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Bias-Corrected Confidence Intervals

This paper develops a novel wild bootstrap procedure to construct robust bias-corrected 

(RBC) valid confidence intervals (CIs) for fuzzy regression discontinuity designs, providing 

an intuitive complement to existing RBC methods. The CIs generated by this procedure are 

valid under conditions similar to the procedures proposed by Calonico et al. (2014) and 

related literature. Simulations provide evidence that this new method is at least as accurate 

as the plug-in analytical corrections when applied to a variety of data generating processes 

featuring endogeneity and clustering. Finally, we demonstrate its empirical relevance by 

revisiting Angrist and Lavy (1999) analysis of class size on student outcomes. 

JEL Classification: C14, C21, C26

Keywords: fuzzy regression discontinuity, robust confidence intervals, wild 
bootstrap, average treatment effect

Corresponding author:
Otávio Bartalotti
260 Heady Hall
Department of Economics
Iowa State University
Ames, IA, 50011
USA

E-mail: bartalot@iastate.edu



1 Introduction

Regression discontinuity (RD) designs are one of the leading empirical approaches in economics,
political science, and public policy evaluation, being extensively used to estimate the causal
effects of treatments or policies under transparent assumptions.1 The identification in RD
designs exploits the fact that many policies and programs use a threshold based on a score,
also called a “running variable,” to assign treatment to individuals or firms. If the researcher
credibly believes that subject’s position relative to the threshold is not related to unobserved
characteristics driving the outcome of interest, we can attribute the differences between units
slightly above and below the cutoff as caused by treatment alone. When the running variable
does not entirely determine the treatment, there are both treated and untreated units on
each side of the cutoff, a situation referred to as the fuzzy RD design. Directly comparing
the outcomes on both sides of the cutoff results in an intent-to-treat effect, and the average
treatment effect at the cutoff can be recovered by taking the ratio of difference in outcomes and
difference in treatment probabilities at the threshold, as in a Wald formulation of the treatment
effect in the instrumental variable setting. Even when units are self-selected to treatment based
on anticipated gains, Hahn et al. (2001) show that this ratio can be interpreted as the local
average treatment effect (LATE) under proper assumptions.

The identification of RD designs occurs exactly at the cutoff, and in practice the treatment
effect is typically estimated by fitting local linear models above and below the threshold, which
are extrapolated to the exact point of discontinuity.23 The choice of the bandwidth (h) in
these nonparametric estimators is an important econometric issue, determining the trade-off
between bias and variance. One popular bandwidth selector proposed by Imbens and Kalya-
naraman (2012) minimizes the asymptotic mean squared error (AMSE) of the treatment effect
estimator.4

In an influential paper, Calonico et al. (2014), henceforth CCT, show that the AMSE-
optimal bandwidth shrinks slowly enough that the leading bias term in the local polynomial
estimators will be non-negligible, affecting the asymptotic distribution of the estimator. Con-
sequently, the usual confidence intervals (CIs) for the RD treatment effects are invalid, and
have empirical coverage well below their nominal levels. Calonico et al. (2014) propose a so-
lution to this problem by obtaining a valid estimate of the leading bias-term and re-centering
the conventional point estimator. Furthermore, the additional variability introduced by the
bias estimation needs to be considered when constructing CIs. This approach is referred to as
the robust bias corrected (RBC) inference method, and results in an asymptotically normal
bias-corrected point estimator under weaker assumptions on the bandwidth shrinkage rates.
CIs based on this method are valid even when AMSE optimal bandwidths are used.

In this paper, we contribute to this growing RBC literature by proposing a wild bootstrap
procedure as an alternative to the plug-in analytical RBC inference methods for fuzzy RD
designs. The new bootstrap procedure is asymptotically equivalent to CCT’s and simulations
demonstrate it performs well in finite samples.

Recent studies have further developed the original idea of CCT, establishing RBC inference
as the standard method in the RD literature. Calonico et al. (2018a) and Calonico et al. (2019a)
develop valid coverage error expansions for RBC CIs for general nonparametric inference and
the RD design specific case, respectively. They show that RBC CIs achieve higher-order refine-
ments in terms of coverage error, outperforming intervals produced by undersmoothing, while

1Imbens and Lemieux (2008) and Lee and Lemieux (2010) provide reviews of this literature with many examples.
2See Fan (1992); Hahn et al. (2001) for a detailed discussion on local polynomial estimator properties and its use

in RD designs.
3The following discussion is similar to the description in Bartalotti et al. (2017).
4This bandwidth selector is h = Op(n−1/5), where n is the number of observations.
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preserving robustness to the choice of bandwidth parameter. The expansions are then used
to develop new coverage-error optimal bandwidths for forming CIs. In current work, Calonico
et al. (2019b) characterizes CIs that obtain minimum “worst-case” coverage error uniformly
over plausible distributions of the data, providing bandwidth and kernel selectors that achieve
minimax coverage error and interval length optimal CIs. Finally, Cattaneo et al. (Forthcoming)
have extended the RBC framework for partitioning-based series estimators.

We propose a wild bootstrap procedure that builds upon the RBC literature’s insight by
resampling from higher order local polynomials. In particular, the local linear models are esti-
mated as usual for both outcome and treatment, resulting in a conventional biased estimator.
To estimate the bias, additional local quadratic models are used, and the potentially correlated
residuals on both the outcome and treatment equations serve as the “true” data generating
process (DGP) for the bootstrap. The bias of the conventional estimator is therefore known
under this bootstrap DGP and can be calculated by averaging the error of the linear model’s
estimates across bootstrap replications. Any remaining bias converges to zero at a faster rate,
allowing the bias of the local linear model to be estimated. This approach is described in
Algorithm 3.1 and the resulting bias-corrected estimator is shown to be asymptotically normal
with mean zero in Theorem 3.1.

To account for the additional variability introduced by the bias correction, we propose an
iterated bootstrap procedure: generate many bootstrap datasets from local quadratic models
and calculate the bias-corrected estimate for each of them. The resulting empirical distribution
of bias-corrected estimator is then used to construct CIs. This procedure is in line with RBC
literature, where the variance of estimated bias term and the covariance between estimated bias
and original point estimator are derived analytically. This complex adjustment to the original
variance is automatically embedded in the iterated bootstrap. The bootstrap implementation
is described in Algorithm 3.2, and the resulting CIs are shown to be asymptotically valid in
Theorem 3.2.

Compared to existing implementations of the RBC approach in the literature, the proposed
procedure is straightforward and does not require intensive derivations. This bootstrap comple-
ments the methods readily available in statistical software described in Calonico et al. (2017),
and could naturally serve as an alternative.

Moreover, the results in this paper provide an additional tool for practitioners, which can be
particularly useful in situations for which the analytical results or the statistical software code
has not been developed or are particularly cumbersome. Some cases include more complex RD
designs with objects of interest involving multiple cutoffs and nonlinear functions of disconti-
nuity parameters. For a practical example, Bertanha and Imbens (2019) evaluate non-linear
functions involving four discontinuity parameters estimated jointly, requiring the researcher to
evaluate the bias and covariances of all parameters, while relying on linearizations and the
delta method to obtain analytical formulas. In this particular case, the bootstrap method we
propose is very practical compared to the need to derive formulas for RBC CIs.

