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ABSTRACT 
 

General Diagnostic Tests for Cross  
Section Dependence in Panels∗  

 
This paper proposes simple tests of error cross section dependence which are applicable to 
a variety of panel data models, including stationary and unit root dynamic heterogeneous 
panels with short T and large N. The proposed tests are based on average of pair-wise 
correlation coefficients of the OLS residuals from the individual regressions in the panel, and 
can be used to test for cross section dependence of any fixed order p, as well as the case 
where no a priori ordering of the cross section units is assumed, referred to as CD(p) and CD 
tests, respectively. Asymptotic distributions of these tests are derived and their power 
function analyzed under different alternatives. It is shown that these tests are correctly 
centred for fixed N and T, and are robust to single or multiple breaks in the slope coefficients 
and/or error variances. The small sample properties of the tests are investigated and 
compared to the Lagrange multiplier test of Breusch and Pagan using Monte Carlo 
experiments. It is shown that the tests have the correct size in very small samples and 
satisfactory power, and as predicted by the theory, quite robust to the presence of unit roots 
and structural breaks. The use of the CD test is illustrated by applying it to study the degree 
of dependence in per capita output innovations across countries within a given region and 
across countries in different regions. The results show significant evidence of cross 
dependence in output innovations across many countries and regions in the world. 
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1 Introduction

It is typically assumed that disturbances in panel data models are cross sec-
tionally independent. This is particularly true of panels with large cross section
dimension (N). In the case of panels where N is small (say 10 or less) and
the time dimension of the panel (T ) is sufficiently large the cross correlations
of the errors can be modelled (and tested statistically) using the seemingly un-
related regression equation (SURE) framework originally developed by Zellner
(1962). Since N is fixed as T →∞, traditional time series techniques, including
log-likelihood ratio tests, can be applied. A simple example of such a test is
the Lagrange multiplier (LM) test of Breusch and Pagan (1980) which is based
on the average of the squared pair-wise correlation of the residuals. However,
in cases where N is large standard techniques will not be applicable and other
approaches must be considered.

In the literature on spatial statistics the extent of cross section dependence is
measured with respect to a given “connection or spatial matrix” that character-
izes the pattern of spatial dependence accordingly to a pre-specified set of rules.
For example, the (i, j) elements of a connection matrix, wij, could be set equal
to 1 if the ith and jth regions are joined, and zero otherwise. See Moran (1948)
and further elaborations by Cliff and Ord (1973, 1981). More recent accounts
and references can be found in Anselin (1988, 2001), and Haining (2003, Ch. 7).
This approach, apart from being dependent on the choice of the spatial matrix,
is not appropriate in many economic applications where space is not a natural
metric and economic and sociopolitical factors could be more appropriate.1

In this paper we propose a simple diagnostic test that does not require an a
priori specification of a connection matrix and is applicable to a variety of panel
data models, including stationary dynamic and unit-root heterogeneous panels
with short T and large N . The proposed test is based on a simple average of all
pair-wise correlation coefficients of the Ordinary Least Squares (OLS) residuals
from the individual regressions in the panel.

This test, referred to as the CD (Cross-section Dependence) test, is shown
to be correctly centred for fixed N and T , assuming that the underlying error
processes are symmetrically distributed. Its asymptotic distribution under the
null hypotheses is established and it is shown to be robust to single or multiple
breaks in the slope coefficients and/or error variances, so long as the uncondi-
tional means of variables in the panel remain constant over time.

In cases where the cross section units can be ordered a priori, as with spatial
observations, the CD test might not be sufficiently powerful as it does not
exploit the spatial information. To deal with this problem we also propose a
generalization of the CD test that captures the spatial patterns when deemed
relevant. We shall refer to this test as the pth order spatial dependence test,
denoted simply as CD(p). The order p measures the extent of local dependence,
and specifies the number of contiguous layers of neighbours that the ith cross

1For empirical applications where economic distance such as trade patterns are used in
modelling of spatial correlations see Conley and Topa (2002) and Pesaran, Schuermann, and
Weiner (2004).
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section unit depends on. CD(p) reduces to CD for p = N−1, when all possible
spatial dependencies are taken into account. The CD(p) test can be easily
adapted to match different types of spatial connection matrices used in the
literature, and potentially provides a simple alternative to a number of tests
available in the literature of spatial panels. In addition to its simplicity, the
proposed CD(p) test is also applicable to heterogeneous dynamic panels, and
like the CD test is robust to structural breaks.

The power of the test naturally depends on the nature of the alternative
hypothesis, and depends on the average value of the pair-wise correlations under
the alternative. When this average is different from zero, the power of the test
rises withN

√
T . In case of spatial panels with local dependence the power of the

global CD test rises only with
√
T , and is not suitable for small T panels, and

spatial versions of the test ought to be used. For first-order local dependence it
is shown that the CD(1) test has power that rises with

√
NT .

The small sample properties of the CD and the CD(1) tests are investi-
gated and compared to the LM test by means of a number of Monte Carlo
experiments. It is shown that the CD test has the correct size and satisfactory
power even under a weak degree of cross section dependence. It also turns out
to be remarkably robust to major departures from normal errors, particularly
for T ≥ 10, and, as predicted by the theory, it is not affected by multiple breaks,
so long as the unconditional means of the individual processes remain constant
over time. In particular, in the case of symmetric errors the test has the correct
size for T as small as 5 with N as large as 1000. The same also applies to the
CD(1) test investigated under first-order spatial dependence.

The use of the CD test in empirical contexts is illustrated by applying it to
study the degree of dependence in per capita output innovations across countries
within a given region and across countries in different regions. We also apply
the test to an unbalanced panel where the dependence of UK output innovations
on those of countries in other regions (including Europe, USA and Canada and
Asia and Australia) is investigated. The results show significant evidence of
cross dependence in output innovations across many countries and regions in
the World, although with varying degrees.

The plan of the paper is as follows. The panel data model is set up in Section
2. The existing tests of cross section dependence are briefly reviewed in Section
3. The new CD test is formulated in Section 4, and its distribution established
for strictly exogenous regressors. The robustness of the CD test to structural
breaks is addressed in Section 5. The application of the test to heterogeneous
dynamic panels with a fixed T is discussed in Section 6. Section 7 considers
the problem of testing for the presence of local cross section dependence, using
spatial panels as an example of such dependence. The power of the CD test
is investigated in Section 8. The modification of the CD test statistic for un-
balanced panels is discussed in Section 9. Section 10 reports the results of the
Monte Carlo experiments. Section 11 discusses the empirical application, and
Section 12 concludes.
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2 Panel Data Models

Consider the following panel data model

yit = αi + β
′
ixit + uit, for i = 1,2, ...,N ; t = 1,2, ..., T, (1)

where i indexes the cross section dimension and t the time series dimension,
xit is a k × 1 vector of observed time-varying regressors (individual-specific
as well as common regressors). The individual intercepts, αi, and the slope
coefficients, βi, are defined on a compact set and allowed to vary across i. For
each i, uit ∼ IID(0, σ2iu), for all t, although they could be cross-sectionally
correlated.2 The dependence of uit across i could arise in a number of different
ways. It could be due to spatial dependence, omitted unobserved common
components, or idiosyncractic pair-wise dependence of uit and ujt (i �= j) with
no particular pattern of spatial or common components. The regressors could
contain lagged values of yit, be either stationary (or integrated of order zero,
I(0)) or have unit roots (or integrated of order 1, I(1)). But in the derivations
below we assume xit ∼ I(0), and distinguish between the static and dynamic
cases where the regressors are strictly exogenous and when they are weakly
exogenous, specifically when xit = (yi,t−1, ..., yi,t−p).

In panel data literature the primary focus of the analysis is often an average
estimate of the slope coefficients, with the intercepts, αi, being typically treated
as nuisance (or incidental) parameters. For example, the fixed effects model
imposes the slope homogeneity restrictions3

βi = β, for all i.

A less restrictive specification is given by the Swamy’s (1970) random coefficient
model

βi = β + vi, vi ∼ iid (0,Ωv) ,

with the means, β, being the focus of the analysis. The idea is to pool regres-
sions from different cross section units in order to improve the efficiency with
which the (mean) slope coefficients, β, are estimated. As we shall see our pro-
posed test of cross section dependence is applicable to fixed and random effects
models as well as to the more general heterogeneous slope or random coefficient
specifications.

3 Existing Tests of Cross Section Dependence

Currently, there are two alternative approaches to testing for cross section de-
pendence in panels, namely testing for spatial correlation pioneered by Moran
(1948) and the Lagrange multiplier approach of Breusch and Pagan (1980, pp.
247-248).

