

Initiated by Deutsche Post Foundation

DISCUSSION PAPER SERIES

IZA DP No. 12861

The Strength of Gender Norms and Gender-Stereotypical Occupational Aspirations among Adolescents

Andreas Kuhn Stefan C. Wolter

DECEMBER 2019

Initiated by Deutsche Post Foundation

DISCUSSION PAPER SERIES

IZA DP No. 12861

The Strength of Gender Norms and Gender-Stereotypical Occupational Aspirations among Adolescents

Andreas Kuhn

Swiss Federal Institute for Vocational Education and Training, University of Bern and IZA

Stefan C. Wolter

University of Bern, Swiss Coordination Centre for Research in Education, CESifo and IZA

DECEMBER 2019

Any opinions expressed in this paper are those of the author(s) and not those of IZA. Research published in this series may include views on policy, but IZA takes no institutional policy positions. The IZA research network is committed to the IZA Guiding Principles of Research Integrity.

The IZA Institute of Labor Economics is an independent economic research institute that conducts research in labor economics and offers evidence-based policy advice on labor market issues. Supported by the Deutsche Post Foundation, IZA runs the world's largest network of economists, whose research aims to provide answers to the global labor market challenges of our time. Our key objective is to build bridges between academic research, policymakers and society.

IZA Discussion Papers often represent preliminary work and are circulated to encourage discussion. Citation of such a paper should account for its provisional character. A revised version may be available directly from the author.

ISSN: 2365-9793

IZA – Institute of Labor Economics

	BL 40.220.2004.0	
Schaumburg-Lippe-Straße 5—9	Phone: +49-228-3894-0	
53113 Bonn, Germany	Email: publications@iza.org	www.iza.org

ABSTRACT

The Strength of Gender Norms and Gender-Stereotypical Occupational Aspirations among Adolescents^{*}

We empirically test the hypothesis that adolescents' occupational aspirations are more gender-stereotypical if they live in regions where the societal norm towards gender equality is weaker. For our analysis, we combine rich survey data describing a sample of 1,434 Swiss adolescents in 8th grade with municipal voting results dealing with gender equality and policy. We find that occupational aspirations are strongly gender-segregated and that adolescents living in municipalities with a stronger norm towards gender equality are significantly less likely to aspire for a gender-stereotypical occupation, even after controlling for individual-level controls. At the same time, gender norms have virtually no power in explaining the gender stereotypicity of individual occupational aspirations - challenging the widespread conception that societal gender norms are one of the most important determinants of occupational gender segregation. Moreover, a more detailed analysis shows that the association may mainly reflect the intergenerational transmission of occupational structure.

 JEL Classification:
 J16, J24

 Keywords:
 occupational choice, occupational segregation, gender norms, preferences, intergenerational transmission, regional occupational structure

Corresponding author:

Andreas Kuhn Swiss Federal Institute for Vocational Education and Training Kirchlindachstrasse 79 3052 Zollikofen Switzerland E-mail: andreas.kuhn@ehb.swiss

^{*} We thank Uschi Backes-Gellner, Simone Balestra, Ursula Renold, Jan Sauermann, as well as participants at the 2016 KOF-LH retreat in Marbach, the 2016 CVER conference at the LSE and the 2017 VET Congress at the Swiss Federal Institute for Vocational Education and Training for many helpful comments and suggestions. We also thank Christoph Düby from the cantonal department of education of the canton of Bern for providing us with the data on the population of apprenticeship contracts in the canton of Bern; Marcel Hageman for great research assistance; and Sally Gschwend-Fisher for proofreading the manuscript.

1 Introduction

One of the most striking features of modern labor markets is that men and women tend to work in occupations that are predominantly chosen by individuals of the same sex (e.g. Charles and Grusky, 2004; Cortes and Pan, 2018). This is even more remarkable if one considers the impressive changes in women's labor market performance in the past couple of decades, such as in their educational attainment (where they already overtook men in many countries). Nonetheless, however, women continue to earn substantively less than men on average (e.g. Blau and Kahn, 2017; Olivetti and Petrongolo, 2016). This brings to the fore efforts to understand the mechanisms that underlie the segregation of men and women into different occupations (see Cortes and Pan, 2018, for an overview).¹

It is presumably against this background of highly sticky patterns of gendered occupational choice that many social scientists and policymakers alike have pushed the argument that social norms regarding the appropriate role of women and men in (and outside) the labor market as well as gender-equality norms – gender norms, for short, in what follows – is one of the primary culprits, or perhaps even the single most important reason underlying the occupational gender segregation that is still present today (e.g. Micus-Loos et al., 2016). And, indeed, recent empirical evidence shows that there is gender stereotyping in various contexts (e.g. Eriksson et al., 2017; Mengel et al., 2018; Wu, 2018), which is consistent with the influence of gender norms on occupational choice. The observation that gender-specific occupational preferences appear early in life (e.g. Gneezy and Rustichini, 2004; Kooreman, 2009) also points to the potential importance of gender norms in shaping these preferences. Moreover, previous empirical evidence has shown that societal gender norms influence individuals' behavior and attitudes. For example, gender norms have been shown to influence women's fertility and labor supply decisions (Fernández, 2013; Fernández and Fogli, 2009). Gender norms may also explain why, within households, men still tend to earn more than their wives (Bertrand et al., 2015). Using municipal voting results on gender issues to measure local gender norms, Lalive and Stutzer (2010) show that women are less satisfied with their lives if they live in a municipality

¹However, occupational gender segregation does not explain all of the remaining gender gap in wages. The way occupations (and jobs) differ with respect to the flexibility of working times and hours appears to be one of the most important factors besides occupational choice (e.g. Bertrand *et al.*, 2010; Goldin, 2014).

that is characterized by a stronger norm towards gender equality – even though the gender gap in wages is smaller in these regions. Janssen *et al.* (2016) find that the wage gap varies across establishments from the same firm with the local gender norm in which the establishment is located. To the best of our knowledge, however, there is virtually no empirical evidence on the direct effect of these norms on individuals' occupational choice – with the exception of Osikominu *et al.* (2019), who find that men, but not women, who grew up in more conservative regions are more likely to choose a STEM major at a university.

At the same time, however, recent empirical evidence suggests important competing, and possibly intertwined, explanations for gendered occupational choices.² A first alternative explanation is based on the rapidly cumulating evidence documenting substantive gender differences in preferences and psychological traits that might influence occupational choice (Bertrand, 2011; Cortes and Pan, 2018; Croson and Gneezy, 2009). The psychological trait that has presumably received the most attention from economists in the context of occupational choice is competitiveness, i.e. one's tendency to accept competition. Most studies find significant and substantive differences in competitiveness between men and women, with men being more competitive than women (e.g. Gneezy et al., 2003; Niederle and Vesterlund, 2007). It has further been shown that competitiveness is related to educational and occupational choices in different contexts (Buser et al., 2014, 2017a). Other studies have documented, for example, that risk aversion affects occupational choice (Bonin et al., 2007; Borghans et al., 2009). Gender differences in these traits provide a plausible alternative explanatory mechanism to the influence of gender norms because (at least a part of) these differences appear very early in life (e.g. Gneezy and Rustichini, 2004) and because there is evidence suggesting that these factors affect educational and occupational choices (e.g. Antecol and Cobb-Clark, 2013; Cobb-Clark and Tan, 2011; Fouarge et al., 2014). A closely related literature shows that men and women have different preferences with respect to job attributes, such as preferences over interactive or non-manual work (e.g. Janssen and Backes-Gellner, 2016; Lordan and Pischke, 2016; Usui, 2008). Differences between men and women with respect to such preferences may be due to differences in aptitudes and skills (Baker and Cornelson, 2018), but they could also be due to gender-specific socialization,

²Additional explanations for the remaining gender gaps, without claiming completeness, focus on technology (e.g. Black and Spitz-Oener, 2010) or social contacts (Bentolila *et al.*, 2010), as well as an occupation's prestige (Kleinjans *et al.*, 2017) or considerations of social approval (Mani and Mullin, 2004).

and thus indirectly be driven by gender norms. Therefore, depending on one's view regarding the underlying cause of these differences, one should – or should not – control for these job preferences when estimating the effect of gender norms on gender-stereotypical occupational aspirations. Another likely competing mechanism is due to the intergenerational transmission of preferences, norms, and other traits – above and beyond the well-known intergenerational correlation in the acquisition of human capital (e.g. Black *et al.*, 2005). Most relevant to us, empirical studies have found that parents pass on work preferences (Blau *et al.*, 2013; Fernández and Fogli, 2009), employers (Corak and Piraino, 2011), the choice of self-employment (Holtz-Eakin and Dunn, 2000), as well as occupations (Aina and Nicoletti, 2018; Chise *et al.*, 2019; Hederos, 2016) to their children. Moreover, there is also empirical evidence suggesting intergenerational transmission in risk, and possibly other, preferences (Dohmen *et al.*, 2012; Escriche, 2007; Necker and Voskort, 2014), including gender preferences themselves (Farré and Vella, 2013).

A final issue that needs to be addressed in the empirical analysis is that local gender norms may be correlated with other factos that vary at the regional level and that are simultaneously correlated with both the strength of the local gender norm prevailing within a given region and the degree to which occupations are chosen in a gender-stereotypical way. The most obvious, and arguably also the most important, one being that there are regional differences in the occupational structure, such as between rural and urban areas. These differences could influence adolescents' occupational aspirations either directly, by shaping their perceptions of what different occupations there are, but also indirectly, through influencing the occupational aspirations of their peers. As we will discuss below, it turns out to be difficult to exactly distinguish between such regional effects, the transmission of occupations from parents to their children, and local gender norms.

