven unknown parameters appear in these five equations: β, γ, the three p∗j ,

the three α0j , and the three α1j . Noting that misclassification rates do not appear in (2) and only

appear in (7) as the sum α0j + α1j , we can instead view the problem as containing five equations

with eight parameters: β, γ, the three p∗j , and the three sums α0j +α1j .
20 Moving to an instrument

with more discrete values will not solve this identification issue because each additional instrument

value adds two equations but also two parameters: another p∗j and another sum α0j + α1j .

Instead, we make an assumption regarding the misclassification rates. As we discussed above,

the fixed misclassification assumption made in the prior literature is too restrictive because the

underlying misclassification rates likely vary across instrument values. We instead propose an

alternative assumption.

Assumption 3 The sum of the misclassification rates is constant, i.e., α0j + α1j = α, ∀j.

Assumption 3 allows both α0j and α1j to vary across instrument values j. Importantly, this

19By first subtracting equation (4) from equation (3) yields E [Y |T ∗ = 1, Z = j] − E [Y |T ∗ = 0, Z = j] =
E [Y |T ∗ = 1, Z = k] − E [Y |T ∗ = 0, Z = k]. An alternative approach, discussed in Section 3.2, is to replace As-
sumption 2 with this expression (as in Lewbel (2007)).

20Alternatively, identification cannot be achieved by using the definition of pj to replace p∗j since the α0j and α1j

will no longer enter the moments as a sum in the absence of p∗j .
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assumption nests the typical fixed misclassification assumption, making our estimator applicable

under the conditions assumed in previous papers. In addition, this assumption is consistent with the

empirical settings of Section 2: the misclassification rates move in opposite directions as P [T ∗ = 1]

changes while the magnitude of their sum, α0j + α1j , is relatively constant for much of the range

of P [T ∗ = 1].

Figure 5 plots the sum of the misclassification rates, along with bootstrapped 95% confidence

intervals, for the empirical examples presented in Section 2. For the 1973 CPS-IRS matched

earnings data and the 1977 CPS employer-employee matched wage data, shown in the two leftmost

panels of Figure 5, the sum α0j+α1j is relatively constant for much of the interior of the range

of P [T ∗ = 1]. The sums of the misclassification rates for both male and female heights from the

Continuous NHANES data, shown in two center panels of the Figure, are roughly constant across

the vast majority of values of P [T ∗ = 1]. The sum of the weight misclassification rates, shown in

the two rightmost panels, is not as flat across the range as is the case for height; however, the sums

for weight only exhibit a relatively small change for much of its range. Overall, we interpret the

results in Figure 5 as indicating that Assumption 3 is supported by these empirical applications,

especially when P [T ∗ = 1] takes on values towards the middle of its range. Importantly, for our

proposed estimator to be consistent, Assumption 3 only needs to hold at the values spanned by the

p∗j in a given application, as opposed to across the entire range of P [T ∗ = 1].

Equation (7) is greatly simplified under Assumption 3 because replacing α0j +α1j with α leads

the misclassification rates to drop out of the expression to yield

COV (Y, T |Z = j)

p∗j

(
1− p∗j

) =
COV (Y, T |Z = k)

p∗k
(
1− p∗k

) (8)

Thus, under Assumptions 1 through 3, equation (2) holds for all J + 1 instrument values while the

model generates J independent equations based on equation (8) using pairs of instrument values.

If only a two-valued instrument were available, we would have three equations but four unknown

parameters (β, γ, p∗0, and p∗1). However, an instrument with three values will generate five unique

equations, three due to equation (2) and two due to equation (8), which allows us to identify the

five parameters β, γ, p∗0, p
∗
1, and p∗2.
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Based on these equations, we now state the main theorem of the paper.

Theorem 1 The parameters β, γ, p∗0, p∗1, p∗2, and α are identified under Assumptions 1, 2, and 3.

We provide the detailed proof in Appendix Section A.4. In brief, we first combine and simplify the

five moments based on (2) and (8) to generate two non-linear equations in p∗0 and p∗2 (without loss

of generality). The resulting system of equations has four solutions. However, two of the solutions

for the (p∗0, p
∗
2) pair are (0, 0) and (1, 1), which are ruled out by Assumption 1.iii. For the remaining

two solutions, we are able to take each (p∗0, p
∗
2) pair to solve for p∗1, β, and γ.

The two solutions for β are of equal magnitude, but opposite in sign

β = ±
√
D3(

(C2 − C1) ∆10 + (C0 − C1) ∆21

) (9)

where ∆jk = E [Y |Z = j] − E [Y |Z = k], Cj = COV (Y, T |Z = j), D0 = C0∆
2
21, D1 = C1∆

2
20,

D2 = C2∆
2
10, and D3 = D2

0 +D2
1 +D2

2 − 2D0D1 − 2D0D2 − 2D1D2.

To determine the sign of β, we show in the appendix that under Assumption 2

1− α =
COV (Y, T |Z = j)

βp∗j

(
1− p∗j

) (10)

which follows from the OLS estimator of Y on T ∗ for a given value of the instrument j. Because β

appears on the right-hand side of (10) and it only differs in sign across the two solutions per (9),

one solution will have α < 1 and the other solution will have α > 1.21 Since α must be less than 1

by Assumption 1.v, we can then choose the appropriate solution.

3.2 Relaxing the Exogeneity Assumption

The estimator derived above can be applied to settings with a weaker exogeneity assumption.

Assumption 4 E [Y |T ∗ = 1, Z = j]−E [Y |T ∗ = 0, Z = j] = E [Y |T ∗ = 1, Z = k]−E [Y |T ∗ = 0, Z = k]

for all j, k.

21For the two solutions that we cannot immediately rule out by Assumption 1.iii, the estimators for a given p∗j sum
to one across the two solutions. In other words, the estimator for p∗j for the first solution equals 1− p∗j for the second
solution. Thus, the product p∗j

(
1− p∗j

)
, which appears in the denominator of (10), is the same across both solutions.
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In contrast to Assumption 2, which requires the level of the expected value of Y to be the same

across all values of the instrument for a given value of T ∗, Assumption 4 only requires the difference

in the expected value of Y between the two values of T ∗ to be the same across all values of the

instrument. A similar assumption is made by Lewbel (2007) in constructing an estimator for a

misclassified binary regressor with fixed misclassification. Assumption 4 allows T ∗ to be endogenous

under some (strong) conditions such as those found in Olsen’s (1981) selection model (see Brinch,

Mogstad, and Wiswall 2017).22

Corollary 1.1 The magnitude of β, but not the sign, is identified under Assumptions 1i.-iv., 3,

and 4.

Inserting equations (5) and (6) into Assumption 4 and simplifying the resulting expression

yields equation (7). Along with the remaining assumptions in Corollary 1.1, we can again generate

equations (2) and (8) for two pairs of instrument values. Thus, following the proof of Theorem 1,

we can recover β, γ, p∗0, p
∗
1, and p∗2 for the two sets of solutions. However, unlike in Theorem 1, we

are unable to recover α and therefore cannot sign β under the above assumptions.23 We can still

use this result, however, to test the null hypothesis of there being no impact of T ∗ on Y .

One possibility for identifying the sign of β is to impose a tighter restriction on the maximum

amount of measurement error allowed. The standard restriction imposed when using the fixed

misclassification assumption is that α0 + α1 < 1. Under this condition, the sign of the OLS

estimator, when applied to observations with the same value of Z, does not change when using T in

place of T ∗. This condition also implies that the sign of the IV (Wald) estimator, when comparing

across any pair of instrument values, is invariant to using T in place of T ∗. However, the analogous

assumption in the varying misclassification case, α0j + α1j < 1 (Assumption 1.v), only guarantees

that the OLS estimator does not change sign, but does not guarantee the IV estimator will have

the same sign when using either T or T ∗.

Assuming that the sign of the IV estimator does not change when using T instead of T ∗ allows

us to identify the sign of β.

22In addition to Assumption 4, Lewbel requires T ∗ to be (conditionally) exogenous.
23Assumption 3 allows us to eliminate the misclassification rates from (8) and recover β, γ, p∗0, p∗1, and p∗2. However,

without an additional assumption, such as the stronger restrictions imposed by Assumption 2, we cannot identify α
with just the system of equations generated by equations (2) and (8).
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Assumption 5 sgn (pj − pk) = sgn
(
p∗j − p∗k

)
∀ j, k

This assumption is consistent with Figures 2b and 3b because P [T = 1] in an increasing function

of P [T ∗ = 1].

Corollary 1.2 β, γ, p∗0, p∗1, and p∗2 are identified under Assumptions 1, 3, 4, and 5.

As we show in Appendix Section A.4, we can solve for β, γ, p∗0, p
∗
1, and p∗2 for each of the two

solutions by Corollary 1.1. For each candidate p∗j solution, the competing solution is 1−p∗j as these

two solutions sum to one. In particular, the difference between any p∗j and p∗k is equal and opposite

in sign across the two solutions. Thus, the Wald estimators implied by equation (2) can be written

as

β =
∆jk

p∗j − p∗k
(11)

where ∆jk = E [Y |Z = j]− E [Y |Z = k]. Since ∆jk is a known quantity, the sign of β depends on

the sign of p∗j − p∗k. Thus, by invoking Assumption 5, we can immediately sign β. We are unable,

however, to identify α without making further assumptions.24

4 Estimation and Inference

We begin by discussing estimation of our model using Generalized Methods of Moments (GMM).

We also discuss the inclusion of additional covariates in the model and in the estimation procedure.

However, as we will make clear below, the GMM estimator will not always converge when β is small

and/or the instruments are weak. As such, we discuss how to estimate our model by incorporating

bounds on β via inequality moments and implementing the methods of Andrews and Soares (2010)

and Bugni, Canay, and Shi (2017) to generate confidence sets that are robust to the issues raised

below.

4.1 GMM Estimation

The estimating equations in (2) and (8) that we use in our identification proof are conditional on

instrument values. We obtain unconditional moment conditions for GMM estimation by simply

24As shown in Appendix Section A.6, we are able to identify α if, in addition to assumptions 1, 3, and 4 we also
assume that the error term in equation 1 is homoskedastic.
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rescaling these equations. The unconditional moment analogous to equation (2) is

(Zj/πj) ·
(
Y − γ − βp∗j

)
= 0 (12)

where Zj = 1(Z = j) with 1(·) being the indicator function, πj = P [Z = j], and we suppress the i

subscripts for the outcome Y and the indicator Zj .

The unconditional moment analogous to equation (8) is

(Zj/πj) ·

Y T − Y · pj
p∗j

(
1− p∗j

)
− (Zk/πk) ·

[
Y T − Y · pk
p∗k
(
1− p∗k

) ] = 0 (13)

where we make use of the fact that COV (Y, T |Z = j) = E [Y T |Z = j]−E [Y |Z = j] ·E [T |Z = j].

These unconditional moments introduce additional parameters to be estimated. For each in-

strument value, we must estimate pj = P [T = 1|Z = j] and πj = P [Z = j]. However, because∑K
j=0 πj = 1, we only need to estimate J of these J + 1 probabilities.

Letting W ′ = (Y, T, Z) (and continuing to suppress the i subscript), our unconditional moment

conditions are thus given by E[g(W, δ)] = 0, where

g(W, δ) =



(Zj/πj) ·
(
Y − γ − βp∗j

)
(Zj/πj) ·

[
Y T−Y ·pj
p∗j(1−p∗j)

]
− (Zk/πk) ·

[
Y T−Y ·pk
p∗k(1−p∗k)

]
(Zj/πj) · (T − pj)

Zj − πj


(14)

where δ = (β, γ, π∗j , πj , pj) is the vector of unknown parameters. When the instrument takes on

three discrete values, this vector contains ten moment conditions: three moments for the first row

of (14), two moments for the second row, three moments for the third row, and two moments for

the final row (recall we do not need to estimate one of the πj ’s). As δ contains ten parameters, the

system is exactly identified. Instruments with more than three discrete values will yield an over-

identified system. Given our assumptions and our identification results, standard GMM results

can be applied, providing us with consistency and asymptotic normality of δ̂ (e.g., see Wooldridge
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2010).

