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1 Introduction

Much research in applied econometrics is concerned with the assessment of causal

effects of policy interventions, or, generically, the effects of a specific ”treatment”. In

the absence of experimental data, which is largely the case, alternative identification

strategies have to be found. In recent years the statistical technique of matching

has found widespread attention and has become a particularly popular tool for the

evaluation of treatments in observational studies. Complementing the fundamental

and continuing work on matching in the statistics literature (see e.g. Cochran 1965,

Rubin 1974, 1977, Rosenbaum and Rubin 1983, 1984, Rosenbaum 1995, Rubin and

Thomas 1996, Ming and Rosenbaum 2000, etc.), the econometrics literature has

discussed matching methods extensively in both empirical and theoretical work.2

Matching is an intuitively appealing technique for assessing causal effects because

of its main feature of mimicking a randomized experiment ex post. The technique is

valid if, in statistics parlance, there exists only ”overt bias” between treatment and

control groups, i.e. - in econometric terms - ”selection is on observables”. Common

wordings for this central assumption are ”unconfoundedness” (see e.g. Imbens 2004),

”ignorable treatment assignment” (Rosenbaum and Rubin 1983), and ”conditional

independence assumption” (Lechner 1999). In implementing matching estimators,

however, many decisions – some of them ad hoc in nature - have to be made, and

frequently it is not entirely clear if and how treatment effect estimates will be af-

fected by these decisions. Recent research has addressed a variety of questions in

this regard, such as (i) efficiency issues, (ii) the general applicability of matching

methods, and (iii) a set of more specific issues regarding practical implementation.

First, for instance, Angrist and Hahn (2004) study efficiency comparisons of co-

variate matching with propensity score matching and show that the former may be

more efficient in finite samples than the latter. They also suggest that propensity

score matching is to be preferred when cell sizes are small, the explanatory power

of the covariates is low, or the treatment probability is close to 0 or 1.

2Cf., for instance, Hahn (1998) and Hirano, Imbens and Ridder (2003) for efficiency issues. An-
grist and Krueger (1999) and Heckman, LaLonde and Smith (1999) contain overviews of match-
ing estimators in the labor economics context. Applications using propensity score matching
techniques are manifold, cf. for instance Lechner (1999), Dehejia and Wahba (1999), Heckman,
Ichimura and Todd (1997), and - for applications using exact covariate matching - Angrist (1998),
Kluve, Lehmann and Schmidt (1999). In particular, cf. articles in a recent symposium on the
econometrics of matching in The Review of Economics and Statistics (2004, Vol. 86, No. 1, pp.
1-194). As part of the symposium, Imbens (2004) provides a comprehensive review of the assump-
tions necessary for consistent estimation under matching, alternative estimands, efficiency issues,
alternative methods developed for matching, variance estimation issues, testing the plausibility of
the identifying assumption, and of the applications and simulation studies to date.
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Second, the general issue regarding the capacity of matching estimators to pro-

duce the ”true” effect - which can be analyzed e.g. by comparing the perfor-

mance of matching against known experimental results, a technique going back

to LaLonde (1986) - is discussed at length in the debate between Dehejia/Wahba

and Smith/Todd (cf. Dehejia and Wahba 1999, 2002, Smith and Todd 2004a, 2004b,

and Dehejia 2004). It is clear from the debate that matching is a useful econometric

tool for policy evaluation, but does not represent a general solution to the evalu-

ation problem under each and every circumstance. Whereas the question remains

whether such a general issue could have been resolved at all using a relatively small

and uninformative data set, the debate covers many essential pros and cons re-

garding matching methods and, moreover, gives important guidance regarding their

implementation: For instance, Dehejia and Wahba (1999) discuss proper specifica-

tion of the propensity score, and Smith and Todd (2004a) elucidate a whole set of

different matching estimators, such as nearest neighbor matching, kernel and local

linear matching, and difference-in-differences matching.

Third, Zhao (2004) compares propensity score matching methods with covariate

matching estimators by discussing data requirements and studying small-sample

properties through Monte Carlo experiments. The paper finds that propensity score

matching performs well when correlations between covariates and the participation

indicator are high, but does not perform well relative to other matching estimators

when sample size is too small. Zhao (2004) also discusses different matching metrics,

finding that Mahalanobis matching is relatively robust under different settings.

A simulation study by Gu and Rosenbaum (1993) concludes that matching using

the propensity score distance is better at producing balanced samples than matching

using the Mahalanobis metric if the overt bias is large and there are many covariates

(i.e. matching is ”more difficult”, cf. Gu and Rosenbaum 1993). The study also

discusses matching algorithms and matching ”structure”: The algorithms considered

are nearest neighbor matching, which is a so-called ”greedy” algorithm, implying

that it will not minimize total distance within matched pairs, and an ”optimal”

matching minimizing that total distance.3 Optimal matching, which is better than

greedy matching at producing close matches per definitionem, in the simulation turns

out to produce marginally up to noticeably better matches, though it is no better

at producing covariate balance in matched samples. The matching ”structures”

3In general, cf. Rosenbaum (1995, p211), a ”greedy” algorithm is an algorithm that divides a
large decision problem into a series of simpler decisions each of which is handled optimally, and
makes those decisions one at a time without reconsidering early decisions as later ones are made.
Hence, greedy algorithms do solve a small class of problems optimally, but the matching problem is
not a member of that class (in terms of total distance minimization). See our discussion in section
3.
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compared by Gu and Rosenbaum (1993) regard 1-k matching, i.e. one treated unit

is matched to k controls, and full matching, i.e. a treated unit may have one or more

controls or a control may have one or more treated units, using all observations in

the sample. The study juxtaposes optimal 1-k matching and optimal full matching

and finds that optimal full matching is often much better.