In this paper, we use a unique combination of different data sources that allows us to discriminate between these different explanatory factors and thus to shed light on this important policy question. Specifically, we combine data from a computer-assisted classroom survey among 8th grade children³, about 14 years old on average, in Switzerland with a measure of local gender norms that is based on the results of several votes (mostly popular plebiscites)

³These data have been used previously by Buser *et al.* (2017a,b) and Jaik and Wolter (2019).

on gender issues and policy in Switzerland. The data will also allow us to test the importance of the two competing explanations mentioned above, preferences and intergenerational transmission of occupational aspirations from parents to their children. In a first step, we show that occupational aspirations among the children in our sample are highly gendered, and that both girls and boys aspire for gender-stereotypical occupations, i.e. occupations mainly chosen by same-sex individuals. We then show that there is a strong and statistically significant correlation between local gender norms and gender-stereotypical occupational aspirations. As expected, children who live in regions that are characterized by a stronger norm towards (more) gender equality are less likely to aspire for a gender-stereotypical occupation. Moreover, this finding turns out to be robust to the inclusion of a series of additional control variables, such as school track and school grades. Our data also allow us to show that the effect of the local gender norm on occupational aspirations is robust to the inclusion of several variables measuring risk preferences, competitiveness, as well as general job preferences. At the same time, however, the association between local gender norms and the degree to which adolescents aspire for stereotypical occupations is, by any standard, very small; an important, yet somewhat surprising, finding that we will discuss in more detail below. Moreover, we finally find that controlling for parent's occupation and/or for unobserved regional heterogeneity drives the partial effect of local gender norms towards zero, suggesting that alternative mechanisms are relevant in explaining the regional variation in the degree to which adolescents aspire for gender-typical occupations as well.

The remainder of this paper proceeds as follows. We start with a short description of the Swiss educational system in the following section, focusing on those features of the system that are potentially important for the process of individual occupational aspirations. In section 3, we discuss the different data sources and the construction of the key variables that we will use in the empirical part of the paper as well as the spatial structure of our final data set used in most parts of the empirical analysis. Section 4 presents some descriptive statistics, focusing mainly on occupational choice among adolescents as well as on regional differences in the strength of gender norms. In sections 5 and 6, we discuss our econometric framework and present our estimation results, respectively. Section 7 summarizes our results and concludes.

2 The Swiss educational system

We first discuss a few specificities of the Swiss educational system (see SCCRE, 2014, for a detailed description of the Swiss educational system; a schematic illustration is shown in appendix figure B.1).

2.1 General and vocational education and training at the uppersecondary level

After primary school, children are separated into different school tracks (mainly) based on their performance in primary school. In the canton of Bern, from where our sample is drawn (see section 3 below), as in most other cantons, children are separated into two different tracks with essentially the same curriculum, but with different cognitive demands ("Realschule" and "Sekundarschule", respectively, with the latter having higher academic demands). While the higher track prepares children for baccalaureate school and the more demanding apprenticeships, the lower track mostly leads to an apprenticeship with lower cognitive demands. Moreover, municipalities in the canton of Bern are free to offer a third option ("spezielle Sekundarklassen") with even higher cognitive demands. Children choosing this track usually aim for further general education after mandatory schooling.

At the upper-secondary level, a majority of adolescents enters some form of vocational education and training (VET) after completing mandatory schooling (see Wettstein *et al.*, 2017, for a detailed description of the Swiss VET system). Usually, this training is in the form of a dual apprenticeship training lasting from two to four years, combining practical training and work at a private or public enterprise with schooling at a vocational school, usually one day per workweek. According to the most recent statistics available, about 72% of the young people finishing compulsory schooling eventually enter a VET program; the vast majority of them (close to 90%) enters a dual-track apprenticeship, while the remainder attends full-time vocational school (SERI, 2017). In the case of dual-track apprenticeships, employers essentially decide for themselves whether or not they want to provide, on a fully voluntary basis, any apprenticeship positions.⁴ The fact that the Swiss VET system relies on firms' voluntary

⁴To be precise, employers who want to train apprentices have to meet certain criteria that the cantonal

participation means that a market for apprenticeship positions exists. Indeed, adolescents have to apply for open apprenticeship positions in the occupation that they want to learn (while employers also have to search for suitable apprentices), and wages during apprenticeship training are not regulated publicly.

Those individuals opting for a general education mostly aim for a baccalaureate school (called "Gymnasium" in the German-speaking part of Switzerland), which will prepare them for and grant them access to (almost all) university studies.⁵ Access to the baccalaureate schools is handled differently in the different cantons, however. In the canton of Bern access to baccalaureate schools is possible either via a recommendation by a teacher or by passing an entrance examination. A minority of those opting for general education enters a specialized school (usually called "Fachmittelschule" in German) which prepares them for a couple of specific fields of study (e.g. becoming a teacher).

2.2 Implications for adolescents' occupational choice

Quite obviously, the structure of the Swiss educational system at the upper secondary level has potential implications for the process of occupational choice among adolescents. First, those choosing the VET track have to decide at an early age on the specific occupation that they want to learn. Mandatory schooling lasts nine years and usually ends in the year the children turn 16 years old, and most of them start their apprenticeship immediately afterwards. Career choice preparation is part of the curriculum at secondary school, usually starting in grade 8 when children turn 13 years old (ERZBE, 2013). Because they have to search and apply for an apprenticeship position beforehand, they have to actively start searching for an open apprenticeship position quite some time before actually leaving school. Thus most adolescents (along with their parents) sign an apprenticeship contract in the second half of 8th grade or in the first half of 9th grade.

Moreover, not only the adolescents' own aspirations, but external factors, such as the availability of apprenticeship positions within a given occupation or the employers' selection and screening processes, drive the ultimate occupational choice (e.g. Jaik and Wolter, 2019). Sim-

administration controls. It is rarely the case, however, that applying employers do not receive the educational permit which allows them to train apprentices.

⁵Medical studies being the notable exception, as prospective students have to pass an entrance examination.

ilarly, some of the youths initially aspiring for a general education will eventually not be able to pursue that course if they, for example, fail the entrance exam (in case they have to take it) or if they fail the probation time because of inadequate performance. For that reason, most of the adolescents aiming for further general education presumably also consider the possibility of starting an apprenticeship after the completion of mandatory schooling, if only as a fallback option.

3 Data

3.1 Classroom survey among 8th grade schoolchildren

Our main data source is a computer-assisted personal classroom survey among 1'514 schoolchildren in 8th grade (i.e. the children in the sample were about 14 years old on average at the time they were surveyed; see appendix table B.1 for details) that was administered in the summer of 2013 (during August and September, i.e. at the beginning of the school year) in 28 different schools spread across the German-speaking part of the canton of Bern.⁶ The survey was originally designed with the purpose of studying how the willingness to compete (with each other) influences adolescents' study and occupational choices in the context of the Swiss educational context (see Buser *et al.*, 2017a,b, for additional details).

One obvious concern is that the survey only covers the German-speaking part of the canton of Bern. However, the canton of Bern is, in terms of its population size, the second-largest canton of Switzerland. In the year 2014, about 12.3% of the overall Swiss resident population lived in the canton of Bern. More importantly for the purpose of our analysis, however, note that the canton of Bern is also one of the largest cantons in terms of its geographical area and that it covers, for that reason, both urban and rural areas. We therefore expect to find significant variation in gender norms within the canton of Bern, allowing us to study the effect of gender norms on occupational aspirations in this specific context. Moreover, we will also provide some direct evidence on the external validity of our results later on (section 4 contains some pieces of evidence related to this issue).

⁶Appendix figure B.2 shows the geographic location of the schools (more precisely, the municipalities hosting the schools) that participated in the survey, as well as the position of the canton of Bern within Switzerland.

The survey covers a large number of additional individual-level variables that are potentially related to occupational aspirations among adolescents. Specifically, the survey contains information on school track and school grades (e.g. in mathematics), psychological factors (e.g. competitiveness), as well as information on parental background (such as parents' educational attainment).

The adolescents were surveyd a second time, about two years later, at the end of 9th grade. The second round of the survey covered almost the full sample from the first round and, most importantly for our analysis, asked about actual occupational choices. We can thus also look at the gender-stereotypicity of actual choices, even though we believe that focusing on occupational aspirations is appropriate for our research question.

Occupational aspirations versus occupational choices

For our purpose, however, the most important feature of the survey is that adolescents were directly asked about their occupational aspirations ("What apprenticeship would you most like to complete?"). They could select their desired occupation(s) from a list containing the thirty most popular learnable occupations (which make up about two-thirds of all actual apprenticeship contracts). Students recorded their occupational aspirations in the remaining cases as open text, which we recoded in a consistent set of occupations (see appendix A for details). The children in the sample were about 14 years old on average, just before they started to think about an apprenticeship position, as we explained in section 2. Those aiming for general education at the moment of the survey were also asked about their occupational aspirations in case that they were not able to attend a baccalaureate or specialized school (e.g. in case they did not pass the entrance exam).

It is important to realize that there is a subtle though potentially important difference between occupational aspirations on the one hand and realized occupational choices on the other hand. External factors (such as those discussed in section 2 above) should not (yet) affect occupational aspirations at this early stage. Factors external to the apprentice almost certainly influence actual choices, however. This would make it very difficult to isolate the effect of gender norms from the effect of, for example, firm's discriminatory hiring behavior. For these reasons, we believe that occupational aspirations are the obvious and most relevant outcome for the research question pursued in this study (but, as already mentioned, we can also look at actual, early-career occupational choices; see section 6.3).

3.2 Gender-stereotypical occupational aspirations

In a further and independent step, we collected detailed data on the gender distribution within each aspired occupation o as our main measure of occupational gender segregation. More specifically, we collected information on the fraction of girls and boys in each occupation o, denoted by π_o^g and π_o^b , respectively, in what follows (again, see appendix A for additional details concerning the construction of these two variables).

Our main dependent variable in the empirical analysis below will be the fraction of owngender adolescents in occupation o, chosen by child i as his or her preferred occupation. Formally, this variable is simply given by:

$$\pi_{o[i]} = \begin{cases} \pi_o^g \in [0, 1] & \text{if child } i \text{ is a girl,} \\ \pi_o^b \in [0, 1] & \text{if child } i \text{ is a boy.} \end{cases}$$
(1)

By construction, because both π_o^g and π_o^g strictly vary between 0 and 1, $\pi_{o[i]}$ also only varies between 0 and 1. Further note that values of $\pi_{o[i]}$ larger (smaller) than 0.5 indicate that an adolescent has stated a preference for an occupation which is predominantly chosen by samesex (different-sex) children. Thus values of $\pi_{o[i]}$ closer to the maximum value of 1 denote more gender-stereotypical occupational aspirations (descriptives related to $\pi_{o[i]}$ are presented in section 4.1 below). Also note that, in the absence of any gender segregation, π_o^g and π_o^b would converge to the overall fraction of girls and boys in the population, respectively.