2The assumption that uit’s are serially uncorrelated is not restrictive and can be accom-
modated by including a sufficient number of lagged values of yit amongst the regressors.

3The standard fixed effects estimator also assumes that σ2i = σ
2.
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3.1 Tests of Spatial Dependence

When the cross section units admit a time-invariant ordering as in spatial appli-
cations, the cross section dependence (known as spatial autocorrelation in the
spatial literature) is tested with respect to a pre-specified connection matrix.
The test is typically considered in the context of a single cross section, but can
be readily extended to panels. In the context of (1), spatial dependence of the
errors can be modelled using the spatial weight matrix, W = (wij),

uit = λ




N∑

j=1

wijujt


+ σiεit for i = 1, 2, ...,N, (2)

where εit ∼ IID(0, 1) for all i and t. The spatial weights, wij, are typically
assumed to be pre-specified, and the cross section dependence of the errors is
investigated by testing the null hypothesis of λ = 0. In specification of W,
different types of geographical connections are used as set out, for example, in
Cliff and Ord (1973, 1981). The statistical theory behind testing for λ = 0
is reviewed, for example, in Anselin (1988), Anselin and Bera (1998), Haining
(2003), with further results and extensions provided in Baltagi, Song and Koh
(2003).

In economic applications it is possible to use economic distance such as trade
or output patterns for calibration of the spatial matrix. This, for example, allows
the spatial weights to be time varying. Other extensions are also possible. But,
in the final analysis the spatial dependence (autocorrelation) test could critically
depend on the choice of W. This might be inevitable for pure cross sections,
although in a panel context it is possible to develop other types of tests that do
not depend onW.

3.2 Breusch and Pagan’s Test of Cross Section Depen-
dence

In the SURE context with N fixed and as T →∞, Breusch and Pagan (1980)
proposed an Lagrange multiplier (LM) statistic for testing the null of zero cross
equation error correlations which is particularly simple to compute and does
not require the system estimation of the SURE model. The test is based on the
following LM statistic

CDlm = T
N−1∑

i=1

N∑

j=i+1

ρ̂2ij,

where ρ̂ij is the sample estimate of the pair-wise correlation of the residuals.
Specifically,

ρ̂ij = ρ̂ji =

∑T
t=1 eitejt(∑T

t=1 e
2
it

)1/2 (∑T
t=1 e

2
jt

)1/2 , (3)
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and eit is the Ordinary Least Squares (OLS) estimate of uit defined by

eit = yit − α̂i − β̂
′
ixit, (4)

with α̂i and β̂i being the estimates of αi and βi computed using the OLS
regression of yit on an intercept and xit for each i, separately. Unlike the
spatial dependence test, the LM test is more generally applicable and does not
require a particular ordering of the cross section units. However, it is valid for
N relatively small and T sufficiently large. In this setting Breusch and Pagan
show that under the null hypothesis of no cross section dependence, specified
by

Cov (uit, ujt) = 0, for all t, i �= j, (5)

CDlm is asymptotically distributed as chi-squared with N(N − 1)/2 degrees of
freedom. As it stands this test is not applicable when N →∞. However, noting
that under H0,

T ρ̂2ij
a
∼ χ21

with ρ̂2ij, i = 1, 2, ..,N −1, j = i+1, 2, ...,N , being asymptotically independent,
the following scaled version of CDlm can be considered for testing the hypothesis
of cross dependence even for N and T large:

CDlm =

√
1

N(N − 1)

N−1∑

i=1

N∑

j=i+1

(T ρ̂2ij − 1). (6)

It is now easily seen that under H0 with T → ∞ first and then N → ∞ we
would have

CDlm
a
∼ N(0, 1).

However, this test is likely to exhibit substantial size distortions for N large and
T small, a situation that can frequently arise in empirical applications. This is
primarily due to the fact that for a finite T , E(T ρ̂2ij − 1) will not be correctly
centered at zero, and with N large the incorrect centering of the LM statistic
is likely to be accentuated, resulting in size distortions that tend to get worse
with N .

4 A New Test of Cross Section Dependence

There is clearly a need for a test of cross section dependence with reasonable
small sample properties that does not depend on a particular spatial weight
matrix, particularly when N is large and T small. Recognizing the shortcoming
of the Breusch and Pagan’s LM test when N is large, we propose the following
simple alternative which is based on the pair-wise correlation coefficients rather
than their squares used in the LM test:

CD =

√
2T

N(N − 1)



N−1∑

i=1

N∑

j=i+1

ρ̂ij


 . (7)
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Unlike the LM test statistic, CDlm, the above statistic has exactly mean zero
for fixed values of T and N , under a wide class of panel data models, including
heterogeneous dynamic models subject to multiple breaks in their slope coeffi-
cients and error variances, so long as the unconditional means of yit and xit are
time-invariant and their innovations are symmetrically distributed.

Initially, we provide a proof in the case of the standard panel data model,
(1) subject to the following assumptions:

Assumption 1: For each i, the disturbances, uit, are serially independent
with zero means and the variance, σ2i , such that 0 < σi <∞.

Assumption 2: Under the null hypothesis defined by

H0 : uit = σiεit, with εit ∼ IID(0, 1) for all i and t,

the disturbances, εit, are symmetrically distributed around 0.
Assumption 3: The regressors, xit, are strictly exogenous such that

E (uit | Xi) = 0, for all i and t,

where Xi = (xi1,xi2, ...,xiT )
′, and X′

iXi is a positive definite matrix.
Assumption 4: T > k + 1 and the OLS residuals, eit, defined by (4), are

not all zero.4

Theorem 1 Under Assumptions 1-4,

E
(
ρ̂ij
)
= 0,

and
E (CD) = 0,

for all N and T > k + 1, where ρ̂ij and CD are defined by (3) and (7), respec-
tively.5

Proof:. First note that the pair-wise correlation coefficients can be written
as

ρ̂ij =
T∑

t=1

ξitξjt, (8)

where ξit are the scaled residuals defined by

ξit =
eit

(e′iei)
1/2

, (9)

4The requirement T > k + 1 can be relaxed under slope homogeneity assumption, βi = β
where fixed effects residuals can be used in the construction of the CD statistic instead of eit.

5Similar results can also be obtained for fixed or random effects models. It suffices if the
OLS residuals used in the computation of ρ̂ij are replaced with associated residuals from
fixed or random effects specifications. But the CD test based on the individual-specific OLS
residuals are robust to slope and error-variance heterogeneity whilst the fixed or random effects
residuals are not.
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eit is the OLS residuals from the individual-specific regressions, defined by (4),
and ei = (ei1, ei2, ..., eiT )

′. Also,

ei = σiMiεi, withMi = IT −Xi (X
′
iXi)

−1
X′
i,

where εi = (εi1, εi2,..., εiT )
′. Therefore, conditional on xit, the scaled residuals,

ξit, are odd functions of the disturbances, εit, and under Assumption 2 we have

E (ξit | Xi) = 0, for all i and t.

Hence, unconditionally we also have

E (ξit) = 0, for all i and t.

Using this result in (8) now yields,

E
(
ρ̂ij
)
= 0,

which in turn establishes that (using (7))

E(CD) = 0,

for any N , and all T > k + 1.
Consider now the asymptotic distribution of

zN =

√
2

N(N − 1)



N−1∑

i=1

N∑

j=i+1

ρ̂ij


 .

under the null hypothesis, H0. First note that under Assumptions 1-4, ρ̂ij and
ρ̂is are cross sectionally independent for i, j and s, such that i �= j �= s. In
particular,

E
(
ρ̂ij ρ̂is

)
=

T∑

t=1

T∑

t′=1

E
(
ξitξjtξit′ξst′

)
=

T∑

t=1

T∑

t′=1

E (ξitξit′)E
(
ξjt
)
E (ξst′) = 0,

and V ar
(
ρ̂ij
)
= E

(
ρ̂2ij
)
≤ 1. Therefore, by standard central limit theorems,

for any fixed T > k + 1 and as N →∞

zN
N
=⇒ N(0, v2z),

where

v2z = lim
N→∞


 2

N(N − 1)



N−1∑

i=1

N∑

j=i+1

E
(
ρ̂2ij
)



 ≤ 1.

Hence, for a fixed T > k + 1, and as N →∞ we have

zN
vz
=

∑N−1
i=1

∑N
j=i+1 ρ̂ij√∑N−1

i=1

∑N
j=i+1E

(
ρ̂2ij
)

N
=⇒ N(0, 1).
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An operational version of this test can be obtained using the non-parametric
estimate

Ê
(
ρ̂2ij
)
=

T∑

t=1

ξ2itξ
2
jt =

∑T
t=1 e

2
ite

2
jt

(e′iei)
(
e′jej

) .