In general, matching estimation is characterized by the type of algorithm and

the distance measure chosen. The choice of matching algorithm and the distance

measure depends on data characteristics and involves an inherent trade-off between

bias and variance. The variance of the estimator depends on the uniformity of the

matched sample: When uniformity is highest, variance is lowest. Furthermore, two

kinds of biases arise, a bias due to lack of balance of the covariates and a bias due

to loss of treated individuals after matching.

Two data features determine the relevance of these estimation problems. First,

the strength of selection into treatment and second, the degree of treatment effect

heterogeneity. In case of weak selection into treatment matching algorithms will in

general achieve high uniformity of matched samples, and sample variance is not very

important. In case of homogeneous treatment effects there is no bias due to loss of

treated units, whereas in the case of heterogeneous effects each treated unit carries

information on the treatment effect and loss of treated units might increase the

estimation bias. In all cases, however, bias due to imbalance of covariates cannot be

neglected. Depending on these data characteristics and the bias-variance trade-off

a matching technique has to be chosen.

In this paper, we investigate sensitivity of treatment effect estimates regarding

the choice of matching technique, i.e. the choice of distance measure and type of

algorithm. We analyze these issues using data from the National Longitudinal Sur-

vey of Youths 1979 (NLSY) to study the effect of college education on labor market

earnings. The data exhibit strong selection into treatment, aggravating matching at

the top and bottom of the propensity score distribution.

The distance measures we discuss are propensity score, index score, and Maha-

lanobis distance. We implement, to our knowledge for the first time in the context of

labor econometrics, an optimal full matching, and compare it with greedy full match-

ing and greedy pair matching. So far, optimal full matching has not received much

attention in the applied literature, perhaps due to the fact that fully efficient match-

ing methods are considered computationally cumbersome such that other methods

have prevailed, as observed by Imbens (2004).

The paper is structured as follows. The next section presents the methodological
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framework of the matching approach. Section 3 outlines the matching algorithms.

Section 4 describes the data and section 5 presents empirical results. Section 6

concludes.

2 The Matching Approach

Interest lies in estimating the effect of a binary treatment, e.g. participation in

labor market training or holding a bachelor’s degree, on a corresponding outcome

variable (response), such as labor market performance expressed through employ-

ment probability or earnings.

Let Y 1
i denote the potential response of individual i being exposed to the treat-

ment and Y 0
i the potential response if i receives no treatment. Furthermore, let Ti

be a binary variable indicating treatment status. Then, Yi = TiY
1
i +(1−Ti)Y

0
i gives

the observed outcome. This framework has become known as the potential outcome

approach to causality (cf. Rubin 1974, 1977, Holland 1986, Kluve 2004). To identify

the causal effect of treatment, it requires that the response of an individual be in-

dependent of the decisions of all other individuals. This implies that there are only

two potential outcomes for each individual, Y 0
i and Y 1

i , corresponding to treatment

states Ti = 0 and Ti = 1, respectively. There are no further potential outcomes

depending on the treatment assignment of any other individual. This requirement

is often referred to as stable unit treatment value assumption (sutva, see Rubin

1986).

The individual treatment effect is given by δi = Y 1
i − Y 0

i and is never observable

since either Y 1
i or Y 0

i is missing at the unit level. Still, the essential conceptual

point is that each individual has two potential outcomes associated with herself. As

individual treatment effects are never observable, interest usually lies in an appro-

priate summary measure. Two parameters have received particular interest in the

literature, the average treatment effect for the population and the average treatment

effect on the treated. Cf. Imbens (2004) for further discussion of these parameters

and alternative estimands.

The average treatment effect for the population is given by

τP = IE(δi) = E(Y 1
i − Y 0

i ). (1)

It is generally not identified from observational data since IE(Y 1) is not observed

for the subpopulation with Ti = 0 and IE(Y 0) is not observed for the subpopulation

with Ti = 1. Alternatively one might focus on the average effect of treatment on
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the treated individuals given by

τT = IE(δi|Ti = 1) = IE(Y 1
i |Ti = 1) − IE(Y 0

i |Ti = 1). (2)

Again, while the first expectation IE(Y 1
i |Ti = 1) can be identified for the treatment

group subsample, the counterfactual expectation IE(Y 0
i |Ti = 1) is not identifiable

without invoking further assumptions.

The subsequent formal setup follows Rosenbaum (1995) and first focuses on the

ideal case of a randomized experiment, and then considers the case of nonexperi-

mental data. Assume that N units under observation are being stratified into S

strata on the basis of their covariates Xi. Let Tsi indicate whether unit i in stratum

s, s = 1, ..., S, is randomly assigned to treatment (Tsi = 1) or not (Tsi = 0). Each

stratum s comprises ns units, ms =
∑ns

i=1 Tsi treated and ns − ms controls.4 Fur-

thermore, let Ts be the vector of (Ts1, ..., Tsns)
′ and T the vector of (T′

1, ...,T
′
S)′.

Let the random variable Y 1
si be the outcome of unit i in stratum s after treatment

and Y1 be the N -tuple of Y 1
si arranged in the same order as T. Y 0

si and Y0 denote

outcomes without treatment. If Y 1
si = Y 0

si the treatment has no effect on unit si.

Under the null hypothesis of no treatment effect the responses are fixed, denoted

ysi, and the only random variable left is T.