3.3 Measuring the strength of gender norms

To measure the strength of gender-equality norms, we use municipality-level outcomes from several national-level plebiscites about gender issues. Swiss citizens are regularly asked to cast their vote on very diverse subjects, including questions related to gender policy.⁷ The votes are

⁷There are votes at the national, cantonal, and municipal levels. At the national level, voters can cast their vote on both referenda (either a mandatory referendum, if the national parliament decides to amend the constitution, or an optional referendum, as an instrument to force a vote about national-level legislation) or on popular plebiscites. Popular plebiscites allow citizens to demand constitutional changes themselves.

often highly consequential, and voters thus have an incentive to reveal their true preferences. Voting results at the regional level have already been used in similar contexts (Janssen *et al.*, 2016; Lalive and Stutzer, 2010).

Table 1

Table 1 lists the five votes, all held at the national level, that we identified as those most closely related to issues of gender equality and which are therefore included in the empirical analysis.⁸ The first vote in our list, held in June 1981, requested that the equality between men and women be explicitly entered into the Swiss constitution and was accepted by a clear majority of the voters. In 1985, a majority of the voters also agreed upon a revision of the civil code (aiming for a more equal treatment of men and women). Then there were two popular plebiscites demanding the introduction of a paid maternity leave, one that was rejected in 1999 and one that was accepted by a majority of the voters in 2004. The fifth and final vote included in our analysis was an initiative demanding the introduction of a gender quota within the Federal Administration. This vote was rejected by an overwhelming majority of the votes (about 82% of the votes were opposing the demand formulated in the initiative).

In the main part of the empirical analysis, we will simply use the mean share of supporting votes of the five votes listed in table 1 as our main measure of the local strength of gender norms, denoted by N_j below (where j is indexing municipalities, the smallest regional unit for which separate voting results are available):

$$N_j = \frac{1}{5} \cdot \left(y_j^{306} + y_j^{336} + y_j^{458} + y_j^{461} + y_j^{513} \right), \tag{2}$$

with y_j^v the share of supporting votes in municipality j at vote number v. Because all five votes considered can be understood as asking for more gender equality, or for a more stringent legislation pushing for more gender equality, the supporting vote shares can directly be averaged across the five different votes.⁹ One of the key advantages of using N_j as measure of gender

⁸The main reason to focus on votes that were held in 1980 or later is that municipality-level results are readily available for these votes, while results for the earlier plebiscites are only available at higher levels of spatial aggregation (district and/or canton).

⁹Appendix table B.2 illustrates how closely the municipal voting results are correlated with each other. It shows the pairwise correlations in the share of supporting votes across the five votes listed in table 1, for different

norms is that is has a straightforward interpretation (i.e. in terms of vote shares). Thus higher values of N_j indicate a stronger regional norm towards more gender equality and/or towards less conservative gender roles. In section 4.2 below we will provide further evidence on the internal validity of our measure of gender norms using independent survey data.

3.4 Spatial structure of the final data set

Our final dataset consists of 1'434 children (which equals the overall sample size of 1'514 children less the 80 children with no or ambiguous occupational aspirations; cf. appendix A), who are nested within 90 different school classes from 28 distinct schools spread across the Germanspeaking part of the canton of Bern. The different schools themselves are located in 24 different municipalities (as illustrated graphically in appendix figure B.2).

Moreover, we can merge regional voting results at the municipal level to the individual-level survey data using the location of the schools. Note that the number of distinct schools also determines the variation in gender-equality norms available to pin down the impact of gender norms on occupational aspirations in the empirical analysis (i.e. because the voting results vary only across municipalities, it is the number of municipalities which is ultimately relevant in this regard; cf. section 5 below).

4 Descriptives

We next present some descriptives regarding gender segregation in occupational aspirations in our sample, and we then present some evidence on regional differences in gender norms.¹⁰

4.1 Gendered occupational aspirations

We start with a graphical description of occupational aspirations among the adolescents in our sample. Figure 1 shows the distribution of $\pi_{o[i]}$, separately for boys and for girls. It is immediately evident from the figure that boys and girls alike have occupational aspirations

regional sub-entities. Given the high correlations among the voting shares from the different single plebiscites, it is perhaps not surprising that different possible (and reasonable) parameterizations of a measure of local gender norms are also all highly correlated with each other, and therefore yielding very similar regression results (not shown, but available upon request).

¹⁰Descriptives for the control variables taken from the survey are given in appendix table B.1.

that are heavily tilted towards occupations that are dominated by their own gender. Indeed, the average value of π_o equals about 0.72 for both boys and girls; which implies that, on average, children aspire for occupations in which the share of own-gender individuals equals about 72%. In the case of boys, occupations characterized by an average value of π_o are a bricklayer's assistant or a micromechanic. Typical occupations, in that sense, for girls are a retail assistant or an optometrist.¹¹

Figure 1

In fact, however, the preference for gender-stereotypical occupations in our sample is much stronger than the mean value of π_o suggests, given the high skewness of the distribution of π_o in the sample (which is evident for both boys and girls). Indeed, about 50% (25%) of the children in our sample state a preference for an occupation with a value of π_o of 0.87 (0.95) or higher. Only about 22.5% of the adolescents in our sample state that they aspire for an occupation that is not predominantly chosen by individuals from the same sex (i.e. an occupation in which $\pi_o < 0.5$, assuming an equal number of girls and boys).

4.2 Local gender norms

We next present some descriptives for our measure of gender norms based on municipality-level voting results (as described in section 3.3 above). Because our sample covers only relatively few distinct municipalities, we not only show the distribution of gender norms across the sample municipalities in what follows, but also across the canton of Bern as well as across all Swiss municipalities.

Spatial variation in the strength of gender-equality norms

To start with, panel (a) of figure 2 shows the frequency distribution of our measure of gender norms across all municipalities within the canton of Bern (J = 362). The first feature that

¹¹See also appendix table B.3, which lists the most popular occupations, as well as the most typical and atypical occupations chosen by girls and by boys. Moreover, appendix figure B.3 shows that the distribution of π_o in our sample is quite similar to the distribution of π_o in the whole canton of Bern, using data on actual occupational choices (if anything, the overall distribution is even more skewed than the one in our sample). In fact, Aepli *et al.* (2019) show that the very same pattern is observed when looking at the population of apprenticeship contracts from all over Switzerland.

is immediately evident is the huge variation in the mean share of votes in support of more gender equality, ranging from a low of about 16% (in the municipality of "Eriz", located in a rural part of the German-speaking part of Bern) to a high of almost 63% (the municipality of "Belprahon", located in the French-speaking part of the canton). The lower panel of figure 2 further shows that the distribution of gender norms in the canton of Bern is not very different from the overall distribution of gender norms in Switzerland as a whole.¹² The figure also suggests that the sample municipalities are fairly representative of the canton of Bern. Thus, in terms of gender norms, our sample does not appear to be unusual in any sense within the Swiss context. Within the municipalities actually included in our sample, N_j varies from a low of 19.6% (the municipality of "Adelboden") to a high of around 55% (the two cities of "Bern" and "Biel").

Figure 2

Figure 3 shows the spatial variation in gender norms across the municipalities in the canton of Bern. Darker shaded areas on the map represent municipalities with larger shares of votes in support of (more) gender equality, while lighter shaded areas represent those municipalities with more conservative attitudes with regards toward gender roles.

Figure 3

Again, the map shows that there is large variation in the fraction of votes in favor of (more) gender equality. However, though not surprisingly, the map further shows that part of the spatial variation in gender norms appears to be systematically related to the cultural region a municipality belongs to: gender norms tend to be much more pronounced in the French than in the German language areas of the canton of Bern. Secondly, it is also apparent that the more urban areas have stronger norms towards (more) gender equality than the more rural municipalities (e.g. the city of Bern near the centroid of the canton or the cities of Thun and Interlaken near the two lakes in the southern part of the canton).¹³

 $^{^{12}\}mathrm{Appendix}$ table B.4 shows that this is also true for the single vote results constituting our measure of regional gender norms.

¹³The same pattern, i.e. more support of gender equality in the French-speaking regions and in urban regions, holds true for Switzerland as a whole. See appendix figure B.4, which maps our measure of gender norms across all Swiss municipalities.

Validating our measure of gender-norms using independent survey data

Using additional and independent data from the Swiss Household Panel (SHP), it is possible to further validate our measure of gender norms based on municipal voting results. Specifically, the SHP contains a couple of items asking respondents about their personal views on gender issues.¹⁴ We use the individual-level data from wave 16 (dating from the year 2014, thus matching the year of survey among the children) of the SHP, aggregate the individual item responses by municipality and then merge them with the corresponding measure of gender norms based on the municipal voting results.

Table 2

Table 2 presents estimates from a series of regressions where the dependent variable is the mean item response in a given municipality, and where the key regressor is our proposed measure of gender norms based on the voting results throughout.¹⁵ We show estimates both without and with the inclusion of cantonal dummies as well as unweighted and weighted estimates (in which case we use weights that are proportional to the number of observations per municipality in the SHP data). We use answers from women and men alike – except in columns 3 and 4, where we focus on women only.

The general pattern of table 2 is unambiguous. Mean survey responses tend to be both significantly as well as substantively associated with our measure of gender norms based on voting results. Indeed, it is notable that most approximate elasticities associated with the underlying estimates (shown in brackets in table 2) are relatively large, the majority of the (absolute) elasticities lies in the range between 0.07 and 0.37, and many of the estimated elasticities are even larger than that. This additional analysis thus supports the use of local voting results as a measure of local gender norms (cf. Janssen *et al.*, 2016; Lalive and Stutzer, 2010).

$$\overline{y}_j = \pi_0 + \pi_1 N_j + \varepsilon_j,$$

 $^{^{14}}$ For example, one of the items in the SHP asked respondents whether they agreed with the statement that "in Switzerland women are penalized compared with men in certain areas".