The moment conditions in (14) are applicable under either Assumption 2 or Assumption 4, our

two alternatives regarding the exogeneity of T ∗. If we use Assumption 5 then we can identify the

sign of β with this set of moments, regardless of which exogeneity assumption we use. However,

under Assumption 2 we can also identify α using equation (10). While this equation can be solved

after estimating (14), we can also include this additional moment in the system of equations and

simultaneously estimate α. The empirical moment that corresponds to (10) is

(Zj/πj) ·
[
(1− α) ·

(
βp∗j

(
1− p∗j

))
− (Y T − Y · pj)

]
= 0 (15)

Since this moment yields an identical estimate for α for each instrument value j, in estimation we

only use one moment condition based on equation (15) for an arbitrary instrument value j.

4.2 Including Covariates

We present two approaches to including covariates. The first approach is a straightforward method

to incorporate both continuous and discrete covariates. However, this approach requires that the

misclassification rates do not vary with the additional covariates (although these rates can vary

with the instrument). The second approach allows for the misclassification rates to vary with the

covariates as well as the instrument, but requires discrete covariates.

To include the covariates, we specify the equation of interest to be

Y = γ + βT ∗ +ψX + ε (16)

where X is a vector of exogenous covariates (i.e., ε is uncorrelated with each element of X) and

that the classification error in T ∗ does not vary with X (e.g., P [T = 1|T ∗ = 0, Z = j,X] = P [T =

1|T ∗ = 0, Z = j]).

As shown in Appendix Section A.5, after updating our assumptions to condition on X, we can

derive moment conditions analogous to (2) and (8) that account for the additional covariates. The
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moment condition analogous to equation (2) is

E[Y |Z = j,X]− γ − βp∗j − E[ψX|Z = j,X] = 0 (17)

while the moment condition analogous to (8) is

COV (Y, T |Z = j)

p∗j

(
1− p∗j

) − COV (ψX, T |Z = j)

p∗j

(
1− p∗j

) =
COV (Y, T |Z = k)

p∗k
(
1− p∗k

) − COV (ψX, T |Z = k)

p∗k
(
1− p∗k

) (18)

For estimation, the empirical analogs of these moments can substituted for the first two lines

in (14). The moments corresponding to pj and πj in (14) are unaffected by the inclusion of X

and do not need to be updated to reflect the changes in the first two moment equations. However,

the vector of coefficients ψ now enter the system of equations. Fortunately, we can pre-estimate

ψ because regressing Y on T and X, while using Z as an instrument for T , will yield a consistent

estimate of ψ.25 After replacing ψ with its pre-estimated value in (17) and (18), we can apply

GMM although we would need to adjust for using pre-estimated parameters (Newey 1984).

Our second approach allows for the misclassification rates and the other parameters to vary with

discrete covariates by expanding the estimating equations (e.g., Mahajan 2006, Lewbel 2007). For

example, suppose that there is a dichotomous exogenous covariate V . We can allow the moment

conditions, (2) and (8), along with our equations for pj and πj (and (10) if included) to depend

on V , thereby allowing all parameters to vary with V . This expanded set of moments also can be

estimated using GMM. In addition, we can impose restrictions on these parameters, e.g., β does

not vary with V , that can be readily tested.

4.3 Bounds on β

There are multiple methods available for bounding the impact of a misclassfied regressor. As shown

in Aigner (1973), |β̂OLS | < |β| when T ∗ is exogenous, where β̂OLS is the coefficient on T in the

OLS regression of Y on T using the full sample of observations. Bollinger (1996) shows that β̂OLS

is a lower bound when considering only information in the first and second moments of Y and

25We discuss the consistency ψ when estimated this way in Appendix Section A.5.
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T .26 When T ∗ is endogenous, the regression of Y on T , the reduced form equation for the 2SLS

estimator, yields a lower bound (e.g., Ura 2018).

With an instrument, we are able to tighten the lower bound as compared to OLS, and we can

do so under weaker assumptions than are required above for point identification. Specifically, we

only need a discrete instrument that takes on at least two values, and we can drop Assumption 3.

Proposition 1 For a discrete valued instrument Z that takes on at least two values, under As-

sumptions 1.ii-v. and 2

i. if β̂OLS > 0, then β̂OLS ≤ β̂LB,+ ≤ β

ii. if β̂OLS < 0, then β̂OLS ≥ β̂LB,− ≥ β

where

β̂LB,+ = max
Z
{E [Y |T = 1, Z = j]} −min

Z
{E [Y |T = 0, Z = j]}

β̂LB,− = min
Z
{E [Y |T = 1, Z = j]} −max

Z
{E [Y |T = 0, Z = j]}

The proof is provided in Appendix Section A.7. To briefly sketch the proof, without loss of

generality, suppose β > 0 in which case β̂OLS = E [Y |T = 1]−E [Y |T = 0] > 0. Since E [Y |T = 1]

is a weighted average of the E [Y |T = 1, z = j], for at least one instrument value, k, we will have

E [Y |T = 1, z = k] ≥ E [Y |T = 1]. If more than one instrument value meets this criteria, assign k

to be the largest E [Y |T = 1, z = k]. Analogously, let E [Y |T = 0, z = l] be the smallest value with

E [Y |T = 0, z = l] ≤ E [Y |T = 0]. The difference between these two quantities is at least as large

as β̂OLS but will not exceed β.

As noted earlier, the IV estimator no longer yields an upper bound with varying misclassifi-

cation. Bollinger (1996) provides an upper bound when T ∗ is exogenous that does not require

an instrumental variable. Ura (2018) derives an upper bound when T ∗ is endogenous under the

assumption of fixed misclassification and also provides an extension which yields an upper bound

when the misclassification rates vary with the instrument.

26In situations when a second misclassified variable, T̃ where either T̃ = T ∗ or T̃ = 1 − T ∗, is available, Black,
Berger, and Scott (2000) use this information to construct a tighter lower bound than β̂OLS .
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4.4 Inference with Weak Identification

There is an important caveat to implementing GMM. Inspection of the equation for β found in (9)

shows that it yields a real solution as long as the term D3 is non-negative. As is further shown in

the proof of Theorem 1 in Appendix Section A.4, D3 must be strictly positive as the solution to

the system of equations for the p∗j terms have D3 in the denominator. Although D3 is positive in

the population, except when β = 0 (see Section A.4.1), it may be negative when replaced with its

sample analog. Such situations are more likely to occur when at least one of the following holds:

i) β is close to zero, ii) there are small differences between p∗j values, and iii) the sample size is

relatively small. Under these conditions, the GMM estimator is weakly identified and may not

converge in finite samples.27

To overcome this issue, we combine our moment conditions with moment inequalities for β in

order to construct confidence sets for the parameters of interest. In addition to our own lower

bound discussed above, numerous choices for both the lower and upper bound on β are available in

the literature (e.g., Aigner 1973; Bollinger 1996; Ura 2018). While inference can be performed using

the moment inequality methods of Andrews and Soares (2010), their approach requires the joint

confidence set for all parameters to be constructed. To focus on the marginal confidence set for β,

the methods found in Bugni, Canay, and Shi (2017) can be applied as shown in our simulations

below.

5 Monte Carlo Simulations

In this section we present Monte Carlo simulations to highlight multiple aspects of our estimator.

For each simulation, we first randomly assign observations to one of three instrument values, j =

0, 1, 2, with assignment probabilities of 0.382, 0.236, and 0.382, respectively.28 Anticipating multiple

approaches we will employ below to construct the misclassified binary indicator T , we next generate

a random variable E∗ ∼ N(7.87, 1.19) to match the 1973 CPS/IRS administrative log earnings data

27DiTraglia and Garcia-Jimeno (2019) note a similar issue with their estimator.
28These were constructed from an underlying standard normal random variable where we assign j = 0 if the random

variable is less than −0.3, j = 2 if the random variable is greater than or equal to 0.3, and j = 1 otherwise.
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shown in Section 2.29 We set the true, unobserved binary indicator T ∗ equal to one if E∗ falls below

an instrument value-specific cutoff where for our baseline simulations these cutoff values are chosen

such that p∗0 = 0.35, p∗1 = 0.50, and p∗2 = 0.65. We then construct the outcome Y for each

observation based on equation (1) by drawing the error term ε ∼ N(0, 0.25) and setting the true

value of γ equal to one.

Finally, we construct the observed but misclassified binary indicator T . For our baseline simula-

tions, we select misclassification rates similar to those found in Figure 1b, but maintain Assumption

3 that α0j + α1j = α. We set α = 0.130 and allow α0j (and thus α1j) to vary with Z = j where

α00 = 0.055, α01 = 0.070, and α02 = 0.085. We then draw the random variable u ∼ uniform[0, 1].

For observations with T ∗ = 0 and instrument value j, we set T = 1 if u < α0j and T = 0 otherwise.

Similarly, for observations with T ∗ = 1 and instrument value j, we set T = 0 if u < α1j and T = 1

otherwise.

Table 1 illustrates that the GMM estimator may be affected by weak identification when β is

(relatively) close to zero and/or the sample size is small (see Section 4.4).30 The table presents

results from using GMM to estimate the model for multiple combinations of β and the sample size

N , using 1,000 iterations for each combination. Panel A of Table 1 shows the fraction of iterations

in which the GMM estimator successfully converges for each combination of β and N .31 Consistent

with the conditions for weak identification, we see that GMM estimator is less likely to converge as

β approaches zero and/or as the sample size decreases. When N = 1, 000, we find that GMM fails

to converge for at least some fraction of iterations for every value of β. However, when N = 100, 000

the GMM estimator always converges with the exception of when β = 0, the value of the parameter

for which our estimator is not identified.

Even when GMM converges, weak identification yields imprecise estimates and raises concerns

with inference as shown in the remaining Panels of Table 1. In Panel B we see that the average

simulation point estimate when GMM converges is too large when N = 1, 000. However, we find

29We specify E∗ to have the same mean and variance as the log of 1973 administrative earnings.
30Another situation that can lead to weak identification is when there are small differences between the p∗j values.

We do not explore this aspect of weak identification in the simulations reported here.
31All GMM simulations are completed in MatLab. We obtain starting values using fminunc and its default settings.

We obtain final parameter values using fminsearch, setting the search tolerance at 10−7 and the maximum iterations
at 20,000.
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that the estimates of β are well-centered when N = 100, 000. Moreover, as shown in Panel C,

GMM yields relatively larger standard errors when identification is weak, but as the sample size

increases, the GMM estimates are quite precise. Finally, in Panel D, we see that the coverage rates

for the 95% confidence intervals are as expected when N = 100, 000, whereas coverage is worse

when N = 1, 000.32

In light of these findings, we present two sets of simulation results in the remainder of this

section. In the first subsection, we present “large sample” results with N = 100, 000 and β = 1 to

demonstrate the performance of our estimator in the absence of the weak identification concerns.

We focus on how our estimator and 2SLS perform under different assumptions regarding misclassi-

fication error. We also examine the robustness of our estimator when we relax Assumption 3 (i.e.,

that α0j + α1j is constant) in a manner that mimics the examples from Section 2. In the second

subsection, we present “small sample” results with N = 1, 000 in which we examine inference when

identification is weak. We use the methods of Bugni, Canay, and Shi (2017) to construct confidence

sets for β, combining the moments from (14) with bounds on β.