In terms of the scaled residuals, ξit, the general form of the CD statistic will be
given by

CD∗ =

∑N−1
i=1

∑N
j=i+1

∑T
t=1 ξitξjt{∑N−1

i=1

∑N
j=i+1

∑T
t=1 ξ

2
itξ

2
jt

}1/2 .

But in most applications one would expect Ê
(
ρ̂2ij
)
to be well approximated by

1/T , in which case the simple version of the test, CD, given by (7) could be
used.

The above result also holds as T →∞. To see this note that

√
T ρ̂ij =

1√
T
(ε′iMiMjεj)

(
ε′
i
Miεi
T

)1/2 (ε′
j
Mjεj

T

)1/2 ,

Therefore,

√
T ρ̂ij =

1√
T
(ε′iεj − ε′iAiεj − ε′iAjεj + ε′iAiAjεj)

(
ε′
i
Miεi
T

)1/2 (ε′
j
Mjεj

T

)1/2 .

where Mi = IT −Xi (X
′
iXi)

−1
X′
i = IT −Ai. However,

6

ε′iMiεi
T = 1+ op (1) ,

ε′iAiεj√
T

=
(
ε′iXi

T

)(
X
′

iXi

T

)−1 (
X
′

iεj√
T

)
= op (1) ,

ε′iAiAjεj√
T

=
(
ε′iXi

T

)(
X
′

iXi

T

)−1 (
X
′

iXj

T

)(
X
′

jXj

T

)−1 (
X
′

jεj√
T

)
= op (1) .

(10)

Therefore,

√
T ρ̂ij = T−1/2ε′iεj + op (1) ,

=
1√
T

T∑

t=1

εitεjt + op (1) ,

But under H0, εit and εjt are independently distributed and serially uncorre-
lated with mean 0 and a unit variance. Therefore, for each i �= j, as T →∞

√
T ρ̂ij

T
=⇒ N (0, 1) .

6The following derivations assume that the regressors are stationary. But, it is easily seen
that the same results follow for I(1) regressors so long as the Assumptions 1-4 hold.
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Using this result in (7) and letting N →∞, we now have (under H0)

CD =

√
2T

N(N − 1)



N−1∑

i=1

N∑

j=i+1

ρ̂ij


 =⇒ N (0, 1) .

It is therefore clear that the CD test is valid for N and T tending to infinity
in any order. It is also clear that since the mean of CD is exactly equal to
zero for all fixed T > k + 1 and N, the test is likely to have good small sample
properties (for both N and T small), a conjecture which seems to be supported
by extensive Monte Carlo experiments to be reported in Section 10.

5 Robustness of the CDTest to Structural Breaks

One of the key features of the proposed CD test is its robustness to single and
even multiple structural breaks in the slope coefficients and the error variances
of the individual regressions. Consider, for example, the following generalization
of (1)

yit =

{
µiy + β

′
i1(xit −µix) + σi1εit, t = 1,2, ..., Ti1,

µiy + β
′
i2(xit −µix) + σi2εit, t = Ti1 + 1, ..., T

for i = 1, 2, ...,N,

(11)
where the slope coefficients, βij, and the error variances, σ2ij, for j = 1, 2 are
subject to a single break at time t = Ti1, and εit ∼ iid(0, 1). Note that the
break point need not be the same across i. This specification also allows for
induced changes in the regression intercepts

αij = µiy − β′ijµix, j = 1, 2, (12)

but restricts the unconditional means of yt and xt, namely µy and µx, to be
time-invariant. Under this set up and assuming that εit and the innovations in
xit are symmetrically distributed around zero, it can be shown that the OLS
residuals, eit, defined by (4), which ignores the possibility of structural breaks
continues to be an odd function of εit, t = 1, ..., T , and ensures that ρ̂ij based
on the OLS residuals that ignore the break(s) will have zero mean exactly for
any fixed T > k + 1.7 Therefore, the CD test will have the correct size under
structural breaks. In fact, the analysis readily extends to situations where the
slopes and the errors variances have been subject to multiple breaks. In contrast,
the LM test of cross section dependence need not have the correct size, even
asymptotically, when the underlying regressions are subject to breaks.

6 Cross Section Dependence in Heterogeneous
Dynamic Panels

Consider now the more demanding problem of testing cross section dependence
in dynamic heterogeneous models, and as an example consider the following

7See Appendix A for a proof.
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first-order dynamic panel data model

yit = αi + βiyi,t−1 + σiεit, i = 1, 2, ...,N ; t = 1, 2, ..., T,

where αi = µi(1− βi), and the process initialized with yi0 = µi + δiεi0. Also,
as before, we assume that for each i the errors, εit, t = 0, 1, ..., T are serially
uncorrelated with a zero mean and a unit variance but could be cross-sectionally
correlated.

The above specification is quite general and allows the underlying AR(1)
processes to be stationary for some individuals and have a unit root for some
other individuals in the panel. In the stationary case, if the process has started

a long time in the past we would have δi = σi
(
1− β2i

)−1/2
. In the unit root

case where βi = 1, δi could still differ across i depending on the number of
periods that the ith unit root process has been in operation before the initial
observation, yi0.

Given the complicated nature of the dynamics and the mix of stationary
and unit processes that could prevail in a given panel, testing for cross section
dependence might seem a hopeless undertaking for a fixed T and as N →∞. As
it is well known the OLS estimates of αi and βi for the individual series, as well
as the fixed and random effects panel estimates used under slope homogeneity
(βi = β) are biased when T is small.8 The bias could be substantial for values
of βi near unity. Nevertheless, as it turns out the CD test advanced in this
paper is still valid for all values of βi including unity. The main reason lies in
the fact that despite the small sample bias of the parameter estimates, the OLS
or fixed effects residuals have exactly mean zero even for a fixed T , so long as
εit t = 0, 1, ..., T are symmetrically distributed. To see this we first write the
individual AR(1) processes in matrix notations as

Bi(y
∗
i − µiτT+1) =Diε

∗
i , (13)

where y∗i = (yi0, yi1, ..., yiT )
′, ε∗i = (εi0, εi1, ..., εiT )

′, τT+1 is a (T + 1)×1 vector
of ones, Di is a (T + 1) × (T + 1) diagonal matrix with its first element equal
to δi and the remaining elements equal to σi, and

Bi =




1 0 0 · · · 0 0
−βi 1 0 0 0
0 −βi 1 0 0
...

...
... · · ·

...
...

0 0 0 · · · 1 0
0 0 0 · · · −βi 1




.

The OLS estimates of individual intercepts and slopes can now be written as

β̂i =
ε∗′i H

′
iG

′
1MτG0Hiε

∗
i

ε∗′i H
′
iG

′
1MτG1Hiε

∗
i

,

8See, for example, Nickell (1981).
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α̂i = µi

(
1− β̂i

)
+

(
τ ′TG0Hiε

∗
i

T

)
−
(
τ ′TG1Hiε

∗
i

T

)
β̂i.

where Hi = B
−1
i Di, G0 = (0T×1, IT ), G1 = (IT ,0T×1), and 0T×1 is a T × 1

vector of zeros. Using these results we now have the following expression for the
OLS residuals, eit = yit − α̂i − β̂iyi,t−1,

eit = −
(
β̂i − βi

)
(yi,t−1 − µi) + σiεit −

(
τ ′TG0Hiε

∗
i

T

)
+

(
τ ′TG1Hiε

∗
i

T

)
β̂i.

Using (13) we also note that yi,t−1−µi = s
′
t−1Hiε

∗
i , where st−1 is a (T + 1)×1

selection vector with zero elements except for its tth element which is unity.

Therefore, eit, and hence ξit = (e′iei)
−1/2

eit will be an odd function of ε∗i ,
and we have E(ξit) = 0, t = 1,2, .., T , under the assumption that ε∗i has a
symmetric distribution. Thus, under the null hypothesis that εit and εjt are
cross sectionally independent we haveE(ρ̂ij) = 0, and the CD test advanced here
continues to hold for dynamic heterogeneous panel data models. Furthermore,
the test will be robust to structural breaks so long as the unconditional mean of
the process remains unchanged, namely if E(yit) = µi, for all t. A proof in the
case of a single break, but in the context a general AR(p) process, is provided in
Appendix B. The robustness of the CD test in the presence of multiple breaks
will be illustrated by means of Monte Carlo experiments in Section 10.

7 CD Tests for Local Cross Section Dependence

The power of the CD test can be substantially enhanced when the dependence
under the alternative hypothesis is local. A prominent example of such depen-
dence is the various spatial patterns defined on a lattice in the spatial literature.9

Local dependence is usually defined with respect to a weight matrix,W =(wij),
applied to a particular ordering of the cross section units. A well known example
is the so-called “rook” formation under which wij = 1 if the ith cross section
units is topologically adjacent to the jth cross section unit, and wij = 0, other-
wise.10 This is an example of a first-order neighbourhood dependence, and can
be readily extended to higher orders. It is often convenient to order the cross
section units by their topological position, so that the pth order neighbours of
the ith cross section unit can be defined as the i+ p and the i− p cross section
units.