The mean stratum effect ∆s is estimated as the difference in the mean outcomes

of the treated units and their controls in stratum s

∆̂s =
1

ms

T′
sys − 1

ns − ms

(1 − Ts)
′ys

=
1

ms

T′
sys − ns

ns − ms

ȳs +
1

ns − ms

T′
sys

=
ns

ms(ns − ms)
(T′

sys − msȳs) (3)

for all s = 1, ..., S, where 1 is a suitable vector of ones and ȳs = 1
ns

1′ys denotes the

mean over the ysi in stratum s. The overall mean effect τ is a weighted average of

the stratum effects ∆s, estimated by

τ̂ =
S∑

s=1

ωs∆̂s, (4)

where ωs are positive stratum weights summing to one:
∑S

s=1 ωs = 1. τ̂ identifies

the average effect of treatment on the treated (2) if the stratum weights ωs are

proportional to ms since τT is the expectation conditional on the subsample of

treated units. τ̂ identifies the average treatment effect for the population τP (1) if

4In this study either one treated unit will be matched to one or more controls or one control to
more than one treated. Thus, ms will either be equal to 1 or equal to ns − 1.
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the stratum weights are proportional to ns.
5 In this case, each individual would

have the same weight.6

Under the null hypothesis of no treatment effect Y 1
si = Y 0

si for all si and IE∆̂s = 0

for all s, IEτ̂ = 0, and the variances of ∆̂s and τ̂ are

σ2
s = V ar(∆̂s) =

ns

(ns − 1)2

ns∑
i=1

(ysi − ȳs)
2, (5)

V ar(τ̂) =
S∑

s=1

ω2
sσ

2
s . (6)

The formula (5) is derived in appendix B, see also Rosenbaum (1995, pp. 29,54). The

stratum differences ∆̂s are mutually independent and their variances differ across

strata. Under very mild assumptions asymptotic normality of τ̂ is established for

S → ∞ (see appendix C). Statistical inference will be based on large sample theory

exploiting the moments of the relevant test statistics.7

In contrast to the randomized experiment, in an observational study the dis-

tribution of the assignment vector T is unknown because individuals themselves

decide whether to participate in treatment or not. If the treatment and control

group differ prior to treatment in ways that matter for the outcome under study

an observational study is biased. An overt bias is one that is produced by observ-

able covariates X and that, in general, can be controlled using adjustments such as

matching. Assuming that there is only overt bias, i.e. the potential outcomes are

conditionally independent of treatment assignment given the covariates, matching

on X mimics ex post a randomized experiment in each stratum defined by X. Thus,

given X the formalism for the randomized experiment outlined above can be ap-

plied. Alas, whenever X is of high dimension exact matching will, in all likelihood,

be impossible. Alternatively, Rosenbaum and Rubin (1983) suggest to match on

the one-dimensional propensity score, i.e. the probability to participate in treatment

given X, p(x) = IP(T = 1|X = x), where IP denotes probability. They show that if

matching on X removes overt bias, then matching on p(X) will do so, too.

5In particular, in the case of heterogeneous treatment effects the matching estimator as a
weighted average of individual effects builds on a more intuitive weighting scheme than OLS.
Angrist and Krueger (1999) and Angrist (1998) show how in the case of heterogeneous treatment
effects a saturated linear model estimated by OLS weights the individual effects by the individual
variances of the treatment indicator. In contrast, matching weights the individual effects by the
probability to participate in treatment.

6Sample weights will also be taken into account in order to identify the US population param-
eters.

7Alternatively, it could rest on an exact permutation test. Calculating all feasible permutations
of zeroes and ones of the vector T and counting how often the test statistic of the permuted data
exceeds the sample test statistic (4) would produce exact p-values. Though, for a large number of
strata such a test would exceed computer power by far. Good (1994) provides a practical guide to
permutation tests and resampling methods in general.
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3 The Matching Algorithm

Two main decisions have to be made when implementing a matching algorithm:

First, the distance measure between treated and untreated individuals expressed

in their covariates has to be defined, and second, the specific type of matching

algorithm has to be chosen. We will consider these decisions in turn.

Distance Measures

The distance d between a treated and an untreated individual depends on their

observable characteristics xt and xc, respectively, and can be expressed as

d = d(xt,xc). (7)

There are various common ways how this distance can be defined. Examples are

• the difference in propensity scores,

• the difference in the linear index of the probit model when estimating the

propensity score p, Φ−1(p), where Φ is the cumulative normal density function,

and

• a weighted Euclidean distance, the Mahalanobis metric. The pooled covariance

matrix V of the covariates x serves as weights.8

Hence, we have

d(xt,xc) =




(xt − xc)′V −1(xt − xc) Mahalanobis metric,

|p(xt) − p(xc)| Propensity score difference,

|Φ−1(p(xt)) − Φ−1(p(xc))| Index score difference.

(8)

A practical way to restrict matching to the close vicinity of each individual and,

moreover, to substantially accelerate the speed of matching algorithms is the in-

troduction of a caliper width ε > 0 outside which matching is not allowed, see e.g.

Rosenbaum and Rubin (1985). Additionally, matching might be restricted to certain

8Matching using the Mahalanobis distance is discussed in Rubin (1980). A comparison, on the
basis of a simulation study, of three distance measures – Mahalanobis, propensity score distance,
and Mahalanobis distance within propensity score calipers – is provided in Gu and Rosenbaum
(1993). Furthermore, propensity score calipers are discussed in Rosenbaum and Rubin (1985: 3)
and Rosenbaum (1989: 3.4).
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subsamples of the data, e.g. to subsamples defined by some pre-specified covariates

xk, k ∈ K. Therefore,

d∗(xt,xc) =




∞ if d(xt,xc) > ε or ∃k ∈ K : xt
k �= xc

k

d(xt,xc) otherwise.
(9)

Two different caliper widths ε will be compared, a narrow and a broad one. For

propensity score matching, the narrow one will be set equal to 0.05 while the broad

one will be 0.10. For index score matching, the respective numbers are 0.30 and 0.60.

They are chosen such that both matching on the propensity score and on the index

employ an approximately equal number of treated units. Broad calipers allow for

matching of more individuals at the expense of a potentially less favorable balance

of covariates. Narrow calipers generate closer similarity of matched units but several

individuals at the top and bottom end of the propensity score scale are dropped. In

case of the Mahalanobis distance calipers will be defined by the propensity or the

index score as in Gu and Rosenbaum (1993).