Additionally, since the bootstrap mimics the true data generating process, it has the flex-
ibility to accommodate dependent (clustered) data by adjusting the resampling algorithm ac-
cordingly. We demonstrate how the bootstrap procedure can be applied to such clustered data.
This flexibility and adaptability to the particular needs of different empirical objectives is the
main strength of the bootstrap proposed.

Compared to Bartalotti et al. (2017), which developed a similar iterated bootstrap procedure
for robust inference in special case of sharp RD designs, the current paper provides important
generalizations in several dimensions. First, it adapts bootstrapping IV models to fuzzy RD
designs. Second, its validity is extended and theoretically proved to general local polynomials
and higher order of derivatives of interest, which could be used in the context of “Kink” RD
designs, for example. Last, its flexibility and capability to accommodate clustered data is
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confirmed by simulation studies.
While we focus on the RD case, as it is widely used and most relevant for practitioners

in the social sciences, a similar iterated wild bootstrap strategy could be used to successfully
implement RBC methods in other relevant settings. One such case is nonparametric local
estimation as described in Calonico et al. (2018a), and our paper can serve as a step in that
direction. Naturally, exploring if the wild bootstrap achieves the higher order refinements
described by Calonico et al. (2018a) when evaluating plug-in RBC methods also offers an
interesting path for future research, which is beyond our scope.

Concomitantly and independently, Chiang et al. (2019) proposed a multiplier bootstrap
procedure for fuzzy RD and many related settings based on a Bahadur representation of a
general class of Wald estimators. Their paper, however, has a more specific focus on uniform
inference for quantile treatment effects in RD designs. Both the procedure and proofs in that
paper differ from the ones proposed here and could potentially serve as alternatives in the
cases covered by both approaches, keeping in mind that their approach offers robust uniform
inference.5

In a related work, Cattaneo et al. (Forthcoming) independently consider a single-step wild
bootstrap for the RBC t-statistics of interest in the context of nonparametric regression using
series estimators, and prove the validity of the wild bootstrap in that setting. These results are
closely related to ours, and underscore the relevance and flexibility of wild bootstrap to perform
RBC inference in nonparametric regression for different estimation approaches. Furthermore,
the bootstrap in that case is shown to provide robust uniformly valid confidence bands.

The results on Cattaneo et al. (Forthcoming) and Chiang et al. (2019) suggest that a
iterated bootstrap like the one proposed here might achieve uniform coverage, even though
a formal analysis of that possibility is beyond the scope of this paper. Nevertheless, our
point-wise inference procedure benefits from its very intuitive nature, easy implementation
and flexibility as exemplified in Section 5 when dealing with dependent (clustered) data, and
multiple discontinuities or functions of parameters. In Section 4, we present useful comparisons
in performance by the proposed wild bootstrap, the multiplier bootstrap in Chiang et al. (2019),
and the plug-in RBC implementations.

Recently, honest CIs were proposed as an alternative approach to RBC inference, notably
Armstrong and Kolesár (2018) and Armstrong and Kolesár (Forthcoming). Honest CIs guar-
antee good coverage properties uniformly over all possible functions (within a family) for the
conditional expectation of the outcome. The class of functions considered is determined by
their smoothness, which is assumed to be bounded, and the CIs are built considering the im-
pact of the non-random worst-case bias in estimation in that class of functions. In closely
related work, Imbens and Wager (2019) examine the RD estimator as a linear combination
of the observed outcomes and obtains weights for each observation by numerical optimization.
The minimax linear estimator minimizes the variance and worst-case bias for a similarly defined
class of functions.

This approach offers an attractive alternative to RBC that can be useful in many circum-
stances, especially when the researcher cannot rely on local arguments (bandwidth shrinking)
to control misspecification of the outcome’s conditional expectation function close to the cutoff,
for example when the running variable is discrete, see (Kolesár and Rothe, 2018), or measured
with error as in (Bartalotti et al., 2019).

Advancing this literature is beyond the scope of this paper, as we do not base the bootstrap
procedure on obtaining worst bias characterizations. Nevertheless, a bootstrap procedure that
would achieve the properties of the CIs described in Armstrong and Kolesár (2018) or Imbens

5Section 4 presents a comparison between our proposed wild bootstrap and the multiplier bootstrap in Chiang
et al. (2019).
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and Wager (2019) would be an interesting topic of future research that can build upon the
developments presented here.

The paper is organized as follows. Section 2 describes the basic fuzzy RD approach, its
usual implementation, and the basic RBC inference approach. Section 3 presents the proposed
bootstrap procedures to estimate bias and construct confidence intervals. Asymptotic prop-
erties are discussed and summarized in two theorems. Section 4 provides simulation evidence
that the bootstrap procedure effectively reduces bias and generates valid CIs. Implementation
of the bootstrap to clustered data is discussed in Section 5. Section 6 demonstrates the applied
relevance of this bootstrap procedure by applying it to the scholastic achievement data used
by Angrist and Lavy (1999). Section 7 provides a brief conclusion.

2 Background

This section provides additional details of identification assumptions and estimation methods
in fuzzy RD designs. It also briefly introduces the RBC approach proposed by CCT and
subsequent papers. Notations defined in this and following sections are consistent with CCT.

In a typical fuzzy RD setting, researchers are interested in the local causal effect of treatment
at a given cutoff. For any unit i, (Xi, Ti, Yi) is observed, where Xi is a continuous running
variable which determines treatment assignment, Ti is a binary variable which indicates actual
treatment status and Yi is the outcome. In sharp RD designs, the treatment actually received
is the same as the assigned treatment, i.e., Ti = 1(Xi ≥ c), with c being the cutoff. In fuzzy RD
designs, however, the received treatment is not a deterministic function of running variable Xi.
Instead, the probability Pr(Ti = 1 | Xi) is between zero and one in both sides but experiences
a sudden change at the cutoff. Without loss of generality, the cutoff c can be reset to zero. If
assigned to treatment (Xi ≥ 0), unit i’s actual treatment status and outcome are represented
by functions Ti(1) and Yi(1), otherwise Ti(0) and Yi(0). Thus the observed treatment status
and outcome are

Ti = Ti(0)1(Xi < 0) + Ti(1)1(Xi ≥ 0)

Yi = Yi(0)1(Xi < 0) + Yi(1)1(Xi ≥ 0).