5.1 “Large Sample” Simulations

Table 2 illustrates the performance of our estimator in large samples (N = 100, 000). We maintain

the same data generating process for the true parameters (Y , T ∗, and Z) as in Table 1 and setting

β = 1, but we vary the misclassification process (i.e., vary in how we construct T ). In column (1)

of Table 2, we present results when using “fixed misclassification” where we impose the baseline

misclassification rates for the instrument value j = 1 (α01 = 0.070 and α11 = 0.060) across all

instrument values. As noted above, the standard fixed misclassification assumption is a special

case of our Assumption 3 and therefore our estimator is consistent in this setting. As expected,

OLS is attenuated when using T as the regressor with a point estimate of 0.87 and a standard

deviation (SD) across iterations of 0.002. The 2SLS estimator delivers 1.150 (SD=0.011), which

is biased upwards by the amount that is given by the standard misclassification formula (i.e.,

β/(1−α0−α1).
33 Our estimator is well-centered, delivering a mean estimate of 1.000 (SD=0.033).

32In simulations results shown in Appendix Tables A1-A3, we find that these patterns shown in Table 1 remain
when we vary α.

33With β = 1, α0 = 0.070, and α1 = 0.060, the 2SLS estimator will converge to 1/(1− 0.070− 0.060) = 1.149.
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We next examine the performance of our estimator under varying misclassification. In column

(2), we use the baseline varying misclassification rates from Table 1. For the 2SLS estimator, we

obtain an average estimate of 1.032 (SD=0.009), which is noticeably smaller than what the 2SLS

estimator would converge to under fixed misclassification (i.e., 1.149).34 As before, our estimator

is centered on the true value (1.003 with SD=0.033). In column (3), we increase the rate at which

the misclassification rates vary with p∗, but continue to maintain α = .13. We now find that the

average 2SLS estimate is below the true value of β (0.907 with SD=0.008). This result is consistent

with our earlier analytical finding: under varying misclassification, the 2SLS estimator no longer

provides an upper bound for β. Once again, our estimator provides is well-centered with a mean

estimate of 1.00 (SD=.033).

In the last row of Table 2, we present the estimates of the lower bound we propose in Section 4.3

that is designed to improve upon OLS with T , which has been previously proposed as a lower bound

in the literature (Aigner 1973; Bollinger 1996). Our lower bound is tighter than OLS regardless

of whether the misclassification is fixed or varies. For example, in column 1, OLS with T delivers

0.870 (SD=0.002), whereas our lower bound is 0.928 (SD=0.003).

We next examine the robustness of our estimator to small deviations from Assumption 3 (i.e.,

that α0j + α1j is constant). We do so in a situation where the true regressor T ∗ is generated from

an underlying index, E∗, but we must construct the observed indicator T using the mis-measured

index E. For our simulations, we construct E by adding a mean zero measurement error ν to

the random variable E∗.35 We then set the observed binary indicator T equal to one if E is less

than the same instrument value-specific cutoff that we use to generate T ∗ from E∗. Appendix

Figure A2 illustrates the misclassification rates resulting from using 500,000 simulated draws when

constructing T in this way. The sum of the misclassification rates is U-shaped, reaches a minimum

at p∗ = 0.5, and increases most rapidly as p∗ approaches both zero and one, very similar to what

we observed in Figure 5 that was based on the actual data.

The last three columns of Table 2 present simulation results using this alternative approach for

34Given the distribution of observations across the three instrument values, the average misclassification rates for
this column are the same as the fixed misclassification rates in column 1 (i.e., α0 = 0.070, and α1 = 0.060).

35Thus, E and E∗ have the same mean. We select the variance of ν such that the variance of E equals 1.25, the
same as the variance of the 1973 CPS/IRS self-reported log earnings data shown in Section 2.
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constructing T . In column (4) we continue using the same values of p∗ for each instrument value

as in our baseline model. As shown in the table, the sum of the misclassification rates is almost

identical across all three instrument values for these simulations and the average simulation estimate

is very close to the true value (0.998 with SD=0.033). In column (5) we decrease the p∗ values but

maintain the same distance between instrument values in terms of probability (p∗0 = 0.10, p∗1 = 0.25,

and p∗2 = 0.4). In doing so, the sum of the misclassification rates differs somewhat more than in the

baseline case, while our estimator remains centered very close to the truth (1.006 with SD=0.046).

Finally, in the last column of Table 2 we further shift down the p∗ values (p∗0 = 0.05, p∗1 = 0.20,

and p∗2 = 0.35). Although the maximum difference in the sum of the misclassification rates across

instrument values is about 10%, our estimator continues to perform relatively well (1.012 with

SD=0.052). Thus, for small deviations from Assumption 3, our estimator yields estimates of β that

are very close to the true parameter value.

As we have discussed throughout, other papers have proposed methods to estimate the impact of

a mismeasured binary regressor. In Appendix Table A4, we show three estimators that rely on fixed

misclassification and a single instrumental variable (Frazis and Lowenstein 2003; Mahajan 2006;

Lewbel 2007) are not well-centered in simulations which have varying misclassification. However,

three estimators that instead rely on higher-order moments of the error term (Chen, Hu, and Lewbel

2008a, b; DiTraglia and Garcia-Jimeno 2019) are well-centered (see column (2) of Appendix Table

A4) as the errors used in our simulations (which are normally distributed) satisfy the error term

restrictions required by these estimators. However, as shown in the final three columns of Appendix

Table A4 where we relax these higher moment error term assumptions, we find that these alternative

methods yield estimates of β that systematically deviate from its true value while our estimator

remains well-centered in all cases.

5.2 “Small Sample” Simulations

Much theoretical work in econometrics in recent years has been devoted to inference when pa-

rameters defined by a set of moment equalities and inequalities are weakly identified or even not

point-identified at all (e.g., Chernozhukov, Hong and Tamer 2007; Romano and Shaikh 2008; An-

drew and Soares 2010). These papers present techniques to construct joint confidence sets for the
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entire unknown parameter vector. As was our focus in the previous subsection, our interest is to

draw inferences on our key parameter β. Thus, we make use of the related methods in Bugni,

Canay, and Shi (2017; BCS hereafter) to construct a marginal confidence set for β alone. The basic

idea of BCS is the same as papers such as Andrew and Soares (2010), except that BCS depart in

their treatment of the non-focal parameters: after assuming a particular value for β, BCS propose

to minimize the test statistic with respect to these other parameters and derives the distribution

for this minimized test statistic. This method of inference is well-suited to our problem because it

allows us to make use of the key moment conditions in (14) even when the parameters are weakly

identified and to incorporate additional inequality moments to make use of bounds on β.

In Figure 6, we plot coverage curves for β (i.e., the plot of 1−α for various nulls) using the BCS

method for samples with N = 1, 000 and for three different true values of β: Panel A for β = 1,

Panel B for β = 0.5, and Panel β = 0.25. As noted above, in addition to the ten moment equalities

in (14), our estimation procedure uses two moment inequalities to bound β: one using OLS as the

lower bound and the other using the upper bound proposed in Bollinger (1996).36 We also use two

moment inequalities, based on equation (10), to bound α between zero and one.37 The coverage

curves are derived by evaluating β at nulls at intervals of 0.025 (i.e., for Panel A, we compute 1−α

at 0.500, 0.525, 0.550, etc.). We follow the methods as laid out in BCS, with one modification: we

pre-estimate the bounds, and then adjust the variance of the moments that use the pre-estimated

bounds through a direct bootstrap procedure.38

Turning to the results, we see that this method yields coverage curves that include the true

value and can reject the null β = 0 in each panel of Figure 6. Notice that each panel also includes

two dotted, vertical lines which represent the (population) lower and upper bounds on β. As is

clear, the coverage curves drop markedly just outside the bounds in each case, consistent with the

36In our simulations, we use OLS as the lower bound rather than the alternative lower bound we proposed above
because OLS is very close to the true value, particularly for β = 0.25 in Panel C, and it has lower variance.

37The lower bound follows from α being the sum of two probabilities and the upper bound follows from Assumption
1.v.

38Specifically, we compute a pre-estimated bound for each observation based on a bootstrap with replacement.
Therefore, when we calculate the variance of the moments, the variability of the pre-estimated parameters is directly
incorporated. This method of estimation has the benefits that it speeds processing time and that it allows us to make
use of bounds that are not readily expressed as moments, as is the case with the Bollinger upper bound. We show
in Appendix Figure A3 that this method to adjust for pre-estimation closely approximates the coverage curve when
using OLS for the lower bound and the inverse of the reverse OLS regression for the upper bound, an upper bound
that is analyzed in Klepper (1988) and readily expressed as a moment inequality.

25



inequality moments being the key moments to rejecting the null values. When β = 1 (Panel A),

the implied 0.95 confidence set of [0.88, 1.19] compares favorably to the implied 0.95 confidence set

using GMM with N = 100, 000 for the same data generating process ([0.94, 1.07] based on column

2 of Table 2). The implied confidence sets in Panels B and C, for which identification is weaker

because the true β is closer to 0, are somewhat wider.

6 Conclusion

In this paper, we extend the literature on estimation with a misclassified, binary regressor in

an important dimension: we allow for the misclassification rates to vary with the instrumental

variable. We first show that variability in the misclassification rates both arises in empirically

relevant settings and overturns some of the key theoretical results on misclassification that are

routinely relied upon. We then derive a new estimator that matches the conditions found in these

empirical setting. We additionally extend our analytic results along several dimensions, including

demonstrating how to include covariates, extending the main results to handle a specific form of

endogeneity, and developing a new lower bound for β. Finally, we demonstrate with Monte Carlo

evidence that our estimator can be applied in large and small sample settings and it continues to

perform well when we allow the sum of the misclassification rates to vary in a manner that matches

our motivating example.