To test for the presence of local dependence we shall condition on the order
of local dependence. Under the alternative hypothesis of a pth order local de-
pendence we propose the following generalization of the CD statistic defined by

9See, for example, Cliff and Ord (1973).
10Another possibility that could be more relevant for the analysis of economic and financial

panels would be to set wij = 1, if the “economic distance” between the ith and the jthcross
section units is less that a threshold, d̄, and wij = 0, otherwise.
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(7):

CD(p) =

√
2T

p(2N − p− 1)

(
p∑

s=1

N∑

i=s+1

ρ̂i,i−s

)
, (14)

=

√
2T

p(2N − p− 1)

(
p∑

s=1

N−s∑

i=1

ρ̂i,i+s

)
,

where p = 1, 2, ...,N−1. We shall refer to this test as the local CD test of order
p, or CD(p) for short. Clearly, CD(N − 1) reduces to the CD statistic. This is
not surprising as local dependence makes sense only for values of p < N − 1.

Like CD, under Assumptions 1-4 the CD(p) statistic has mean zero exactly
for any N and all T > k+1. It is also easily seen that for a given p, and for N
and T sufficiently large, CD(p)

a
∼ N (0, 1). Note, however, that CD(p) test can

be implemented only if the cross section units can be given an ordering which
remains immutable over time. In the absence of such ordering, CD = CD(N−1)
can be used which is invariant to re-ordering of the cross section units.

8 Power of the CD Tests

Naturally the power of the CD depends on the form of the alternative hypoth-
esis. Here we consider two possible specifications, namely a global cross depen-
dence alternative defined via a multi-factor model, and a local cross dependence
alternative based on a first-order spatial model.

8.1 Power under Global Cross Dependence

A general alternative specification that allows for global cross section depen-
dence in panels is the unobserved multi-factor model defined by

yit = αi + βixit + uit,

where
uit = σi (γ

′
ift + εit) , εit ∼ IID(0, 1).

The m×1 vector of unobserved common factors could be any general stationary
process and without loss of generality can be orthonornmalized to have mean
zero and the variance covariance matrix Im. Alternative assumptions regarding
the dependence of ft on εit and the regressors, xit could also be entertained.
But to simplify the analysis we assume that for each i

{
T−1

∑T
t=1 εitft = Op

(
T−1/2

)
, T−1

∑T
t=1 xitf

′
t = Op

(
T−1/2

)
,

T−1
∑T
t=1 ftf

′
t = Im +Op

(
T−1/2

)
.

(15)
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We also make the following standard assumptions about the regressors11

(
X′
iXj

T

)
= Σij +Op(T

−1/2),

(
X′
iεi

T

)
= Op(T

−1/2), (16)

where Σii is a positive definite matrix.
The extent of pair-wise cross section dependence in the panel is measured by

the factor loadings γi and γj. The null hypothesis of cross section independence
is now defined by

H0 : γi = 0,

as compared to the alternatives that

Hg : γi �= 0, for some i = 1, ...,N, (17)

Under the alternative hypothesis the true value of ρij is given by

ρij =
γ′iγj

(1 + γ′iγi)
1/2 (1 + γ′jγj

)1/2 �= 0. (18)

Consider now the CD test statistic defined by (7) and note that under Ha,
the vector of the OLS residuals is given by

ei = σi (Miεi +MiFγi) ,

where F = (f1, f2, ..., fT )
′, and as before Mi = IT −Xi (X′

iXi)
−1
X′
i. Hence,

ρ̂ij =
ε′iMiMjεj + γ

′
iF
′MiMjFγj + ε

′
iMiMjFγj + ε

′
jMjMiFγi

(ε′iMiεi + 2ε′iMiFγi + γ
′
iF
′MiFγi)

1/2 (
ε′jMjεj + 2ε′jMjFγj + γ

′
jF

′MjFγj
)1/2 .

(19)
The finite sample property of ρ̂ij under Hg is quite complicated and depends on
the magnitude of the factor loadings and the cross correlation patterns of the
regressors and the unobserved factors. It does not, however, depend on the error
variances, σ2i . However, it is possible to derive the asymptotic power function
of the CD test under the “local” alternatives:12

HgNT : γi =
1

T 1/4N1/2
δi, (20)

where

ψ = p lim
N→∞

(
2
∑N−1
i=1

∑N
j=i+1 δ

′
iδj

N(N − 1)

)
�= 0. (21)

Under (20), the numerator of (19) scaled by T−1 can be written as

T−1e′iej
σiσj

=
ε′iMiMjεj

T
+N−1T−1/2δ′i

(
F′F

T

)
δj

+N−1/2T−1/4
(
ε′iMiMjFδj + ε

′
jMjMiFδi

T

)
,

11These assumptions allow for the inclusion of lagged dependent variables amongst the
regressors and can be relaxed further to take account of non-stationary I(1) regressors.

12Here “local” is used in the mathematical statistical sense originally developed by Pitman.
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and using (10), (15), (16) it is easily seen that the denominator of (19) is equal
to 1 + op(1) (as T and N → ∞). Hence, using these results in (7), and after
some algebra we obtain

CD =

√
2

TN(N − 1)

N−1∑

i=1

N∑

j=i+1

T∑

t=1

εitεjt +

1

N

√
2

N(N − 1)

N−1∑

i=1

N∑

j=i+1

δ′i

(
F′F

T

)
δj +

N−1/2T−1/4

√
2

N(N − 1)

N−1∑

i=1

N∑

j=i+1

(
ε′iMiMjFδj + ε

′
jMjMiFδi√

T

)
+ op(1).

The first term represents sums of iid(0,1) random variables and tend to N(0, 1)
as both N and T tend to infinity. The second term tends to ψ, the non-centrality
parameter defined by (21). Under the assumption that εit and δj are distributed
independently for all i, j, and t, the third term tends to zero in probability as
N and T tend to infinity. Hence, under the Pitman local alternatives, Hg,NT ,
and the assumptions (15) and (16) we have

CD |Hg,NT
(N,T )
=⇒ N (ψ, 1) .

This result does not depend on the order by which N and T tend to infinity. It
also establishes the consistency of the CD test at the rate of N

√
T , under the

multi-factor alternatives, so long as ψ �= 0. This condition is clearly satisfied
under the homogeneous alternative, δj = δ �= 0, which yields ψ = δ′δ > 0.
Under heterogeneous alternatives it is possible for ψ to be zero, even if some or
all of the individual factor loadings are non-zero under fixed alternatives. This
can arise if γi are independently distributed with mean zeros and finite second-
order moments. In such a case the CD test will no longer be consistent. This
is clearly a limitation (not shared by the LM test), but its practical significance
seems rather doubtful. As it is shown in Pesaran (2002), under E(γi)= 0, the
cross section averages, ȳt and x̄t, defined by

ȳt = N−1
N∑

i=1

yit, and x̄t = N−1
N∑

i=1

xit,

will be perfectly correlated for sufficiently large N , an outcome rarely encoun-
tered in the analysis of stationary aggregate time series.

8.2 Power Under Local Cross Dependence

Similar power analysis can also be carried under local cross section dependence
alternatives discussed in Section 7. Here we focus on the following first-order
neighborhood alternative

uit = λ (biui−1,t + aiui+1,t) + σiεit, for i = 2, ...,N − 1, (22)
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with end points set at u1t = a1u2t + ε1t and uNt = bNuN−1,t + εNt. Higher
order spatial models can also be similarly analysed. Writing all the N errors in
matrix notations for each period we have

u
◦t = (IN − λW)−1Σ1/2ε◦t, (23)

where u
◦t = (u1t, ..., uNt)

′, ε◦t = (ε1t, ..., εNt)
′, Σ is an N ×N diagonal matrix

with σ2i on its ith diagonal, andW is the spatial weight matrix13

W =




0 a1 0 0 · · · · · · 0

b2 0 a2 0
...

0 b3 0 a3
. . .

...
...

. . .
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0
...

. . . bN−1 0 aN−1
0 · · · · · · · · · 0 bN 0




(N ×N) ,

where 0 < ai, bi <∞. The correlation matrix for this model is given by

R= (ρij) = Σ
−1/2 (IN − λW)−1Σ (IN − λW′)

−1
Σ−1/2,

which simplifies to

R =
[
IN − λ

(
G+G′)+ λ2G′G

]−1
,

where
G = Σ−1/2WΣ1/2.