For each unit i’s outcome, either Yi(0) or Yi(1) is observed. The data itself is uninformative
in terms of treatment effect because the counterfactual outcome could be arbitrary. However,
under continuity and smoothness conditions on Ti(0), Yi(0), Ti(1) and Yi(1) around the cutoff
Xi = 0, it is possible to identify the treatment effect for units just at the cutoff and the estimand
of interest is

ζ =
τY
τT

=
E[Yi(1) | Xi = 0]− E[Yi(0) | Xi = 0]

E[Ti(1) | Xi = 0]− E[Ti(0) | Xi = 0]
, (2.1)

where the symbol E represents the expectation and τY and τT represent the sharp RD esti-
mators, i.e., difference in expectations at the cutoff. Intuitively, this is a Wald estimator in
the limit where the assigned treatment serves as an instrument. The reduced-form difference
in expected outcome, τY , reveals the “intent-to-treat” (ITT) effect. The treatment effect is
recovered by dividing ITT effect by the difference in treatment probabilities. When the treat-
ment effect is not constant across units, ζ should be interpreted with caution. If treatment
status is independent of treatment effects at the cutoff, ζ is the average treatment effect (ATE)
at the cutoff. This assumption rules out self-selection based on anticipated gain. Hahn et al.
(2001) show that under a less restrictive assumption that the treatment effect and status are
jointly independent of the running variable around the cutoff, and a local weak monotonicity
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assumption, the LATE is identified.6

Equation 2.1 presents ζ as a ratio of two sharp RD estimators. Due to this symmetry, we
use “Z” as a placeholder for either outcome variable Y or treatment variable T to ease the
notation. In addition, denote the conditional expectations µZ+(x) and µZ−(x), conditional

variances σ2
Z+(x) and σ2

Z−(x), the η-th order derivative of conditional expectations µ
(η)
Z+(x)

and µ
(η)
Z−(x) and their limits. Formally, they are defined as

µZ+(x) = E[Zi(1) | Xi = x] µZ−(x) = E[Zi(0) | Xi = x]

σ2
Z+(x) = V[Zi(1) | Xi = x] σ2

Z−(x) = V[Zi(0) | Xi = x]

µ
(η)
Z+(x) =

dηµZ+(x)

dxη
µ
(η)
Z−(x) =

dηµZ−(x)

dxη

µ
(η)
Z+ = lim

x→0+
µ
(η)
Z+(x) µ

(η)
Z− = lim

x→0−
µ
(η)
Z−(x)

where the symbol V(·) represents variance. The treatment effect ζ is nonparametrically es-
timable because µZ− and µZ+ can be estimated consistently under Assumption 2.1, which lists
standard conditions in the fuzzy RD literature.7 (See, in particular, Hahn et al., 2001, Porter,
2003 and CCT.)

Assumption 2.1 (Behaviour of the DGP near the cutoff) The random variables {Xi, Ti, Yi}ni=1

form a random sample of size n. There exists a positive number κ0 such that the following con-
ditions hold for all x in the neighbourhood (−κ0, κ0) around zero: (a) The density of Xi is
continuous and bounded away from zero at x; (b) E[Z4

i | Xi = x] is bounded; (c) µZ−(x) and
µZ+(x) are three times continuously differentiable; (d) σ2

Z−(x) and σ2
Z+(x) are continuous and

bounded away from zero; (e) µT−(0) 6= µT+(0).

Assumption 2.1(a) ensures that the number of data points arbitrarily close to the cutoff
increases as the sample size grows. Part (c) imposes necessary smoothness condition to allow
an approximation by second order polynomials. Parts (b) and (d) put standard restrictions on
moments to ensure that the estimated local polynomials are well behaved. Part (e) requires
that the treatment assignment as an instrument is valid, in the sense that it induces a first
stage difference in treatment probability. Furthermore, the usual LATE identification and
interpretation for the treatment effect in FRD requires weak monotonicity of treatment with
respect to the running variable, as described in Hahn et al. (2001) Assumption (A3).

In practice, local polynomial regression is widely used to estimate RD designs due to its
boundary properties.8 As an illustration, consider the local linear regression using kernel
function K(·) with a common bandwidth, h, used for both the outcome and the treatment at
both sides of the cutoff. The estimated treatment effect is

ζ̂(h) =
τ̂Y (h)

τ̂T (h)
=
µ̂Y+(h)− µ̂Y−(h)

µ̂T+(h)− µ̂T−(h)
, (2.2)

6In Hahn et al. (2001) this is described in Assumption (A3) and is required for the identification and interpretation
of the estimand as a LATE.

7Throughout the main text we focus on the case where the researcher implements a local linear model to estimate
τZ and a quadratic model to approximate the bias term. The proofs presented in the online appendix for the validity
of the bootstraps proposed include the general case in which higher-order polynomials can be used to obtain τZ or
a higher-order bias correction is implemented, e.g., Bartalotti (2018).

8See Fan and Gijbels (1996) for discussions on the boundary properties of local polynomial regression. See Gelman
and Imbens (2018) for discussions on the choices of global and local polynomial regression and its order.
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with

µ̂Z+(h) = arg min
β0

min
β1

n∑
i=1

1{Xi ≥ 0}(Zi − β0 −Xiβ1)2
1

h
K

(
Xi
h

)

µ̂Z−(h) = arg min
β0

min
β1

n∑
i=1

1{Xi < 0}(Zi − β0 −Xiβ1)2
1

h
K

(
Xi
h

)
.

The conditional expectations µZ+ and µZ− are consistently estimated by µ̂Z+(h) and

µ̂Z+(h) when h → 0.9 The asymptotic distribution of the quotient estimator τ̂Y (h)
τ̂T (h)

can be

derived by applying the delta method. Let VZ be the asymptotic variance of τ̂Z(h) and CY T
be the asymptotic covariance between τ̂Y (h) and τ̂T (h), i.e.,( √

nh(τ̂Y (h)− τY )√
nh(τ̂T (h)− τT )

)
d→ N

(( 0
0

)
,
( VY CY T
CY T VT

))
,

√
nh(ζ̂(h)− ζ) d→ N

(
0,

1

τ2T
VY −

2τY
τ3T

CY T +
τ2Y
τ4T
VT
)
.

Let V (h) = V(ζ̂(h) | X1, ..., Xn), then ζ̂(h)−ζ√
V (h)

d→ N(0, 1) and the CIs can be constructed as

ζ̂(h)± q1−α/2V (h)1/2 (2.3)

where q1−α/2 is the 1− α/2 quantile of the standard normal distribution.
The above asymptotic distribution is valid only when bandwidth h shrinks fast enough such

that the bias of ζ̂Z(h) is negligible relative to
√
V (h). Formally, h = op(n

−1/5) is required.

With a bandwidth of order Op(n
−1/5), Hahn et al. (2001) show that the asymptotic distribution

is normal but not centered at zero. Using (2.3) to construct CIs without considering this first-
order bias in distributional approximation leads to coverage rates that differ from the nominal
level. Imbens and Kalyanaraman (2012) develop plug-in bandwidth selector for RD estimators,
which is optimal in the sense that AMSE of the point estimator is minimized.

Two different approaches are commonly adopted in empirical studies. One is undersmooth-
ing. In this case, instead of using the AMSE-optimal bandwidth, researchers may want to
choose a smaller bandwidth in order to meet the requirement of h = op(n

−1/5). However, this
often leads to a series of ad-hoc bandwidths without theoretical basis. Another approach is
bias correction, in which the leading bias is consistently estimated to remove the distortion of
the asymptotic approximation. However, this approach does not perform well initially because
the estimated bias introduces additional variability. The RBC approach is based on bias cor-
rection, but derives an alternative asymptotic variance component for normalization so that
the additional variability is accounted for.