 $^{^{15}\}mathrm{That}$ is, in the simplest specification, the estimates in table 2 are from a regression that takes the following form:

with \overline{y}_j denoting the mean response on item y in municipality j and with N_j denoting our measure of gender norms within municipality j. Table 2 only reports estimates of parameter π_1 .

5 Estimation framework

Our main empirical analysis is based on a series of regression models that basically all take the following form:

$$\pi_{o[i]} = \alpha + \beta N_{j[i]} + \gamma x_i + \delta p_i + \psi_{l[i]} + \epsilon_{i[j]}, \qquad (3)$$

with $\pi_{o[i]}$ denoting the fraction of own-gender individuals in occupation o which child i has identified as his or her preferred occupation, as defined in equation (1) above. Throughout the analysis, the regressor of main interest is the strength of gender norms in municipality j in which child i's school is located, $N_{j[i]}$. It is therefore parameter β that is of key interest because it will quantify, at least under appropriate conditions, the partial effect of regional gender norms on gendered occupational aspirations among schoolchildren. Because larger values with respect to the regressor $N_{j[i]}$ are associated with stronger attitudes towards gender equality in any given region, a positive (negative) point estimate of β would indicate that a stronger norm towards gender equality is associated with children being more (less) likely to choose genderstereotypical occupations. Accordingly, we expect that $\beta < 0$. Obviously, however, we have to rule out unobserved heterogeneity so that we can give estimates of β a causal interpretation. In our setup, this heterogeneity could be either due to variables characterizing the children (or their parents) living in different municipalities or due to characteristics of the municipalities.

In most of the regression models presented below, we therefore include various sets of individual- and/or parental-level controls, such as school track and school grades in different subjects or parents' education or their occupation. In equation (3), x_i and p_i , respectively, is used as a shorthand to denote the inclusion of (potentially different sets of) individual-level and parental-level controls. We will discuss these variables in more detail in section 6 below when we discuss our estimation results.

Moreover, there may exist regional variables that are associated with both the strength of the local gender norm prevailing in a given municipality and the degree to which adolescents state that they aspire for a gender-stereotypical occupation. Indeed, we expect the occupational structure to differ across regions, for reasons potentially related to variation in local gender norms. Most obviously, we expect the occupational structure to be more "traditional" in the more rural areas – which also tend to be characterized by weaker gender norms. For example, manual and industrial occupations are relatively more frequent in rural areas, while while service occupations are more frequent in urban areas. Thus, in the full specifications, we also include a set of indicators at the level of local labor markets, within which individual *i*'s school is located (denoted by $\psi_{l[i]}$ in equation (3) above). Within our sample, the 24 municipalities are nested within 13 distinct local labor markets (overall, there are 313 municipalities and 16 local labor markets in the German-speaking part of the canton of Bern).

An final issue relates to the fact that our key regressor, $N_{j[i]}$, varies at the municipality-level only, while the dependent variable varies at the individual level. Conventional standard errors will tend to overestimate the precision of the resulting point estimates in such a scenario, and we thus report standard errors that are clustered at the regional level throughout the analysis (e.g. Cameron and Miller, 2015).

6 Results

We next present our estimates of the effect of gender norms on gendered occupational aspirations. We start with some graphical evidence before presenting our main regression estimates.

6.1 The raw association between gender norms and gendered occupational aspirations

To start with, figure 4 visualizes the raw association between regional gender norms and gendered occupational aspirations in two slightly different but equivalent ways (thereby highlighting different features of the underlying data). The upper panel of figure 4 shows, on the y-axis, mean values of π_o at the municipality level versus our voting measure of gender norms, N_j , which is naturally measured at the municipality level, on the x-axis. The size of the circles is proportional to the number of children in the sample in a given municipality. The dashed line corresponds to estimated regression function, using weights proportional to the number of children in a municipality. There is an obvious negative correlation between the two variables at the municipality level – showing that, as expected, children living in municipalities characterized by a stronger gender norm have occupational aspirations that, on average, are less genderstereotypical than those of children living in municipalities with weaker gender norms. More precisely, comparing municipalities with the weakest and the strongest gender norms suggests that the difference is economically large as well. Indeed, there is an about ten percentage-point difference in the mean value of π_o between these municipalities (see also table 3 below). Of course, however, this does not imply that gender norms have a causal impact on occupational aspirations because municipalities, and/or the children living in these municipalities, may differ on other relevant dimensions as well.

Figure 4

The lower panel of figure 4, in contrast, plots individual-level values of $\pi_{o[i]}$ against the voting measure of gender norms, $N_{j[i]}$. Again, the dashed line in the figure corresponds to the estimated regression function describing the association between the two variables (by the mechanics of OLS, the fitted line in panel (b) is exactly the same as that shown in panel (a) of figure 4). This figure highlights the fact that there is huge variation in individual-level values of π_o , given any specific value of N_j . In fact, it appears that there is almost full overlap in the distribution of $\pi_{o[i]}$ across the different municipalities. This of course implies that there are (presumably many) other additional factors determining individual-level occupational aspirations.

A final notable finding from figure 4 is that there generally is a strong preference towards gender-stereotypical occupations among both boys and girls – even in the municipalities with the strongest norm towards gender equality. Indeed, while π_o is clearly lower among the children living in these municipalities, note that the conditional mean of π_o still equals about 0.7. Occupational aspirations therefore remain highly gender-stereotypical, even in the municipalities with the most progressive views towards gender equality.

6.2 Regression estimates

Table 3 presents our main regression estimates of the impact of gender norms on occupational aspirations among the sample of 8th grade schoolchildren.

Table 3

The first column of table 3 shows the estimate resulting from a simple regression of $\pi_{o[i]}$ on $N_{j[i]}$, without the inclusion of any further controls (thus this specification yields the regression

parameters associated with the regression function shown graphically in the two panels of figure 4). This specification yields a point estimate of $\hat{\beta} = -0.207$, with a cluster-robust standard error of about 0.099 (implying a robust t-value of about -2.06). The point estimate implies an approximate elasticity of π_o with respect to gender norms of about -0.123 (shown in brackets in table 3). This estimate shows that there is quite a strong negative association between the strength in the local norm towards gender equality and the probability of choosing a genderstereotypical occupation. As expected, adolescents in municipalities with a stronger norm towards gender equality tend to be less likely to state that they aspire for a gender-stereotypical occupation. At the same time, however, also note that the associated R-squared if very low (consistent with panel (b) of figure 4); more precisely, it is very close to zero – suggesting that gender norms are, at most, but one among many factors influencing occupational choice among adolescents. In fact, this finding apparently rejects the conception that gender-stereotypical occupational aspirations are solely or mainly driven by gender norms.

Individual-level controls

In the second column of table 3, we add two individual-level demographic variables as controls, gender and age. Evidently, the inclusion of these two variables hardly changes the point estimate of parameter β (we get $\hat{\beta} = -0.193$). The finding that gender does not have any notable effect on the estimate of β is consistent with the observation that the two empirical distributions (for girls and for boys) of π_o are virtually indistinguishable (as evident from figure 1). Note that this implies that girls and boys chose different occupations (cf. appendix table B.3). We next add some individual-level variables describing the school track and children's school grades in column 3. Together, these variables have an influence on the choice of π_o (the p-value of the associated robust F-test equals 0.024), but controlling for these variables does not really impact the estimate of β ; the resulting estimate is $\hat{\beta} = -0.233$ (with a robust standard error of 0.092). This in turn implies that there are no or only small differences in these school-related variables across children from different municipalities. In the fourth column, we further add a couple of variables describing a few of the children's psychological traits and preferences (such as competitiveness or preferences for different work attributes). Again, this has almost no impact on the estimated size of β ($\hat{\beta} = -0.222$), nor on the associated standard error,

although the variables, taken together, do explain some variation in the dependent variable (robust F-statistic of 7.28, with an associated p-value of < 0.001).

Overall, it appears that regional differences in the children's observable individual-level characteristics cannot explain the observed association between gender norms and gendered occupational aspirations.¹⁶

Parental controls

In the next three columns of table 3, we add different sets of parental-level controls, on top of the individual-level controls discussed above. In a first step (column 5), we add a full set of dummies controlling for parents' highest educational attainment (10 dummies are necessary to represent the educational attainment of both of a child's father and the mother). Once again, this yields a point estimate of parameter β that is very similar in size to the estimates from the preceding columns ($\hat{\beta} = -0.193$, with a robust standard error of 0.105). We next add controls for the gender-stereotypicity of parents' own occupations.¹⁷ Once again, column 6 shows that this specification yields a significant negative estimate of $\hat{\beta} = -0.199$ (with a robust standard error of about 0.108). In contrast, however, once we include a full set of dummies representing parents' occupation (at the ISCO-4 level), the estimated partial effect of gender norms shrinks essentially towards zero, yielding an insignificant point estimate of $\hat{\beta} = -0.029$ (with a robust standard error of 0.111). Note that the robust standard error from the previous columns. Thus, the statistical insignificance of the point estimate from column 7 is mainly driven by the shrinkage of the point estimate, not by an inflated standard error.

 $^{^{16}}$ A potential objection at this point is that the variables have generally no predictive value (because of measurement error, for example). For that reason, we have also estimated a series of ancillary regressions where we regress a dummy variable indicating that a child aspires for further general education ("Gymnasium") on the same set of controls used in our main analysis (results are shown in appendix table B.5). These additional estimates clearly show that the variables do a reasonable job in predicting the dependent variable in that setting. Moreover, other studies using the same data have already shown that the individual-level variables predict educational choices (Buser *et al.*, 2017a,b; Jaik and Wolter, 2019).

¹⁷Using data from the Swiss census from the year 2000, we construct the fraction of females working in a given occupation (at the ISCO-4 level) among individuals living in the canton of Bern between 15 and 35 years of age. These individuals were aged between 28 and 48 in the year 2013 (i.e. the year the survey took place).

