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Introduction

People have varying degrees of expertise and views of the facts. Nevertheless,
they often need to come to a decision without the help of some leader who
imposes her view. Is the developed product ready to be launched? Should the
UK leave the EU? While people are free to discuss facts and what to make
of them with a colleague or a friend, the joint time of all involved is a scarce
resource, especially if the group is large. Not every team member is asked to
elaborate on the chances of a successful launch. Asking every UK citizen to
describe the perceived bene�ts and costs of leaving the EU and then agreeing
on what these contributions imply seems absurd. Instead, communication is
restricted�in the extreme case to an expression of opinion by a vote on a
proposal that reduces potentially rich information to the rather coarse `yea,'
`nay,' or `nil.'

When group communication is restricted, holding back less valuable infor-
mation can become optimal�a notion that has been formalized by Feddersen
and Pesendorfer (1998) as the `swing voter's curse'. Talking about a minor de-
tail in a team meeting may bury potentially important contributions of others.
Voting on whether to leave the EU based on one's gut feeling dilutes the voices
of those who correctly foresee the implications and consequences of such a step.
Individuals do not always realize that withholding information may improve the
group's decision. In practice, people frequently talk or vote without much to
go on. For such groups to improve information aggregation, individuals would
have to learn about the bene�ts of restraining themselves and let the expert be
heard.

While direct communication can help small groups coordinating on better
outcomes, (for examples, see Cooper et al., 1992; Charness, 2000; Du�y and
Feltovich, 2002; Blume and Ortmann, 2007) such coordination may be ham-
pered by three features in our initial examples. First, a large group size directly
complicates coordination. Second, if others are unaware of the e�cient strategy,
trying to coordinate on it seems less promising. Third, coordination is di�cult
if those involved cannot talk to each other. Communication may even be detri-
mental when it is local. Someone who has the insight to restrain herself may
realize, while conversing with others, that ignorance is prevalent. If she believes
that group behavior is unlikely to change for the better, it becomes optimal
for her to no longer restrain herself and contribute the little that she knows.
On the other hand, local communication may foster learning and people may
trust that others are independently reaching similar conclusions and restrain
themselves. Can a large group learn to withhold inferior information? Is local
communication helpful in achieving this goal?

Answering these questions in the �eld is di�cult because we cannot observe
the quality of information that is withheld. In an experimental study, however,
the quality of information can be controlled by the experimenter. We have opted
to run the experiment in a �rst-year class with more than 500 participants. We
did so to capture the three above mentioned features of real-life situations.
First, we can have several groups of 36 members jointly deciding on an issue,
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while not being able to reach out to one another and coordinate because they are
randomly dispersed across the auditorium. In an economic laboratory that seats
20-30 people, this would have been very hard to do. Second, while subjects in
the laboratory seem to be aware of the bene�ts of holding back to such a degree
that Morton and Tyran (2011) speak of a norm of `letting the experts decide',
our experience suggested that participants in a large lecture might not. Third,
the classroom setting allows us to have `rich' local communication, while that
on the group level is restricted to voting: students sit next to those whom they
are likely to know and trust, but they decide together with other students who
are dispersed throughout the room.

One out of the 36 group members receives expert knowledge: she is perfectly
informed about the most frequent color in an urn with blue and green balls. For
the other 35, we draw balls from the urn without replacement and show them
the color of their individual draw on a mobile device. In order to introduce some
uncertainty about the value of one's own information, one of the 36 individuals
is randomly excluded from the group. The perfectly informed individual is
thus not certainly but very likely remaining in the group. Every remaining
individual can then vote for or against the color that they have seen or abstain.
If the majority votes for the right color, all in the group receive 10e. Otherwise,
they get nothing.

This game features an all-vote equilibrium, where everybody votes for their
information, but also an only-expert-votes equilibrium, in which everyone but the
expert abstains. We parameterize it so that the only-expert-votes equilibrium
is substantially more e�cient: the probability of identifying the correct state is
more than 30 percentage points higher than when all vote. Our game is similar
to that by Morton and Tyran (2011), so that our experiment can be regarded
as an extension and robustness check bringing in the above features.

As we expected and hoped for, participants initially overwhelmingly vote
for their own color (78.1%). This is not only a coordination problem. In an
post-experimental questionnaire, we ask participants the hypothetical question:
If you would interact with a group of robots, how would you program them?
More than half of the people program the robots to always vote and only a
quarter to play the e�cient strategy. This suggests that they are unaware of
the e�cient strategy. Moreover, participants are more likely to vote against
their color (15.5%) than to abstain (6.4%). Given this behavior, voting one's
own color is optimal.

Taking inspiration from Cason and Plott (2014), who �nd that local com-
munication among students reduces misconceptions in an individual decision
task, we give students �ve minutes to talk to their immediate neighbors before
repeating our interactive decision task with a newly �lled urn and in new teams.
While individual changes in voting behavior have little impact, a coordinated
response by the group can improve its performance by 5 percentage points if
the few people who vote against their color and abstain can be convinced to
vote. Alternatively, the group can obtain a gain of over 40 percentage points if
almost everybody in the group but the expert abstains. Given that communi-
cation is only local and incomplete because members are scattered around the
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auditorium, that many do not follow and do not even know the sophisticated
strategy, and that voting is the best reply if others are unaware of it, an increase
in voting seems likely.

Still, we �nd that abstentions increase in the second run from 6% to 13%.
This increase by more than 100% is not only economically but also highly sta-
tistically signi�cant. It documents, to our knowledge for the �rst time, that
self-governed groups are not trapped but make a �rst tentative step toward the
more e�cient use of information. Put di�erently, we maybe observing the birth
of the 'norm of abstention' seen in laboratory experiments. The increase is all
the more surprising because it is (predictably) too small to improve information
aggregation: if anything, the majority is now less likely to identify the right
color.

One possible explanation why abstentions increase is that participants teach
each other about the sophisticated strategy. Consistent with this notion, people
who program the sophisticated strategy are signi�cantly more likely to start
abstaining in the second round (86%) than those who do not (33%). Moreover,
abstention spreads locally. With a neighbor who abstained in the �rst round
the probability that a voter abstains in the second round increases by 13%.

In our setting communication occurs naturally, without interference, struc-
ture or observation. The downside of this is that we are unable to use the
content of conversations to decide whether people really learn about the sophis-
ticated strategy or whether they already know this strategy and only learn to
trust that coordination can be successful. It is even possible that the increase
in abstention had nothing to do with communication at all but instead resulted
from locally correlated independent learning. More able participants are more
likely to �nd the sophisticated strategy either in the �rst or the second round
than less able ones. If people of similar ability are more likely to sit next to each
other, having a neighbor who abstained in the last round is associated with a
higher probability to switch to abstention in the second round�even without
communication. We cannot exclude this explanation because participants were
not seated randomly but (as typical for lectures) chose their seats themselves.1

Our design can also not exclude that people learn to trust in successful coordi-
nation. We can, however, examine whether these alternative explanations are
consistent with the data.

Both alternative explanations, local but independent learning as well as
learning to trust in the success of coordination, imply that more abstaining
neighbors in the �rst round are associated with a stronger increase in absten-
tions in the second round. The more neighbors abstain in the previous round
and communicate this to others, the larger should be an individual's assessment
that coordination can be successful and hence her willingness to abstain. A par-
ticipant with more able independent learners around is more likely to discover
the sophisticated strategy and abstain.