For any bandwidth h → 0, the first-order bias of fuzzy RD estimator from local linear
regression is

E[ζ̂(h) | X1, ..., Xn]− ζ = h2
( 1

τT
BY (h)− τY

τ2T
BT (h)

)
(1 + op(1)), (2.4)

with

BZ(h) =
µ
(2)
Z+

2
B+(h)−

µ
(2)
Z−

2
B−(h).

9Unless otherwise stated, all limits in this paper are assumed to hold as n→∞.
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The terms B+(h) and B−(h), explicitly defined in online appendix, are observed quantities
that depend on the kernel, bandwidth and running variable. To explicitly calculate the first-
order bias, one needs to estimate τZ , µ

(2)
Z+ and µ

(2)
Z−. Among them τZ is consistently estimated

by the local linear regression with bandwidth h. CCT propose a local second-order regression
with a (potentially) different bandwidth, b, to estimate the second order derivatives µ

(2)
Z+ and

µ
(2)
Z−. This produces the bias-corrected estimator

ζ̂bc(h, b) = ζ̂(h)−∆(h, b),

with

∆(h, b) = h2
( 1

τ̂T (h)
B̂Y (h, b)− τ̂Y (h)

τ̂2T (h)
B̂T (h, b)

)
,

B̂Z(h, b) =
µ̂
(2)
Z+(b)

2
B+(h)−

µ̂
(2)
Z−(b)

2
B−(h).

Notice that the bias ∆(h, b) is estimated with uncertainty. As a result, the variance of bias-
corrected estimator ζ̂bc(h, b) is different from V (h). CCT propose a new formula for the variance
of bias-corrected estimator and use it for normalization:

ζ̂bc(h, b)− ζ
V bc(h, b)1/2

d→ N(0, 1), (2.5)

where V bc(h, b) = V (h)+C(h, b) and C(h, b) captures the adjustment to variance introduced by
the bias-correction term. This distributional approximation is valid even when h = Op(n

−1/5),
as long as certain conditions on h and b are satisfied. Assumption 2.2 specifies the bandwidth
and kernel conditions assumed by CCT, which are also used in this paper.

Assumption 2.2 (Bandwidth and kernel) Let h be the bandwidth used to estimate the lo-
cal linear model and let b be the bandwidth used to estimate the local quadratic model used to
estimate the bias correction. Then nh→∞, nb→∞, and n×min(h, b)5 ×max(h, b)2 → 0 as
n→∞. The kernel function K(·) is positive, bounded, and continuous on the interval [−κ, κ]
and zero outside that interval for some κ > 0.

Assumption 2.2 does not require nh1/5 → 0. Instead, it only requires that nh1/5b1/2 → 0
when h < b or nb1/5h1/2 → 0 when h > b. This assumption also allows for the vast majority
kernel functions commonly used in practice.

To simplify notation, let m = min(h, b) and define the scaled and truncated kernel functions

K+,h(x) =
1

h
K(x/h)1{x ≥ 0},K−,h(x) =

1

h
K(x/h)1{x < 0},

K+,b(x) =
1

b
K(x/b)1{x ≥ 0},K−,b(x) =

1

b
K(x/b)1{x < 0}.

Recent studies have further established RBC inference as the standard method in the RD
literature. Calonico et al. (2018a) develop valid coverage error expansions for RBC CIs for gen-
eral nonparametric inference, while Calonico et al. (2019a) obtains similar results in the context
of RD designs. They show that RBC CIs achieve higher-order refinements in terms of coverage
error, outperforming intervals produced by undersmoothing, while preserving robustness to the
choice of bandwidth parameter.

Furthermore, Calonico et al. (2019a) provides coverage-error optimal bandwidths for form-
ing CIs that we will exploit in the bootstrap implementation described in Section 4, where a
simple bootstrap procedure is proposed to construct CIs based on the insight provided these
recent advances in the RBC literature. This bootstrap procedure is straightforward in the
sense that no derivation of analytical formulas for the bias, variance and covariance terms is
required. The bias-corrected estimator and the associated CIs are numerically different from
the analytical alternative but asymptotically equivalent.
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3 Bootstrap Algorithm and Validity

In this section, two bootstrap algorithms are proposed to obtain the RBC point estimator
and CIs for the fuzzy RD design, extending the results in Bartalotti et al. (2017). Their
validity is justified in two theorems and proved in the online appendix. The idea behind
both algorithms is to use higher-order local polynomials to approximate the joint behaviour
of (Xi, Ti, Yi) around the cutoff. These polynomials, together with the empirical variance
structure, serve as the “true” DGP in the bootstrap under which we evaluate the bias of the
local linear estimator employed by the researcher when implementing RD. Assumption 2.2
guarantees that the estimated “true” DGP is close to the unknown DGP in the sense that the
distributional approximation derived from the “true” DGP is asymptotically valid. This can be
best illustrated from the special case where the bandwidths used for estimating τ and the bias
are the same, h = b, which translates to the bandwidth condition nb7 → 0 under Assumption
2.2. By the same argument that h = op(n

−1/5) is required for valid inference in a RD design
estimated by local linear regression, b = op(n

−1/7) is required in a RD design estimated by
local quadratic regression, see CCT, Calonico et al. (2018a) and Calonico et al. (2019a) for
in-depth discussions.

In practice, the preliminary bandwidth, b, used to estimate the bias and the main bandwidth
for the point estimate of the treatment effect, h, need to be chosen. A natural choice in
the RBC setting would be to implement the coverage error optimal bandwidths for b and h
proposed by Calonico et al. (2019a), which is specifically tailored for RBC inference in RD
designs. Alternatively, MSE-optimal bandwidths which are also valid (but sub-optimal) in
terms of coverage error could be used, as discussed in that paper. Both bandwidth selectors
are available in the statistical package rdrobust for STATA and R described in Calonico et al.
(2015, 2017).10

Algorithm 3.1 consistently estimates the bias term.

Algorithm 3.1 (Bias estimation) Assume h and b are bandwidths as defined by Assump-
tion 2.2.

Step 1. Using the preliminary bandwidth, b, estimate local second order polynomials ĝZ− and
ĝZ+ with least squares using K−,b and K+,b for weights:

ĝZ−(x) = β̂Z−,0 + β̂Z−,1x+ β̂Z−,2x
2, ĝZ+(x) = β̂Z+,0 + β̂Z+,1x+ β̂Z+,2x

2

with

(β̂Z−,0, β̂Z−,1, β̂Z−,2)′ = arg min
β0,β1,β2

n∑
i=1

(Zi − β0 − β1Xi − β2X2
i )2K−,b(Xi)

(β̂Z+,0, β̂Z+,1, β̂Z+,2)′ = arg min
β0,β1,β2

n∑
i=1

(Zi − β0 − β1Xi − β2X2
i )2K+,b(Xi).

Let

ĝZ(x) =

{
ĝZ−(x) if x < 0

ĝZ+(x) otherwise

and calculate the residuals ε̂Zi = Zi − ĝZ(Xi) for all i.

Step 2. Repeat the following stepsB1 times to produce the bootstrap estimates τ̂∗Z,1(h), . . . , τ̂∗Z,B1
(h).