Note that there is a bijective mapping between the propensity score p and the

index Φ−1(p). Basically, it should not matter which of them is used in the matching

algorithm. However, the mapping is not linear since p = 0 is mapped to −∞ and

p = 1 to +∞. Thus, differences in distances between two units on the unit interval

do not necessarily remain constant under the mapping: Suppose that a treated

unit with a propensity score of 0.95 might have to ”choose” between two potential

matches from the pool of untreated, one with propensity score of 0.90 and one with

0.98. Since the second one is closer to the treated it would be used for matching.

In terms of the index, the treated unit is situated at 1.64, the first potential match

at 1.28, the second at 2.05. This time, the treated unit will be matched to the

other control, which is now closer. In other words, close to the boundaries of the

unit interval matching on the propensity score might yield different strata than

matching on the index.

Algorithms

The second decision regarding the matching procedure is how to minimize the

distance between treated and untreated units. An appropriate algorithm is charac-

terized by two main features, the uniformity of the stratification it produces, and

the degree of distance minimization it can potentially attain. First, in a uniform

stratification treated units are uniformly distributed across a large number of strata.

Pair matching is the ideal uniform stratification since there are as many strata as



11

there are treated units. Augurzky and Schmidt (2000) propose a variance inflation

factor for measuring uniformity.9 The disadvantage, however, is that many treated

units either would have to be matched to quite distant untreated units or would have

to be dropped, both of which might produce an estimation bias. Therefore, in this

paper, we investigate pair matching and full matching. Full matching distributes all

treated units with finite distance across strata and thus produces strata that consist

of more than one treated unit.

Second, among all possible stratifications there is one stratification achieving a

minimum total distance. A so-called optimal algorithm searches for exactly the

minimum total distance stratification. By contrast, other algorithms generally do

not attain the minimum total distance: a greedy algorithm randomly selects a treated

unit and matches it to the closest untreated unit available (in terms of the specified

distance measure). The matched control unit is then removed from the control

reservoir and the next treated unit is again matched to the nearest untreated unit

from the remaining pool of controls. Hence, treated units looking for matches ”late”

in the algorithm may not find suitable controls, as the ”sought-after” controls (i.e.

usually those with high propensity scores) are no longer available. A treated unit is

removed if it does not find a control unit with finite distance. After the last treated

unit has been assigned a match the algorithm stops in case of pair matching. All

remaining treated and untreated units are dropped. The final shape of the matched

sample after greedy pair matching is therefore a set of 1-1 matches, and both a

certain number of unmatched treated and unmatched untreated units, both of which

are not considered in treatment effect calculation.

In the case of full matching the algorithm continues at the point where the sample

of 1-1 matches has been produced, since the full matching algorithm aims at uti-

lizing all treated and untreated units. The next step is to distribute the remaining

unmatched untreated units to the existing 1-1 strata. The procedure is as follows:

From the existent set of 1-1 strata one stratum is drawn randomly and assigned

the closest untreated unit from the remaining pool, turning the stratum into a 1-

2 stratum (unless no untreated unit with finite distance is available, which would

leave the stratum in 1-1 shape). This procedure is repeated for all 1-1 strata, po-

tentially turning all of them into 1-2 strata. If, at the end of this step, there remain

unmatched untreated units, the procedure is repeated for all 1-2 strata, potentially

turning them into 1-3 strata, etc., until all untreated units (with finite distance) are

distributed. The intermediate shape of the matched sample is then a set of strata,

9Suppose all estimated stratum treatment effects have the same variance. Then ”variance

inflation” due to unfavorable stratification can be measured using 1
(
∑S

s=1 ms)2

S∑
s=1

m2
s

(1−1/ns)2 , which

is then compared to the benchmark stratification ms = 1 and ns = 2 for all s: 4/
∑S

s=1 ms.
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with each strata in a 1-k shape.

In a final step of the full matching algorithm, the remaining treated units – those

who did not find a match in the first step of pair matching – must now be assigned

to appropriate strata. Logically, these can only be the 1-1 strata. The algorithm

randomly selects one 1-1 stratum and assigns the closest treated unit, producing a

2-1 stratum. Then the next 1-1 stratum is assigned the closest treated unit, etc. If,

at the end of this step, there are still treated units left, the procedure continues with

constructing 3-1 strata, etc. The resulting shape of the full matching algorithm is

a stratification with k-1, 1-1, and 1-k strata. Only those observations with infinite

distance to all potential matching partners will be discarded.

Although this full matching algorithm attempts to minimize the total distance

between treated units and their controls it will, in general, not attain the mini-

mum. Rosenbaum (1991) shows how a greedy algorithm (which could be greedy

pair or greedy full matching) might produce a stratification with a total distance

arbitrarily worse than the optimal. A further unpleasant side effect is that results

are different each time the algorithm is used because of the initial random order of

observations. Optimal full matching circumvents these shortcomings. It attains the

overall minimum in that it works backwards and rearranges already matched units

if some specific treated unit turns out to be a better (closer) match with a control

unit previously matched to another treated unit. In such a case, the first match is

broken up, the second match is assigned, and the corresponding treated unit from

the first match is again available for matching. Optimal full matching can easily be

transformed into a minimum cost flow problem10 (Rosenbaum, 1991).

In the application, three algorithms will be compared, a greedy pair matching,

a greedy full matching, and an optimal full matching. Note that all stratifications

consist of non-overlapping strata, i.e. no unit will be member of two different strata.

Dehejia and Wahba (2002), for instance, also suggest an algorithm where controls

are allowed to be used more than once in a matching algorithm with replacement.

However, their algorithm generally produces overlapping strata. This makes statis-

tical inference as outlined above more difficult due to stochastic dependencies across

strata.

10Bertsekas (1991) discusses linear network optimization and minimum cost flow problems.