One appealing feature of our key identifying assumption, α0j +α1j = α, ∀j, is that it nests the

standard fixed misclassification assumption. Alternative features of varying misclassification could

be exploited in order to identify the model, such as parameterizing α0 and/or α1 as function(s)

of p∗. Such an approach will almost certainly not nest the standard fixed misclassification model

so researchers should be cautious when implementing alternatives along these lines. Future work

might explore the fruitfulness of related modeling choices.
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Figure 1: Misclassification Example - 1973 CPS-IRS Matched Earnings
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(b) Misclassification Rates

Notes: Both panels use data from the 1973 CPS-IRS matched earnings data. Details about the data are discussed in
the text and in Appendix section A.1. Panel 1a plots the PDFs of both self-reported earnings and earnings reported
on IRS tax returns from a sample of single men and women. Panel 1b reports misclassification rates; the details for
constructing these rates can be found in Section 2.
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Figure 2: Misclassification Example - 1973 CPS-IRS Matched Earnings - P [T = 1] vs. P [T ∗ = 1]
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(b) Using Actual Misclassification Rates

Notes: Panel 2a plots the hypothetical relationship between P [T = 1] and P [T ∗ = 1] under the assumption of fixed
misclassification rates, where the α0 and α1 used to construct this figure correspond to the threshold c1 shown in
Figure 1. Panel 2b plots the actual relationship between P [T = 1] and P [T ∗ = 1] found in the 1973 CPS-IRS matched
earnings data. Details about the data are discussed in the text and in Appendix section A.1.
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Figure 3: Misclassification Example - 1977 January CPS Matched Employer-Employee Wages
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(b) P [T = 1] vs. P [T ∗ = 1]

Notes: Both panels use data from the January 1977 CPS matched employer-employee wage data. Details about the
data are discussed in the text and in Appendix section A.1. Panel 3a reports misclassification rates, with the details
for constructing these rates found in Section 2. Panel 3b plots the relationship between P [T = 1] and P [T ∗ = 1].
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Figure 6: Monte Carlo Simulations - Coverage Curves for “Small Samples”
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Notes: The coverage curves are constructed based on 1,000 iterations for N = 1, 000. The vertical solid line in each
panel is the true β used to generate the data. The dashed vertical lines are the lower and upper bounds on β, which
are incorporated as inequality moments.
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Table 1: Monte Carlo Simulations - Varying N and β

N 0.0 0.25 0.5 1.0 1.5 2.0

Panel A: Proportion GMM Converges

1,000 0.970 0.844 0.885 0.940 0.969 0.978
10,000 0.969 0.979 0.999 1.000 1.000 1.000
100,000 0.951 1.000 1.000 1.000 1.000 1.000

Panel B: Mean of β if Converges

1,000 -0.009 0.755 0.984 1.427 2.021 2.567
10,000 0.048 0.385 0.539 1.017 1.517 2.018
100,000 0.006 0.256 0.504 1.003 1.502 2.001

Panel C: Mean of SE of β if Converges

1,000 1350 636.8 1346 15.04 15.06 11.71
10,000 1170 33.50 0.300 0.113 0.137 0.168
100,000 495.7 0.026 0.026 0.032 0.040 0.049

Panel D: Coverage of True β if Converges

1,000 0.992 0.906 0.884 0.911 0.918 0.921
10,000 0.995 0.892 0.925 0.925 0.943 0.946
100,000 1.000 0.948 0.954 0.954 0.951 0.952

Notes: This table reports Monte Carlo simulations from using GMM to estimate the moment conditions found in
(14). Each simulation uses 1,000 iterations. The numbers within each of the four panels correspond to a different
simulation, where the sample size N and the parameter of interest β vary across simulations. The values for the
remaining parameters are discussed in Section 5. Panel A reports the proportion of times that the GMM estimator
converges across iterations. Panel B reports the average of β across the iterations where the estimator converges.
Panel C reports the average standard error of β across the iterations where the estimator converges. Panel D reports
the coverage for β across the iterations where the estimator converges.
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Table 2: Monte Carlo Simulations - Varying α’s

(1) (2) (3) (4) (5) (6)

Panel A: Structure of data generating process

α00 0.070 0.055 0.035 0.059 0.023 0.014
α01 0.070 0.070 0.070 0.078 0.046 0.039
α02 0.070 0.085 0.105 0.097 0.065 0.059
α00 + α10 0.130 0.130 0.130 0.156 0.165 0.173
α01 + α11 0.130 0.130 0.130 0.155 0.158 0.159
α02 + α12 0.130 0.130 0.130 0.156 0.156 0.156

Panel B: Estimates of β

OLS 0.870 0.877 0.886 0.853 0.844 0.842
(.002) (.002) (.002) (.002) (.003) (.003)

2SLS 1.150 1.032 0.907 1.030 1.014 1.004
(.011) (.009) (.008) (.009) (.008) (.008)

Our estimator 1.003 1.003 1.002 0.998 1.006 1.012
(.033) (.033) (.033) (.033) (.046) (.052)

Our lower bound 0.928 0.913 0.897 0.895 0.888 0.884
(.003) (.003) (.003) (.003) (.003) (.004)

Notes: This table reports Monte Carlo simulations from using GMM to estimate the moment conditions found in
(14). Each simulation is based on 1,000 iterations, with a sample size of 100,000 observations. The mis-measured
variables T are constructed so that misclassification rate α0j and the sum of the misclassification rates α0j + α1j for
instrument value j match the values shown in the top panel. The values for the remaining parameters are discussed in
Section 5. Panel B contains average estimates of β across iterations for the listed estimation methods. The standard
deviation of the estimates across iterations are shown in parentheses.
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Figure A2: Simulated Misclassification Rates Using a Mis-Measured Index
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Notes: To construct this figure, we generate the mis-measured index E by adding a mean zero measurement error
ν to the random variable E∗. For any given threshold c, we construct the binary indicators T ∗ = 1(E∗ ≤ c) and
T = 1(E ≤ c) and the corresponding misclassification rates as discussed in the text. This figure shows these values
average over 500,000 iterations.
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Figure A3: Coverage Curves with Full and Pre-Estimated Moments
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Notes: This figure is based on 1,000 iterations for N = 1, 000. The lower bound is specified to be the OLS regression of
Y on T and the upper bound is specified to be the inverse of the reverse OLS regression of T on Y . The coverage curve
marked “Full” does not pre-estimate the bounds, whereas the coverage curve marked “Pre-estimated” pre-estimates
the bounds and then inflates the variance of the moment to account for pre-estimation through a bootstrapped
procedure.
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Table A1: Monte Carlo Simulations - Varying α and β, N = 1, 000

α0j + α0j β=0.0 β=0.25 β=0.5 β=1.0 β=1.5 β=2.0

Panel A: Proportion GMM Converges

0.00 0.964 0.847 0.907 0.988 0.997 1.000
0.13a 0.970 0.844 0.885 0.940 0.969 0.978
0.13b 0.964 0.838 0.897 0.944 0.971 0.967
0.26a 0.963 0.825 0.863 0.916 0.925 0.930
0.26b 0.968 0.848 0.869 0.914 0.926 0.937
0.39a 0.960 0.827 0.833 0.865 0.899 0.914
0.39b 0.974 0.828 0.843 0.891 0.895 0.905

Panel B: Mean of β if Converges

0.00 0.003 0.679 0.883 1.187 1.586 2.064
0.13a -0.010 0.755 0.984 1.427 2.021 2.567
0.13b -0.001 0.896 1.000 1.496 2.098 2.559
0.26a 0.013 0.825 1.131 1.812 2.385 2.990
0.26b -0.020 0.917 1.135 1.732 2.412 2.941
0.39a -0.060 0.779 1.288 1.911 2.689 3.337
0.39b -0.020 0.886 1.128 1.915 2.666 3.385

Panel C: Mean of SE of β if Converges

0.00 6347 252.8 212.1 3.158 0.480 0.425
0.13a 1350 636.8 1346 15.04 15.06 11.71
0.13b 3011 3305 97.77 21.78 20.66 15.54
0.26a 3914 1017 412.7 232.7 66.74 46.41
0.26b 590.2 2499 1557 77.15 51.98 47.38
0.39a 2892 343.3 1362 183.3 207.7 87.83
0.39b 3655 5147 281.4 92.79 129.7 103.2

Notes: This table reports Monte Carlo simulations from using GMM to estimate the moment conditions found in
(14). Each simulation uses 1,000 iterations. The numbers within each of the three panels correspond to a different
simulation, varying the parameters β and α0j +α1j and keeping the sample size fixed at N = 1, 000. Each α0j +α1j

value has two specifications for α0j , with α1j then being set to equal the designated sum. The α0j values for 0.13a are
(0.055, 0.070, 0.085) and for 0.13b are (0.035, 0.070, 0.105), following columns (2) and (3) of Table 2; the values for
0.26a and 0.26b multiply these values by 2, respectively, and the values for 0.39a and 0.39b multiply these values by
3, respectively. The values for the remaining parameters are discussed in Section 5. Panel A reports the proportion
of times that the GMM estimator converges across iterations. Panel B reports the average of β across the iterations
where the estimator converges. Panel C reports the average standard error of β across the iterations where the
estimator converges.
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Table A2: Monte Carlo Simulations - Varying α and β, N = 10, 000

α0j + α0j β=0.0 β=0.25 β=0.5 β=1.0 β=1.5 β=2.0

Panel A: Proportion GMM Converges

0.00 0.963 0.985 1.000 1.000 1.000 1.000
0.13a 0.960 0.979 0.999 1.000 1.000 1.000
0.13b 0.965 0.973 1.000 1.000 1.000 1.000
0.26a 0.969 0.952 0.997 0.999 1.000 1.000
0.26b 0.971 0.956 0.992 0.999 0.999 1.000
0.39a 0.968 0.928 0.986 0.995 0.995 0.998
0.39b 0.975 0.937 0.982 0.994 0.996 0.995

Panel B: Mean of β if Converges

0.00 0.005 0.330 0.515 1.006 1.504 2.003
0.13a 0.048 0.385 0.539 1.017 1.517 2.018
0.13b -0.010 0.357 0.537 1.017 1.516 2.017
0.26a -0.001 0.414 0.566 1.042 1.571 2.059
0.26b -0.001 0.412 0.551 1.039 1.553 2.062
0.39a -0.001 0.432 0.653 1.130 1.647 2.217
0.39b -0.001 0.437 0.624 1.109 1.672 2.208

Panel C: Mean of SE of β if Converges

0.00 2962 20.06 0.082 0.066 0.065 0.065
0.13a 1170 33.50 0.300 0.113 0.137 0.168
0.13b 1045 14.46 0.24 0.113 0.138 0.168
0.26a 518.7 58.63 0.687 0.205 1.168 0.302
0.26b 649.6 48.01 0.244 0.186 0.264 0.315
0.39a 842.6 14.38 9.299 1.414 0.786 1.618
0.39b 329.6 13.57 3.114 0.763 1.730 0.985

Notes: This table reports Monte Carlo simulations from using GMM to estimate the moment conditions found in
(14). Each simulation uses 1,000 iterations. The numbers within each of the three panels correspond to a different
simulation, varying the parameters β and α0j +α1j and keeping the sample size fixed at N = 10, 000. Each α0j +α1j

value has two specifications for α0j , with α1j then being set to equal the designated sum. The α0j values for 0.13a are
(0.055, 0.070, 0.085) and for 0.13b are (0.035, 0.070, 0.105), following columns (2) and (3) of Table 2; the values for
0.26a and 0.26b multiply these values by 2, respectively, and the values for 0.39a and 0.39b multiply these values by
3, respectively. The values for the remaining parameters are discussed in Section 5. Panel A reports the proportion
of times that the GMM estimator converges across iterations. Panel B reports the average of β across the iterations
where the estimator converges. Panel C reports the average standard error of β across the iterations where the
estimator converges.
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Table A3: Monte Carlo Simulations - Varying α and β, N = 100, 000

α0j + α0j β=0.0 β=0.25 β=0.5 β=1.0 β=1.5 β=2.0

Panel A: Proportion GMM Converges

0.00 0.963 1.000 1.000 1.000 1.000 1.000
0.13a 0.951 1.000 1.000 1.000 1.000 1.000
0.13b 0.976 1.000 1.000 1.000 1.000 1.000
0.26a 0.959 1.000 1.000 1.000 1.000 1.000
0.26b 0.974 1.000 1.000 1.000 1.000 1.000
0.39a 0.953 1.000 1.000 0.999 1.000 1.000
0.39b 0.965 1.000 1.000 1.000 1.000 1.000

Panel B: Mean of β if Converges

0.00 0.007 0.254 0.503 1.002 1.502 2.002
0.13a 0.006 0.256 0.504 1.003 1.502 2.001
0.13b 0.003 0.256 0.504 1.002 1.502 2.001
0.26a 0.001 0.258 0.505 1.004 1.504 2.003
0.26b 0.020 0.258 0.505 1.005 1.504 2.004
0.39a 0.003 0.268 0.509 1.009 1.510 2.027
0.39b -0.001 0.265 0.509 1.008 1.511 2.016