For the kth replication:

10A package for R called frdboot implements the procedures described below and is available at: https://github.

com/yhe0802/FRD-bootstrap/blob/master/frdboot_0.1.0.zip
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2.1. Draw i.i.d. random variables e∗i with mean zero, variance one, and bounded fourth
moments independent of the original data and construct

ε∗Zi = ε̂Zie
∗
i ,

Z∗i = ĝZ(Xi) + ε∗Zi

for all i. Note that both ε̂Y i and ε̂Ti are multiplied by the same e∗i .

2.2. Using the main bandwidth, h, calculate µ̂∗Z+(h) and µ̂∗Z−(h) by estimating the local
linear model on the bootstrap data set using K+,h and K−,h for weights:

µ̂∗Z−(h) = arg min
µ

min
β

n∑
i=1

(Z∗i − µ− βXi)2K−,h(Xi)

µ̂∗Z+(h) = arg min
µ

min
β

n∑
i=1

(Z∗i − µ− βXi)2K+,h(Xi).

2.3. Save ζ̂∗k(h) =
µ̂∗
Y +(h)−µ̂∗

Y −(h)

µ̂∗
T+

(h)−µ̂∗
T−(h)

.

Step 3. Estimate the bias as

∆∗(h, b) = 1
B1

B1∑
k=1

ζ̂∗k(h)− ĝY+(0)− ĝY−(0)

ĝT+(0)− ĝT−(0)
. (3.1)

Algorithm 3.1 consists of three steps. The first step estimates the bootstrap DGP, which is
captured by second order local polynomials. The second step creates a series of new samples
through wild bootstrap and finds the traditional fuzzy RD estimate for each sample. Crucial
for the procedure is that pairs of residuals are multiplied by the same realization of random
number e∗ to preserve the correlation between Yi and Ti. The last step calculates the bias from
local linear estimator in the bootstrap by definition. Under Assumptions 2.1, 2.2 and B1 large
enough, the procedure described by Algorithm 3.1 consistently estimates the bias component,
resulting in a bias-corrected estimator that has the same asymptotic distribution as in Equation
(2.5). This conclusion is formally given in Theorem 3.1.

Theorem 3.1 Under Assumptions 2.1 and 2.2, as n and B1 go to infinity,

ζ̂(h)−∆∗(h, b)− ζ
V bc(h, b)1/2

→d N(0, 1), (3.2)

where ∆∗(h, b) is defined by Equation (3.1).

Theorem 3.1 enables one to construct valid confidence interval in the form of ζ̂(h)−∆∗(h, b)±
V bc(h, b)1/2. However, the term V bc(h, b) still needs to be calculated. The second algorithm
circumvents the analytical derivation of V bc(h, b) through an iterated bootstrap. In particular,
the first layer bootstrap is designed to mimic the randomness due to sampling error and the
second layer bootstrap, as described in Algorithm 3.1, is designed to estimate bias due to
model misspecification. The additional variability introduced by the bias correction term will
be automatically accounted for by this iterated bootstrap. The detailed procedure is given in
Algorithm 3.2.

Algorithm 3.2 (Distribution) Assume h and b are bandwidths as defined by Assump-
tion 2.2 and Algorithm 3.1.

Step 1. Using the preliminary bandwidth, b, estimate ĝZ+ and ĝZ− and generate ĝZ(·) and
the residuals ε̂Zi just as in Algorithm 3.1.

10



Step 2. Repeat the following steps B2 times to produce bootstrap estimates of the bias-
corrected estimate. For the kth replication:

2.1. Draw i.i.d. random variables e∗i with mean zero, variance one, and bounded fourth
moments independent of the original data and construct

ε∗Zi = ε̂Zie
∗
i ,

Z∗i = ĝZ(Xi) + ε∗Zi.

for all i = 1, . . . , n. Note that both ε̂Y i and ε̂Ti are multiplied by the same e∗i .

2.2. Using the main bandwidth, h, calculate µ̂∗Z+(h) and µ̂∗Z−(h) by estimating the local
linear model on the bootstrap data set using K+,h and K−,h for weights:

µ̂∗Z−(h) = arg min
µ

min
β

n∑
i=1

(Z∗i − µ− βXi)2K−,h(Xi),

µ̂∗Z+(h) = arg min
µ

min
β

n∑
i=1

(Z∗i − µ− βXi)2K+,h(Xi).

2.3. Apply Algorithm 3.1 to the bootstrapped data set (X1, T
∗
1 , Y

∗
1 ), . . . , (Xn, T

∗
n , Y

∗
n )

using the same bandwidths h and b that are used in the rest of this algorithm but
re-estimating all of the local polynomials on the bootstrap data. Generate B1 new
bootstrap samples and let ∆∗∗(h, b) represent the bias estimator returned by Algo-
rithm 3.1.

2.4. Save the estimator ζ̂∗k(h) =
µ̂∗
Y +(h)−µ̂∗

Y −(h)

µ̂∗
T+

(h)−µ̂∗
T−(h)

, and its bias ∆∗∗k (h, b).

Step 3. Define ζ∗ =
ĝY +(0)−ĝY −(0)

ĝT+(0)−ĝT−(0)
and use the empirical CDF of ζ̂∗1 (h)−∆∗∗1 (h, b)−ζ∗, . . . , ζ̂∗B2

(h)−
∆∗∗B2

(h, b)− ζ∗ as the sampling distribution of ζ̂(h)−∆∗(h, b)− ζ.

Algorithm 3.2 also consists of three steps. The first step estimates the bootstrap DGP,
which is captured by second order local polynomials. The second step creates a series of new
samples, to which the Algorithm 3.1 is applied. The last step uses the empirical distribution
of bias-corrected estimator to construct CIs. As before, B2 is assumed large enough so that
simulation error can be ignored. The validity of Algorithm 3.2 is established in the following
theorem.

Theorem 3.2 Under Assumptions 2.1 and 2.2, as n, B1 and B2 go to infinity,

V
∗(ζ̂∗(h)−∆∗∗(h, b))/V bc(h, b)→p 1

and

sup
x

∣∣∣∣∣Pr∗
[
ζ̂∗(h)−∆∗∗(h, b)− ζ∗

V
∗(ζ̂∗(h)−∆∗∗(h, b))1/2

≤ x

]
− Pr

[
ζ̂(h)−∆∗(h, b)− ζ

V bc(h, b)1/2
≤ x

]∣∣∣∣∣→p 0.

Theorem 3.2 enables one to construct CIs in the following form:(
ζ̂(h)−∆∗(h, b) + ζ∗− (ζ̂∗(h)−∆∗∗(h, b))1−α/2, ζ̂(h)−∆∗(h, b) + ζ∗+ (ζ̂∗(h)−∆∗∗(h, b))α/2

)
,

where all the terms with superscript ∗ are defined in Algorithm 3.2. This CI is not centred at
the bias-corrected point estimator.
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Remark 3.1 The proposed bias correction differs from RBC’s formula in finite samples. While

the analytical bias is obtained by linearizing E
[
τ̂Y (h)
τ̂T (h)

− τY
τT

]
and then only evaluating its first

order terms, Algorithm 3.1 directly estimates E
[
τ̂∗Y (h)

τ̂∗
T
(h)
− τ∗Y
τ∗
T

]
through bootstrap. Both methods

consistently estimate the bias. By avoiding the linearization of the estimand, we remove one
source of approximation error, potentially leading to performance improvements relative to the
RBC analytical formulas or the multiplier bootstrap proposed by Chiang et al. (2019).11

Remark 3.2 When the original treatment is binary, the bootstrap sample will no longer have
binary treatment. Though it creates some difficulty for interpretation, it does not invalidate
the estimation and inference because its conditional expectation and covariance with outcome
variable remain unchanged.