Unobserved regional heterogeneity

The final column of table 3 further adds a full set of fixed effects at the level of local labor markets. This apparently picks up some additional variation in the dependent variable (the R-squared further increases to 0.286), while point estimate of $\hat{\beta} = -0.025$ remains close to zero and statistically insignificant (with a large robust standard error of about 0.248). Quite obviously, we also find that there are differences in parents' occupations across local labor markets (this is indicated by reduction in the value of the test statistic associated with the null hypothesis that parents' occupations have no effect, as well as by the increase in the standard error associated with $\hat{\beta}$).¹⁸

At this point, it thus appears that the supposed effect from local gender norms on aspiring for gender-stereotypical aspriations is presumably fully driven by underlying regional differences in the occupational structure. However, before diving deeper into the potential implications of these findings, let us check whether the results are robust to some meaningful changes in the specification of the regression model.

6.3 Robustness

Before discussing the main implications of our findings, we present a series of robustness checks in table 4. For the ease of comparison, the first column of table 4 replicates our main result from column 8 of table 3.

Table 4

In a first check, shown in the second column of table 4, we only use the subsample of children who are Swiss citizens because natives and foreigners may differ in the potential impact of gender norms on occupational aspirations (besides, they also tend to have different preferences towards general and vocational education and training). In the third column, we restrict the sample to those children who stated in the survey that they aspire for an apprenticeship (and not for further general education via attending a "Gymnasium"). The specification shown in column 4 restricts the sample to those children who only stated one occupation, instead of two or

¹⁸Estimating the specification from column 8 without the dummies controlling for parents' occupations also yields an insignificant and small point estimate of $\hat{\beta} = -0.036$, with a robust standard error of 0.194 (result not shown in table 3).

more. Furthermore, because gender norms might influence preferences (especially preferences for different work attributes), which would make them unsuitable control variables, we exclude them as controls in the specification shown in column 5. The next column controls for parents' occupation on a less detailed level (at the ISCO-2 level) than in our main estimates, in which case much less parameters need to be estimated. In column 7, we estimate the model parameters using a fractional probit regression, which takes the fractional nature of the dependent variable explicitly into account. Again, this yields a very similar (in this case) marginal effect. Finally, in the last two columns of table 4, we use the the gender-stereotypicity of actual occupational choices, $\Pi_{o[i]}$, rather than occupational aspirations, as the dependent variable. In column 8, we first replicate the baseline specification, using Π_o as dependent variable. Once again, this yields a small and statistically insignificant estimate of $\hat{\beta} = -0.059$. In the ninth and final column of table 4, we include π_o as an additional control variable. While π_o turns out to have a large positive and significant effect on Π_o , $\hat{\beta}$ remains small and insignificant ($\hat{\beta} = -0.080$). This last specification is interesting because it shows both large variability of occupational aspirations and a substantive degree of consistency in occupational choice over time (cf. Jaik and Wolter, 2019).

Overall, across all these additional specifications, we find that the regression parameter associated with local gender norms is small and not significantly different from zero – underscoring our main results from table 3 above. We next discuss the main implications of our findings from our point of view.

6.4 Implications

A first implication of our empirical analysis is that more rural regions, which feature weaker gender norm, are at the same also characterized by a more "traditional" occupational structure (i.e. relatively heavy on craft and industrial occupations), while the more urban areas show stronger gender norms and are relatively more heavy on services occupations. Our results suggest that such regional differences in the occupational structure may fully explain the observable correlation between local gender norms and the degree to which adolescents aspire for gender-stereotypical occupations.

We can imagine several, not mutually exclusive, mechanisms underlying this empirical pat-

tern. A first possibility is that parents directly influence the occupational aspirations of their children, either actively, by passing on their enthusiasm for and/or information about their own occupation, and/or passively, simply by serving as role models for their own children (i.e. the children may imitate their parents). This is also consistent with the additional finding that controlling for the gender-stereotypicity of parents' occupation alone does not really affect the estimate of β (something we would expect if parents would try to push their children into any gender-stereotypical occupation). Another potential mechanism is that adolescents' occupational aspirations are shaped by their social environment, be it their peers or the what they otherwise perceive in their social surrounding.

Moreover, the empirical analysis brings up the issue that is difficult to exactly separate gender norms from other variables at the regional level, most importantly the prevailing local occupational structure. As a consequence, at least with the data at our disposal, it is impossible to exactly disentangle these different mechanisms. However, because weaker gender norms go hand in hand with a more traditional occupational structure, regression estimates that do not control for parental occupation nor for regional heterogeneity arguably provide an upper bound on the effect of gender norms on the gender-stereotypicity of occupational aspirations. And even this upper bound on the effect turns out to be very small.

Interestingly, our results also imply that individuals who work in more strongly gendersegregated occupations tend to have weaker norms towards (more) gender equality, suggesting that individuals might acquire their subjective views on the appropriate role of women and men, at least in part, at work. This brings up the possibility that technological progress drives both changes in the local occupational structure and in the prevailing gender norms – an issue that is certainly worth of further exploration. This additional finding is consistent with empirical studies showing that preferences are influenced by an individual's economic and social environment (e.g. de Mello *et al.*, 2014; Giuliano and Spilimbergo, 2013). It is also consistent with findings from qualitative studies which argue that the acquisition of gender norms in part takes place at the workplace (e.g. Moret *et al.*, 2017).

7 Conclusions

We use a unique combination of different data sources to estimate the association between the local norm towards (more) gender equality and gender-stereotypical occupational aspirations among 8th grade schoolchildren in Switzerland. Each child in our sample stated his or her occupational aspirations, and we were able to collect precise information on the gender distribution for the majority of the distinct occupations mentioned in our sample of children. We are – to our knowledge – the first to use aspirations instead of choices or realizations. We consider this a major improvement because choices and realizations are subject to other influences, such as employers not being willing to offer girls an apprenticeship in a male dominated occupation. However, we further find that aspirations correlate to high degree with actual choices and that therefore aspirations are also of economic importance. We combine the survey data with information on the local strength of gender norms, which we measure using municipality-level results from different national-level votes about gender issues in Switzerland.

We first document that the adolescents in our sample generally have aspirations that are heavily biased towards gender-stereotypical occupations. We then show that children living in municipalities characterized by a stronger local norm towards gender equality are significantly and substantively more likely to state that they aspire for a gender-stereotypical occupation, as expected. This correlation is not only statistically significant, it also turns out to be significant in quantitative terms (with an implied approximate elasticity of about -0.12). Moreover, the association is also robust with regard to the inclusion of several individual-level controls, such as school grades or school track. At the same time, however, we also find that the predictive value of local gender norms is very small. Of course, this does not imply that gender norms have no influence on adolescents' occupational aspirations at all. However, our results suggest that they must work either uniformly across regions, i.e. independent of our measure of local gender norms, or mediated somehow through variation in the occupational structure (in which case they are difficult to disentangle from alternative mechanisms that could, in principle, be fully independent from local gender norms, as we have argued above).

We further find that the partial association between occupational aspirations and local gender norms shrinks towards zero, both sustantively and statistically, once we control for parents' occupations and/or for other regional heterogeneity by including dummies for local labor markets. This finding is robust to a variety of sensitivity checks, including the use of actual occupational choices at a later age rather than aspirations as dependent variable. We also find that simply controlling for the gender-stereotypicity of parents' occupation does not yield the same result as when we include the full set of occupational dummies. Taken together, these results suggest that the observable correlation between local gender norms and the degree of gender-stereotypicity of adolescents' occupational aspirations is almost exclusively driven by regional differences in the occupational structure. This does not necessarily rule out any effect of societal gender norms on occupational aspirations, but it shows that other, at least as plausible, mechanisms are consistent with the empirical evidence as well. For example, parents may simply pass on occupational preferences to their children, either actively and/or passively, or adolescents may learn from or imitate their broader social environment. Either way, our results demonstrate that it is important to control for parents' occupation, as well as for the local occupational structure more generally, when trying to estimate the effect of societal gender norms on occupational aspirations and/or occupational choices.

We derive two main conslusions from our empirical analysis. First, the effect of local gender norms on the gender-steretypicity of occupational aspirations among adolescents is surprisingly small in terms of its predictive value. This seriously challenges the widespread belief not only among the public, but also among many economists and other social scientists, that societal gender norms are one of the key, or perhaps even the single most important, factor influencing occupational gender segregation. Second, our empirical analysis also shows that regional variation in societal gender norms is strongly correlated with the prevailing regional occupational structure. At a minimum, this finding implies that future empirical work on the subject should explicitly control for these alternative mechansisms.

References

- Aepli, M., Kuhn, A., and Schweri, J. (2019). Frauen und M\u00e4nner lernen andere Berufe. EHB, skilled 2/19, 4–5.
- Aina, C. and Nicoletti, C. (2018). The intergenerational transmission of liberal professions. Labour Economics, 51, 108–120.
- Antecol, H. and Cobb-Clark, D. A. (2013). Do psychosocial traits help explain gender segregation in young people's occupations? *Labour Economics*, 21, 59–73.
- Baker, M. and Cornelson, K. (2018). Gender-based occupational segregation and sex differences in sensory, motor, and spatial aptitudes. *Demography*, **55**(5), 1749–1775.
- Bentolila, S., Michelacci, C., and Suarez, J. (2010). Social contacts and occupational choice. *Economica*, 77(305), 20–45.
- Bertrand, M. (2011). New perspectives on gender. Handbook of Labor Economics, 4b, 1543–1590.
- Bertrand, M., Goldin, C., and Katz, L. F. (2010). Dynamics of the gender gap for young professionals in the financial and corporate sectors. *American Economic Journal: Applied Economics*, 2(3), 228–255.
- Bertrand, M., Kamenica, E., and Pan, J. (2015). Gender identity and relative income within households. *Quarterly Journal of Economics*, **130**(2), 571–614.
- Black, S. E. and Spitz-Oener, A. (2010). Explaining women's success: technological change and the skill content of women's work. *Review of Economics and Statistics*, **92**(1), 187–194.
- Black, S. E., Devereux, P. J., and Salvanes, K. G. (2005). Why the apple doesn't fall far: Understanding intergenerational transmission of human capital. *American Economic Review*, 95(1), 437–449.
- Blau, F. D. and Kahn, L. M. (2017). The gender wage gap: Extent, trends, and explanations. Journal of Economic Literature, 55(3), 789–865.
- Blau, F. D., Kahn, L. M., Liu, A. Y.-H., and Papps, K. L. (2013). The transmission of women's fertility, human capital, and work orientation across immigrant generations. *Journal* of Population Economics, 26(2), 405–435.
- Bonin, H., Dohmen, T., Falk, A., Huffman, D., and Sunde, U. (2007). Cross-sectional earnings risk and occupational sorting: The role of risk attitudes. *Labour Economics*, **14**(6), 926–937.
- Borghans, L., Heckman, J. J., Golsteyn, B. H., and Meijers, H. (2009). Gender differences in risk aversion and ambiguity aversion. *Journal of the European Economic Association*, **7**(2-3), 649–658.
- Buser, T., Niederle, M., and Oosterbeek, H. (2014). Gender, competitiveness and career choices. Quarterly Journal of Economics, 129(3), 1409–1447.
- Buser, T., Peter, N., and Wolter, S. C. (2017a). Gender, Competitiveness, and Study Choices in High School: Evidence from Switzerland. American Economic Review, 107(5), 125–130.