Panel C: Mean of SE of β if Converges

0.00 255 0.022 0.020 0.020 0.020 0.020
0.13a 496 0.026 0.026 0.032 0.040 0.049
0.13b 337 0.026 0.026 0.032 0.040 0.050
0.26a 552 0.033 0.033 0.045 0.059 0.075
0.26b 479 0.033 0.033 0.045 0.060 0.076
0.39a 492 0.178 0.044 0.062 0.084 0.121
0.39b 209 0.050 0.044 0.061 0.085 0.110

Notes: This table reports Monte Carlo simulations from using GMM to estimate the moment conditions found in
(14). Each simulation uses 1,000 iterations. The numbers within each of the three panels correspond to a different
simulation, varying the parameters β and α0j +α1j and keeping the sample size fixed at N = 100, 000. Each α0j +α1j

value has two specifications for α0j , with α1j then being set to equal the designated sum. The α0j values for 0.13a are
(0.055, 0.070, 0.085) and for 0.13b are (0.035, 0.070, 0.105), following columns (2) and (3) of Table 2; the values for
0.26a and 0.26b multiply these values by 2, respectively, and the values for 0.39a and 0.39b multiply these values by
3, respectively. The values for the remaining parameters are discussed in Section 5. Panel A reports the proportion
of times that the GMM estimator converges across iterations. Panel B reports the average of β across the iterations
where the estimator converges. Panel C reports the average standard error of β across the iterations where the
estimator converges.
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Table A4: Comparing Proposed Estimators for Mis-Classified Binary Variables

(1) (2) (3) (4) (5)

Panel A: Structure of data generating process

α00 0.070 0.055 0.055 0.055 0.055
α01 0.070 0.070 0.070 0.070 0.070
α02 0.070 0.085 0.085 0.085 0.085
α00 + α10 0.130 0.130 0.130 0.130 0.130
α01 + α11 0.130 0.130 0.130 0.130 0.130
α02 + α12 0.130 0.130 0.130 0.130 0.130
Homoskedastic errors? Yes Yes No Yes No
Symmetric errors? Yes Yes Yes No No

Panel B: Estimates of β

Our estimator 1.003 1.003 1.003 1.002 1.000
(.033) (.033) (.051) (.042) (.034)

Frazis and Lowenstein (2003) 1.000 0.951 0.951 0.951 0.951
(.005) (.005) (.007) (.006) (.004)

Mahajan (2006) 1.000 0.951 0.951 0.951 0.951
(.005) (.005) (.007) (.006) (.005)

Lewbel (2007) 0.999 0.896 0.897 0.896 0.899
(.038) (.034) (.049) (.041) (.035)

Chen, Hu, and Lewbel (2008a) 1.000 1.000 1.150 1.000 0.964
(.002) (.002) (.004) (.003) (.002)

Chen, Hu, and Lewbel (2008b) 1.000 1.000 1.027 0.981 0.854
(.002) (.002) (.014) (.003) (.009)

DiTraglia and Garcia-Jimeno (2019) 1.001 1.001 1.150 1.000 0.965
(.009) (.008) (.016) (.013) (.011)

Notes: This table reports Monte Carlo simulations from using GMM to estimate the moment conditions found in
(14). Each simulation is based on 1,000 iterations, with a sample size of 100,000 observations. The mis-measured
variables T are constructed so that misclassification rate α0j and the sum of the misclassification rates α0j + α1j for
instrument value j match the values shown in the top panel. The values for the remaining parameters are discussed
in Section 5. See Appendix section A.8 for a complete description of the data generating processes specified for each
column. Panel B contains average estimates of β across iterations for the listed estimation method. The standard
deviation of the estimates across iterations are shown in parentheses.
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A Appendix

A.1 Dataset Descriptions

We use the March 1973 CPS that is linked both to Social Security earnings records and to tax

returns filed with the IRS. The earnings data used in our examples refer to the prior calendar year,

1972. The available SS earnings records are top-coded at the annual ceiling for earnings subject

to SS tax, which is $9,000 in 1972. Nearly half of privately employed men in the sample have top-

coded SS earnings data. On the other hand, the IRS earnings records and self-reported earnings

in the CPS are top-coded at $50,000, which affects less than one-half of one percent of privately

employed men in the data.

A drawback to the available IRS earnings data is that these are taken directly from tax filings,

which only have a single item in which the combined earnings of all household members is reported.

To circumvent this issue, we restrict our sample to men and women who designate their household

status as single on the tax return such that the IRS earnings amount should only reflect their own

earnings. In addition, we restrict the analysis to men and women who are report to the CPS that

they are privately employed, have positive IRS and CPS earnings, and have non-imputed CPS

earnings. We also restrict the data to individuals in households that are deemed to be “good”

matches (where the variable V1255 is not equal to 4) and to individuals with matches to available

IRS data (the variable V1253 equals 0). Our final sample includes 8,031 single men and women.

All our analyses are weighted using the “final” CPS-IRS-SSA STATS unit administrative weight

(the variable V1264), which account for selection into the CPS and the match between the CPS

and the administrative records.

We also use data from a special supplement to the January 1977 CPS. A subsample of survey

respondents was asked additional questions regarding union status, earnings, and hours worked.

These individuals were also asked to provide the name and address of their employer. Their

employers were subsequently asked to provide information for the survey respondent, including the

aforementioned variables. For a more detailed discussion of this data, see Mellow and Sider (1983).

Using code graciously provided to us by Alan Krueger, we employ the same sample restrictions as

Angrist and Krueger (1999).
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We also use the Continuous National Health and Nutrition Examination Survey, which is a

survey of the health and diet of Americans conducted by the National Center for Health Statistics

which started in 1999 and is conducted on a two-year cycle. This survey replaced the prior National

Health and Nutrition Examination Surveys which had previously been fielded on an idiosyncratic

schedule. Households and sample persons are selected using a stratified, multistage sampling design

for each cycle. A screener and basic questionnaire are completed as part of initial in-home visits.

A randomizing computer algorithm selects a sample person from each household roster. Survey

respondents complete a questionnaire covering demographic, dietary, socioeconomic, and health

topics. During this in-home interview, respondents are also asked to provide their height and

weight. Following the in-home interview, the selected sample persons make appointments to visit

a Mobile Examination Center for a detailed physical examination. During this subsequent physical

examination, the individual’s height and weight are measured by survey staff. All of our analyses

are weighted to account for selection into the NHANES and completing both the in-home interview

and the physical exam (the variable WTMEC2YR).

A.2 Derivation of Equations (5) and (6)

For a given value of Z, the expected value of the outcome when T = 1 is

E [Y |T = 1, Z = j] = E [Y |T ∗ = 0, T = 1, Z = j] · P [T ∗ = 0|T = 1, Z = j]

+ E [Y |T ∗ = 1, T = 1, Z = j] · P [T ∗ = 1|T = 1, Z = j]

= E [Y |T ∗ = 0, Z = j] · P [T ∗ = 0|T = 1, Z = j]

+ E [Y |T ∗ = 1, Z = j] · P [T ∗ = 1|T = 1, Z = j]

= E [Y |T ∗ = 0, Z = j] · P [T = 1|T ∗ = 0, Z = j] · P [T ∗ = 0|Z = j]

P [T = 1|Z = j]

+ E [Y |T ∗ = 1, Z = j] · P [T = 1|T ∗ = 1, Z = j] · P [T ∗ = 1|Z = j]

P [T = 1|Z = j]

= E [Y |T ∗ = 0, Z = j] ·
α0j

(
1− p∗j

)
pj

+ E [Y |T ∗ = 1, Z = j] ·
(1− α1j) p

∗
j

pj

(19)
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The second equality follows from the non-differential measurement error assumption and the third

equality follows from Bayes Theorem. Similarly,

E [Y |T = 0, Z = j] = E [Y |T ∗ = 0, Z = j] ·
(1− α0j)

(
1− p∗j

)
1− pj

+E [Y |T ∗ = 1, Z = j] ·
α1j · p∗j
1− pj

(20)

We can solve for E [Y |T ∗ = 1, Z = j] and E [Y |T ∗ = 0, Z = j] using equations (19) and (20) in

terms of both observed quantities (E [Y |T = 0, Z = j], E [Y |T = 1, Z = j], and pj) and unobserved

quantities (α0j , α1j , and p∗j )

E [Y |T ∗ = 1, Z = j] =
pjE [Y |T = 1, Z = j]− α0jE [Y |Z = j]

p∗j (1− α0j − α1j)

E [Y |T ∗ = 0, Z = j] =
(1− pj)E [Y |T = 0, Z = j]− α1jE [Y |Z = j](

1− p∗j
)

(1− α0j − α1j)

which use the substitution E [Y |Z = j] = E [Y |T = 1, Z = j] pj + E [Y |T = 0, Z = j] (1− pj).

Noting that pj − α0j = (1− α0j − α1j) p
∗
j , which follows immediately from the equation for pj ,

we can simplify the expression for E [Y |T ∗ = 1, Z = j] to yield

E [Y |T ∗ = 1, Z = j] =
pjE [Y |T = 1, Z = j]− α0jE [Y |Z = j]

p∗j (1− α0j − α1j)

=
pjE [Y |T = 1, Z = j]− α0jE [Y |Z = j]

pj − α0j

=
pjE [Y |T = 1, Z = j]− α0jE [Y |Z = j] + (pjE [Y |Z = j]− pjE [Y |Z = j])

pj − α0j

=
pjE [Y |T = 1, Z = j]− pjE [Y |Z = j] + (pj − α0j)E [Y |Z = j]

pj − α0j

=
E [Y T |Z = j]− pjE [Y |Z = j]

pj − α0j
+ E [Y |Z = j]

=
COV (Y, T |Z = j)

pj − α0j
+ E [Y |Z = j] (21)

where COV (Y, T |Z = j) is the covariance of Y and T among those observations where Z = j and

making of the fact that

E [Y T |Z = j] = pjE [Y · 1|T = 1, Z = j] + (1− pj)E [Y · 0|T = 0, Z = j] = pjE [Y |T = 1, Z = j]
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The following expression follows similarly

E [Y |T ∗ = 0, Z = j] = E [Y |Z = j]− COV (Y, T |Z = j)

1− pj − α1j
(22)

A.3 Derivation of Equation (7)

Subtracting equation (4) from equation (3) and then inserting equations (5) and (6) into the

resulting expression yields

E [Y |T ∗ = 1, Z = j]− E [Y |T ∗ = 0, Z = j] = E [Y |T ∗ = 1, Z = k]− E [Y |T ∗ = 0, Z = k]

COV (Y, T |Z = j)

pj − α0j
+
COV (Y, T |Z = j)

1− pj − α1j
=
COV (Y, T |Z = k)

pk − α0k
+
COV (Y, T |Z = k)

1− pk − α1k

COV (Y, T |Z = j)

(1− α0j − α1j) p∗j
+

COV (Y, T |Z = j)

(1− α0j − α1j)
(

1− p∗j
) =

COV (Y, T |Z = k)

(1− α0k − α1k) p∗k
+

COV (Y, T |Z = k)

(1− α0k − α1k)
(
1− p∗k

)
1

(1− α0j − α1j)
· COV (Y, T |Z = j)

p∗j

(
1− p∗j

) =
1

(1− α0k − α1k)
· COV (Y, T |Z = k)

p∗k
(
1− p∗k

)
where we also make use of the definition of pj for the following substitutions pj−α0j = (1− α0j − α1j) p

∗
j

and 1− pj − α1j = (1− α0j − α1j)
(

1− p∗j
)

.