13

4 The Data

The data are taken from the National Longitudinal Survey of Youth 1979 (NLSY)

administered by the US Bureau of Labor Statistics. The NLSY is a sample of 12,686

youths first interviewed in 1979 when they were aged between 14 and 22 and re-

interviewed annually until 1994. A detailed description of the data is given by

the NLS Handbook (1997) and the NLSY79 User’s Guide (1997). Annual data on

hourly wages until 1994 are extracted for men.11 Oversampling of Non-whites and

economically disadvantaged Whites suggests the use of sample weights pertaining

to 1979 in order to identify the population parameters.

The treatment period is the time it takes to achieve the bachelor’s degree after

graduating from high school. The treated individuals are those who obtained the

degree and left college immediately thereafter, i.e. who did not continue college and

eventually dropped out before achieving a higher degree. Controls are drawn from

the pool of individuals with only a high school diploma who never attended college.

High school dropouts and individuals with a general educational development (GED)

are removed from the sample.

The year in which a respondent received the high school diploma marks the

beginning of the treatment phase of those who went to college. In turn, the year

in which he received his bachelor’s degree marks the end. A treated and a control

person should ideally have finished high school in the same year and at the same

age. The control then starts to work and gain labor market experience while the

treated is allowed to either go to college straight away, interrupt college for a while,

or even start to work a certain time before finally attending college. Note that the

estimation strategy pursued here does not identify the return to education but the

effect of the college degree on earnings, which also includes indirect effects on labor

market experience.

The outcome measure is the hourly rate of pay inflated to 1996 dollars using the

US consumer price index and transformed into logarithms. For presentation of the

results, the estimate τ̂ will be retransformed to exp(τ̂) − 1.12 The effect of college

education is evaluated during the first ten years after graduation. Socioeconomic

11The sample is restricted to men because of their higher labor market participation compared
to women.

12To eliminate outliers, all values below $1 are set equal to $1 and maximum or minimum wages
of observations whose wages oscillate enormously across years are removed as well. For example,
an hourly wage of $5 in one year, $1000 in the second, and again $5 in the third seems more likely
to reflect inconsistencies in the calculation of the hourly wage by the NLSY than real fundamental
economic changes which is why $1000 would be removed. See e.g. the NLSY79 User’s Handbook
(1997: p. 266): “... the calculation procedure [...] produces, at times, extremely low and extremely
high pay rate values.”
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background variables, information about the high school career, and ability measures

play an important role in the decision to attend college. They are used to estimate

the propensity score.

Individuals of the same race, the same age +/- one year, and the same year of

obtaining their high school degree +/- one year are permitted to be matched. In

other words, K in equation (9) consists of the covariates race, age±1 and high school

graduation year ±1. This guarantees that treated and untreated individuals within

a stratum share a similar economic environment at the beginning of the treatment

phase. Exact matches on age and the year of the high school diploma would be

preferable, but would substantially reduce the number of potential controls.

The pool of potential controls for each treated unit comprises all untreated units

with finite distance. If some potential control for a given year after college graduation

shows a missing value in hourly wage he is removed from the pool for this year. Ten

years after college graduation will be examined and each year will be stratified

separately such that individuals who are removed in some year due to missing wage

information may still be available in other years.

5 Results

In evaluating the performance of the matching algorithms, we will focus on (i) the

variance of the matching estimates and uniformity of stratification and (ii) potential

biases as given by the balance of covariates after matching and the systematic loss

of treated units.

The estimation of the propensity and index score is done using a probit model,

results are presented in appendix A. The probit model, on the one hand, achieves to

successfully separate college and high school graduates, i.e. selection into treatment

is strong. This fact, on the other hand, aggravates matching at the boundaries, and

observations at the top and bottom end of the propensity score distribution will have

difficulties finding matching partners.13 Full matching algorithms therefore might

produce a stratification with a low degree of uniformity.

Table 1 compares the absolute frequencies of treated and untreated individuals

for given propensity score and index score intervals. At the top and bottom of the

propensity score scale there are more individuals than at the top and bottom of the

index score scale. This is because the index score stretches the unit interval of the

13Note that a classic ordinary least squares model would linearly interpolate between the ex-
tremes, which is not necessarily superior.
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propensity score to plus and minus infinity. Hence, matching on the index will drop

several low-score untreated individuals. At the top of the distribution, the situation

is comparable but less pronounced.

Estimation results for treatment effects are reported in tables 2 to 5 for four

different distance measures: Propensity score distance, Mahalanobis distance with

propensity score calipers, Index score distance, and Mahalanobis distance with index

score calipers. Results for the first, third, fifth, seventh and ninth year after college

graduation are shown. The first column of each table indicates the number of years

after college. The second and third columns for the full matching algorithms report

estimates of τT and τP . The estimates indicate an upward trend over time. While

there is no effect τ̂T in the first year after college it rises up to 35% in the ninth

year.14

For greedy pair matching, the two treatment effect estimates coincide. A supple-

mentary column (7) reports the standard deviations induced by the initial random

order of treated units in the greedy algorithm. They are calculated for τ̂ as well

as for its standard error. The simulation errors for greedy full matching are omit-

ted because they are negligibly low. The greedy algorithms are repeated 20 times.

Columns (4) and (5) display for the full algorithms the number of strata, of treated,

and of untreated individuals used for stratification. For pair matching, all three

numbers coincide. The number of individuals and strata diminishes continuously

from the first to the ninth year because many individuals, especially younger ones,

are not in the sample for the whole nine-year period after college. The last column

of the full matching algorithms reports the mean and maximum number of treated

units in strata that consist of more than one treated. Large numbers typically

increase the standard errors.