These alternative explanations, however, are not borne out by the data. How

1Seating this amount of people randomly and checking that they sit in the designated seats
would not have been possible in the allocated time.

4



many neighbors previously abstained is not associated with a higher probability
to abstain. The explanations of local independent learning and learning to trust
in the success of coordination are thus not consistent with what we observe. Our
tentative conclusion is that people teach each other the sophisticated behavior�
although this is lowering the group's probability of success.

The remainder of the paper is organized as follows. The next section de-
scribes our contribution to the literature. Section 2 derives the best-reply and
and some equilibria of the game. Section 3 explains the design of the study.
Section 4 presents our �ndings and Section 5 concludes.

1 Contribution to the literature

Our paper relates to three streams of the literature: (i) optimal extraction of
information in groups, (ii) choice of equilibrium when there is communication
and (iii) learning in experiments.

The proposition that more people know more has fascinated social philoso-
phers at least since Galton conducted his famous analysis showing that the
average guesses of visitors at a fair was closer to the true weight of an ox than
that of an expert (Galton, 1907). De Condorcet (1785) asserts that more (at
least partially) independent and informative viewpoints lead to better decisions.
Here, we check whether crowds are not only wise in the sense of available infor-
mation but also whether they wisely aggregate this information.

How groups aggregate information has received quite a bit of attention in the
literature. One of the best established results in this regard is that markets work
extremely well in extracting and pooling private information from individual
traders. This power of markets to collect and disseminate information has been
demonstrated by Plott and Sunder (1988). In the presence of complete markets,2

the price swiftly converges to the rational expectation's benchmark. Plott and
Sunder (1982) and Camerer and Weigelt (1991) examine the role of `expertise'
(or perfectly informed insider) in experimental asset markets. They show that
the experts' information quickly takes a hold and the prices converge to the
underlying fundamental value.3 In contrast, information is shared in our study
by voting.

There is a sizable literature examining information aggregation when voting.
For instance, Guarnaschelli et al. (2000) examine the strategic voting incentives
in ad hoc committees of various sizes under the majority and unanimity rule.
Ali et al. (2008) further extend this work to standing committees that inter-
act repeatedly. In line with assertions of Austen-Smith and Banks (1996) and
Feddersen and Pesendorfer (1998), these studies �nd that strategic voting is
prevalent. Under unanimity rule, as predicted, a substantial fraction of sub-
jects vote against their signal.4 These �ndings demonstrate that in laboratory

2For instance, prediction markets that use Arrow-Debreu securities.
3For an excellent survey of the literature, please see Plott (2000).
4Strategic voting is a common behavioral trait in laboratory experiments. For a nice survey,

see Martinelli and Palfrey (2017).
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voting games, subjects are capable of acting with a high degree of sophistica-
tion.5 In our case, there are no incentives to vote against one's own signal.
On the other hand, strategic abstention is central to the e�cient information
aggregation strategy that we focus on.

Unlike in our study, a high degree of coordination on abstention by non-
experts is observed in laboratory experiments. Exploring Feddersen and Pe-
sendorfer (1996, 1999) in a series of experiments, Battaglini et al. (2008, 2010)
and Morton and Tyran (2011) �nd that a large fraction of subjects withhold
their information if there is a high chance of a better informed expert. In Mor-
ton and Tyran (2011) some learning of abstention seems to be going on, which
suggests that we might see the emergence of a `norm of abstention'. This, how-
ever, is by no means certain. In all these experiments, standard procedures
ensure common knowledge of the game and the problem that we are interested
in studying, i.e., whether abstention can propagate in a group where many are
unaware of the value of abstention, does not arise.

The sophistication of individuals when extracting information in common
value environments can reach its limits. If public and private information is
available, members of a group can, for example, be prone to updating biases.
In Mengel and Rivas (2017), ine�ciencies arise because subjects trust available
expert information too much and then vote too often against their signal. In
Kawamura and Vlaseros (2017), subjects are locked in a situation where they
vote too often for their own uninformative signal rather than abstain. Following
on Charness and Levine (2010) who inquire into whether beliefs or cognitive
di�culty are at the heart of overbidding in auctions, Esponda and Vespa (2014)
address this issue in a voting context and identify subject's di�culty to engage
in hypothetical thinking as the root of non-strategic voting.6 Neither of these
contributions examines how behavior develops if subjects have the opportunity
to communicate and hence to learn from each other.

The second strand of literature to which we relate is coordination between
di�erently e�cient equilibria when there is communication. A sizable literature
documents the positive impact of pre-play communication on the ability of the
group to coordinate on Pareto e�cient equilibrium, e.g., Cooper et al. (1992),
Charness (2000), Du�y and Feltovich (2002), Blume and Ortmann (2007), Ca-
son et al. (2012) and Blume et al. (2017). Goeree and Yariv (2011) examine
the role of free communication on the behavior in a subsequent experimental
voting game. They �nd that subjects not only truthfully and publicly reveal
their private information to each other but also discuss what to do with that
information (i.e., how to vote) to achieve the best outcome.7 This decentral-

5A somewhat weaker evidence for fully rational benchmark is found in experiments with
costly information acquisition, e.g., Elbittar et al. (2016) or Bhattacharya et al. (2014), where
subjects are typically found to over-invest in information.

6The same reason is examined in the context of markets by Ngangoue and Weizsacker
(2015).

7When interests con�ict, communication has been shown to a�ect the willingness to give in
a dictator game (Andreoni and Rao, 2011), to increase the power of a proposer in multilateral
bargaining (Baranski and Kagel, 2015), but also to positively a�ect investments before sharing
the gains from team production (Baranski and Cox, 2019).
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ized process uniformly improves group decision making and diminishes the role
of strategic incentives presented by di�erent voting institutions. Palfrey and
Pogorelskiy (2017) �nd a signi�cant positive impact of intra-party communica-
tion on turnout in laboratory elections. Contrary to Nash equilibrium predic-
tions, the higher turnout primarily bene�ts the majority party.8 In both these
contributions, communication is public (within the relevant group of voters)
and can thus be used to establish common knowledge. In our study, we were
interested in a situation where communication does not extend to the whole
group, so that common knowledge cannot be achieved.

Finally, our paper o�ers a contribution on learning in experiments. Various
experiments examine how subjects learn individually in interactive situations,
e.g., in Cournot or Bertrand competition (see, e.g. Huck et al., 1999; O�erman
et al., 2002), social-dilemma games (see, e.g. Du�y and Kim, 2005; Chaudhuri
et al., 2006; Kirchkamp and Nagel, 2007) and coordination games (Schotter
and Sopher, 2003; Chaudhuri et al., 2009). In other contributions, subjects
learn from others in individual decision problems (Çelen et al., 2010; Cooper
and Rege, 2011; Cason and Plott, 2014). We are looking at a situation, where
individuals can learn from others in an interactive situation.

2 Model and Analysis

The game that is played by participants involves 36 players i ∈ {1, . . . , 36}. Each
player receives a signal si ∈ {blue, green} about an unknown state of nature
θ ∈ {blue, green}, which represents whether the majority of balls in an urn are
blue or green. Signals are of di�erent quality ti. One of the signals is perfect
ti = 1 and reveals the true state P (si = θ|ti = 1) = 1. All others are relatively
noisy because they are drawn from the urn which contains 99 balls of which 50
have one color and 49 the other color. One randomly drawn player is excluded,
so that 35 players remain and it is very likely that one of these is perfectly
informed ( 3536 ≈ 97.2%).