For this alternative the CD test has power only with respect to T . To see
this consider the alternatives

HℓT : λ =
δ√
T
,

and note that R can be written as

R = IN +
δ√
T

(
G+G′)+O

(
T−1
)
. (24)

Hence, using (7), for a fixed N and as T →∞, we have

p lim
T→∞

(
CD√
T
|HℓT

)
=

(
2(N − 1)

N

)1/2
ϕN−1,

13 In the spatial literature it is typically assumed that ai = bi = 0.5 and W is known as the
“rook” formation.
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where (noting that 0 < ai, bi, σi <∞)

ϕN−1 =

∑N
i=2

[
ai−1

(
σi
σi−1

)
+ bi

(
σi−1
σi

)]

N − 1 > 0.

Therefore, the CD test has power against spatial dependence only as T → ∞,
and its power is unaffected along the cross section dimension.

This problem is circumvented by making use of the spatial CD(p) test sta-
tistic defined by (14), for a fixed order p, as N → ∞. For example, for p = 1
we have

CD(1) =

√
T

N − 1

(
N−1∑

i=1

ρ̂i,i+1

)
, (25)

and using (24) under the Pitman alternatives

HℓTN : λ =
δ√
TN

,

it is easily seen that

p lim
T,N→∞

(
CD(1)√

NT
|HℓTN

)
= δϕ, (26)

where

ϕ = lim
N→∞





∑N
i=2

[
ai−1

(
σi
σi−1

)
+ bi

(
σi−1
σi

)]

N − 1



 > 0. (27)

It is also easily seen that

CD(1) |HℓTN
(N,T )
=⇒ N (δϕ, 1) . (28)

Once again the outcome does not depend on the order by which N and T are
allowed to tend to infinity. To establish this result we first note that for each i
and t, under HℓTN and using (23) we have14

uit = σiεit +
δ√
NT

(biσi−1εi−1,t + aiσi+1εi+1,t) +Op

(
1

NT

)
. (29)

Now following similar lines of reasoning as before, it is possible to show that

CD(1) =

√
1

T (N − 1)

(
N−1∑

i=1

T∑

t=1

(
uit
σi

)(
ui+1,t
σi+1

))
+Op

(
1√
NT

)
. (30)

Also using (29) we have
(
uit
σi

)(
ui+1,t
σi+1

)
= εitεi+1,t +

δ√
NT

(
bi+1σi
σi+1

ε2it +
aiσi+1
σi

ε2i+1,t

)

δ√
NT

(
biσi−1
σi

εi+1,tεi−1,t +
ai+1σi+2
σi+1

εitεi+2,t

)
+Op

(
1

NT

)
.

14Note that under HℓTN , u
◦t =

(
IN + δ√

NT
W

)
Σ
1/2ε◦t +Op

(
1

NT

)
.
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Substituting this result in (30) and recalling that εit are iid(0, 1), we have the
desired result in (28).

To summarize, the CD test, defined by (7), is suitable for unordered data
under global alternatives such as the multi-factor residual models, whilst the
CD(p) test defined by (14), with p fixed as N → ∞, is appropriate for the
analysis of spatial dependence where the cross section units can be ordered.
Under suitably defined Pitman local alternatives the power functions of CD
and CD(1) tests are shown to be asymptotically normally distributed, with the
power function of the CD(1) test being symmetric with respect to positive and
negative departures from the null hypothesis, λ = 0.15 It is clearly desirable
also to derive the power function of the CD(p) test under pth order spatial
alternatives, but this is beyond the scope of the present paper.

9 CD Tests in the Case of Unbalanced Panels

The CD(p) tests can be readily extended to unbalanced panels, a situation that
frequently arises in practice. Denote by Ti, the set of dates over which time series
observations on yit and xit are available for the ith individual, and the number
of the elements in the set by #Ti. For each i compute the OLS residuals based
on full set of time series observations for that individual. As before, denote
these residuals by eit, for t ∈ Ti, and compute the pair-wise correlations of eit
and ejt using the common set of data points in Ti ∩ Tj. Since, the estimated
residuals need not sum to zero over the common sample period ρij could be
estimated by

ρ̂ij =

∑
t∈Ti∩Tj (eit − ēi) (ejt − ēj)

[∑
t∈Ti∩Tj (eit − ēi)

2
]1/2 [∑

t∈Ti∩Tj (ejt − ēj)
2
]1/2 ,

where

ēi =

∑
t∈Ti∩Tj eit

#(Ti ∩ Tj)
.

The (global) CD statistic for the unbalanced panel, for example, is given by

CD =

√
2

N(N − 1)



N−1∑

i=1

N∑

j=i+1

√
Tij ρ̂ij


 , (31)

where Tij = #(Ti ∩ Tj) Under the null hypothesis CD ∼ N(0, 1) for Ti > k+1,
Tij > 3, and sufficiently large N . Similar adjustments can also be made to the
CD(p) test defined by (14).

15The asymptotic power function of the CD test is also symmetric under homogeneous
alternatives, γi = γ .
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10 Small Sample Properties of LM and CDTests

In comparing the small sample properties of the LM and the CD tests we carried
out a large number of Monte Carlo experiments, both for models with strictly
exogenous regressors and for stationary and unit root dynamic panels with and
without parameter heterogeneity and structural breaks. In all cases the CD test
has size very close to its nominal value and exhibit increasing power with N and
T , although as predicted by the theory the power increases much faster with
N than with T . In what follows we shall focus on the dynamic experiments as
they might be thought more likely to be subject to the familiar small T bias.
Results from the other experiments are available from the author on request.

10.1 Monte Carlo Setup

The dynamic experiments were based on the following data generating process:

yit = µi (1− βi) + βiyi,t−1 + uit (32)

uit = γift + εit, i = 1, 2, ...,N ; t = 1, 2, ..., T.

The idiosyncratic errors, εit, were generated under two different schemes. (i)
Normal errors: εit ∼ iidN(0, 1), and (ii) Chi-squared errors, εit ∼ iid χ2(1). We
also tried the Student t distribution with 4 degrees of freedom, but the results
were indistinguishable from the ones based on normal errors. The use of χ2(1)
errors is intended to check the robustness of the CD test to extreme departures
from symmetry of error distributions required for the test to be valid in small
samples. For the slope coefficients, βi, we experimented with homogeneous as
well as heterogeneous values. The results turned out to be very similar. Here
we focus on the heterogeneous slope experiments where βi ∼ iidU(0, 1). The
fixed effects, µi, were drawn as εi0 + ηi, with ηi ∼ iidN(0, 1), thus allowing for
the possibility of correlations between fixed effects and the initial values, yi0.

Under the null hypothesis we have γi = 0. Under the alternative hypothesis
we experimented with different degrees of cross section error correlations as set
out below

ft ∼ iidN(0, 1)

Low : γi ∼ iidU (0.1, 0.3) ,

Moderate : γi ∼ iidU (0.2, 0.4) ,

Sizeable : γi ∼ iidU (0.3, 0.5) .

It turned out the CD test has ample power even for the low cross-dependence
scenario, and therefore we shall be reporting power results only under γi ∼
iidU (0.1, 0.3). The average pair-wise correlation for this scenario is

q = E


 γiγj√

(1 + γ2i )(1 + γ2j)


 =

[
E

(
γi√
1 + γ2i

)]2
= 0.038.
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We also considered the alternatives γi ∼ iidU (−0.2, 0.6), where γi is allowed to
cover negative as well as positive values. The value of q for this case is 0.0324.

The parameters γi, βi and ηi are drawn independently of εit once for each
experiment, and then fixed throughout the replications. εit and the time-specific
common effect, ft, are newly drawn for each replication, independently of each
other. All experiments are carried out for N and T = 5, 10, 20, 30, 50, 100. The
LM and the CD statistics, defined by (6) and (7), are computed using the OLS
residuals from the individual regressions of yit on an intercept and yi,t−1. The
nominal size of the tests is set at the 5 per cent significance level. The number
of replications is 1,000.

10.2 Results

Table 1a reports the size of the LM and the CD tests for the normal errors,
with the associated powers under the two alternatives, γi ∼ iidU (0.1, 0.3) and
γi ∼ iidU (−0.2, 0.6), given in Table 1b. Perhaps not surprisingly, the LM test
is not at all effective at controlling the size of the test, except for small values of
N relative to T . It tends to over-reject particularly for N ≥ T , with the extent
of over-rejection being rather severe for values of T in the range of 20 − 30.
By contrast the CD test has the correct size for all values of N and T , (even
as small as 5), and as predicted by theory its power tends to rise with N and
T , quite rapidly. The power of the CD test tends to be slightly higher under
the positive alternatives γi ∼ iidU (0.1,0.3), as compared to the factor loadings
that cover both positive and negative values. We also carried out a number of
experiments with N relatively large (100, 200, and 300) and obtained sizes very
close to 5% for the CD test.16 Furthermore, we obtained very similar results
using AR(2) specifications, which are available from the author on request.