- Buser, T., Peter, N., and Wolter, S. C. (2017b). Gender, willingness to compete and career choices along the whole ability distribution. IZA Discussion Paper No. 10976.
- Cameron, A. C. and Miller, D. L. (2015). A practitioner's guide to cluster-robust inference. Journal of Human Resources, 50(2), 317–372.
- Charles, M. and Grusky, D. B. (2004). Occupational ghettos: The worldwide segregation of women and men. Stanford, CA : Stanford University Press.
- Chise, D., Fort, M., and Monfardini, C. (2019). Scientifico! like Dad: On the Intergenerational Transmission of STEM Education in Italy. IZA Discussion Paper No. 12688.
- Cobb-Clark, D. A. and Tan, M. (2011). Noncognitive skills, occupational attainment, and relative wages. *Labour Economics*, **18**(1), 1–13.
- Corak, M. and Piraino, P. (2011). The intergenerational transmission of employers. Journal of Labor Economics, 29(1), 37–68.
- Cortes, P. and Pan, J. (2018). Occupation and Gender. In S. L. Averett, L. M. Argys, and S. D. Hoffman, editors, *The Oxford Handbook of Women and the Economy*, chapter 18, pages 425–452. Oxford, UK: Oxford University Press.
- Croson, R. and Gneezy, U. (2009). Gender differences in preferences. Journal of Economic Literature, 47(2), 448–474.
- de Mello, J. M., Waisman, C., and Zilberman, E. (2014). The effects of exposure to hyperinflation on occupational choice. *Journal of Economic Behavior & Organization*, **106**, 109–123.
- Dohmen, T., Falk, A., Huffman, D., and Sunde, U. (2012). The intergenerational transmission of risk and trust attitudes. *Review of Economic Studies*, **79**(2), 645–677.
- Eriksson, T., Smith, V., and Smith, N. (2017). Gender stereotyping and self-stereotyping attitudes: A large field study of managers. IZA Discussion Paper No. 10932.
- ERZBE (2013). Rahmenkonzept Berufswahlvorbereitung. Sekundarstufe I. Bern: Erziehungsdirektion des Kantons Bern (ERZBE).
- Escriche, L. (2007). Persistence of occupational segregation: the role of the intergenerational transmission of preferences. *Economic Journal*, **117**(520), 837–857.
- Farré, L. and Vella, F. (2013). The intergenerational transmission of gender role attitudes and its implications for female labour force participation. *Economica*, 80(318), 219–247.
- Fernández, R. (2013). Cultural Change as Learning: The Evolution of Female Labor Force Participation over a Century. American Economic Review, 103(1), 472–500.
- Fernández, R. and Fogli, A. (2009). Culture: An empirical investigation of beliefs, work, and fertility. American Economic Journal: Macroeconomics, 1(1), 146.
- Fouarge, D., Kriechel, B., and Dohmen, T. (2014). Occupational sorting of school graduates: The role of economic preferences. *Journal of Economic Behavior & Organization*, **106**, 335–351.
- Giuliano, P. and Spilimbergo, A. (2013). Growing up in a recession. Review of Economic Studies, 81(2), 787–817.

- Gneezy, U. and Rustichini, A. (2004). Gender and competition at a young age. *American Economic Review*, **94**(2), 377–381.
- Gneezy, U., Niederle, M., and Rustichini, A. (2003). Performance in competitive environments: Gender differences. *Quarterly Journal of Economics*, **118**(3), 1049–1074.
- Goldin, C. (2014). A grand gender convergence: Its last chapter. *American Economic Review*, **104**(4), 1091–1119.
- Hederos, K. (2016). Occupational segregation by sex: The role of intergenerational transmission. Unpublished working paper.
- Holtz-Eakin, D. and Dunn, T. (2000). Financial capital, human capital, and the transition to self-employment: Evidence from intergenerational links. *Journal of Labor Economics*, 18(2), 282 – 305.
- Jaik, K. and Wolter, S. C. (2019). From dreams to reality: market forces and changes from occupational intention to occupational choice. *Journal of Education and Work*, **32**(4), 320– 334.
- Janssen, S. and Backes-Gellner, U. (2016). Occupational stereotypes and gender-specific job satisfaction. *Industrial Relations: A Journal of Economy and Society*, **55**(1), 71–91.
- Janssen, S., Tuor Sartore, S., and Backes-Gellner, U. (2016). Discriminatory social attitudes and varying gender pay gaps within firms. *Industrial & Labor Relations Review*, **69**(1), 253–279.
- Kleinjans, K. J., Krassel, K. F., and Dukes, A. (2017). Occupational prestige and the gender wage gap. *Kyklos*, **70**(4), 565–593.
- Kooreman, P. (2009). The early inception of labor market gender differences. Labour Economics, 16(2), 135–139.
- Lalive, R. and Stutzer, A. (2010). Approval of equal rights and gender differences in well-being. Journal of Population Economics, 23(3), 933–962.
- Lordan, G. and Pischke, J.-S. (2016). Does Rosie like riveting? Male and female occupational choices. NBER Working Paper No. 22495.
- Mani, A. and Mullin, C. H. (2004). Choosing the right pond: social approval and occupational choice. *Journal of Labor Economics*, **22**(4), 835–861.
- Mengel, F., Sauermann, J., and Zölitz, U. (2018). Gender bias in teaching evaluations. *Journal* of the European Economic Association, 17(2), 535–566.
- Micus-Loos, C., Plößer, M., Geipel, K., and Schmeck, M. (2016). Normative Orientierungen in Berufs-und Lebensentwürfen junger Frauen. Springer.
- Moret, J., Dümmler, K., and Dahinden, J. (2017). The car, the hammer and the cables under the tables: Intersecting masculinities and social class in a swiss vocational school. *European* Journal of Sociology/Archives Européennes de Sociologie, 58(2), 265–293.
- Necker, S. and Voskort, A. (2014). Intergenerational transmission of risk attitudes–a revealed preference approach. *European Economic Review*, **65**, 66–89.

- Niederle, M. and Vesterlund, L. (2007). Do women shy away from competition? Do men compete too much? *Quarterly Journal of Economics*, **122**(3), 1067–1101.
- Olivetti, C. and Petrongolo, B. (2016). The evolution of gender gaps in industrialized countries. Annual Review of Economics, 8, 405–434.
- Osikominu, A., Grossmann, V., and Osterfeld, M. (2019). Sociocultural background and choice of stem majors at university. *Oxford Economic Papers*.
- SCCRE (2014). Swiss Education Report 2014. Aarau: Swiss Coordination Centre for Research in Education (SCCRE).
- SERI (2017). Vocational and Professional Education and Training in Switzerland. Facts and Figures 2017. Bern: State Secretary for Education, Research and Innovation (SERI).
- Usui, E. (2008). Job satisfaction and the gender composition of jobs. *Economics Letters*, **99**(1), 23–26.
- Wettstein, E., Schmid, E., and Gonon, P. (2017). Swiss Vocational and Professional Education and Training (VPET). hep Verlag.
- Wu, A. H. (2018). Gendered Language on the Economics Job Market Rumors Forum. AEA Papers & Proceedings, 108, 175–179.

Nr.	Date	Key subject of the vote	Result	Approval
513	26.09.2004	Introduction of paid maternity leave	Accepted	55.50%
461	12.03.2000	Introduction of gender quota within the Federal Administration	Rejected	18.00%
458	13.06.1999	Introduction of paid maternity leave	Rejected	39.00%
336	22.09.1985	Revision of the civil code (marital law)	Accepted	54.70%
306	14.06.1981	"Equal rights for men and women"	Accepted	60.30%

Table 1: Selected national-level votes on gender issues in Switzerland

Notes: Additional information on the different votes can be found on the website of the Swiss Federal Administration (https://www.admin.ch/gov/en/start/documentation/votes.html). The vote number refers to the official numbering used by the Federal Statistical Office.