The remaining 35 players can vote blue, green or abstain depending on the
content s and type t of the signal. Once signals are realized, strategies result
in a voting outcome v, where v measures how many more people voted for the
true than the other state v ∈ {−35, . . . , 0, . . . 35}. Let us standardize the payo�
in the case that the majority voted for the actual state, v > 0, to one and for
v ≤ 0 to zero.

Player i's vote is decisive in two situations: in the case of a tie, v−i = 0, or
in the case of a one-vote lead for the true state, v−i = 1, where v−i is the voting
outcome without i's vote. In the �rst case, a vote for the true state generates a
majority for the true state and gains of one. In the second case, a vote against
the true state destroys the majority and leads to losses of one. These situations
may never occur. If, for example, all other players always vote blue irrespective

8The role of local communication in an electoral process has recently been highlighted by
Pons (2018). The �eld experiment involving French presidential elections shows that a short
conversation may a�ect voting behavior.
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Figure 1: Expected gains from voting rather than abstaining and best response
given the behavior of other non-experts.

of their signal, player i's vote will never make a di�erence. In our setting of a
large class, however, such a coordinated response is very unlikely. This is why
we assume the following.

Assumption 1 (Strategic uncertainty assumption). From player i's perspec-
tive, it cannot be excluded that her vote a�ects results: P (v−i = 0) > 0 and
P (v−i = 1) > 0.

This strategic uncertainty means that player i's behavior matters and gives
her a reason to contemplate her choice in the �rst place. The assumption has
several consequences. First, voting for one's own signal strictly dominates voting
against it (see Lemma 1). The reason is that the signal is informative and voting
against it is hence more likely to cause harm whenever the player can make a
di�erence. Moreover, for perfectly informed players (ti = 1) voting strictly
dominates abstaining (see Lemma 2). Since they are perfectly informed, they
will never destroy a one-vote lead for the true state by voting for their signal
but they may resolve a tie in the right way.

For imperfectly informed players (ti = 0), the situation is more interesting.
On the one hand, voting for one's own signal can resolve a tie. On the other
hand, it may destroy a one-vote lead. The gains from voting one's signal thus
depend on the likelihood that these pivotal situations occur. The top panel in
Figure 1 shows the gains from voting relative to abstaining under the assump-
tions that players with perfect information vote for their signal and given a
probability q that other imperfectly informed players (non-experts) vote. The
�gure actually contains both extreme cases, i.e., when non-experts vote for and
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against their signal. The di�erence, however, is so small that they do not show in
the graph. The reason is that the expert is very likely to be present. Hence, the
question whether others abstain or vote is more important than the relatively
small di�erence in getting it right when voting.

Player i's best reply in the lower panel shows that the likelihood that other
imperfectly informed players vote is crucial. If it is unlikely, abstention is better
to not dilute the expert's vote. If it is likely, the expert's vote is already so
diluted that voting is the best reply.

The share for which it becomes optimal to vote rather abstain depends on
the behavior of the other non-experts: if they all vote against their signal, voting
for the signal becomes more valuable in comparison to abstaining and the share
drops. The best reply function reveals the following equilibria of the game (the
proof is in Appendix A).

Proposition 1. Under the strategic uncertainty assumption, there are two Nash
equilibria in pure strategies:

• In the only-expert-votes equilibrium, only the perfectly informed expert
votes and all others abstain.

• In the all-vote equilibrium, everyone votes.

In addition, there is a Nash equilibrium in mixed strategies, where the expert
votes and non-experts vote with some probability (around 70%).

Figure 1 shows that apart from extreme situations where nearly everyone either
abstains or votes, the individual decision to vote or abstain has very little impact
on the group's probability of identifying the right color. The non-expert's joint
decisions, however, can have a sizable impact (see Figure 2), so that it matters,
which equilibrium will be played (the proof is in Appendix A).

Proposition 2. The only-expert-votes equilibrium Pareto-dominates the all-
vote and mixed-strategy equilibrium by more than 30 percentage points.

Since perfectly informed players vote in both equilibria, which of them is reached
depends on the behavior of imperfectly informed players. This is why we will
focus on their behavior when discussing results, later.

3 Experimental Design

When introducing the game in the lecture, we used physical props to render
it easy for subjects to comprehend the problem. Before the lecture, we �lled
two urns with 49 blue and 49 green balls, added another (blue or green) ball to
generate a majority as well as a dice of the same color (to represent the perfect
information). We then drew the dice and 35 balls from the urn, numbered them
and placed them into a small cardboard box that was sealed and put on display
during the whole lecture. After the complete experiment, the box was opened
and students were allowed to inspect them.
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Figure 2: The group has the best performance if all but the expert abstains.

Each participant in the lecture theater received the information about the
color of one object from the cardboard box on an Internet capable device,9

i.e., a mobile phone, tablet or laptop. The ball (imperfect information) was
represented on the screen by a circle of the appropriate color; the dice (perfect
information) was represented by a square of the respective color. For logging
in, subjects had an access code taped to their desk, which could only be used
once.

Subjects were told that they would be matched in groups of 35 members
who were dispersed throughout the auditorium. Each member of the group had
a unique piece of information corresponding to the color of one of the 36 objects
from the cardboard box. Subjects were assigned randomly rather than with
their immediate neighbors in order to prevent direct communication within the
voting group. For practical reasons, the matching of participants into groups
was carried out after all decisions were made. One group was selected for payout
and each member of this group received 10e in case that the color with most
votes was actually the majority color in the urn.

With 35 group members and 36 objects in the box, one object was left
unassigned. This physically conveys the idea that it is unlikely (but possible)
that none of the group members might have received the perfect information
without having to rely on probabilities.

These rules were explained with a short animated presentation�see online
Appendix. After the presentation of the rules, we told subjects that we would

9The software operated independent of speci�c platforms using the Internet protocol and
was derived from PINGO, a classroom communication software (Kundisch et al., 2013), by
adding the functionality of sending information to the students.
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now proceed under an exam protocol and that anyone caught talking would be
excluded.

Before sending out information about colors, we asked subjects several con-
trol questions in order to get some indication of their comprehension. We did
not provide feedback about correct answers in order to maintain the `natural'
heterogeneity. At the end of the round, subjects received information on their
mobile device about the voting outcome of their group, whether this outcome
was correct, and whether their group was selected for payout. Then, we sur-
prised subjects with the announcement that the voting will be repeated with
a new urn and a new draw of 36 objects. A second sealed cardboard box con-
taining the 36 draws from the second urn was presented and placed on the desk
next to the box from the �rst round.

Before starting the second round, we gave subjects 5 minutes to freely discuss
with their neighbors. After the �ve minutes, subjects were again put under the
exam protocol, i.e., no talking or looking around. They then received their
signals and cast their votes.

At the very end, we sent subjects a brief questionnaire on their devices in
which we inquired about their gender and age. In addition, we wanted to assess
whether they were aware of the e�cient strategy. We did so by asking subjects
to imagine that they would play with robots that could be programmed to follow
a certain behavior. We then wanted to know how they would program these
robots. They could specify whether robots should vote for blue or green or
abstain depending on the information received by the robot.