The results for the χ2(1) errors are summarized in Table 2, and show the CD
test to be remarkably robust to departures from symmetric error distributions,
unless T is very small, around 5 or less in the current set of experiments.

As pointed out in Sections 5 and 6, another important of feature of the CD
is its robustness to structural change. To evaluate the small sample properties
of the test in the presence of breaks in the slope parameters and/or in the error
variances we employed two different DGPs: one with a single break, another
with breaks in every period! Under the former we generated yit as

yit − µi = βit (yit−1 − µi) + uit, uit = γift + σitεit,

with µi ∼ iidN (1, 1), βit = βt = 0.6 for t = −50, ..., T/2, βt = 0.8 for t =
T/2, ..., T ; σit = σt =

√
1.5 for t = −50, ..., T/2, σt = 1 for t = T/2, ..., T ,

and εit ∼ iidN (0, 1). This postulates a single break in slopes and the errors
variances right in the middle of the sample. Under the second DGP the slopes
and error variances were generated to vary randomly every time and across
individuals, namely we set βit ∼ iidU (0, 1) for t = 1, ..., T , i = 1, ...,N ; σ2it ∼

16The size and power of the CD test for T = 5 and N = 1000 turned out to be 0.055 and
0.990, respectively. The corresponding values for the LM test were 1.00 and 1.00!
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iidχ2(2)/2 for t = −50, ..., 0, 1,2, ..., T , i = 1, ...,N , and discarded the first 49
observations. Size and power of LM and CD tests for these two DGPs are
summarized in Tables 3 and 4. As can be seen the CD test continues to perform
remarkably well. It has the correct size under both DGP’s and for all sample
sizes. The LM test continues to over-reject, now slightly more as compared to
the no-break case. The power of the CD test is very little affected by a single
break, although there is a noticeable improvement in power of the CD test under
the multiple break scenario.

Table 5 provides the results for the pure unit root case where βit is set to
unity for all i and t, and σ2it ∼ iidχ2(2)/2, as before. As can be seen the test
sizes are hardly affected by the presence of the unit root, which is in line with our
theoretical results. The power of the CD test is marginally better, however. In
contrast, the LM test continues to show substantial over-rejections particularly
for N ≥ T .

Finally, we considered the size and power of the first-order spatial CD test,
based on the CD(1) statistic given by (25). For this purpose we used the same
DGP as in Table 1, under the null hypothesis of cross section independence, but
for the analysis of the power of the CD(1) test used the spatial alternative given
by

uit = λ (0.5ui−1,t + 0.5ui+1,t) + σiεit, for i = 2, ...,N − 1,
with the end points set at u1t = u2t + ε1t and uNt = uN−1,t + εNt. Size and
power of the CD(1) test, along with the LM test for comparison, are summarized
in Tables 6a and 6b, respectively. The CD(1) test tends to have the correct size,
except for T = 5, where the test is slightly over-sized. The power of the CD(1)
test is computed under λ = ±0.1. These are the smallest values considered for
λ by Baltagi, Song and Koh (2003) in their experiments. Under both of these
alternatives, the CD(1) test exhibit reasonable power and rises with

√
TN , as

predicted by the theory. The power is very similar for positive and negative
values of λ.

The LM test continues to be substantially over-sized unless N < T . For
such sample sizes, however, the CD(1) test that exploits the spatial information
exhibits much better power than the LM test. The power of the CD(1) test also
seems to be quite close to the ones reported by Baltagi, Song and Koh (2003) in
the context of a panel data model with homogeneous slopes and non-stochastic
regressors; although a formal comparison is beyond the scope of the present
paper.

Overall, the Monte Carlo experiments confirm our theoretical findings, and
show that the proposed test has good small sample properties, even for small T
and large N panels.
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11 Cross Section Dependence in Per Capita Out-
put Innovations Within and Across Regions

One of the maintained assumptions of the empirical growth literature has been
the cross section independence of innovations in per capita output, although it
has been recognized by many researchers in the field that such an assumption
might not be justified.17 The CD test is eminently suited to shedding some
empirical light on this issue. We shall make use of per capita output data
(Purchasing Power Parity adjusted Real GDP per capita in constant prices)
from the latest Penn World Tables, Version 6.1.18 We computed CD statistics
both for countries within a given region, as well as across countries from different
regions, over the periods 1971-2000 and 1981-2000. For each country, i, we first
computed OLS residuals from regressions of its log per capita output (yit) on
an intercept, a linear trend, yi,t−1 and yi,t−2. Using these residuals we then
computed the various CD statistics summarized in Table A.

Table A

Cross Section Dependence of Output Innovations

Within Country Groupings

CD Statistics
Country Groups 1971-2000 1981-2000

Europe 19.81 13.80
North and Latin America 6.30 0.94
Asia and Australia 6.75 4.71
Middle East and North Africa (MENA) 1.55 -0.81
Rest of the World 5.05 6.05

The World 16.67 7.54

Notes The CD statistic is computed for various groups of countries based on the OLS

residuals from the AR(2) regressions in yit (log per capita output) with a linear

trend. For the membership of different country groupings see Table 7.

The hypothesis that output innovations are cross sectionally independent is
rejected for all regions except for the MENA (Middle East and North Africa)
countries for both periods. The results also show a significant weakening of the
degree of cross section dependence in the case of output innovations in North
and Latin America over the more recent period of 1981-2000. The highest degree
of cross section dependence is found to be across the countries in Europe.

17See, for example, Barro (1997) and Lee, Pesaran and Smith (1997). The latter recognizes
the potential importance of cross section error dependence in panel output regressions but
does not provide evidence of its statistical significance.

18The PWT code for the series is RGDPL, and is constructed in international dollars, with
1996 as the reference year. For further details see Heston, Summers and Aten (2002).
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The CD test can also be applied to output innovations across regions. For
example, correlations of the innovations for each country in Europe can be
computed with the output innovations of the countries in other regions. Table
B summarizes the results for a balanced panel of countries over the period
1971-2000. Perhaps not surprisingly, the within region dependence tends to be
higher than cross region dependence, although there are important exceptions
particularly the MENA region. There are nevertheless significant evidence of
across as well as within region dependence.

Table B

Cross Dependence of Output Innovations Across Country Groups

Country Groups Europe America Asia and Australia MENA Rest of World

Europe 19.81 6.68 2.12 1.72 6.05
America 6.68 6.30 2.57 3.51 5.78

Asia and Australia 2.12 2.57 6.75 1.09 -0.40
MENA 1.72 3.51 1.09 1.55 1.95

Rest of World 6.05 5.78 -0.40 1.95 5.05

The CD statistics are computed over the period 1971-2000. The diagonal elements

refer to the within country CD statistics and are reproduced here from Table A for

convenience. The off diagonal elements are the CD statistics computed based on

pair-wise correlation of the innovations across regions.

Finally, we computed the CD statistic for testing the dependence of UK’s
output innovations on output innovations of countries in a number of different
regions over the 1950-2000 period. All countries with at least 10 years of data
over the 1950-2000 period were included in this exercise, thus providing an
unbalanced panel with Tij ranging from 10 to 40. Using (31), we obtained the
following CD statistics.

Country/Region Test statistic
Europe 6.51
USA and Canada 4.56
Latin America -0.14
Asia and Australia 2.96
Rest of the World 1.92

These results show that UK output innovations are significantly related to
output innovations of countries in Europe, USA and Canada, and Asia and
Australia, in that order. The hypothesis that UK output innovations are uncor-
related with the countries in Latin America is not rejected, whilst it is rejected
vis-a-vis the countries in the rest of the world at the 10% level, but not at the 5%
level. The results seem plausible and reflects the closer links that UK economy
has been having with the countries in Europe than with the USA and Canada.
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12 Concluding Remarks

In this paper we have developed simple, yet general tests of cross section de-
pendence of errors in linear panel data models which is applicable in a variety
of contexts, including dynamic heterogeneous panels with (possibly) multiple
breaks and unit roots, as well as for spatial panels. The tests are based on sim-
ple averages of pair-wise correlation coefficients of OLS residuals from individual
regressions and is shown to be valid under fairly general conditions even when
T is small and N large. The tests can be applied to balanced and unbalanced
panels and is shown to have a standard normal distribution assuming that the
errors are symmetrically distributed. The extensive Monte Carlo evidence re-
ported in the paper shows that the proposed CD and its spatial version, CD(p),
tests have good small sample properties. The Monte Carlo evidence also doc-
uments the pitfalls of using the LM test for large N panels, unless T is much
larger than N .