	"Women" are per	in general ıalized"	"Persor pena	tally feel lized"	"In fa meas	vor of ures"	"Job pr indepen	eserves .dence"	"Child su working	uffers with mother"
Mean Standard deviation	5.0	730 730	1.0	375 594	5.5 2.1	550 [14	8.4	90 11	5.5	372 014
(a) Unweighted estimate. N _j	<i>s</i> 2.297*** (0.395) [0.189]	1.801** (0.758) [0.148]	$\begin{array}{c} 1.870^{\star\star\star} \\ (0.495) \\ [0.365] \end{array}$	$\begin{array}{c} -0.312 \\ (0.964) \\ [-0.064] \end{array}$	6.465*** (0.460) [0.483]	4.410*** (0.898) [0.331]	1.391*** (0.280) [0.069]	$\begin{array}{c} 0.498\\ (0.608)\\ [0.025] \end{array}$	$\begin{array}{c} 0.050\\ (0.462)\\ [0.004]\end{array}$	-2.898*** (0.935) [-0.229]
(b) Weighted estimates N _j	2.460*** (0.298) [0.218]	1.492*** (0.516) [0.132]	2.509*** (0.389) [0.509]	$\begin{array}{c} 0.954 \\ (0.755) \\ [0.198] \end{array}$	6.347*** (0.375) [0.509]	4.631*** (0.588) [0.373]	$\begin{array}{c} 1.471^{\star\star\star}\\ (0.201)\\ [0.079]\end{array}$	1.370*** (0.433) [0.074]	$\begin{array}{c} -0.338 \\ (0.495) \\ [-0.031] \end{array}$	-4.902^{***} (0.935) [-0.448]
Cantonal FEs Women only Number of observations	No No 1,2	Yes No 22	No Yes 1, 7	Yes Yes 111	No No 1,2	Yes No 223	No No 1,2	Yes No 22	No No 1,5	Yes No 215
Notes: *, **, *** denotes stat. elasticities in brackets. The de exact formulation of the items P-W16.pdf.	istical signific ependent vari s is given in t	ance on the ables are iten the survey qu	10%, 5%, an is on gender estionnaire, '	d 1% level, r issues taken f which is avail	espectively. F rom wave 16 able online at	Sobust stand of the Swiss I t: http://fors	ard errors ar Iousehold Pa center.ch/wp	e given in pa mel and aggr +content/upl	arentheses, an egated by mu loads/2013/12	d approximate nicipality. The /QuestionML-

Table 9. Validating the measure of gender norms based on voting results using independent survey data

					π_o			
Mean Standard deviation	0.723 0.274	$\begin{array}{c} 0.723 \\ 0.274 \end{array}$	0.723 0.274	0.723 0.274	0.723 0.274			
N_{j}	-0.207^{**} (0.099) [-0.123]	-0.193° (0.098) [-0.114]	$-0.233^{\star\star}$ (0.092) [-0.138]	$-0.222^{\star\star}$ (0.094) [-0.131]	$\begin{array}{c} -0.193^{\star} \\ (0.105) \\ [-0.114] \end{array}$	$\begin{array}{c} -0.199^{\star} \\ (0.108) \\ [-0.118] \end{array}$	$\begin{array}{c} -0.029 \\ (0.111) \\ [-0.017] \end{array}$	$\begin{array}{c} -0.025 \\ (0.248) \\ [-0.015] \end{array}$
Individual-level controls:								
Demographics	No	Yes	$\mathbf{Y}_{\mathbf{es}}$	Yes	Yes	Yes	$\mathbf{Y}_{\mathbf{es}}$	\mathbf{Yes}
School track and grades	No	No	$\mathbf{Y}_{\mathbf{es}}$	\mathbf{Yes}	Yes	Yes	$\mathbf{Y}_{\mathbf{es}}$	Yes
Preferences	N_{O}	N_{O}	N_{O}	\mathbf{Yes}	Yes	Yes	Yes	Yes
Parental-level controls:								
Education	No	N_{O}	N_{O}	N_{O}	\mathbf{Yes}	\mathbf{Yes}	$\mathbf{Y}_{\mathbf{es}}$	Yes
Occupation (π)	N_{O}	N_{O}	N_{O}	N_{O}	N_{O}	Yes	N_{O}	N_{O}
Occupation (dummies) Regional-level controls:	N_{O}	No	No	No	No	No	\mathbf{Yes}	Yes
Local labor market FEs	N_{O}	No	N_{O}	No	No	N_{O}	N_{O}	Yes
Number of observations	1,434	1,434	1,434	1,434	1,434	1,434	1,434	1,434
R-Squared	0.004	0.006	0.019	0.025	0.032	0.032	0.275	0.286
Adjusted R-Squared	0.003	0.004	0.013	0.013	0.012	0.011	0.013	0.016

Table 4: Robustness checks

				π_o					. 0
Mean Standard deviation	$0.723 \\ 0.274$	$\begin{array}{c} 0.727\\ 0.274\end{array}$	$0.733 \\ 0.272$	$\begin{array}{c} 0.723 \\ 0.276 \end{array}$	$\begin{array}{c} 0.723 \\ 0.274 \end{array}$	$\begin{array}{c} 0.723 \\ 0.274 \end{array}$	$0.723 \\ 0.274$	$0.698 \\ 0.239$	$0.698 \\ 0.239$
$N_{j[i]}$ π_o	-0.025 (0.248) [-0.015]	$0.164 \\ (0.221) \\ [0.094]$	-0.155 (0.327) [-0.090]	-0.019 (0.256) [-0.011]	-0.041 (0.262) [-0.024]	-0.041 (0.163) [-0.024]	$\begin{array}{c} -0.040 \\ (0.657) \\ [-0.007] \end{array}$	-0.074 (0.207) [-0.045]	$\begin{array}{c} -0.080 \\ (0.160) \\ [-0.049] \\ 0.284^{***} \\ (0.025) \\ [0.296] \end{array}$
Full set of controls Check	Yes	Yes Swiss citizen	Yes Apprentice- ship	Yes Only one occupation	Yes Preferences excluded	Yes ISCO-2	Yes Fractional response	Yes Actual choice	Yes Actual choice
Number of observations (Pseudo) R-Squared Adjusted R-Squared	$\begin{array}{c} 1,434 \\ 0.286 \\ 0.016 \end{array}$	$\begin{array}{c} 1,124 \\ 0.329 \\ 0.007 \end{array}$	$\begin{array}{c} 1,128\\ 0.322\\ 0.020\end{array}$	$\begin{array}{c} 1,402 \\ 0.290 \\ 0.020 \end{array}$	$\begin{array}{c} 1,434 \\ 0.280 \\ 0.016 \end{array}$	$\begin{array}{c} 1,434 \\ 0.108 \\ 0.023 \end{array}$	1,434 0.092	$\begin{array}{c} 1,340\\ 0.342\\ 0.078\end{array}$	$\begin{array}{c} 1,340 \\ 0.418 \\ 0.183 \end{array}$
Notes: *, **, *** denotes statis: Approximate elasticities of π_o shown in column 8 of table 3.	tical significanc (Π_o) with resp	te on the 10%	, 5%, and 1% lev e given in bracke	el, respectively. ets. The full set	Standard errors of controls corr	are clustered b sponds to the	y municipality set of controls	and are given i included in th	n parentheses. e specification

Figure 1: Gender segregation in occupational aspirations

Notes: The figure shows the frequency distribution of $\pi_{o[i]}$ in our sample, as defined in equation (1) in the main text, separately for boys (upper panel) and for girls (lower panel). See also appendix figure B.3.

Figure 2: Spatial variation in the strength of gender norms

(a) Distribution of gender norms across all municipalities in the canton of Bern

(b) Comparison of the distribution of gender norms in different regional entities

Notes: Panel (a) shows the frequency distribution of the measure of gender norms across all municipalities in the canton of Bern. Panel (b) compares the distribution of gender norms across (i) all Swiss municipalities, (ii) the municipalities within the canton of Bern, and (iii) the sample municipalities (i.e. the municipalities hosting the schools that took part in the survey).

Figure 3: Regional variation in the strength of gender norms in the canton of Bern

Notes: The figure maps the regional variation in the strength of gender norms across the municipalities of the canton of Bern. The strength of gender norms, N_j is measured by the mean share of supporting votes across all five votes listed in table 1 (see main text for details). Darker shaded areas represent municipalities with stronger, lighter shaded areas municipalities with weaker norms towards (more) gender equality. See also appendix figure B.4, which shows a corresponding map of N_j across all Swiss municipalities.

Figure 4: Gendered occupational aspirations and the strength of regional gender norms

(a) Municipality-level data (J = 24), weighted by the number of observations within each municipality

(b) Individual-level data (n = 1, 434)

Notes: The figure shows the association between π_o , i.e. the degree to which adolescents aspire for a genderstereotypical occupation (as defined in equation (1) in the main text), and our measure of gender norms based on municipality-level voting results. By the underlying mechanics of OLS, the estimated regression functions shown in the two panels are exactly the same (but note that the two figures use a different scaling on the y-axis). The data in panel (b) are slightly jittered to make them better visible.

A Measuring gender segregation in adolescents' occupational aspirations

As in the main text, let o denote a child's aspired occupation, and let π_o^g denote the fraction of girls in a given occupation o. Consequently, $(1 - \pi_o^g) = \pi_o^b$ equals the fraction of boys in any given occupation o. We measure $\{(\pi_o^g, \pi_o^b)\}_o$ using different sources of data, depending on the educational track (i.e. formal qualification) that must usually be taken to be able to actually work a specific occupation o later on:

- The majority of occupations mentioned in the survey are accessible through an apprenticeship. In a first step, we thus assigned the occupational number ("Berufsnummer") officially used by the State Secretariat for Education, Research and Innovation (SERI), the administrative unit responsible for VET policy and regulation at the Federal level.¹⁹ Fortunately, we are able to precisely measure (π_o^g, π_o^b) in these cases because we obtained access to the population of apprenticeship contracts in the canton of Bern (as of August 2014).²⁰ These data cover all apprenticeship contracts approved by the canton of Bern, and they include the same occupational coding that we assigned to occupational aspirations for the children in our sample. Computing the fraction of boys and girls in any given occupation (learnable through an apprenticeship) is thus straightforward.

As an example, consider a child who stated in the survey that he/she wants to become a "hairdresser". In a first step, we assign the official occupational number of the corresponding apprenticeship, in this case number 82014. We then merge, in a second step, the corresponding fractions of boys ($\pi^b = 0.05$) and girls ($\pi^g = 0.95$) in that occupation, calculated from the population of apprenticeship contracts in the canton of Bern.

It is important to stress that the two data sets are independent of each other and that they cover different sets of individuals (more specifically, the data set covering the population of apprenticeship contracts does not include the children participating in the survey).

- In the remaining cases, the preferred occupation is only attainable through studies at the tertiary level (either at the general or at the vocational level). In these cases, we use data from published statistics from the Federal Statistical Office (FSO) on the fraction of females/males in the subject or field of study that one must usually choose to later work in that occupation.