4 Results

The participants in this study were almost 600 students from a large �rst-year
class (`Introduction to Business Administration') at Paderborn University. It
was run on two consecutive days and the overwhelming majority of those present
participated. Participants were able to `leave' and `enter' the study at any time
by disconnecting from or reconnecting to the server. Still, only 3% were lost dur-
ing the actual experiment, which might be expected for purely technical reasons
(network interruptions, low battery). Attrition during the ex-post questionnaire
was larger, particularly on the �rst day, where many participants had to move on
to the next lecture. Our analysis will focus on the around 590 participants with
imperfect information whose behavior determines whether or not the e�cient
equilibrium is played. (Numbers for perfectly informed subjects are too low for
a meaningful analysis.) The whole experiment took between 20-27 minutes and
average earnings among subjects in groups selected for payout were 7.50e.

Prerequisites

If we want to study whether a group can overcome the problems of unawareness
about the e�cient strategy and evolve to a more sophisticated use of informa-
tion, we need to check whether the starting point exhibits such unawareness
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and whether there is still room for sophistication.
Some evidence for unawareness comes from the control questions. About 6%

incorrectly believe that green is more likely to be the majority color when their
signal was blue. Around 3% claim that voting blue means that blue becomes
less likely to be the majority color in their group. 30% say that them voting
blue will not a�ect the outcome of the vote.10

More importantly, participants do not agree on what is optimal behavior
in the game. The majority programs their voting robots to vote regardless of
whether they are perfectly or imperfectly informed, which suggests that they
are unaware of the e�cient only-expert-votes equilibrium. Slightly more than a
quarter restricts the robot to vote only when information is perfect and hence
likely to be aware of the e�cient equilibrium. The remaining quarter's pro-
gramming is all over the place�see Table 1. This shows disagreement on how
to optimally behave even at the end of the experiment, i.e., after people had
the chance to talk to each other. It thus seems likely that these disagreements
were more pronounced before subjects communicated.

Table 1: Only about a quarter of the subjects program robots to act consistently
with the e�cient equilibrium, i.e., to vote for their color if they are perfectly
informed and to abstain otherwise.

vote∗

perfectly −
informed +

Σ

Day 1

imperfectly

informed

- O + Σ

1.2% 6.7% 5.5% 13.5%
9.2% 25.8% 51.5% 86.5%

10.4% 32.5% 57.1% 163

Day 2

imperfectly

informed

- O + Σ

4.5% 3.0% 4.8% 12.3%
5.5% 29.1% 53.0% 87.7%

10.1% 32.2% 57.8% 398

*- vote against information, 0 abstain, + vote for information

Subjects do not only express disagreement in the un-incentivized question
on how to program voting robots, the discrepancy is also re�ected in actual
behavior. As expected and hoped for, �rst-round voting is far from the e�cient
only-expert-votes equilibrium. On both days and in both rounds, almost 80%
of non-experts vote for their color�see Table 2. The group is not capable of
reaping the e�ciency gains from holding back and letting the expert decide. The
probability that the majority in a group coincides with the true state in the �rst
round can be computed to be 51.1% (using the actual behavior in the respective
formula in Appendix B) and is hence only slightly better than mere guessing.
The expert-vote and even the all-vote benchmark of 97.2% and 61.0% are thus
missed by a wide margin. The bad performance is also due to a considerable
number of imperfectly (and even some perfectly) informed subjects who vote
against their signal, which (as we argue in Appendix F) can be traced back to
people who misunderstood the game.

10This answer might actually be right if subjects (wrongly) believe that pivotal situations
never arise.
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Summarizing these observations, initial behavior in our setting exhibits het-
erogeneity and leaves room for better coordination and sophistication.

Table 2: Voting Behavior

Imperfectly informed Perfectly informed

Day Round Total + 0 - Total + 0 -

both 1 594 78.1% 6.4% 15.5% 16 81.3% 0% 18.7%
both 2 588 67.2% 13.8% 19.0% 16 100.0% 0% 0%

1 1 199 77.4% 8.5% 14.1% 5 100.0% 0% 0%
1 2 196 68.4% 20.4% 11.2% 5 100.0% 0% 0%

2 1 395 78.3% 5.3% 16.2% 11 72.7% 0% 27.3%
2 2 392 66.6% 15.0% 18.4% 11 100.0% 0% 0%

+ voting for own information, 0 abstain, - voting against own information.

Changes in voting behavior

The best-reply to the actual �rst-round behavior where only around 6% abstain
is to vote for one's signal�recall Figure 1. On the one hand, one might thus
expect the share of votes to rise. On the other hand, abstaining becomes optimal
if participants believe that su�ciently many of them will start abstaining after
communicating (as limited as this communication may be).

From the �rst to the second round, the number of abstention increases from
6.4% to 13.8%�see Figure 3. The number of participants who switch to absten-
tion is much higher than those who switch away from abstention, an increase
that is highly signi�cant (p-value for McNemar test is below 0.001)�although
it is much smaller (and not statistically signi�cant) on the �rst day.

The increase in abstentions is not large enough to improve performance.
Holding the shares of participants who vote against their signal constant, the
probability that the majority in a group votes for the true state computed
from the observed behavior slightly drops to 51.0% (this is true for both days).
The increase simply does not push abstentions to a level where gains can be
expected�recall Figure 2. If participants started abstaining in the hope that
su�ciently many others will also do so, this hope was not ful�lled.

Result 1. Subjects are more likely to abstain in the second round although this
is not the best response to actual behavior.

Explainations for the switch to abstention

There are three reasons why people might switch from voting to abstaining
between the �rst and second round. First, they learn the e�cient strategy
during the discussion. Second, they already know about this strategy but do
not dare to act on it because they are afraid that others might be voting. The
group discussion could then reduce the fear in so far as it becomes clear that
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Figure 3: The share of abstentions increases.
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p-Values for the McNemar Test on the in�ow-out�ow di�erence:
0.000 (both days) 0.404 (Day 1) and 0.000 (Day 2)

others also know the strategy and are willing to act on it. Third, they discover
the strategy by pondering the situation without the help of others during the
discussion time. This may seem unlikely because apart from the discussion,
there is no helpful new information from which to learn. Still, it cannot be
excluded.

If the increase is related to learning about the only-expert votes equilibrium
between the rounds either individually or from others, the increase should be
associated with knowledge about the e�cient strategy. This seems to be the
case. People who later program their robot to that equilibrium are more likely
to have switched to abstention (86%) than away from it (14%). On the other
hand, people who do not program their robots to the equilibrium are more likely
to have switched away from abstention (66%) than to it (33%)�see Table 3.
The di�erence between the two groups is signi�cant at any conventional level.
That switchers are more likely to later know about the equilibrium suggests
that they have learned about it between the rounds.

We can distinguish more systematically between the reasons by examining
how the number of abstaining neighbors in the �rst round a�ects abstention in
the second round. If participants already know about the strategy but start
believing that other members act on it, their individual beliefs should be in-
creasing in the number of neighbors who abstained around them. With respect
to individual learning between the rounds, one would a priori perhaps expect
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Table 3: Programming the e�cient equilibrium is associated with starting to
abstain.

programmed start abstaining

e�cient eq. no yes Σ

no 66.7% 33.3% 12
yes 14.0% 86.0% 50

Σ 15 47 62

Fisher's exact test is signi�cant at any conventional level.

that there is no correlation with the number of neighbors who abstained. If
people sit together with friends whose abilities are correlated with their own,
however, one would also observe a spurious correlation between the number of
abstaining neighbors (indicating a higher ability in this local area) and the like-
lihood to start abstaining in the second round. If participants learn the e�cient
strategy from their neighbor, one abstaining neighbor who is willing to share
the strategy su�ces. The last two channels assume that abstention in the �rst
round is an indicator for knowing about the e�cient strategy. This assumption
is plausible since the two are highly correlated�see Appendix E.