The tests could be particularly useful in the case of panels with small T
and large N where hitherto there is little or no empirical evidence provided
in support of the routinely made assumption that the errors are cross section-
ally independent. As an illustration, using output series from the Penn World
Table, we have investigated the extent to which output innovations are cross
sectionally independent within and across various regions. The results clearly
show significant evidence of cross section dependence in output innovations, that
ought to be taken into account in cross country growth analysis. Appropriate
estimation and inference techniques for the analysis of panel data models sub-
ject to cross section dependence is an important subject in its own right and
has been discussed, for example, by Ahn, Lee and Schmidt, (2001) and Pesaran
(2002). Panel unit root tests are also being developed that allow for cross section
dependence.

The approach developed in this paper might also prove useful for the analysis
of cross section dependence in non-linear panel data models such Probit and
Logit specifications. But this is an area for further research and falls outside
the scope of the present paper. It would also be of interest to compare the
small sample properties of the spatial versions of the CD test proposed in this
paper to the spatial correlation tests developed by Anselin (1988), and recently
extended by Baltagi, Song and Koh (2003) to panels with random effects.
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Table 1(a)
Size of LM and CD Tests

(Heterogenous AR(1) with Normal errors)

T/N 5 10 20 30 50 100
Size

LM test
5 0.094 0.289 0.831 1.000 1.000 1.000
10 0.065 0.151 0.371 0.666 0.982 1.000
20 0.043 0.079 0.136 0.217 0.481 0.966
30 0.053 0.065 0.108 0.152 0.255 0.667
50 0.043 0.054 0.063 0.087 0.124 0.285
100 0.056 0.052 0.055 0.083 0.089 0.142

CD test
5 0.082 0.048 0.070 0.057 0.059 0.059
10 0.052 0.064 0.049 0.053 0.061 0.052
20 0.054 0.055 0.063 0.056 0.066 0.055
30 0.042 0.055 0.053 0.041 0.052 0.048
50 0.047 0.064 0.044 0.047 0.056 0.053
100 0.064 0.072 0.053 0.057 0.045 0.050

Notes: All experiments are based on 1,000 replications. The data generating
process (DGP) is specified as yit = µi (1− βi) + βiyi,t−1 + uit, uit = γift + εit.
where βi ∼ iidU (0, 1), µi ∼ εi0 + ηi, ηi ∼ iidN (1, 2), βi ∼ iidU (0, 1), and
εit ∼ iidN (0, 1) . The cross dependence (CD) or correlation test statistic is

defined as CD =
√

2T
N(N−1)

∑N−1
i=1

∑N
j=i+1 ρ̂ij, where ρ̂ij is the pair-wise simple

correlation coefficient between eit and ejt for all i and i �= j. The Lagrange

Multiplier (LM) test is defined as CDLM = T
∑N−1
i=1

∑N
j=i+1 ρ̂

2
ij. Under the

null hypothesis of zero cross dependence (γi = 0), the CD test is carried out at
the 5% 2-sided nominal significant level; the null is rejected if |CD| ≥ 1.96. For
the LM test, the null is rejected when the test statistic is larger than the 1-sided
5% critical of the Chi-squared distribution with N(N−1)/2 degrees of freedom.
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Table 1(b)
Power of LM and CD Tests

(Heterogenous AR(1) with Normal errors)

T/N 5 10 20 30 50 100
Power

γi ∼ iidU (0.1, 0.3)
LM test

5 0.096 0.287 0.861 1.000 1.000 1.000
10 0.075 0.153 0.411 0.720 0.987 1.000
20 0.064 0.108 0.179 0.386 0.709 0.989
30 0.065 0.109 0.171 0.348 0.598 0.952
50 0.065 0.113 0.199 0.457 0.698 0.974
100 0.089 0.237 0.372 0.775 0.937 1.000

CD test
5 0.115 0.117 0.218 0.292 0.407 0.694
10 0.090 0.177 0.295 0.494 0.697 0.928
20 0.113 0.248 0.464 0.761 0.932 0.995
30 0.128 0.312 0.584 0.889 0.977 1.000
50 0.140 0.431 0.793 0.975 1.000 1.000
100 0.218 0.694 0.957 1.000 1.000 1.000

Power
γi ∼ iidU (−0.2, 0.6)

LM test
5 0.085 0.304 0.880 1.000 1.000 1.000
10 0.087 0.160 0.433 0.700 0.982 1.000
20 0.089 0.164 0.366 0.568 0.883 0.998
30 0.109 0.225 0.487 0.636 0.926 0.997
50 0.184 0.341 0.738 0.882 0.989 1.000
100 0.371 0.694 0.986 0.999 1.000 1.000

CD test
5 0.094 0.138 0.152 0.251 0.502 0.556
10 0.098 0.177 0.214 0.409 0.769 0.813
20 0.091 0.253 0.321 0.617 0.957 0.969
30 0.115 0.321 0.392 0.802 0.995 0.998
50 0.143 0.468 0.513 0.941 1.000 1.000
100 0.228 0.693 0.837 0.998 1.000 1.000

Notes: The data generating process is the same as that specified at foot of
Table 1a, except for γi which is specified in this Table.
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Table 2
Size and Power of LM and CD Tests

(Heterogenous AR(1) with χ2 (1) errors)

T/N 5 10 20 30 50 100
Size

LM test
5 0.100 0.280 0.837 1.000 1.000 1.000
10 0.064 0.147 0.350 0.607 0.979 1.000
20 0.070 0.112 0.151 0.225 0.443 0.940
30 0.070 0.083 0.116 0.163 0.315 0.626
50 0.076 0.088 0.119 0.125 0.175 0.330
100 0.072 0.079 0.100 0.112 0.118 0.168

CD test
5 0.078 0.072 0.084 0.072 0.067 0.080
10 0.059 0.063 0.047 0.038 0.037 0.051
20 0.048 0.051 0.047 0.053 0.041 0.046
30 0.042 0.049 0.055 0.041 0.059 0.041
50 0.047 0.060 0.053 0.050 0.043 0.060
100 0.069 0.056 0.053 0.059 0.047 0.053

Power
LM test

5 0.125 0.305 0.867 1.000 1.000 1.000
10 0.097 0.187 0.448 0.776 0.991 1.000
20 0.093 0.149 0.303 0.524 0.774 0.998
30 0.113 0.158 0.258 0.525 0.740 0.984
50 0.118 0.197 0.299 0.594 0.799 0.990
100 0.129 0.280 0.452 0.820 0.956 0.999

CD test
5 0.162 0.208 0.463 0.536 0.710 0.888
10 0.123 0.309 0.483 0.714 0.891 0.983
20 0.131 0.330 0.625 0.880 0.978 0.999
30 0.162 0.405 0.717 0.951 0.999 1.000
50 0.193 0.520 0.823 0.987 1.000 1.000
100 0.222 0.718 0.972 0.999 1.000 1.000

Notes: The data generating process is the same as that described at the
foot of Table 1a, except for εit ∼ iidχ2 (1). Power is calculated under γi ∼
iidU (0.1, 0.3).
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Table 3
Size and Power of LM and CD Tests
(DGP Subject to a Single Break)

T/N 5 10 20 30 50 100
Size

LM test
5 0.109 0.279 0.865 1.000 1.000 1.000
10 0.070 0.152 0.452 0.781 1.000 1.000
20 0.061 0.100 0.227 0.399 0.834 1.000
30 0.069 0.099 0.180 0.325 0.660 0.995
50 0.064 0.088 0.161 0.229 0.556 0.986
100 0.051 0.081 0.149 0.219 0.498 0.968

CD test
5 0.068 0.065 0.056 0.068 0.067 0.061
10 0.058 0.069 0.066 0.062 0.057 0.046
20 0.048 0.049 0.048 0.058 0.062 0.047
30 0.059 0.064 0.046 0.059 0.040 0.048
50 0.066 0.057 0.061 0.053 0.052 0.043
100 0.054 0.056 0.050 0.047 0.051 0.059

Power
LM test

5 0.119 0.285 0.889 1.000 1.000 1.000
10 0.080 0.150 0.475 0.801 0.999 1.000
20 0.066 0.101 0.250 0.500 0.878 1.000
30 0.078 0.109 0.253 0.430 0.804 0.999
50 0.078 0.151 0.264 0.482 0.817 0.999
100 0.098 0.190 0.434 0.656 0.959 1.000