Remark 3.3 The iterated bootstrap is less computationally intensive than it might initially
appear due to two reasons. First, the wild bootstrap creates new residuals but leaves the
regressors unchanged, which means the design matrices only need to be computed once even
when they are repeatedly used in fitting local polynomials.12 Second, the number of data points
actually used in estimation is a lot smaller than the full sample due to the local nature of the
estimation.

4 Monte Carlo Simulations

This section summarizes the result of Monte Carlo experiments designed to evaluate the finite
sample performance of the bootstrap procedures proposed in Section 3 relative to the exist-
ing plug-in alternatives. The details about the data generating processes (DGP) used and
implementation are provided in the online appendix.

The conditional mean functions used in the simulations are similar to the ones used by
CCT, adapted to the fuzzy RD context. For concreteness, the first mean function (DGP 1) is
designed to match features of U.S. congressional election data from Lee (2008). The second
mean function (DGP 2) matches the relationship between child mortality rate and county
poverty rate from the analysis of Head Start data in Ludwig and Miller (2007). The last mean
function (DGP 3) is similar to the first one except for some coefficients. CCT motivates this
as an attempt to generate a plausible model with sizable distortion when conventional t-test
is performed. The true treatment effects for these DGPs are ζ1 = 0.04, ζ2 = −3.45, ζ3 = 0.04,
respectively.

To accommodate different endogeneity structures found in empirical data, we consider three
cases. In the baseline case the treatment status is exogenous, i.e., there is no correlation between
treatment assignment and the outcome. In the two endogenous cases the treatment status is
correlated with unobserved characteristics which affect the outcome. This is modeled by the
correlation, ρ, between the error terms on the outcome and treatment status equations as
described in the online appendix.

Besides the proposed bootstrap, three additional approaches are estimated for comparison:
the multiplier bootstrap proposed by Chiang et al. (2019) for FRD,13 the plug-in RBC as
implemented in the rdrobust package described in Calonico et al. (2015), and the conventional

11We thank a referee for bringing this point to our attention.
12To fit local polynomials is equivalent to estimate weighted least square, i.e., the estimated parameter is

(X′KX)−1X′KY, where X is matrix of regressors and K is weighting matrix determined by kernel function. Both
X and K are not affected by the bootstrap so one just need to compute (X′KX)−1X′K once and then reuse it in
the bootstrap calculations. Then each bootstrap replication just requires a single matrix-vector multiplication.

13We are thankful to Harold Chiang for providing their code and helping us implement it. Any potential mistakes
in the implementation are our own.
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estimators. Simulation results are presented in Table 4.1. The first three columns report the
estimated treatment effect’s bias, standard error and root MSE. The fourth and fifth columns
present the CI’s empirical coverage and average length. The last three columns list the average
coverage error optimal bandwidths proposed by Calonico et al. (2019a), which are used for the
three RBC methods (hCEOpt, bCEOpt) and the conventional method (hMSE). Naturally, both
the RBC methods described previously and the bootstrap procedures proposed are designed
for inference, so the interest lies mainly on the empirical coverage and interval length columns.
The properties of the point estimators in the first three columns, while interesting are not the
main focus of the analysis.

The baseline case is listed in Panel A. The three robust methods, wild bootstrap, multiplier
bootstrap and plug-in RBC approaches, generate point estimates with very similar bias and
standard errors, even though the multiplier bootstrap seems to achieve lower bias at the cost of
higher standard errors, especially on DGP 2. In contrast, the conventional approach reports 4-
10 times larger bias. This is not surprising since the robust methods explicitly correct the bias.
The conventional method also fails to deliver a valid CI (coverage rates are 68.1%, 2.6% and
87.3% for the three DGPs respectively). Robust methods achieve improvements by reducing
bias and increasing interval length. Except for DGP 2, they generate intervals with empirical
coverage close to the nominal level and the wild bootstrap performs well for DGPs 1 and
3. However, for DGP 2, the wild bootstrap and the plug-in RBC methods report some size
distortion. This is because DGP 2 has great curvature around the cutoff and makes precise
fitting challenging. Still, both the wild bootstrap and the plug-in RBC methods improve
significantly on the coverage obtained by the conventional method (from 2.6% to around 91%)
at the sacrifice of slightly longer intervals (from 0.186 to 0.23). The multiplier bootstrap obtains
better coverage, at the cost of significantly higher interval length and RMSE.

Panels B and C present results when the treatment is endogenous, which is likely the
primary reason to choose RD designs as the identification strategy. The case with positive
(negative) ρ is listed in Panel B (C). Again, the conventional estimator has significantly larger
bias than the RBC methods. As for CIs, the robust approaches work reasonably well in all
cases. The conventional method performs significantly worse, with empirical coverage rate as
low as 1.7%. The sign of correlation has little effect on the bias since it is caused by model
misspecification rather than an imperfect instrumental variable.

As discussed in Pei et al. (2017), bias correction adds variability that can sometimes domi-
nate the bias reduction obtained, which is relevant to researchers interested in the point esti-
mates of the treatment effect. Table 4.1 allows a similar analysis to that of Pei et al. (2017)
by comparing the RMSE under the conventional and RBC based methods in all the DGPs
considered. The results do not indicate any systematic loss in terms of RMSE when using the
wild bootstrap or plug-in RBC, while coverage improves markedly in all cases.

To summarize, the wild bootstrap approach proposed in this paper performs significantly
better than the conventional method and is at least on par with the plug-in RBC and multiplier
bootstrap methods. This wild bootstrap procedure automatically accommodates various types
of covariance structure and thus is a simple alternative to obtain valid CIs in RD designs. 14

5 Extension: Clustered Data

This section explores the application of the bootstrap procedure to clustered data in RD designs
and provides evidence for its usefulness.15 Clustered data are very common in empirical studies

14While it would be plausible that the wild bootstrap proposed achieves the higher order refinements described by
Calonico et al. (2018a), evaluating that formally is beyond the scope of this work.

15Another interesting extension of the bootstrap proposed in this paper would be including covariate-adjustments
as proposed by Calonico et al. (2019). One could generate the DGP for the bias in Algorithm 3.1 using the particular
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and there is a vast literature on handling it.16 Units within the same cluster are usually
dependent and ignoring this dependence is likely to invalidate statistical inference. In short,
one can either explicitly estimate the dependence structure with some additional specifications,
such as random coefficient models, or account for the dependence when performing inference
by, for example using a cluster-robust variance estimator, see Liang and Zeger (1986); Arellano
(1987).