In order to �nd out about the relationship between switches to abstention
and the number of neighbors who abstained before, we regress the change to
abstention after either voting in line with or against one's own signal on dummies
indicating whether one, two or many neighbors abstained in the previous round.
In our preferred speci�cation (G2SLS), we allow for local correlation in the
dependent variable as well as in the error term.11 We only use the 525 subjects
who did not abstain in the �rst round.

The presence of one neighbor who abstained in the �rst round is highly
signi�cantly correlated with abstention in the next round�see Table 4. With
such a neighbor, it is 13% more likely that an individual changes from voting
to abstaining in the next round.

Result 2. Having a neighbor who previously abstained is associated with a
higher probability of abstentions. Having several abstaining neighbors is not
associated with a further increase in the likelihood to abstain.

This result is consistent with learning the sophisticated strategy from a
neighbor but not with learning independently or learning to trust that others
abstain.

11More precisely, we estimate a spatial autoregressive model with autocorrelated errors
(SARAR) using a generalized spatial two-stage least squares regression (G2SLS). As a ro-
bustness check, we use maximum likelihood (ML) estimates and a plain vanilla regression
without local e�ects (OLS). Unsurprisingly, abstention in the second round is locally corre-
lated: individuals are signi�cantly more likely to abstain when their neighbors abstain (see
λ in the table). The correlation ρ between neighbor's errors, i.e., after taking the e�ect of
observables on abstention into account, is negative and signi�cant but only using G2SLS.
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Table 4: Regression for switches to abstentions between the rounds

G2SLS ML OLS

Neighbors abstaining in round 1...
...at least one 0.134∗∗∗ 0.155∗∗∗ 0.165∗∗∗

(0.051) (0.044) (0.047)
...two -0.055 -0.034 -0.026

(0.092) (0.075) (0.077)
...more than two 0.053 0.072 0.080

(0.257) (0.177) (0.181)
Day 1 -0.016 -0.016 -0.016

(0.025) (0.030) (0.031)
Neighbor abstained × Day 1 -0.156∗ -0.118∗ -0.116

(0.083) (0.069) (0.073)
Neighbor expert in Round 1 -0.002 0.004 0.004

(0.032) (0.038) (0.042)
Intercept 0.024 0.058∗∗∗ 0.087∗∗∗

(0.020) (0.022) (0.018)
local correlation in abstention λ 0.096∗∗∗ 0.042∗

(round 2) (0.031) (0.023)
local correlation in error terms ρ -0.084∗∗∗ -0.038
(round 2) (0.030) (0.030)

Number of observations 525 525 525

Signi�cance levels : ∗ : 10% ∗∗ : 5% ∗ ∗ ∗ : 1%
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Figure 4: Density of seating on both days
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empty occupied

Day 2 (60%)

Reasons for the di�erence between the days

There is a marked di�erence between both days. Participants are much less
likely to switch to abstention on the �rst than on the second day�recall Figure 3.

Attributing this di�erence to a speci�c feature is di�cult because the two
days di�er in many ways including starting time (whether a lecture is at Mon-
day 7:30 or Tuesday 9:15 is important to many students, leading to potential
selection e�ects) and study programs to which students signed up. There were
also substantially less students on the �rst day, which in principle can facili-
tate coordination. On the other hand, students were less densely seated on the
�rst day: only about a third of seats were �lled and participants were widely
dispersed throughout the auditorium. Some did not even have the opportunity
to discuss with their neighbors because they had no neighbors�see Figure 4.
Information can thus travel less well in the room on this day.

While we cannot identify which of these confounding factors is causing the
di�erence, there is a hint. Examining the regression, we see that switches to
abstention are not related to the day in itself. The coe�cient of the day dummy
is small and insigni�cant�see Table 4. This suggests that we are not dealing
with a direct e�ect of the day. Instead, abstention seems to be less contagious
on the �rst day. While on the second day, having an abstaining neighbor is
associated with an increase of abstention in 13%, the increase is 15 percentage
points lower on the �rst day; the respective coe�cient of the interaction term of
whether one neighbor abstained and the day 1 dummy is statistically signi�cant
(albeit at the 10% level). This is consistent with people not bothering to explain
the sophisticated strategy to their neighbor when information cannot travel well.
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5 Conclusion

Organisations, states, or companies can be in turmoil if they lack a functioning
culture or understanding of how to act appropriately, i.e., a system of self-
enforcing rules. The reason is diverging views of the facts and what to make
of them and no central entity to guide the group. Some rule systems are more
e�cient but require sophisticated reasoning and trust, whereas others are more
resilient in that they are robust to errors and confusion. Given the chance to
talk but only locally, is there any chance that the more e�cient system might
emerge? Or will the organization take the path toward the resilient but less
e�cient equilibrium, which does not require a common understanding, trust
and communication?

Here, we studied this question using a voting game in a setting that includes
not only diverging views of the facts but also naturally occurring di�erences in
what to make of them: a large �rst-year undergraduate class. The situation is
not favorable for the e�cient but sophisticated equilibrium to arise. The initial
behavior is already very close to the more resilient but less e�cient equilibrium.
Surprisingly, we �nd that after the opportunity to communicate the group starts
moving in the direction of the more sophisticated equilibrium.

Using econometric analysis, we tentatively conclude that the increase comes
from students teaching each other about the more sophisticated strategy�even
though this strategy is not the best response to what they have experienced.
This is a sign that it is possible for a group without central agency to move in
a promising direction.
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A Proofs for the analysis of the stage game

Lemma 1 (Strict dominance). Under the strategic uncertainty assumption, vot-
ing for the signal, qi(si, 0) = 1, strictly dominates voting against it, ri(si, 0) = 1.

Proof. Individual i can only alter the outcome in two cases: (i) others' votes
are tied or (ii) there is a single-vote majority (among the other group members)
in favor of the true state.12 In both cases, voting for her signal yields a payo�
of one if this signal matches the true state of the world, which happens with
probability P (si = θ), or if she votes against her signal and the signal does
not match the true state, which happens with probability P (si 6= θ). Since
P (si = θ) > P (si 6= θ), the former happens more often and voting in line with
one's own signal yields a higher expected payo� in both case, (i) and (ii). In all
non-pivotal cases, the individual is indi�erent. For a perfectly informed voter,
the analysis is exactly the same.13 For strict dominance, observe that both
cases, (i) and (ii), occur with positive probability under the strategic uncertainty
assumption.

Lemma 2 (Dominant strategy when perfectly informed). Under the strate-
gic uncertainty assumption, voting strictly dominates abstaining for perfectly
informed individuals (ti = 1).

Proof. Recall that the outcome is only a�ected in case of a one-vote majority
for the true state or a tie. Voting and abstaining, both lead to a payo� of one
in case of a one-vote majority for the true state. In case of a tie, voting shifts
the payo� from zero to one because the vote is in line with the true state with
certainty, while the outcome after abstaining remains zero. Since ties occur with
positive probability, the dominance is thus strict.

12If there is a single-vote majority favoring the wrong state, then i's vote can either boost
the majority or convert it into a tie. In either case, the payo� is one and the same, namely,
zero. If the payo� in case of a tie had been to determine the decision with a �ip of a fair coin
this lemma would still go through.