A.4 Proof of Theorem 1

Let the instrument Z take on three values, j = 0, 1, 2. Re-writing (2) in terms of β and then

equating this result for the cases (j = 1, k = 0) and (j = 2, k = 1) yields

E [Y |Z = 1]− E [Y |Z = 0]

p∗1 − p∗0
=
E [Y |Z = 2]− E [Y |Z = 1]

p∗2 − p∗1

Letting ∆jk = E [Y |Z = j]− E [Y |Z = k], we can solve this expression for p∗1

p∗1 =
p∗2∆10 + p∗0∆21

∆21 + ∆10
(23)
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which we can use to derive an expression for p∗1 (1− p∗1)

p∗1 (1− p∗1) =

(
p∗2∆10 + p∗0∆21

∆21 + ∆10

)(
∆21 + ∆10

∆21 + ∆10
−
(
p∗2∆10 + p∗0∆21

∆21 + ∆10

))
=

(
p∗2∆10 + p∗0∆21

∆21 + ∆10

)(
(1− p∗2) ∆10 + (1− p∗0) ∆21

∆21 + ∆10

)
=

(
1

∆20

)2 (
p∗2 (1− p∗2) ∆2

10 + p∗0 (1− p∗0) ∆2
21 + ∆10∆21 (p∗2 (1− p∗0) + p∗0 (1− p∗2))

)
(24)

where the last step uses ∆20 = ∆21 + ∆10. Next, we can re-write equation (8) for the case

j = 1, k = 0 to yield

p∗1 (1− p∗1) = p∗0 (1− p∗0) ·
C1

C0
(25)

where Cj = COV (Y, T |Z = j). Inserting (24) into (25) and simplifying yields

(
1

∆20

)2 (
p∗2 (1− p∗2) ∆2

10 + p∗0 (1− p∗0) ∆2
21 + ∆10∆21 (p∗2 (1− p∗0) + p∗0 (1− p∗2))

)
= p∗0 (1− p∗0) ·

C1

C0

p∗2 (1− p∗2) ∆2
10 + p∗0 (1− p∗0)

(
∆2

21 −∆2
20

C1

C0

)
+ ∆10∆21 (p∗2 (1− p∗0) + p∗0 (1− p∗2)) = 0 (26)

Similarly, we can re-write equation (8) for the case (j = 2, k = 1)

p∗1 (1− p∗1) = p∗2 (1− p∗2) ·
C1

C2
(27)

which we can combine with (24) to yield

(
1

∆20

)2 (
p∗2 (1− p∗2) ∆2

10 + p∗0 (1− p∗0) ∆2
21 + ∆10∆21 (p∗2 (1− p∗0) + p∗0 (1− p∗2))

)
= p∗2 (1− p∗2) ·

C1

C2

p∗2 (1− p∗2)
(

∆2
10 −∆2

20

C1

C2

)
+ p∗0 (1− p∗0) ∆2

21 + ∆10∆21 (p∗2 (1− p∗0) + p∗0 (1− p∗2)) = 0 (28)

To find the solutions to the remaining two unknowns, p∗0 and p∗2 given the two equations (26)

and (28), we proceed in the following steps. First, we re-write these two equations as quadratics

in p∗0. We can then compute the resultant using the coefficients on p∗0 in the re-written equations.

As these coefficients are only a function of p∗2, the resultant also is only a function of p∗2. Since
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the system of equations has a non-zero solutions if and only if the resultant equals zero, we set the

resultant equal to zero and solve for roots of p∗2. We then repeat the process by re-writing equations

(26) and (28) as quadratics in p∗2 and solve that resultant for roots of p∗0. Finally, we substitute all

combinations of the roots of p∗0 and p∗2 into (26) and (28) to find the pair(s) of roots that satisfy

these equations.

Re-writing both (26) and (28) as quadratics in p∗0 yields

(
∆2

20

C1

C0
−∆2

21

)
p∗0

2 +

(
∆2

21 −∆2
20

C1

C0
+ ∆10∆21 − 2∆10∆21p

∗
2

)
p∗0

+
((

∆2
10 + ∆10∆21

)
p∗2 −∆2

10p
∗
2
2
)

= 0 (29)

−∆2
21p
∗
0
2 +

(
∆2

21 + ∆10∆21 − 2∆10∆21p
∗
2

)
p∗0

+

((
∆2

10 −∆2
20

C1

C2
+ ∆10∆21

)
p∗2 +

(
∆2

20

C1

C2
−∆2

10

)
p∗2

2

)
= 0 (30)

Denoting the coefficients of the system of quadratic equations formed by (29) and (30) by

A00 = ∆2
20

C1

C0
−∆2

21

A01 = ∆2
21 −∆2

20

C1

C0
+ ∆10∆21 − 2∆10∆21p

∗
2

A02 =
(
∆2

10 + ∆10∆21

)
p∗2 −∆2

10p
∗
2
2

B00 = −∆2
21

B01 = ∆2
21 + ∆10∆21 − 2∆10∆21p

∗
2

B02 =

(
∆2

10 −∆2
20

C1

C2
+ ∆10∆21

)
p∗2 +

(
∆2

20

C1

C2
−∆2

10

)
p∗2

2

we can form the Sylvester matrix, Sp∗0 , of this system of equations in p∗0



A00 A01 A02 0

0 A00 A01 A02

B00 B01 B02 0

0 B00 B01 B02
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Since the resultant can be formed as the determinant of the Sylvester matrix, taking the determinant

of Sp∗0 and setting it equal to zero yields

C2
1∆4

20

(
C2
1∆4

20 + (C2∆
2
10 − C0∆

2
21)

2 − 2C1∆
2
20(C2∆

2
10 + C0∆

2
21)
)

C2
0C

2
2

· p∗2
4

−
2C2

1∆4
20

(
C2
1∆4

20 + (C2∆
2
10 − C0∆

2
21)

2 − 2C1∆
2
20(C2∆

2
10 + C0∆

2
21)
)

C2
0C

2
2

· p∗2
3

+
1

C2
0C

2
2

[
C2
1∆4

20

(
C2
0∆4

21 + C2
1∆4

20 − C0C2∆10∆
2
21(3∆20) + C2

2∆2
10(∆

2
10 −∆10∆21 −∆2

21)

− C1∆
2
20(C2∆10(2∆10 −∆21) + 2C0∆

2
21)
) ]
· p∗2

2

+
C2
1∆10∆21∆

5
20(C2∆10 + C0∆21 − C1∆20)

C2
0C2

· p∗2 = 0 (31)

Following an analogous process, we re-write (26) and (28) as quadratics in p∗2, form the Sylvester

matrix Sp∗2 , take its determinant and set it equal to zero to yield

C2
1∆4

20(C
2
1∆4

20 + (C2∆
2
10 − C0∆

2
21)

2 − 2C1∆
2
20(C2∆

2
10 + C0∆

2
21))

C2
0C

2
2

· p∗0
4

−
2C2

1∆4
20

(
C2
1∆4

20 + (C2∆
2
10 − C0∆

2
21)

2 − 2C1∆
2
20(C2∆

2
10 + C0∆

2
21)
)

C2
0C

2
2

· p∗0
3

+
1

C2
0C

2
2

[
C2
1∆4

20

(
C2
2∆4

10 + C2
1∆4

20 − C0C2∆
2
10∆21(∆10 + 3∆21) + C2

0∆2
21(−∆2

10 −∆10∆21 + ∆2
21)

− C1∆
2
20(2C2∆

2
10 + C0∆21(−∆10 + 2∆21))

) ]
· p∗0

2

+
C2
1∆10∆21∆

5
20(C2∆10 + C0∆21 − C1∆20)

C0C2
2

· p∗0 = 0 (32)

We find that (31) yields four roots of p∗2 and (32) yields four roots of p∗0. We then use all

combinations of these roots to determine which (p∗0, p
∗
2) root pairs satisfy (26) and (28).

Two of the four roots for both p∗0 and p∗2 are 0 and 1. When either p∗0 or p∗2 equals 0, the

solution to the system of equations is p∗0 = 0 and p∗2 = 0. Similarly, when either p∗0 or p∗2 equals 1,

the solution to the system of equations is p∗0 = 1 and p∗2 = 1. However, these two pairs of solutions

violate Assumption 1.iii that 0 < p∗j < 1, ∀j and p∗j 6= p∗k, j 6= k. Thus, neither 0 nor 1 is a possible

solution for either p∗0 or p∗2.

The two pairs of roots which satisfy (26) and (28) for which p∗j 6= p∗k, j 6= k, along with
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corresponding solution for p∗1 computed by inserting each (p∗0, p
∗
2) pair into (23), are

p∗0 =
D3 +

√
D3

(
(C1 − C0) ∆2

20 + (C0 − C2) ∆2
10

)
2D3

p∗1 =
D3 +

√
D3

(
(C2 − C1) ∆2

10 + (C1 − C0) ∆2
21

)
2D3

(33)

p∗2 =
D3 +

√
D3

(
(C2 − C1) ∆2

20 + (C0 − C2) ∆2
21

)
2D3

and

p∗0 =
D3 −

√
D3

(
(C1 − C0) ∆2

20 + (C0 − C2) ∆2
10

)
2D3

p∗1 =
D3 −

√
D3

(
(C2 − C1) ∆2

10 + (C1 − C0) ∆2
21

)
2D3

(34)

p∗2 =
D3 −

√
D3

(
(C2 − C1) ∆2

20 + (C0 − C2) ∆2
21

)
2D3

where D0 = C0∆
2
21, D1 = C1∆

2
20, D2 = C2∆

2
10, and D3 = D2

0+D2
1+D2

2−2D0D1−2D0D2−2D1D2.

Both sets of solutions yield real numbers if D3 > 0. We prove that is the case below in section

A.4.1.

We can next solve for β by selecting any pair of p∗j and substituting the appropriate values into

equation (2). Without loss of generality, using the first solution found in equations (33) along with

the fact that ∆2
20 = (∆21 + ∆10)

2 = ∆2
21 + ∆2

10 + 2∆21∆10, we can first compute p∗1 − p∗0

p∗1 − p∗0 =

√
D3

(
(C2 − C1) ∆2

10 + (C1 − C0) ∆2
21

)
2D3

−

√
D3

(
(C1 − C0) ∆2

20 + (C0 − C2) ∆2
10

)
2D3

=

√
D3

(
(2C2 − C1 − C0) ∆2

10 + (C1 − C0)
(
∆2

21 −∆2
20

) )
2D3

(35)

=

√
D3

(
2 (C2 − C1) ∆2

10 + 2 (C0 − C1) (∆21∆10)
)

2D3

=

(
(C2 − C1) ∆2

10 + (C0 − C1) (∆21∆10)
)

√
D3
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Thus, for the first solution found in equations (33), re-writing equation (2) to solve for β and

then inserting the above result for p∗1 − p∗0 yieids

β =
∆10

p∗1 − p∗0

=

√
D3∆10(

(C2 − C1) ∆2
10 + (C0 − C1) (∆21∆10)

)
=

√
D3(

(C2 − C1) ∆10 + (C0 − C1) ∆21

) (36)

Similarly, we can show that β corresponding to the second solution found in equations (34), is

equal and oppose in sign from the result in equation (36), i.e.,

β = −
√
D3(

(C2 − C1) ∆10 + (C0 − C1) ∆21

) (37)

To solve for α, notice that under the Assumption 2, an OLS regression of Y on T ∗ will yield a

consistent estimate of β. Moreover, a regression of Y on T ∗ conditional on any value taken on by

the instrument will also consistently estimate β. Therefore,

β =
COV (Y, T ∗|Z = j)

V AR (T ∗|Z = j)
=
COV (Y, T ∗|Z = j)

p∗j

(
1− p∗j

) =
COV (Y, T |Z = j)

(1− α0j − α1j) p∗j

(
1− p∗j

) (38)

where the last equality results from the fact that COV (Y, T |Z = j) = (1− α0j − α1j)COV (Y, T ∗|Z = j)

which we prove below in section A.4.2.