Cluster-robust variance estimators are very popular in part because they do not require
assumptions on the dependence structure and partly because of its availability in most statis-
tical software. Its validity is based on asymptotics when the number of clusters, G, grows to
infinity, which is, unfortunately, not trivial to establish in nonparametric models. The main
obstacle is that shrinking bandwidths is likely to destroy the dependence structure. For local
polynomial regressions, Wang (2003) and Chen et al. (2008) point out that the existence of joint
density of running variable and clustering variable ensures that cluster dependence vanishes
asymptotically, not being captured by the usual approximations.17

Bartalotti and Brummet (2017) develop analytical approximations for the distribution
and MSE-optimal bandwidth selector for the conventional RD estimator in a fixed-G setting,
sidestepping the issue. Calonico et al. (2019a) provides similar results for the RBC approach,
including coverage error optimal bandwidth selectors that we implement below. Available soft-
ware provides options to take this dependence into consideration. Both the rdrobust and RDD
packages used in this paper offer the option to specify a clustering variable as explained by
Calonico et al. (2017). Chiang et al. (2019) offer a cluster-robust version of their multiplier
bootstrap under high level assumptions, relying on the Bahadur representation of the Wald
ratio without describing implementation details.

Naturally, our wild bootstrap approach could offer an intuitive and easy to implement
alternative to the analytical approximations described. In fact, Cameron et al. (2008) provide
a comprehensive survey of bootstrap methods and show that proper bootstrap procedures
outperform the conventional cluster-robust variance estimator when the number of clusters is
small (five to thirty).

To highlight the flexibility and robustness of the wild bootstrap procedure proposed in this
paper, we revise the resampling algorithm to accommodate clustering and test its performance
with clustered data. Following Brownstone and Valletta (2001) and Cameron et al. (2008),
the wild bootstrap procedure for clustered data is quite straightforward: for units in the same
cluster, their residuals are multiplied by the same random number drawn from the auxiliary
distribution. For example,

Z∗gi = ĝZ(Xgi) + ε̂Zgie
∗
g,

where e∗g, a random number from distribution with zero mean and unit variance, is shared by all
units in the same group. For the purpose of simulation, it is assumed that errors in the outcome
equation are clustered according to a random effect model, in particular, uygi = u∗yg +u∗yi with
g = 1, 2, . . . , G being a cluster indicator.18

covariate choices and constraints imposed by the researcher as discussed in Calonico et al. (2019) in their Section 2.
The wild bootstrap based on transforming the residuals described here should, intuitively, hold. A formal analysis
of that case is beyond the scope of this paper.

16See Wooldridge (2003); Cameron et al. (2011); Cameron and Miller (2015) for an overview on this topic.
17A special case where this does not happen is that clustering occurs at the running variable level as discussed

by Chen and Jin (2005). For example, in panel data where each individual are observed for multiple times and the
running variable is at individual level, each individual is a cluster and will not vanish with shrinking bandwidth. Lee
and Card (2008) consider another example in RD designs where clustering occurs at the running variable level and
cluster-robust variance estimator is recommended for inference.

18The design ensures that the individual errors have the same standard errors as the baseline case presented in
Section 4 for easy comparison.

14



●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●●

●

●●

●

●

●

●●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●●

●

● ●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●● ●

●

●●●

●

●●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

10

20

30

40

50

20 40 60 80

Enrollment

C
la

ss
 s

iz
e

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

40

60

80

20 40 60 80

Enrollment
V

er
ba

l s
co

re

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

20

40

60

80

20 40 60 80

Enrollment

M
at

h 
sc

or
e

Figure 1: Class size, average verbal and math scores

Simulation results forG = 5, 10, 25 are reported in Table 5.1.19 The wild bootstrap approach
consistently outperforms the conventional method, closely matching the coverage from the plug-
in RBC approach. This simple experiment shows that the wild bootstrap procedure proposed
can also be easily applied to clustered data with slight adjustment to its resampling algorithm.

6 Empirical Illustration

In this section, we apply the bootstrap procedure to the data used in Angrist and Lavy (1999).20

In that paper, the effects of class size on scholastic achievement are estimated using the “Mai-
monides’ rule” as instrument.

As described by Angrist and Lavy (1999) the “Maimonides’ rule” holds that the maximum
class size is 40, and has been adopted by Israeli public schools to determine the division of
enrollment cohorts into classes since 1969. Following this rule, when enrollment increases and
passes multiples of 40, an additional class is required. Since the total enrollment is roughly
evenly divided into all classes, an additional class causes a sudden drop in class sizes. Ideally,
when the enrollment grows from 40 to 41, class size will drop by almost half. Because of
student turnover and imperfect enforcement of this rule, the empirical data fits into a fuzzy
RD design.21

We consider the first discontinuity in class size for the 4th grade. The sample used in
this application includes 1164 classes from schools with enrollments no larger than 80. The
outcome variables are average verbal and math test scores at class level. The discontinuities
in class size and outcomes against enrollment are visualized in Figure 1. Each dot in these
plots represents a class and the regression lines are fitted by fourth order polynomials. The
shaded areas indicate CIs. The first plot clearly shows the discontinuity in class size, which is
exploited for identification of the class size effect. The second plot suggests a discontinuity in
average verbal score, but not as important as that in class size. The last plot does not provide
much evidence for a discontinuity in average math score.

Three methods are applied to estimate the effect of class size on average verbal/math scores
and results are shown in Table 6.1. The first column lists the original point estimates from

19G denotes the number of clusters on each side of the cutoff.
20The data is available at http://economics.mit.edu/faculty/angrist/data1/data/anglavy99.
21The treatment variable, class size, is multivalued as opposed to the discrete binary case discussed in Section 2.
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local linear regression, which depends only on the bandwidth choice. The second column
lists the bias-corrected point estimates based on bootstrap and analytical plug-in bias correc-
tions. The estimates are very close to each other but differ meaningfully from the original
estimates: the magnitude increases from 0.495 to 0.547∼0.568 for average verbal score and
0.198 to 0.224∼0.251 for math score.

Consistent with Figure 1, none of the CIs for the treatment effect on both average verbal
and math scores excludes zero. The CIs from the wild bootstrap are wider than that from the
plug-in RBC approach, in line with the simulations presented.

7 Conclusion

A new wild bootstrap procedure is proposed to obtain RBC point estimates and valid CIs in
fuzzy RD designs. This new method provides an easy to implement alternative to the analytical
RBC approach established by Calonico et al. (2014) and further advanced in recent years. The
procedure is implemented through a novel iterated bootstrap that extends the developments
in Bartalotti et al. (2017), also serving as an intuitive alternative to the multiplier bootstrap
in Chiang et al. (2019). This new procedure is proved to be theoretically valid and empir-
ically supported by simulation studies, performing as well as analytical plug-in alternatives,
including in the presence of clustered data. An empirical illustration is provided, confirming
the procedure’s applied relevance.
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Table 4.1: Empirical coverage and average interval length

DGP Method Bias SD RMSE EC(%) IL hCEOpt bCEOpt hMSE

Panel A: ρ = 0
1 Wild bootstrap 0.010 0.057 0.058 94.9 0.217 0.140 0.323

Multiplier bootstrap 0.003 0.070 0.074 93.3 0.274 0.140 0.323
Plug-in RBC 0.010 0.058 0.059 93.1 0.210 0.140 0.323
Conventional 0.042 0.032 0.053 68.1 0.116 0.400