13Note, the only di�erence between an perfectly and imperfectly informed voter is only the
strength of the signal. In the imperfect case the signal is only informative 1/2 < P (si = θ) < 1;
in the perfect case, it is truth revealing P (si = θ) = 1. The argument above only relies on
P (si = θ) > 1/2 and so applies to both types.
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Proof for Proposition 1. For the proof use the best response function of an im-
perfectly informed participant from Figure 1. Firstly, if all players vote their
signal, we are at the right end of the �gure and there are gains for player i
to also vote for her signal. (This is also true for the player with perfect in-
formation.) Secondly, if only the perfectly informed player votes for her signal
and all others abstain (only-expert-votes equilibrium), we are at the left end
of the �gure and there are substantial losses if player i votes. If the perfectly
informed participant would not vote in this equilibrium, this would lead to a
tie and reduce the probability of obtaining a positive payo� to zero. Thirdly,
if a fraction of around 70% of the imperfectly informed players as well as the
perfectly informed player are voting for their signal while the others abstain,
all imperfectly informed players would be indi�erent between voting for their
signal or abstaining, while the perfectly informed player gains from voting her
signal. There are, of course, other equilibria of the game. These, however, re-
quire that individual players are unable to a�ect the outcome and thus clash
with our strategic uncertainty assumption.

Proof for Proposition 2. If only the perfectly informed member votes, the ma-
jority chooses the true state whenever this member is present in the group. This
happens in n − 1 = 35 of n = 36 cases. The formulas used for the calculation
of the expected payo� under more general conditions and in particular when
everyone votes can be found in Appendix B. The mixed-strategy equilibrium
has neither the bene�t of fully exploiting the perfect information nor fully ag-
gregating the imperfect signals�see Figure 2.

B Expected payo� when q vote for and r against
their draw

Lemma 3. When q0 non-experts vote in line with their draw and r0 against it
and the rest abstains, while q1 experts vote their signal and r1 against it, the
probability that the majority votes for the correct state is:

P (v > 0) =
1

36

35∑
k=0

35−k∑
l=0

Q0(k, l)P0(k, l)

+
35

36
q1

34∑
k=0

34−k∑
l=0

Q1(k, l)P
+
1 (k, l)

+
35

36
r1

34∑
k=0

34−k∑
l=0

Q1(k, l)P
−
1 (k, l)

+
35

36
(1− q1 − r1)

34∑
k=0

34−k∑
l=0

Q1(k, l)P0(k, l), (1)
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where

Q0(k, l) :=
35!

k!l!(35− k − l)!
qk0r

l
0(1− q0 − r0)35−k−l

Q1(k, l) :=
34!

k!l!(34− k − l)!
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l
0(1− q0 − r0)34−k−l. (2)

and
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Proof. If no expert is in the sample, the probability of q0 who vote in line and
r0 who vote against their signal, result in a sample of k voting for their signal,
l against it, while 35− k − l abstain. The probability for this event is:

Q0(k, l) :=
35!

k!l!(35− k − l)!
qk0r

l
0(1− q0 − r0)35−k−l.

Say that x of those who vote in line with their draw receive the true signal,
while y of those who vote against their signal receive the wrong signal. Then,
the true state receives x + y votes and a majority for the true state results if
and only if x + y > k+l

2 . This requires that x + l − y of the M balls of the
majority color to be drawn and y + k − x of the N −M balls of the minority
color. Moreover, of the total of k + l − y true signals that are drawn, x must
come from the k who vote for and l−y from the l who vote against their signal.
The probability for such a speci�c combination of (x, y, k, l) is thus:(

M
x+l−y

)(
N−M
y+k−x

)(
N
k+l

) ·
(
k
x

)(
l

l−y
)(

k+l
x+l−y

) .
Summing these probabilities for all cases where x+ y > k+l

2 leads to:

P0(k, l) :=

k∑
x=0

l∑
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) ·
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) . (4)

If an expert is in the sample, the 34 players consist of k individuals who vote
in line with and l who vote against their signal, while 34 − k − l abstain with
probability:

Q1(k, l) :=
34!

k!l!(34− k − l)!
qk0r

l
0(1− q0 − r0)34−k−l.
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In q1 percent of the cases, the expert votes in line with her signal and a tie
among the remaining 34 members is now enough for a majority for the true
state, leading to the following version of (4):

P+

1 (k, l) :=

k∑
x=0

l∑
y≥max{0, k+l

2 −x}

(
M

x+l−y
)(

N−M
y+k−x

)(
N
k+l

) ·
(
k
x

)(
l

l−y
)(

k+l
x+l−y

) . (5)

In r1 percent of the cases, the expert votes against her signal. A majority
for the true state thus requires at least a two-vote lead among non-experts:
x+ y ≥ k+l

2 + 2 and the probability becomes:

P -
1(k, l) :=

k∑
x=0

l∑
y>max{0, k+l

2 +1−x}

(
M

x+l−y
)(

N−M
y+k−x

)(
N
k+l

) ·
(
k
x

)(
l

l−y
)(

k+l
x+l−y

) . (6)

In case that the expert abstains, we are back to the same probability as if no
expert would be in the sample, with the di�erence that there is now one vote
less. Putting together the four cases, we get the result.

C Individual gains from voting when q vote for

and r against their draw

Lemma 4. Suppose there is no expert among the members of the group and
an even number of its members k + l vote, where k vote in line and l against
their signal. Then, the expected gain of a non-expert from voting relative to
abstaining for k > l is:

GNE
E (k, l) :=

M

N
·

l∑
i=0

( M−1
k+l
2 +l−2i

)( N−M
k− k+l

2 +2i

)(
N−1
k+l

) ( k+l
2 +l−2i
l−i

)(k− k+l
2 +2i
i

)(
k+l
l

)
And for k < l it is:

GNE
E (k, l) :=

M

N
·

k∑
i=0

( M−1
l− k+l

2 +2i

)( N−M
k+ k+l

2 −2i
)(

N−1
k+l

) (l− k+l
2 +2i
i

)(k+ k+l
2 −2i

k−i
)(

k+l
k

)
Proof. Suppose a non-expert votes for her color. This generates a gain of one
if and only if (i) the true state is actually that of her color and (ii) the other
non-experts' votes are tied. The probability of the signal matching the true
state is: M

N . The votes of the other k + l non-experts are tied whenever the
number of voters who vote for their signal with the correct signal is equal to the
number of voters who vote against their signal and also have the correct signal.

If there are more people who vote for their signal, k > l, the median voter is
in this group and we get the following cases. First, all k+l

2 votes for the correct

state may come from this group, the rest of this group k − k+l
2 then must have
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signals indicating the wrong state and all l from the counter vote-group must
have the correct signal. Accordingly, from the k+l

2 + l correct draws, l must have

landed in the counter group. Then, l+ k − k+l
2 = k+l

2 vote against and there is
a tie. There is also a tie if one voter voting his signal and one voting against his
signal receive a wrong instead of a correct signal. This can be continued until
all in the counter group receive the correct signal.

If there are less people who vote for their signal, l < k, the median voter is
in the counter group and we get the following cases. First, all k+l

2 votes from

the counter group may have the wrong signal, the rest of this group l− k+l
2 then

must have signals indicating the correct state and all k from the pro-group the
wrong signal. (The event must be weighed with the probability that all k are
indeed having the wrong signal.) Then, k+ l− k+l

2 = k+l
2 vote against and there

is a tie. There is also a tie if one voter voting his signal and one voting against
his signal receive a correct instead of the wrong signal. This can be continued
until all in the pro group receive the correct signal.