Table 6 describes the balancing properties of the matching algorithms. Since there

are numerous covariates and ten stratifications reflecting the ten years after college,

some aggregate measures of balance are introduced to facilitate assessment. The

detailed results are reported in appendix D. The first column of table 6 shows the

average reduction of differences in the variables over all years after college between

treated and controls.15 ”0” means no reduction, ”100” total reduction. Since the

matching algorithms face severe problems in balancing the variable born in south

(see appendix D) column (2) reports the average bias reduction disregarding this

variable.

14Further investigation shows that part of the increase can be explained by the fact that college
graduates accumulate experience more quickly after leaving college than high school graduates.
However, interaction between labor market experience and schooling does not appear to be existent.

15Each year after college is weighted by the number of strata.
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Columns (3) and (4) report average bias reductions for the presumably most

important single variables math scores and parents’ education. Math scores exhibit

the highest t-value in the probit estimation (appendix A). Also, they are important

determinants of wages as documented in other studies (Blackburn and Neumark,

1993, or Murnane, Willett, and Levy, 1995). Parents’ education exhibits the second

largest t-value. Finally, columns (5) display the propensity score difference between

treated individuals before and after matching. A negative sign points to a systematic

loss of treated units at the top of the propensity score distribution and, thus, to a

possible bias in the estimates if the treatment effect is heterogeneous.

Sensitivity Analysis (i): Type of algorithm

The greedy full matching algorithm achieves to produce a more favorable, i.e. a

more uniform, stratification than the optimal full matching. This is expressed by the

mean and maximum number of units in strata consisting of more than one treated

which is smaller for greedy matching. The number of strata is slightly larger in the

greedy case, especially when calipers are broad. This pattern is more pronounced

for index score matching although the estimates do not differ strongly. As noted in

Gu and Rosenbaum (1993), this might be because greedy and full matching use the

same individuals even though the specific stratification differs.

Surprisingly, overall balance is somewhat superior for greedy full matching, too.

The main reason is that the optimal matching faces severe problems in balancing

the variable born in south. Yet, notice that optimal matching tends to balance math

scores better. Disregarding born in south, balancing success is more or less equal.16

This finding is in line with Gu and Rosenbaum (1993) who observe that in terms of

balance, optimal matching seems to have no advantage over greedy matching.

Greedy pair matching produces approximately the same number of strata as

greedy full matching, i.e. the effective sample size is constant across algorithms.

Nevertheless, standard errors are smaller for pair matching. This is because it

produces the highest degree of uniformity. In case of pair matching, there is no reason

to distinguish between τ̂T and τ̂P for two reasons. First, there is only one weighting

scheme for pair matching and, second, since the majority of treated and untreated

units are not matched, identification of the respective population parameters is

doubtful anyway. These doubts are substantiated considering ∆p̂ in table 6. As

16A weakly significant interaction between parents’ education and born in south has been included
in the probit estimation, but improvements were not attained; other interactions were statistically
insignificant. Moreover, exact matching on born in south reduced the matched sample size by
roughly 20%, though, the number of strata did not diminish much; estimates of the treatment
effects increased slightly.
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expected, although pair matching produces the highest degree of uniformity and

the most favorable balance, the loss of treated units with high propensity scores

is dramatic. Yet, this systematic loss does not lead to very different estimates

compared to full matching except for the case of the Mahalanobis distance. Thus,

the results do not point to strong heterogeneity in the treatment effects. In such a

case pair matching seems to be a superior strategy.

Sensitivity analysis (ii): Distance measure

If calipers are broader, more strata are produced because there are less units

with infinite distances. The difference in the number of strata is more pronounced

when the Mahalanobis distance is used. Nonetheless, estimates do not differ sys-

tematically and standard errors are not lower for the case of broad calipers because

the larger number of strata is offset by a substantially reduced uniformity across

strata, especially for optimal full matching. It is not offset for pair matching, where

standard errors do decrease. For the full matching algorithms, percent bias reduc-

tion is larger for narrow calipers. For pair matching, the discrepancy is negligible.

However, once born in south is disregarded, narrow and broad calipers produce an

almost equal overall balance. Considering the systematic loss of treated units, a

clear distinction can be made. For narrow calipers ∆p̂ is more negative than for

broad calipers. This is because treated individuals with a high propensity score

have more difficulties in finding a control with an equally high score and, thus, more

treated units are dropped.

Estimation results for τT and τP do not differ strongly for different distance

measures. The Mahalanobis case tends to supply more strata, though based on

the same number of treated and untreated units. This observation is especially

evident for index score matching. As a result, standard errors tend to be lower in

the Mahalanobis case.

The most striking difference between the results based on propensity and index

score distance is the number of controls used for stratification. Index score match-

ing drops numerous untreated units, which is consistent with findings reported for

table 1. For instance, in the first year, index matching utilizes over 200 controls

less than propensity score matching. Because of that, it is unclear whether index

matching really identifies τP . However, a clear distinction between estimates can

hardly be established except for the fact that standard errors of τ̂P are slightly lower

for index matching. With regard to balance there seems to be no discrepancy worth

mentioning.
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Finally, note that τP appears to be lower than τT in almost all specifications.

While the difference is not statistically significant, however, this might be weak

evidence in favor of heterogeneous effects. Results for τP are more or less of the

same magnitude as results of the greedy pair matching.

6 Conclusion

The implementation of matching estimators to estimate treatment effects is char-

acterized by the type of algorithm and the distance measure. The choice of matching

algorithm and the distance measure depends on data characteristics and involves an

inherent trade-off between bias and variance. The variance of the estimator is re-

lated to the uniformity of stratification. If there are only strata consisting of one

treated individual, then uniformity is highest and variance lowest. Furthermore, two

kinds of biases arise: A bias due to lack of balance of the covariates and a bias due

to loss of treated individuals after matching.