For example, if a child stated that she/he wanted to become a lawyer, we calculate π_o based on the number of women and men in the corresponding degree programs at both universities and universities of applied sciences.

- Moreover, in cases where a child has stated more than one preferred occupation, we simply average the occupation-specific π_o 's across all the occupations a given child mentions. In our sample, a large majority of about 98% of the children stated one preferred occupation only, with a remaining 2% of the children stating two or more different occupations.
- Similarly, in the case that a child's occupational aspiration was ambiguous (in the sense that it was not possible to assign only one specific occupation or in the sense that there is only one educational route preparing for a given occupation), we again use the average share of girls/boys across the occupations that most closely fit the description given in

¹⁹The numbers are available online here: http://www.bvz.admin.ch/bvz/grundbildung/index.html?lang=de, along with additional information for each occupation (not in English, however).

²⁰For each apprenticeship position, employers and apprentices both have to sign an apprenticeship contract ("Lehrvertrag"), which the canton then has to approve (i.e. the canton acts as supervisor).

the survey.

For example, if a child stated that she/he wanted to become a computer/information scientist, we averaged the share of males/females from the corresponding apprenticeship programs as well as from the corresponding programs at universities and universities of applied sciences.

Using this procedure, we are able to classify occupational aspirations for 1,434 children. In the remaining cases, by a large majority, children simply stated that they did not (yet) know what they would like to become later on, in which case $\pi_{o[i]}$ is not defined (80 cases, representing about 5% of the overall sample).

B Additional tables and figures

Table B.1: Descriptive statistics	for the individual-level	variables taken f	rom the survey

	Mean	Standard deviation	Unique values
Demographics:			
Age (in years)	14.06	0.59	_
Boy (yes $= 1$)	0.51	0.50	2
School track and grades:			
Realschule (yes $= 1$)	0.33	0.47	2
Sekundarschule (yes $= 1$)	0.50	0.49	2
Spez. Sek. (yes $= 1$)	0.08	0.27	2
Grade in German	4.72	0.50	_
Grade in Mathematics	4.68	0.65	_
Grade in French	4.64	0.62	_
Grade in English	4.77	0.67	_
Preferences:			
Competitiveness (entry into tournament)	0.49	0.50	2
Risk preference	38.07	24.54	—
Locus of control	37.33	6.38	—
Occupation: job satisfaction important	2.62	1.73	5
Occupation: pay important	2.94	1.20	5
Occupation: prestige important	3.17	1.38	5
Occupation: helping someone important	3.04	1.22	5
Occupation: job security important	3.24	1.40	5
Parental controls:			
Education (father)	_	_	7
Education (mother)	_	_	7
Occupation (father)	_	—	218
Occupation (mother)	_	_	159
Regional controls:			
Local labor market	_	_	13

Notes: The table shows descriptives for the individual- and parental-level controls taken from the survey (n = 1, 434). The number of unique values is only given for categorial variables.

Vote Nr.	513	461	458	336
(a) All m	unicipalit	ies		
461	0.5844			
458	0.9230	0.6017		
336	0.6327	0.5506	0.6643	
306	0.6098	0.4969	0.5796	0.7034
(b) All G	erman-spe	eaking mu	nicipalitie	s
461	0.5035			
458	0.8121	0.5150		
336	0.6357	0.4367	0.5828	
306	0.6692	0.3952	0.6051	0.6559
(c) All m	unicipalit	ies in the	canton of	Bern
461	0.5985			
458	0.8541	0.5880		
336	0.7913	0.5794	0.7773	
306	0.6222	0.4437	0.5255	0.7028
(d) Germ	an-speaki	ng munici	palities in	the
canto	on of Berr	ı		
461	0.4901			
458	0.7802	0.4479		
336	0.7282	0.4931	0.7067	
306	0.5800	0.3584	0.4611	0.6680
(e) Samp	le munici	palities		
461	0.8618			
458	0.9594	0.9115		
336	0.8889	0.7831	0.8698	
306	0.8746	0.7517	0.8456	0.9255

Table B.2: Correlations of the share of supporting votes across different votes

Notes: The table shows pairwise correlations of supporting vote shares (at the municipality-level) for the five votes listed in table 1, for different regional subsets of municipalities.

Dault	NT.		<i>b</i>	N	· · · · · · · · · · · · · · · · · · ·	<i>q</i> –
Nällk	INI.	Occupation	μa	INI.	Occupation	Ж
(a) Mc	st popu	lar occupations				
Ξ	68600	Commercial employee	0.657	68600	Commercial employee	0.343
7	86911	Dental assistant	0.906	45705	Polymechanic	0.965
က	71200	Retail trade assistant	0.654	47413	Electrician	0.974
4	94306	Child care expert	0.891	15005	Farmer	0.854
ю	86910	Medical practice assistant	0.992	95504	Logistician	0.872
(p) Mo	st typic	al occupations				
Η	17204	Florist	1.000	19102	Forest caretaker	1.000
0	82112	Cosmetician	1.000	44727	Plant and apparatus manufacturer	1.000
က	27121	Clothing designer	1.000	44506	Metal construction practitioner	1.000
4	82117	Podologist	1.000	51908	Polybuilder	1.000
ហ	18104	Horse expert	1.000	47406	Network electrician	1.000
(c) Mo	st atypi	cal occupations				
	51006	Bricklayer	0.003	86910	Medical practice assistant	0.008
0	30302	Carpenter	0.007	86908	Veterinary practice assistant	0.011
က	51411	Road builder	0.008	86912	Dental assistant	0.013
4	47604	Heating installer	0.010	79613	Specialist in home economics	0.031
IJ	46317	Automobile assistant	0.013	70610	Pharmaceutical assistant	0.031

Table B.3: Most popular, most typical, and most atypical occupations chosen by girls and boys in the canton of Bern (in the year 2014)

Switzerland	Car	ton of Ba		י כ	-			
(; ;			гn	SWILZ	erland	Ű	anton of Be	rn
Uverall German Uv	verall	German	Sample	Overall	German	Overall	German	Sample
513 55.33% 48.78% 54.	.94%	54.16%	61.19%	53.92%	42.61%	47.97%	45.53%	51.31%
461 17.97% 16.38% 16.3	.38%	16.11%	20.58%	15.19%	12.87%	13.21%	12.26%	14.57%
458 38.94% 31.49% 36.5	.24%	35.05%	42.01%	39.04%	26.22%	31.20%	28.14%	32.32%
336 54.95% 52.16% 49.7	.71%	49.03%	57.46%	49.81%	43.77%	41.13%	38.50%	46.59%
306 60.51% 57.94% 61.0	.66%	61.33%	64.97%	55.44%	51.01%	55.53%	54.35%	58.01%

_	_	
	lano	
	zer	
•	WIt	
Ç	J	
	un	
5	Ę	
•	TA N	
	regions	
-	ent	
ی۔ -	differe	
	Ц	
	ŝ	
-	esult	
	ч	
•	voting	
-	the	
د	d	
	arison	
ζ	Comp	
-	4	
٢	η	
_	Ð	
-	ģ	
F	Б	
C	- 1	

		(Gymnasium	1	
Mean	0.207	0.207	0.207	0.207	0.207
Standard deviation	0.406	0.406	0.406	0.406	0.406
School track (Baseline =	Realschule):			
Sekundarschule	0.217***	0.209***	0.170***	$0.164^{\star\star\star}$	0.155***
	(0.015)	(0.015)	(0.015)	(0.021)	(0.023)
Spez. Sek	0.546***	0.539***	0.476***	0.463***	0.531***
-	(0.046)	(0.046)	(0.045)	(0.054)	(0.056)
School grades:					
German	0.060***	$0.054^{\star\star}$	$0.053^{\star\star}$	0.035	0.037
	(0.021)	(0.021)	(0.021)	(0.025)	(0.026)
Mathematics	0.034**	0.033**	0.026*	0.029*	0.030*
	(0.014)	(0.015)	(0.015)	(0.017)	(0.016)
French	0.084***	0.082***	0.076***	0.073***	0.073***
	(0.015)	(0.015)	(0.015)	(0.018)	(0.018)
English	$0.029^{\star\star}$	0.029**	0.024^{\star}	0.019	0.026
	(0.014)	(0.014)	(0.014)	(0.017)	(0.017)
Individual-level controls:					
Demograhics	Yes	Yes	Yes	Yes	Yes
Preferences	No	Yes	Yes	Yes	Yes
Parental controls:					
Education	No	No	Yes	Yes	Yes
Occupation	No	No	No	Yes	Yes
Municipal dummies	No	No	No	No	Yes
Number of observations	1,519	1,519	1,519	1,519	1,519
R-Squared	0.221	0.227	0.275	0.510	0.533
Adjusted R-Squared	0.217	0.219	0.261	0.338	0.355

Table B.5: Aspirations for a baccalaureate school

Notes: Notes: *, **, *** denotes statistical significance on the 10%, 5%, and 1% level, respectively. Robust standard errors in parentheses. The dependent variable is a binary variable taking on the value of 1 if a child aspires for baccalaureate school ("Gymnasium"), and 0 otherwise.

Source: State Secretariat for Education, Research and Innovation (SER).

Figure B.2: Location of the canton of Bern and the sample municipalities

(a) Location of the canton of Bern within Switzerland

(b) Location of the sample municipalities within the canton of Bern

Notes: Panel (a) shows the relative size and the geographic location of the canton of Bern (darker shaded area) within the borders of Switzerland. Panel (b) highlights those municipalities actually covered by the survey (i.e. the municipalities hosting one or more of the schools that participated in the survey) within the borders of the canton of Bern. Darker shaded areas represent the municipalities that are part of the survey.

Notes: The figure shows the frequency distribution of π_o in the population of all apprenticeship contracts in the canton of Bern in August 2014 (smaller bars in blue), in comparison to the frequency distribution of π_o in the sample (wider bars in grey). Note that the data for the canton of Bern describe actual choices, while those for the sample describe aspirations.

Figure B.4: Regional variation in the strength of gender norms across all Swiss municipalities