Lemma 5. Suppose there is no expert among the members of the group and an
odd number k + l of non-experts who vote, where k is those who vote for and
l those who vote against their signal. Then, the expected gain of a non-expert
from voting relative to abstaining for k > l is:

GNE
O (k, l) :=− N −M

N
·

l∑
i=0

(
M

k+l+1
2 +l−2i

)( N−M−1
k− k+l+1

2 +2i

)(
N−1
k+l

) ( k+l+1
2 +l−2i
l−i

)(k− k+l+1
2 +2i
i

)(
k+l
l

)
And for k < l it is:

GNE
O (k, l) :=− N −M

N
·

k∑
i=0

(
M

l− k+l+1
2 +2i

)( N−M−1
k+l+1

2 +k−2i
)(

N−1
k+l

) (l− k+l+1
2 +2i
i

)( k+l+1
2 +k−2i
k−i

)(
l+k
k

)
Proof. Suppose a non-expert votes her color. This generates a loss of one if
and only if (i) her own color does not match the true state and (ii) the other
non-experts favor the true state by a single-vote majority. The probability that
a signal is the wrong color is: N−M

N . The votes of the other k + l non-experts
have a single vote majority whenever the number of voters who vote for their
signal with the correct signal is one larger than the number of voters who vote
against their signal and also have the correct signal.

If k > l, all votes for the true state may come from k+l+1
2 of the k who

vote their signal, while the remainder of the group, k − k+l+1
2 has the signal

of the wrong state and votes against. Together with l from the group who
vote against their correct signal, we get a lead of one vote for the true state:
k − k+l+1

2 + l = k+l+1
2 − 1. For this, all of the l + k+l+1

2 correct draws must
end up in the counter-vote group. Another one-vote lead can be found if there
is one less correct draw in both groups. The number of correct draws can be
reduced until no counter voter has a correct draw anymore.

If k < l, all votes for the true state may come from k+l+1
2 of the l who vote

against their wrong signal, while the remainder of the group, l− k+l+1
2 has the
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correct signal and votes against it. Adding the k voters who vote for their wrong
signal, we get a one-vote lead.For this k of the frack + l + 12+ k wrong signals
must have ended up in the group voting their signal. Another one-vote lead
can be found if there is one more correct draw in both groups. The number of
correct draws can be increased until all of those voting for their draw have a
correct draw.

Lemma 6. Suppose there is an expert among the members of the group who
votes for her signal and an even number k + l of non-experts vote, where k is
those who vote for and l those who vote against their signal. Then, the expected
gain of a non-expert from voting relative to abstaining for k > l is:

GWE
E (k, l) :=− N −M

N
·

l∑
i=0

(
M

k+l
2 +l−2i

)( N−M−1
k− k+l

2 +2i

)(
N−1
k+l

) ( k+l
2 +l−2i
l−i

)(k− k+l
2 +2i
i

)(
k+l
l

)
And for k < l it is:

GWE
E (k, l) :=− N −M

N
·

k∑
i=0

(
M

l− k+l
2 +2i

)( N−M−1
k+ k+l

2 −2i
)(

N−1
k+l

) (l− k+l
2 +2i
i

)(k+ k+l
2 −2i

k−i
)(

k+l
k

)
Proof. Suppose a non-expert votes for her color. This generates a loss of one if
and only if (i) the true state is actually not the color of her signal and (ii) non-
experts' votes are tied. (In this case the expert decides and chooses the true
state). The probability the signal is the wrong color is: N−M

N . The calculation
when other non-experts are tied, is essentially the same as in Lemma 4. The
only di�erence is that this time, the voter has drawn the wrong color.

Lemma 7. Suppose there is an expert among the members of the group who
votes for her signal and an odd number k+ l of non-experts who vote, where k is
those who vote for and l those who vote against their signal. Then, the expected
gain of a non-expert from voting relative to abstaining for k > l is:

GWE
O (k, l) :=

M

N
·

l∑
i=0

( M−1
k− k+l+1

2 +2i

)( N−M
k+l+1

2 +l−2i
)(

N−1
k+l

) (k− k+l+1
2 +2i
i

)( k+l+1
2 +l−2i
l−i

)(
k+l
l

)
And for k < l it is:

GWE
O (k, l) :=

M

N
·

k∑
i=0

( M−1
k+l+1

2 +k−2i
)( N−M

l− k+l+1
2 +2i

)(
N−1
k+l

) ( k+l+1
2 +k−2i
k−i

)(l− k+l+1
2 +2i
i

)(
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)
Proof. Suppose a non-expert votes her color. This generates a gain of one if and
only if (i) the true state matches her color and (ii) the other non-experts' votes
favor the wrong state by a single-vote margin. (The expert's vote then leads to
a tie). The probability the signal matches the true state is: M

N . The probability
of the other non-experts favoring the wrong state by a single-vote majority is
essentially the same as in Lemma 5 with the di�erence that now the false state
is favored by one vote.
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Lemma 8. If q is the probability that a non-expert votes for her signal and r
the probability that she votes against it. Then, the expected gain of a non-expert
from voting relative to abstaining is:

1

n− 1

34∑
k=0

34−k∑
l=0

34!

k!l!(34− k − l)!
qkrl(1− q − r)34−k−l ·

{
GNE

E (k, l) k + l even.
GNE

O (k, l) k + l odd.︸ ︷︷ ︸
=:GNE

+
n− 2

n− 1

33∑
k=0

33−k∑
l=0

33!

k!l!(33− k − l)!
qkrl(1− q − r)33−k−l ·

{
GWE

E (k, l) k + l even.
GWE

O (k, l) k + l odd.︸ ︷︷ ︸
=:GE

Proof. Consider a non-expert. The probability that an expert has not been
drawn (from the remaining n − 1 candidates) to be a part of the group is
(10)(

n−2
n−2)

(n−1
n−2)

= 1
n−1 . In this case, there are n−1 other non-experts and the probabil-

ity that k of them vote for and l against their signal is given by the multinomial
in the top line of the expression. With the complementary probability, n−2

n−1 ,
there is an expert. In this case, there are n − 2 other non-experts and the
probability that k of them vote for and l against their signal is given by the
multinomial expression in the bottom line of the expression. The respective
gains G were computed in the preceding lemmas.

D Session Protocol

Before the lecture, students were instructed by email to bring an Internet capa-
ble device such as a laptop or mobile phone. The email also included instructions
on how to connect with the wireless network of the university.

The class was taught by one of the authors,14 focuses on how management
decisions might be biased (based on system 1 rather than system 2) in order to
motivate that economic theory and econometrics try to overcome those biases;
it features a prisoner's dilemma, introduces the notion of externality and brings
a `soft' re-statement of the �rst fundamental theorem of welfare. It did not
cover voting theory or any other aspects of game theory beyond the prisoner's
dilemma.

The study was run on the 9th and 10th of November 2015 in a room that
seats 620 people�see Figure 5. Originally, the study was scheduled two weeks
earlier (the 26th and 27th of October 2015). On the 26th of October, the server
broke down when subjects were trying to login. The same happened on the

14In principle, there is a danger that students want to show o� in front of their teacher
by choosing the clever `abstain' strategy. The sheer size of the class, however, renders it
impossible for the lecturer to remember the names or faces of anyone and signaling cleverness
is thus of little value. If anything, there is more reason for showing o� in the �rst than in the
second round; such e�ects thus run against our �nding.