Two data characteristics determine the relevance of these estimation problems: (i)

the strength of selection into treatment and (ii) the strength of heterogeneity of the

treatment effect. In case of weak selection into treatment all algorithms will achieve

high uniformity of stratification. Sample variance is not very important. In case of

homogeneous treatment effects there is no bias due to loss of treated units. Since

each treated has the same effect there is no need to keep all treated individuals. If

the effect is heterogeneous, however, each treated unit carries individual information

on the treatment effect and loss of treated might increase the estimation bias. In

all cases, however, bias due to lack of balance of covariates cannot be neglected and

balance is best achieved if caliper widths are narrow.

Depending on the data characteristics and the bias-variance trade-off a matching

technique has to be chosen in terms of type of algorithm and distance measure.

This paper has addressed the sensitivity of matching estimates with respect to these

decisions, using data from the NLSY79 to estimate the effect of a college degree on

labor market earnings. The data exhibit strong selection into treatment, i.e. bias

in relevant covariates prior to treatment is large and matching becomes a serious

challenge.

The distance measures we have considered are propensity score, index score, and

Mahalanobis distance. Our results show that choice of distance measure within

the caliper appears less important than achieving uniformity of stratification. We

have implemented an optimal full matching algorithm, and have compared it with
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greedy pair matching and greedy full matching. Although the greedy full algorithm

presented in this paper performs well, it is not its ”greed” but its uniformity that

drives the good results. An optimal procedure with restrictions on the number

of treated per stratum seems to be a better alternative. Moreover, an optimal

algorithm does not depend on the random initial order of treated units. Therefore,

we recommend to use optimal, i.e. minimum distance algorithms with restrictions

on the number of treated per stratum. See also Ming and Rosenbaum (2000) for a

related discussion. Given a distance or caliper width, such restrictions allow to cover

the whole range of matching strategies, from optimal pair to optimal full matching

and everything in between.

If the data exhibit strong selection and treatment effect heterogeneity the algo-

rithm should allow more than one treated per stratum and caliper widths should

not be too narrow. In this paper, heterogeneity does not seem to be very strong

and therefore pair matching produces good results. Alternatively, under fairly strict

restrictions on the number of treated per stratum, optimal full matching would

perform equally well at least, and would be preferable in the presence of strong

heterogeneity.
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Appendix A: Estimation of the Propensity Score

Table 7 displays the results of the estimation of the propensity score using a probit

model. The model includes several covariates that drive selection into college, specif-

ically socioeconomic background and high school career. Furthermore, it comprises

two ability variables, scores on math and auto and shop information tests (adjusted

for age).17 The first tend to capture academic and the second non-academic abilities,

see also the classification in Blackburn and Neumark (1995). Parents’ education is

the mean of the father’s and mother’s education, it takes on mother’s education if

father’s education is missing and vice versa. Parents’ occupational status is a binary

variable indicating the social status of parents’ occupation – high or low – and is

given by the mean of mother’s and father’s status. Again, it takes on the father’s

status if the mother’s is missing and vice versa. Except for Hispanic all variables

are statistically significant at conventional levels. Family income is excluded due to

many missing observations.

Apparently, selection into college is fairly strong, as has been found by other

studies, too. Ashenfelter and Rouse (1998) report that (observed and unobserved)

family background explains about 60% of the variance in schooling attainment and

Murnane, Willett, and Levy (1995) assert that math test scores are a strong predictor

of subsequent educational attainment.

Appendix B: Derivation of the Stratum Variance

This appendix derives the stratum variance formula given in equation (5). Start-

ing with equation (3)

∆̂s =
ns

ms(ns − ms)
(T′

sys − msȳs), (10)

the variance of ∆̄s is

V ar(∆̂s) = V ar

(
ns

ms(ns − ms)
T′

sys

)
=

n2
s

m2
s(ns − ms)2

y′
sV ar(Ts)ys. (11)

17The NLSY provides ten ability measures, the Armed Services Vocational Aptitude Battery
scores. Since respondents participated in the tests at different ages the scores are adjusted by
regressing the raw scores on age dummies and using the residuals subsequently as explanatory
variables, analogous to Blackburn and Neumark (1993).
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Note that ysi is no random variable under the null hypothesis. Based on the distri-

bution of Ts the covariance matrix is

V ar(Ts) =




ms

ns
(1 − ms

ns
) ms

ns
(ms−1

ns−1
− ms

ns
)

. . .

ms

ns
(ms−1

ns−1
− ms

ns
) ms

ns
(1 − ms

ns
)


 (12)

=
ms

ns

ns − ms

ns




1 − 1
ns−1

. . .

− 1
ns−1

1




and

(ys1, . . . , ysns)




1 − 1
ns−1

. . .

− 1
ns−1

1







ys1

...

ysns


 (13)

= (ys1, . . . , ysns)




ys1 − 1
ns−1

(ys2 + . . . + ysns)

...

ysns − 1
ns−1

(ys1 + . . . ysns−1)




=
ns

ns − 1
(ys1, . . . , ysns)




ys1 − ȳs

...

ysns − ȳs




=
ns

ns − 1
(ys1(ys1 − ȳs) + . . . + ysns(ysns − ȳs))

=
ns

ns − 1


 ns∑

i=1

(ysi − ȳs)
2 + ȳs ((ys1 − ȳs) + . . . + (ysns − ȳs))︸ ︷︷ ︸

=0


 .

Thus,

V ar(∆̂s) =
n2

s

ms(ns − ms)2

ms

ns

ns − ms

ns

ns

ns − 1

ns∑
i=1

(ysi − ȳs)
2 (14)

=
ns

ms(ns − ms)(ns − 1)

ns∑
i=1

(ysi − ȳs)
2.