2 Wild bootstrap 0.026 0.062 0.067 91.7 0.234 0.117 0.299
Multiplier bootstrap 0.023 0.324 0.336 96.3 1.269 0.117 0.299
Plug-in RBC 0.026 0.062 0.068 90.3 0.231 0.117 0.299
Conventional 0.215 0.079 0.229 2.6 0.186 0.216

3 Wild bootstrap 0.003 0.059 0.059 95.4 0.231 0.115 0.317
Multiplier bootstrap 0.001 0.076 0.081 92.4 0.297 0.115 0.317
Plug-in RBC 0.003 0.059 0.059 94.1 0.224 0.115 0.317
Conventional -0.025 0.044 0.050 87.3 0.157 0.205

Panel B: ρ = 0.9
1 Wild bootstrap 0.010 0.057 0.058 96.3 0.223 0.139 0.323

Multiplier bootstrap 0.005 0.070 0.073 93.8 0.273 0.140 0.323
Plug-in RBC 0.013 0.059 0.060 94.6 0.214 0.139 0.323
Conventional 0.043 0.033 0.054 70.7 0.121 0.398

2 Wild bootstrap 0.025 0.066 0.070 94.5 0.246 0.119 0.302
Multiplier bootstrap 0.030 0.343 0.354 96.4 1.343 0.118 0.302
Plug-in RBC 0.041 0.067 0.078 89.7 0.233 0.119 0.302
Conventional 0.226 0.092 0.244 3.0 0.207 0.222

3 Wild bootstrap 0.003 0.067 0.067 95.5 0.255 0.114 0.316
Multiplier bootstrap 0.003 0.076 0.081 92.8 0.297 0.114 0.317
Plug-in RBC 0.006 0.063 0.063 94.7 0.230 0.114 0.316
Conventional -0.024 0.043 0.049 86.5 0.156 0.204

Panel C: ρ = −0.9
1 Wild bootstrap 0.011 0.063 0.063 93.6 0.223 0.141 0.324

Multiplier bootstrap 0.000 0.072 0.076 93.8 0.282 0.140 0.324
Plug-in RBC 0.008 0.059 0.060 93.1 0.211 0.141 0.324
Conventional 0.042 0.031 0.052 65.7 0.113 0.402

2 Wild bootstrap 0.025 0.057 0.062 91.7 0.226 0.114 0.296
Multiplier bootstrap 0.037 0.304 0.314 95.6 1.193 0.114 0.296
Plug-in RBC 0.024 0.057 0.062 90.8 0.218 0.114 0.296
Conventional 0.201 0.064 0.211 1.7 0.165 0.208

3 Wild bootstrap 0.003 0.059 0.059 95.8 0.234 0.116 0.317
Multiplier bootstrap -0.001 0.078 0.082 93.0 0.305 0.116 0.319
Plug-in RBC 0.001 0.059 0.059 94.8 0.227 0.116 0.317
Conventional -0.027 0.045 0.052 89.1 0.160 0.207

Note: EC denotes empirical coverage and IL denotes average interval length based on 5000 simulations; nominal
coverage probabilities are 95% for each estimator. Sample size is 1000. Following Chiang et al. (2019), the multiplier
bootstrap uses the Epanechnikov kernel. Otherwise, the triangular kernel is used. The columns hCEOpt and bCEOpt
list average coverage error optimal bandwidths following Calonico et al. (2019a). The column hMSE lists average
MSE-optimal bandwidth. The bootstrap approach uses B1 = 500 replications to compute bias and B2 = 999
replications to obtain the empirical distribution of bias-corrected estimator.
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Table 5.1: Empirical coverage and average interval length (clustered data).

DGP Method Bias SD RMSE EC(%) IL hCEOpt bCEOpt hMSE

Panel A: G = 5
1 Wild bootstrap 0.017 0.081 0.083 87.2 0.269 0.224 0.318

Plug-in RBC 0.017 0.082 0.083 86.9 0.275 0.224 0.318
Conventional 0.043 0.071 0.083 83.7 0.249 0.392

2 Wild bootstrap 0.033 0.085 0.092 84.1 0.278 0.147 0.297
Plug-in RBC 0.034 0.086 0.093 84.8 0.292 0.147 0.297
Conventional 0.214 0.101 0.237 22.5 0.275 0.216

3 Wild bootstrap 0.007 0.081 0.081 89.0 0.273 0.179 0.312
Plug-in RBC 0.007 0.081 0.081 89.2 0.278 0.179 0.312
Conventional -0.023 0.076 0.080 87.5 0.261 0.202

Panel B: G = 10
1 Wild bootstrap 0.016 0.069 0.071 90.5 0.243 0.198 0.321

Plug-in RBC 0.016 0.069 0.071 89.5 0.240 0.198 0.321
Conventional 0.043 0.055 0.070 83.8 0.200 0.396

2 Wild bootstrap 0.031 0.071 0.078 88.7 0.256 0.143 0.299
Plug-in RBC 0.032 0.072 0.079 87.6 0.258 0.143 0.299
Conventional 0.213 0.089 0.231 12.9 0.239 0.216

3 Wild bootstrap 0.005 0.068 0.069 92.7 0.248 0.160 0.316
Plug-in RBC 0.005 0.069 0.069 91.5 0.245 0.160 0.316
Conventional -0.025 0.062 0.067 88.0 0.220 0.204

Panel C: G = 25
1 Wild bootstrap 0.014 0.062 0.064 92.4 0.223 0.175 0.323

Plug-in RBC 0.014 0.063 0.064 90.5 0.217 0.175 0.323
Conventional 0.043 0.043 0.060 78.7 0.157 0.399

2 Wild bootstrap 0.031 0.066 0.072 90.5 0.238 0.136 0.300
Plug-in RBC 0.032 0.066 0.073 89.2 0.238 0.136 0.300
Conventional 0.214 0.084 0.230 6.4 0.210 0.216

3 Wild bootstrap 0.004 0.062 0.062 94.1 0.230 0.143 0.317
Plug-in RBC 0.003 0.063 0.063 92.8 0.226 0.143 0.317
Conventional -0.025 0.053 0.059 86.6 0.186 0.205

Note: EC denotes empirical coverage and IL denote average interval length based on 5000 simulations; nomi-
nal coverage probabilities are 95% for each estimator. Sample size is 1000. The triangular kernel is used. The
columns hCEOpt and bCEOpt list average coverage error optimal bandwidths for clustered data following Calonico
et al. (2019a).The column hMSE lists average MSE-optimal bandwidth. The bootstrap approach uses B1 = 500
replications to compute bias and B2 = 999 replications to obtain empirical distribution of bias-corrected estimator.
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Table 6.1: The effect of class size on average verbal score and average math score.

ATE 95% CI hCEOpt bCEOpt hMSE

Original Corrected
Panel A: Average verbal score

Wild bootstrap -0.495 -0.547 (-1.138 0.213) 8.706 18.278
Plug-in RBC -0.495 -0.568 (-1.212 0.075) 8.706 18.278
Conventional -0.488 (-1.104 0.129) 7.952

Panel B: Average math score
Wild bootstrap -0.198 -0.224 (-0.953 0.586) 8.159 17.683
Plug-in RBC -0.198 -0.251 (-1.002 0.500) 8.159 17.683
Conventional -0.202 (-0.802 0.398) 9.200
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