Re-writing (38) to solve for α = α0j + α1j yields

1− α =
COV (Y, T |Z = j)

βp∗j

(
1− p∗j

) (39)

Inspection of equations (33) and (34) reveals that the results for each p∗j sum to one across

the two solutions, i.e., p∗j in (33) equals 1 − p∗j in (34). Thus, p∗j

(
1− p∗j

)
is the same across both

solutions as is the observed quantity COV (Y, T |Z = j). Since the corresponding results for β

are equal but opposite in sign across the two solutions, the right-hand side of (39) is positive for
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one solution and negative for another solution. Thus α < 1 for one solution and α > 1 for the

other solution. Since Assumption 1.v requires α < 1, we can determine which of the two solutions

matches this assumption and therefore determine the sign of β.

A.4.1 Proof that D3 > 0

The solutions in equations (33) and (34) require D3 > 0 in order to yield real numbers. Re-

writing the expression for p∗1 (1− p∗1), found in (24), making substitutions using equation (8), and

simplifying yields

p∗1 (1− p∗1) ∆2
20 = p∗2 (1− p∗2) ∆2

10 + p∗0 (1− p∗0) ∆2
21 + ∆10∆21 (p∗2 (1− p∗0) + p∗0 (1− p∗2))[

p∗0 (1− p∗0) ·
C1

C0

]
∆2

20 =

[
p∗0 (1− p∗0) ·

C2

C0

]
∆2

10 + p∗0 (1− p∗0) ∆2
21 + ∆10∆21 (p∗2 (1− p∗0) + p∗0 (1− p∗2))

C1∆
2
20 = C2∆

2
10 + C0∆

2
21 + C0∆10∆21

(p∗2 (1− p∗0) + p∗0 (1− p∗2))
p∗0 (1− p∗0)

D1 −D2 −D0 = C0∆10∆21
(p∗2 (1− p∗0) + p∗0 (1− p∗2))

p∗0 (1− p∗0)
(40)

Squaring both sides of equation (40) and simplifying yields

(D1 −D2 −D0)
2 = C2

0∆2
10∆

2
21

(p∗2 (1− p∗0) + p∗0 (1− p∗2))
2

(p∗0 (1− p∗0))
2

D2
0 +D2

1 +D2
2 − 2D0D1 − 2D1D2 + 2D0D2 =

[
C0

p∗0 (1− p∗0)
∆2

10

]
C0∆

2
21

(p∗2 (1− p∗0) + p∗0 (1− p∗2))
2

p∗0 (1− p∗0)

D3 + 4D0D2 =

[
C2

p∗2 (1− p∗2)
∆2

10

]
C0∆

2
21

(p∗2 (1− p∗0) + p∗0 (1− p∗2))
2

p∗0 (1− p∗0)

D3 + 4D0D2 = D2D0
(p∗2 (1− p∗0) + p∗0 (1− p∗2))

2

p∗0 (1− p∗0) p∗2 (1− p∗2)

D3 = D0D2

[
(p∗2 (1− p∗0) + p∗0 (1− p∗2))

2

p∗0 (1− p∗0) p∗2 (1− p∗2)
− 4

]
(41)

Notice that C0 and C2 must always have the same sign in order to satisfy equation (8). Thus,

C0C2 > 0 and, in turn, D0D2 = C0∆
2
21C2∆

2
10 > 0.39 Therefore, D3 > 0 as long as the term in

39Rule out Cj = 0 ∀ j.
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brackets on the right hand side of (41) is positive. To confirm this condition holds notice that

(p∗2 (1− p∗0) + p∗0 (1− p∗2))
2

p∗0 (1− p∗0) p∗2 (1− p∗2)
− 4 > 0

(p∗2 (1− p∗0))
2 + (p∗0 (1− p∗2))

2 + 2p∗2 (1− p∗0) p∗0 (1− p∗2)
p∗0 (1− p∗0) p∗2 (1− p∗2)

> 4

(p∗2 (1− p∗0))
2 + (p∗0 (1− p∗2))

2

p∗0 (1− p∗0) p∗2 (1− p∗2)
+ 2 > 4

(p∗2 (1− p∗0))
2 + (p∗0 (1− p∗2))

2 > 2p∗0 (1− p∗0) p∗2 (1− p∗2)

(p∗2 (1− p∗0))
2 − 2p∗0 (1− p∗0) p∗2 (1− p∗2) + (p∗0 (1− p∗2))

2 > 0

[(p∗2 (1− p∗0))− (p∗0 (1− p∗2))]
2 > 0

[p∗2 − p∗0]
2 > 0

∆2
20

β2
> 0 (42)

As long as β 6= 0, this condition is satisfied and, thus, D3 > 0.

A.4.2 Proof that COV (W,T |Z = j) = (1− α0j − α1j)COV (W,T ∗|Z = j)

For a given variable, W , the covariance between W and T ∗ among those observations where Z = j

simplifies to

COV (W,T ∗|Z = j) = E [WT ∗|Z = j]− E [W |Z = j]E [T ∗|Z = j]

= p∗jE [W |T ∗ = 1, Z = j]− E [W |Z = j] p∗j

=
(
E [W |T ∗ = 1, Z = j]− E [W |Z = j]

)
p∗j (43)

where we make use of the fact that

E [WT ∗|Z = j] = p∗jE [W · 1|T ∗ = 1, Z = j]+
(
1− p∗j

)
E [W · 0|T ∗ = 0, Z = j] = p∗jE [W |T ∗ = 1, Z = j]

Similarly, for a given variable, W , the covariance between W and T among those observations
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where Z = j simplifies to

COV (W,T |Z = j) =
(
E [W |T = 1, Z = j]− E [W |Z = j]

)
pj (44)

Notice that replacing Y with W in equation (19) and extending the assumption of non-differential

measurement error to W yields an expression for E [W |T = 1, Z = j]. Inserting this term into

equation (44) yields

COV (W,T |Z = j) =

(
E [W |T ∗ = 0, Z = j] ·

α0j

(
1− p∗j

)
pj

+ E [W |T ∗ = 1, Z = j] ·
(1− α1j) p

∗
j

pj

− E [W |Z = j]

)
pj

= E [W |T ∗ = 0, Z = j] · α0j

(
1− p∗j

)
+ E [W |T ∗ = 1, Z = j] · (1− α1j) p

∗
j

− E [W |Z = j] pj (45)

Finally, adding zero in the form of α0jE [W |Z = j]− α0jE [W |Z = j] yields

COV (W,T |Z = j) = E [W |T ∗ = 0, Z = j] · α0j

(
1− p∗j

)
+ E [W |T ∗ = 1, Z = j] · (1− α1j) p

∗
j

− α0jE [W |Z = j]

−
(
E [W |Z = j] pj − α0jE [W |Z = j]

)
= E [W |T ∗ = 0, Z = j] · α0j

(
1− p∗j

)
+ E [W |T ∗ = 1, Z = j] · (1− α1j) p

∗
j

− α0j

(
E [W |T ∗ = 0, Z = j]

(
1− p∗j

)
+ E [W |T ∗ = 1, Z = j] p∗j

)
− E [W |Z = j] (pj − α0j)

= E [W |T ∗ = 1, Z = j] · (1− α0j − α1j) p
∗
j

− E [W |Z = j] · (1− α0j − α1j) p
∗
j

=
(
E [W |T ∗ = 1, Z = j]− E [W |Z = j]

)
· (1− α0j − α1j) p

∗
j

= (1− α0j − α1j)COV (W,T ∗|Z = j) (46)
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A.5 Including covariates

Including covariates requires the following modifications to Assumptions 1, 2, and 4 to account for

the additional regressor(s).

Assumption 1′.ii: E[Y |Z = j,X] = γ + βp∗j + E[ψX|Z = j,X], ∀j

Assumption 1′.iv: E [Y |T, T ∗, Z,X] = E [Y |T ∗, Z,X]

Assumption 2′: E [Y |T ∗ = t, Z = j,X] = E [Y |T ∗ = t,X] , ∀j

Assumption 4′: E [Y |T ∗ = 1, Z = j,X]−E [Y |T ∗ = 0, Z = j,X] = E [Y |T ∗ = 1, Z = k,X]−

E [Y |T ∗ = 0, Z = k,X] ∀ j, k

We also assume that each element in X is uncorrelated with the error ε. The analogous covariance

equations to (8) are

COV (Y, T |Z = j)

p∗j

(
1− p∗j

) − COV (ψX, T |Z = j)

p∗j

(
1− p∗j

) =
COV (Y, T |Z = k)

p∗k
(
1− p∗k

) − COV (ψX, T |Z = k)

p∗k
(
1− p∗k

) (47)

where we again eliminate the misclassification rates from the system of moment conditions by

assuming that the sum of the misclassification rates is constant across instrument values. We can

obtain (47) using COV (Y, T ∗|Z = j) since

COV (Y, T ∗|Z = j) = βCOV (T ∗, T ∗|Z = j) + COV (ψX, T ∗|Z = j) + COV (ε, T ∗|Z = j)

COV (Y, T ∗|Z = j) = βp∗j
(
1− p∗j

)
+ COV (ψX, T ∗|Z = j)

COV (Y, T ∗|Z = j)

p∗j

(
1− p∗j

) = β +
COV (ψX, T ∗|Z = j)

p∗j

(
1− p∗j

)
COV (Y, T |Z = j)

(1− α0j − α1j) p∗j

(
1− p∗j

) = β +
COV (ψX, T |Z = j)

(1− α0j − α1j) p∗j

(
1− p∗j

)
COV (Y, T |Z = j)

(1− α) p∗j

(
1− p∗j

) = β +
COV (ψX, T |Z = j)

(1− α) p∗j

(
1− p∗j

) (48)

The second line makes use of Assumption 2 (that T ∗ is an exogenous covariate), the fourth line

makes use of COV (W,T |Z = j) = (1− α0j − α1j)COV (W,T ∗|Z = j) (see section A.4.2), and the
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final line makes use of Assumption 3. For any two instrument values, Z = j and Z = k, we can

then difference equation (48) and simplify to obtain the desired result.

The analog to equation (10), which can be obtained from re-arranging the terms of (48), is

1− α =
COV (Y, T |Z = j)− COV (ψX, T |Z = j)

βp∗j

(
1− p∗j

) (49)

As we note in the text, we can pre-estimate ψ, the coefficient on X, by regressing Y on T

and X while using Z as an instrument for T . The proof that ψ can be consistently estimated in

this way follows from a standard textbook analysis of using T as a proxy variable for T ∗, but with

one modification. Specifically, the key assumptions necessary for using T as a proxy variable are

typically motivated using the linear projection of T ∗ on T

T ∗ = λ0 + λ1T + r

to re-write the structural equation (16) as follows

Y = (γ + βλ0) + βλ1T +ψX + (βr + ε) (50)

The standard proxy variable method would then use OLS to estimate (50) based on the assumption

that the composite error term (βr + ε) is uncorrelated with T and X. The first assumption

necessary for this method to be valid is that T be “redundant” in the structural equation. The

definition of redundancy in Wooldridge (2010; see (4.25), p. 68) is equivalent to our assumption of

non-differential measurement error (see Assumption 1′.iv), which satisfies the first proxy variable

assumption.