28



Figure 5: Participants listening to the presentation of the instructions.

October 27th, although several servers and a load distributor were used. The
problem was eventually solved by hiring fast server capacity. Most subjects thus
were exposed to the instructions twice. There is no evidence of any intermediary
discussions between students in between. Notice that any such discussion would
have weakened our �nding that more abstention occurs after communicating in
the lecture.

On the �rst day (Monday), the lecture took place at 7:30 and was addressed
to students of International Business Studies and Economics & Engineering.
Students were asked to stay for the study after the lecture at around 8:40. The
number of logged in participants �uctuated by 4 people around 203. This was
the overwhelming majority of those present at the lecture. It dropped to about
120 during the ex-post questionnaire, i.e., when the actual study was over at
around 9:00 and when it was time to go to the next class.

On the second day (Tuesday), the lecture started at 9:15 and was aimed at
students with a major in Economics. The study took place before the lecture
and the number of logged in participants �uctuated by 16 people around 400.
Again, this was the overwhelming majority of students present. Apart from the
drop in ex-post questionnaire answers on the �rst day, there is no noticeable
attrition.

The study lasted 20 min on the �rst day and seven minutes longer on the
second day. The largest chunk of the time was spent on the instructions (6 min).
The shortest part was the actual voting which took only 2 min on the �rst day
and 4 min on the second day.

Given the number of participants, the probability of being selected for payout
was around 35

200 = 17% in each of the two rounds of the �rst day and 35
400 = 8.75%

on the second day.
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E Abstentions in the �rst round stongly associ-

ated with programming of e�cient strategy

Abstention in the �rst round is an indication of knowing about the e�cient
only-expert equilibrium. Participants who program their robots in accordance
with the e�cient strategy are much more likely to abstain. Among those who
vote only 23%-26% program the e�cient strategy, whereas the share is between
56% to 75% among those who abstain. The positive relationship between pro-
gramming the e�cient strategy and abstaining is highly signi�cant on both
days.

Table 5: Programming the sophisticated strategy is associated with abstentions
(in Round 1)

Day 1 Round 1

programmed abstaining

e�cient eq. no yes Σ

no 76.8% 43.8% 73.4%
yes 23.2% 56.3% 26.6%

Σ 116 42 158

Day 2 Round 1

programmed abstaining

e�cient eq. no yes Σ

no 74.0% 25.0% 71.4%
yes 26.0% 75.0% 28.6%

Σ 365 20 385

Fisher's exact test is highly signi�cant on both days.
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F Voting against one's information

The data presented in Table 2 indicate that a non-negligable number of partic-
ipants vote against their own signal. Given our observation that this strategy
is dominated, this behavior is unexpected.15 This section inquires into possible
reasons. The analysis here is retrospective. It is an exploratory exercise which
means the results should be taken with a grain of salt.

One reason for voting against one's own signal might be cheating. We can
distinguish between two types of cheating. First, participants may be sitting
next to an expert and see the color of the majority of balls. If they have
a di�erent color, it would be optimal for them to vote against their signal.
This type of cheating relies on having a su�ciently good view on the neighbors'
phone to distinguish between the shape being a circle or a square and identify the
color. Second, participants may not be seeing the exact shape of the information
but only get an impression of whether there is a dominant color in their local
neighborhood. Again, they might vote for this color rather than their own color.
While there are a few isolated cases consistent with the �rst kind of cheating,
there is no evidence consistent with the second kind of cheating�see Figure 6.

Figure 6: Local distribution of votes against own signal

Day 1 Round 1 Day 2 Round 1

Day 1 Round 2 Day 2 Round 2

blue signal green signal
blue signal, green vote green signal, blue vote
expert expert

For a more systematic analysis on whether participants cheat by copying

15Voting against one's own signal seems to be a more widespread phenomenon that is also
observed, e.g., by Bouton et al. (2016) or Herrera et al. (2016).

31



an expert, we run a regression that includes a variable whether an expert with
opposing signal is nearby. We control for the second explanation by including
a variable that measures the percentage of visible neighbors with an opposing
color. Moreover, cheating should be easier if people sit further at the back or
closer together, which is why we include the row number and a dummy variable
for the �rst day.

Before we discuss the results, let us outline two other possible explanations
for voting against one's own information. One of them is that some subjects
may have been confused or not paid attention. In this case, we speculate that
participants might simply vote for whichever choice is presented to them �rst
on the decision screen. In our case, this is the color `green'. According to this
explanation, participants with blue signals would be more likely to vote against
their signal (perhaps less so for the blue colored experts).

Lastly, subjects may have su�ered from some misconceptions regarding the
nature of the game. We can learn about these from the control questions.
About 6% incorrectly believe that green is more likely to be the majority color
when their signal was blue. Around 3% claim that voting blue means that blue
becomes less likely to be the majority color in their group. 30% say that them
voting blue will not a�ect the outcome of the vote. (This answer might actually
not be wrong if subjects interpreted the question to mean that they are unlikely
to be pivotal.) For all three cases, we include respective indicator variables.

We ran an ordinary least squares regression in which we explain �rst round
behavior using the above control variables. We took the �rst round because
participants have not yet talked to each other. (When allowing for spatial
autocorrelation in the dependent variable and the error term or using both
rounds, results remain essentially the same.16)

The proxy variables indicating cheating are not signi�cant and in the case
of opposite expert information even have the wrong sign (having an expert with
opposing information renders it less likely that I vote against my signal)�see
Table 6. The key variables are related to misconceptions about the nature of
the game. Participants who believe that having received a green signal goes
along with a higher likelihood of the majority of balls in the urn being blue are
30% more likely to vote against their signal. Similarly, participants who believe
that voting blue renders it less likely to be the elected color are 27% more likely
to vote against their signal.

Votes against one's signal thus seem to be driven by misconceptions about
the nature of the game. This �nding is in line with Cason and Plott (2014).
Just as on any exam, it is not uncommon to see some students misunderstand
a question. In our case, having some fraction of participants misunderstand
parts is a natural feature that makes it even less likely that participants abstain
initially but gives them a chance to learn during communication. A sizable share
of subjects stops voting against their information in the second round (44% on
day 1 and 57% on day 2).17

16When estimating both rounds with an OLS (errors clustered at individual level) being
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Table 6: Voting against own signal (estimated by OLS)

Variable Coe�cient (Std. Err.)
Nearby expert with opposite info -0.034 (0.079)
Neighbors with opposite info 0.026 (0.023)
Day 1 -0.021 (0.031)
Row 0.000 (0.003)
Own signal is blue 0.044 (0.030)
Green more likely when seeing blue 0.305∗∗∗ (0.063)
Voting blue less likely team decision becomes blue 0.274∗∗∗ (0.082)
Voting blue does not a�ect team decision 0.026 (0.032)
Expert info 0.018 (0.090)
Intercept 0.111∗∗∗ (0.040)

expert reduces contrarian votes at the 10% level.
17There are also subjects who start voting against their information. This concerns 14%

on day 1 and 13% on day 2. Still, we do not observe an overall reduction in voting against
one's information simply because the 13% and 14% relate to the much larger base of subjects
voting for their information or abstaining.
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