In the special case ms = 1 or ms = ns − 1

V ar(∆̂s) =
ns

(ns − 1)2

ns∑
i=1

(ysi − ȳs)
2. (15)
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Appendix C: Asymptotic Normality of τ̂

The estimator of the treatment effect τ̂ is the weighted sum of S independent

strata effects ∆̂s

τ̂ =
S∑

s=1

ωs∆̂s. (16)

To establish asymptotic normality of τ̂ the different variances of the ∆̂s have to be

taken into account, i.e. Lindeberg condition has to be satisfied. Rewrite the problem

and let

Xs = ωs∆̂s =
ωsns

ms(ns − ms)
(T′

sys − msȳs) (17)

with IEXs = 0 and variance σ2
s according to equation (6). The Lindeberg condition

requires that for all ε > 0

1∑S
s=1 σ2

s

S∑
s=1

IE

(
X2

s 1

(
X2

s ≥ ε

S∑
s=1

σ2
s

))
−→ 0 (18)

as S −→ ∞, where 1(...) is one if its argument is true and zero otherwise. In

optimal full matching only the two cases ms = 1 and ms = ns − 1 are relevant. The

subsequent probabilities are necessary to compute the expectation of (18).

For ms = 118

IP

(
Xs =

ωsns

ns − 1
(ysi − ȳs)

)
=

1

ns

∀i = 1, .., ns. (19)

For ms = ns − 1

IP

(
Xs =

ωsns

ns − 1
(ȳs − ysi)

)
=

1

ns

∀i = 1, .., ns. (20)

Hence19,

IP

(
X2

s =

(
ωsns

ns − 1

)2

(ysi − ȳs)
2

)
=

1

ns

∀i = 1, .., ns. (21)

It follows that

1∑S
s=1 σ2

s

S∑
s=1

IE

(
X2

s 1

(
X2

s ≥ ε

S∑
s=1

σ2
s

))
(22)

=
1∑S

s=1 σ2
s

S∑
s=1

1

ns

ns∑
i=1

(
ωsns

ns − 1

)2

(ysi − ȳs)
2 · 1
((

ωsns

ns − 1

)2

(ysi − ȳs)
2 ≥ ε

S∑
s=1

σ2
s

)

≤ 1∑S
s=1 σ2

s

S∑
s=1

ksMs · 1
(

ksMs ≥ ε
S∑

s=1

σ2
s

)
,

18If there are ties, i.e. there is an i �= j such that ysi = ysj , IP
(
Xs = ωsns

ns−1 (ysi − ȳs)
)

is at least
2

ns
. However, counting each i separately for all i = 1, ..., ns as in the subsequent steps and giving

each the same probability 1
ns

does not cause problems.
19X2

s not being bijective ties can emerge again, see previous footnote.
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where ks =
(

ωsns

ns−1

)2

and Ms = maxi=1,...,ns(ysi − ȳs)
2. Furthermore, if MS is the

maximum over all Ms, MS = maxs≤S Ms, and if

MS∑S
s=1 σ2

s

−→ 0 (23)

for S −→ ∞, condition (18) is satisfied. Assumption (23) is rather harmless because

ysi being wages MS even remains finite.

Appendix D: Balance of Covariates

Tables 8 to 11 display the balancing properties for all covariates and for all spec-

ifications. They show the means of covariates by treatment status before and after

matching. After matching, weighted averages over all stratifications of the ten years

after college are reported. The weights correspond to the number of strata in each

year. The means are compared by a conventional t-test under the assumption of

equal variances in both groups. A “1” indicates that the means are not significantly

different. Fractions are due to averaging. Moreover, the reduction of the bias in

covariates is shown as a percentage for each variable and as an average over all

variables. Since the full matching algorithms face severe problems in balancing the

variable born in south, the last row displays the average over all variables when it is

excluded.
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Table 1: Distribution of Estimated Propensity and Index Score.

Estimated Estimated
Prop. score Untreated Treated Index score Untreated Treated

[0.0 , 0.1) 946 29 [−4.70 , −3.94) 11 0

[0.1 , 0.2) 150 23 [−3.94 , −3.18) 74 0

[0.2 , 0.3) 80 21 [−3.18 , −2.42) 285 2

[0.3 , 0.4) 56 20 [−2.42 , −1.66) 407 9

[0.4 , 0.5) 29 21 [−1.66 , −0.90) 298 37

[0.5 , 0.6) 33 35 [−0.90 , −0.14) 175 54

[0.6 , 0.7) 15 34 [−0.14 , +0.62) 64 96

[0.7 , 0.8) 20 60 [+0.62 , +1.38) 24 139

[0.8 , 0.9) 9 79 [+1.38 , +2.14) 4 86

[0.9 , 1.0] 4 128 [+2.14 , +2.90] 0 27

Mean score 0.11 0.67 -1.77 0.61

Observations 1342 450 1342 450
Comparison of the number of treated and untreated individuals by propensity score and index
score intervals.
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Table 7: Probit Estimation Results.

Variables Mean Coeff. t-value P-value
Black 0.263 0.274 1.971 0.049
Hispanic 0.091 0.256 1.443 0.149
Math test scores -0.442 0.098 15.384 0.000
Auto and shop test scores 4.911 -0.018 -2.857 0.004
Attended private school 0.052 0.432 2.397 0.017
Ever expelled or suspended from school 0.272 -0.536 -4.314 0.000
High school curriculum: college preparatory 0.288 0.972 6.392 0.000
High school curriculum: general program 0.509 0.358 2.439 0.015
Parents’ education 11.185 0.154 6.857 0.000
Parents’ occup. status high when resp. was 14 0.129 0.432 2.361 0.018
Number of siblings 3.600 -0.065 -2.796 0.005
Born in the south 0.365 0.346 3.333 0.001
Constant 1.000 -3.142 -9.750 0.000

Observations 1792
χ2(12) 1046.4
Overall p-value 0.000
Pseudo R2 0.518

All variables with “yes/no” answers are dummy variables with 1 for “yes” and 0 for “no”. The
Pseudo R2 reports the the likelihood ratio index, i.e. 1 − L1/L0, where L1 is the log likelihood
of the full model and L0 is the log likelihood of the ”constant-only” model.
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