The second assumption that must be satisfied to use OLS is that COV (r,X) = 0.40 Rather

than make this additional assumption, we instead make use of that fact we have already assumed

an instrument exists for T , and instead estimate (50) using two-stage least squares. Using T̂ rather

than T in (50) imposes that COV (r,X) = 0 because X is included in the construction of T̂ . It is

40The additional assumption requires that T ∗ be uncorrelated with X after we partial out T , which is given in
(4.26) of Wooldridge (2010).
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worth noting that the coefficient on T̂ , the predicted proxy variable, is not a consistent estimator

for β, but instead is a consistent estimator for βλ1.

A.6 Identification of α Under Assumption 4 Using Homoskedasticity

One possibility for identifying α when using Assumption 4 is to impose restrictions on the higher or-

der moments. In particular, we can require that the error term, ε, in equation (1) is homoskedastic,

i.e., E
[
ε2|Z = j

]
= E

[
ε2
]
.

Following equation (1), the expected value of the square of Y when Z = j is

E
[
Y 2|Z = j

]
= E

[
(γ + βT ∗ + ε)2 |Z = j

]
= E

[
γ2 + β2 (T ∗)2 + ε2 + 2βT ∗γ + 2γε+ 2βT ∗ε|Z = j

]
= β2E

[
(T ∗)2 |Z = j

]
+ 2βE [(γ + ε)T ∗|Z = j] + E

[
γ2 + 2γε+ ε2|Z = j

]
(51)

The first term in (51) simplifies using β2E
[
(T ∗)2 |Z = j

]
= β2p∗j . The third term in (51) can

be simplified using E
[
γ2 + 2γε+ ε2|Z = j

]
= γ2 + 2γE [ε|Z = j] + E

[
ε2|Z = j

]
= γ2 + E

[
ε2
]

where the second equality follows both from the fact that E [ε|Z = j] and by the homoskedasticity

assumption.

To find an expression for the second term in (51), we begin with right-hand side of (6) multiplied

by −
(

1− p∗j
)

. Simplifying this expression yields

(
1− p∗j

) [COV (Y, T |Z = j)

1− pj − α1j
− E [Y |Z = j]

]
=
COV (Y, T |Z = j)

1− α0j − α1j
−
(
1− p∗j

)
E [Y |Z = j]

= COV (Y, T ∗|Z = j)−
(
1− p∗j

)
E [Y |Z = j]

=
(
E [Y T ∗|Z = j]− E [Y |Z = j] p∗j

)
−
(
1− p∗j

)
E [Y |Z = j]

= E [(γ + βT ∗ + ε)T ∗|Z = j]− E [Y |Z = j]

= E [(γ + ε)T ∗|Z = j] + E
[
β (T ∗)2 |Z = j

]
− E [Y |Z = j]

= E [(γ + ε)T ∗|Z = j] + βp∗j −
(
γ + βp∗j

)
= E [(γ + ε)T ∗|Z = j]− γ (52)
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where the first equality uses the fact that 1 − pj − α1j = (1− α0j − α1j)
(

1− p∗j
)

and the second

equality uses the result COV (Y, T |Z = j) = (1− α0j − α1j)COV (Y, T ∗|Z = j).

Substituting these results back into (51) yields

E
[
Y 2|Z = j

]
= β2p∗j + 2β

[
COV (Y, T |Z = j)

1− α0j − α1j
−
(
1− p∗j

)
E [Y |Z = j] + γ

]
+ γ2 + E

[
ε2
]

(53)

Differencing (53) for any two values of the instrument, j and k, yields

E
[
Y 2|Z = j

]
− E

[
Y 2|Z = k

]
= β2

(
p∗j − p∗k

)
+ 2β

[
COV (Y, T |Z = j)

1− α0j − α1j
− COV (Y, T |Z = k)

1− α0k − α1k

]
− 2β

[(
1− p∗j

)
E [Y |Z = j]− (1− p∗k)E [Y |Z = k]

]
= β (E [Y |Z = j]− E [Y |Z = k])

+ 2β

[
COV (Y, T |Z = j)

1− α0j − α1j
− COV (Y, T |Z = k)

1− α0k − α1k

]
− 2β

[(
1− p∗j

)
E [Y |Z = j]− (1− p∗k)E [Y |Z = k]

]
(54)

where the second equality arises by using equation (2) to adjust the first term of (54). Again

invoking Assumption 3 (i.e., α = α0j + α1j) and solving for 1− α yields

1− α =
2β (COV (Y, T |Z = j)− COV (Y, T |Z = k))

(E [Y 2|Z = j]− E [Y 2|Z = k]) + β
{

∆jk + 2
(
E [Y |Z = j] p∗j − E [Y |Z = k] p∗k

)} (55)

where ∆jk = E [Y |Z = j]− E [Y |Z = k].

To see that (55) implies that α < 1 for one solution and α > 1 for the other solution, let

{β, p∗j , p∗k} be the estimators for the first solution while {β̃, p̃∗j , p̃∗k} are the corresponding estimators

for the second solution. Recall from (9) that β̃ = −β and, since the estimators for a p∗j sum to one

across the two solutions, p̃∗j = 1− p∗j for each j.
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Inserting these results into the second term in the denominator of (55) yields

β̃
{

∆jk + 2
(
E [Y |Z = j] p̃∗j − E [Y |Z = k] p̃∗k

)}
= −β {E [Y |Z = j]− E [Y |Z = k]

+ 2
(
E [Y |Z = j]

(
1− p∗j

)
− E [Y |Z = k] (1− p∗k)

)}
= −β

{
−∆jk − 2

(
E [Y |Z = j] p∗j − E [Y |Z = k] p∗k

)}
= β

{
∆jk + 2

(
E [Y |Z = j] p∗j − E [Y |Z = k] p∗k

)}
(56)

Thus, the second term in the denominator of (55) is the same for both solutions and, since

E
[
Y 2|Z = j

]
− E

[
Y 2|Z = k

]
does not vary across solutions, we see the entire denominator does

not vary across the two solutions. The sign of the numerator, however, will vary across the two

solutions since β is of equal magnitude but opposite in sign across the two solutions. Thus, α < 1

for one solution and α > 1 for the other solution.

A.7 Proof of Proposition 1

Since COV (Y, T |Z = j) = (1− α0j − α1j)COV (Y, T ∗|Z = j) (see section A.4.2) and α0j +α1j < 1

(by Assumption 1.v), it immediately follows that the sign of β̂OLS
j = COV (Y, T |Z = j) /pj (1− pj)

will be the same as β = COV (Y, T ∗|Z = j) /p∗j

(
1− p∗j

)
.

Suppose β > 0 in which case E [Y |T ∗ = 1] > E [Y |T ∗ = 0]. Notice that for each instrument

value j,

E [Y |T = 1, Z = j] = E [Y |T ∗ = 0, T = 1, Z = j] · P [T ∗ = 0|T = 1, Z = j]

+ E [Y |T ∗ = 1, T = 1, Z = j] · P [T ∗ = 1|T = 1, Z = j]

= E [Y |T ∗ = 0] · P [T ∗ = 0|T = 1, Z = j]

+ E [Y |T ∗ = 1] · P [T ∗ = 1|T = 1, Z = j]

≤ E [Y |T ∗ = 1] · P [T ∗ = 0|T = 1, Z = j]

+ E [Y |T ∗ = 1] · P [T ∗ = 1|T = 1, Z = j]

= E [Y |T ∗ = 1] (57)

61



where the second equality follows both from the non-differential measurement error assumption

(Assumption 1.iv) and from Assumption 2 while the inequality follows from β > 0. Note that the

inequality is strict if P [T ∗ = 0|T = 1, Z = j] > 0.

In addition

E [Y |T = 1] =
∑
j

E [Y |T = 1, Z = j] · P [Z = j]

≤
∑
j

max
Z
{E [Y |T = 1, Z = j]} · P [Z = j]

= max
Z
{E [Y |T = 1, Z = j]}

∑
j

P [Z = j]

= max
Z
{E [Y |T = 1, Z = j]} (58)

where maxZ{E [Y |T = 1, Z = j]} is the maximum value of E [Y |T = 1, Z = j] across all the instru-

ment values and
∑

j P [Z = j] = 1.

Combining the results in (57) and (58), we see that

E [Y |T = 1] ≤ max
Z
{E [Y |T = 1, Z = j]} ≤ E [Y |T ∗ = 1] (59)

Analogously, it is straightforward to show that

E [Y |T = 0] ≥ min
Z
{E [Y |T = 0, Z = j]} ≥ E [Y |T ∗ = 0] (60)

Defining β̂LB,+ = maxZ{E [Y |T = 1, Z = j]}−minZ{E [Y |T = 0, Z = j]}, combining these last

two results yields

E [Y |T = 1]− E [Y |T = 0] ≤ β̂LB,+ ≤ E [Y |T ∗ = 1]− E [Y |T ∗ = 0]

0 < β̂OLS ≤ β̂LB,+ ≤ β (61)

where the last line uses the result that the sign of βOLS is the same as the sign of β.

If β < 0, we define β̂LB,− = minZ{E [Y |T = 1, Z = j]} −maxZ{E [Y |T = 0, Z = j]} and using
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arguments analogous to those above, we can show that

0 > β̂OLS ≥ β̂LB,− ≥ β (62)

A.8 Comparison to Other Estimators

In Appendix Table A4, we examine how other proposed estimators perform in the face of mis-

classification rates that vary. Columns (1) and (2) of Appendix Table A4 use exactly the same

data generating process as columns (1) and (2) of Table 2, respectively. All of the estimators are

well-centered in column (1) when the underlying misclassification rates are fixed. When we allow

the underlying misclassifications rates to vary (but continue to assume that the sum is fixed) in

column (2), the three estimators that rely on fixed misclassification and an instrumental variable

(Frazis and Lowenstein 2003, Mahajan 2006, and Lewbel 2007) are not well-centered. The three

estimators that rely on higher-order moments of the error term (Chen, Hu, and Lewbel 2008a;

Chen, Hu, and Lewbel 2008b; DiTraglia and Garcia-Jimeno 2019) continue to be well-centered

because the error term specification (normal errors) for the simulations in Table 2 are consistent

with the higher order error term requirements of these estimators.

To examine the sensitivity of the estimators to these distributional assumptions, columns (3)

through (5) of Appendix Table A4 are created to be identical to column (2), but differ in their

specification for the error term. Specifically, consider the expanded DGP

Y = γ + βT ∗ + ε0(1− T ∗) + ε1T
∗ (63)

Letting εn ∼ N(0, .25), we specify the error term as follows:

• Column (1): ε0 = ε1 = εn

• Column (2): ε0 = ε1 = εn

• Column (3): ε0 = εn; ε1 = 2.5εn

• Column (4): ε0 = ε1 = |2.5εn| − |2.5εn|
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• Column (5): ε0 = |εn| − |εn|; ε1 = |2.5εn| − |2.5εn|

Chen, Hu, and Lewbel (2008a) and DiTraglia and Garcia-Jimeno (2019) assume homoskedastic

errors, so these estimators are not well-centered in column (3) that specifies a heteroskedastic error

term.41 Chen, Hu, and Lewbel (2008b) assumes that the error distribution has a third moment that

is equal to zero, so this estimator starts is less well-centered in column (4) that specifies the error

term to be a half-normal distribution. All three estimators are poorly centered in the final column

that specifies a heteroskedastic and non-symmetric error term. For all columns in Appendix Table

A4, our estimator is well-centered.

41Chen, Hu, and Lewbel (2008a) require that the errors are homoskedastic with respect to T ∗ while DiTraglia
and Garcia-Jimeno (2019) require homoskedasticity with respect to Z. In addition, both estimators make a constant
skewness assumption, with Chen, Hu, and Lewbel (2008a) requiring it with respect to T ∗ and with DiTraglia and
Garcia-Jimeno (2019) requiring it with respect to Z.
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