CD test
5 0.101 0.118 0.198 0.242 0.342 0.600
10 0.106 0.132 0.275 0.399 0.592 0.881
20 0.088 0.191 0.408 0.615 0.841 0.990
30 0.101 0.231 0.515 0.749 0.956 1.000
50 0.137 0.317 0.707 0.899 0.997 1.000
100 0.198 0.472 0.918 0.995 1.000 1.000

Notes: The data generating process used is yit − µi = βit (yit−1 − µi) + uit,
uit = γift + σitεit, where µi ∼ iidN (1, 1), βit = βt = 0.6 for t = −50, ..., T/2,
βt = 0.8 for t = T/2, ..., T ; σit = σt =

√
1.5 for t = −50, ..., T/2, σt = 1 for

t = T/2, ..., T , and εit ∼ iidN (0, 1) . First 49 observations are discarded. Power
is calculated under γi ∼ iidU (0.1, 0.3). See also the notes to Table 1a.
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Table 4
Size and Power of LM and CD Tests

(Multiple Structural Break: βit ∼ U(0, 1), σit ∼
√

χ2(2)/2)

T/N 5 10 20 30 50 100
Size

LM test
5 0.083 0.231 0.855 1.000 1.000 1.000
10 0.071 0.078 0.270 0.630 0.968 1.000
20 0.060 0.071 0.104 0.124 0.395 0.921
30 0.053 0.052 0.100 0.083 0.149 0.683
50 0.054 0.047 0.064 0.066 0.083 0.252
100 0.044 0.052 0.060 0.057 0.067 0.070

CD test
5 0.078 0.057 0.064 0.062 0.059 0.066
10 0.067 0.044 0.044 0.064 0.060 0.060
20 0.049 0.063 0.057 0.050 0.062 0.062
30 0.056 0.052 0.056 0.055 0.055 0.049
50 0.047 0.052 0.042 0.033 0.056 0.064
100 0.046 0.043 0.049 0.039 0.052 0.047

Power
LM test

5 0.117 0.229 0.855 1.000 1.000 1.000
10 0.063 0.095 0.320 0.677 0.981 1.000
20 0.054 0.098 0.154 0.257 0.616 0.985
30 0.070 0.090 0.171 0.197 0.454 0.955
50 0.072 0.111 0.148 0.250 0.528 0.928
100 0.087 0.146 0.341 0.514 0.820 0.997

CD test
5 0.121 0.105 0.235 0.337 0.498 0.750
10 0.112 0.169 0.356 0.489 0.692 0.925
20 0.079 0.231 0.445 0.685 0.917 0.991
30 0.122 0.281 0.634 0.812 0.984 1.000
50 0.156 0.421 0.795 0.943 0.999 1.000
100 0.198 0.584 0.934 0.999 1.000 1.000

Notes: The data generating process is the same as that specified at the foot
of Table 1a except βit = 0.5 for t = −50, ..., 0 and all i, βit ∼ iidU (0, 1) for
t = 1, ..., T , i = 1, ...,N ; σ2it ∼ iidχ2(2)/2 for t = −50, ..., T , i = 1, ...,N . Power
is calculated under γi ∼ iidU (0.1, 0.3).
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Table 5
Size and Power of LM and CD Tests(

The Unit Root Case: βit = 1, and σit ∼
√

χ2(2)/2
)

T/N 5 10 20 30 50 100
Size

LM test
5 0.064 0.197 0.766 1.000 1.000 1.000
10 0.045 0.091 0.256 0.560 0.943 1.000
20 0.043 0.080 0.118 0.163 0.466 0.952
30 0.071 0.073 0.071 0.118 0.224 0.768
50 0.062 0.056 0.066 0.081 0.149 0.374
100 0.042 0.050 0.055 0.059 0.076 0.109

CD test
5 0.060 0.063 0.069 0.074 0.069 0.052
10 0.056 0.051 0.050 0.056 0.069 0.048
20 0.059 0.054 0.048 0.067 0.049 0.049
30 0.070 0.057 0.048 0.041 0.043 0.041
50 0.073 0.049 0.049 0.056 0.058 0.059
100 0.057 0.043 0.037 0.053 0.042 0.046

Power
LM test

5 0.059 0.200 0.787 1.000 1.000 1.000
10 0.057 0.087 0.272 0.577 0.965 1.000
20 0.052 0.104 0.162 0.309 0.712 0.989
30 0.082 0.110 0.175 0.254 0.580 0.982
50 0.095 0.108 0.196 0.344 0.694 0.975
100 0.086 0.171 0.385 0.619 0.883 0.998

CD test
5 0.080 0.126 0.268 0.353 0.503 0.797
10 0.098 0.191 0.344 0.512 0.743 0.943
20 0.117 0.250 0.506 0.739 0.925 0.999
30 0.152 0.332 0.675 0.819 0.978 0.999
50 0.159 0.441 0.807 0.959 0.999 1.000
100 0.238 0.653 0.973 0.997 1.000 1.000

Notes: The data generating process is the same as that specified at the foot
of Table 4, except that βit = β = 1 for all i and t. Power is calculated under
γi ∼ iidU (0.1, 0.3).

29



Table 6a
Size of LM and the Spatial First-Order, CD(1), Tests
(Heterogenous AR(1) with spatially correlated errors)

T/N 5 10 20 30 50 100
SIZE
LM test

5 0.094 0.310 0.846 1.000 1.000 1.000
10 0.068 0.105 0.256 0.547 0.964 1.000
20 0.062 0.072 0.095 0.167 0.366 0.915
30 0.044 0.059 0.058 0.099 0.176 0.527
50 0.048 0.058 0.063 0.065 0.071 0.211
100 0.058 0.050 0.066 0.058 0.058 0.079

CD(1) test
5 0.073 0.095 0.077 0.071 0.075 0.079
10 0.075 0.069 0.071 0.055 0.080 0.063
20 0.057 0.064 0.055 0.051 0.062 0.072
30 0.048 0.062 0.060 0.050 0.052 0.062
50 0.045 0.040 0.072 0.053 0.059 0.049
100 0.037 0.046 0.043 0.052 0.050 0.052

Notes: The CD(1) test is based on CD(1) =
√

T
N−1

∑N
i=2 ρ̂i,i−1, which is

distributed as N(0, 1). The data generating process is the same as the one used
under the null hypothesis of cross section independence described at the foot of
Table 1a.
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Table 6b
Power of LM and the Spatial First-Order, CD(1), Tests
(Heterogenous AR(1) with spatially correlated errors)

T/N 5 10 20 30 50 100
Power: λ = 0.1
LM test

5 0.096 0.312 0.850 1.000 1.000 1.000
10 0.084 0.127 0.281 0.570 0.964 1.000
20 0.095 0.101 0.138 0.201 0.419 0.938
30 0.093 0.094 0.101 0.152 0.258 0.614
50 0.157 0.135 0.137 0.125 0.171 0.374
100 0.326 0.239 0.256 0.218 0.246 0.332

CD(1) test
5 0.108 0.132 0.140 0.160 0.221 0.362
10 0.132 0.164 0.244 0.323 0.478 0.757
20 0.171 0.294 0.475 0.603 0.838 0.984
30 0.233 0.381 0.653 0.817 0.966 0.998
50 0.386 0.621 0.876 0.972 1.000 1.000
100 0.675 0.908 0.996 1.000 1.000 1.000

Power: λ = −0.1
LM test

5 0.099 0.318 0.846 1.000 1.000 1.000
10 0.078 0.120 0.279 0.582 0.970 1.000
20 0.107 0.096 0.131 0.208 0.413 0.936
30 0.102 0.093 0.122 0.148 0.255 0.620
50 0.159 0.123 0.139 0.135 0.168 0.381
100 0.340 0.248 0.249 0.245 0.249 0.342

CD(1) test
5 0.091 0.133 0.146 0.178 0.260 0.384
10 0.116 0.178 0.244 0.335 0.487 0.742
20 0.174 0.276 0.475 0.634 0.825 0.977
30 0.279 0.438 0.666 0.818 0.957 0.999
50 0.413 0.630 0.876 0.967 0.998 1.000
100 0.695 0.911 0.999 1.000 1.000 1.000

Notes: Power is calculated under uit = λ (0.5ui−1,t + 0.5ui+1,t) + σiεit for
i = 2, ...,N − 1, with the end points u1t = u2t + ε1t and uNt = uN−1,t + εNt.
See also the notes to Tables 1a and 6a.
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Table 7
Details of Country Groups

Country Groups Member Countries
Sample period: 1971-2000

Europe Austria, Belgium, Denmark, Finland, France, Germany, Greece,
Ireland, Italy, Luxembourg, Netherlands, Norway, Portugal,
Spain, Sweden, Switzerland and United Kingdom

North America United States and Canada
Latin America Argentina, Bolivia, Brazil, Barbados, Chile, Colombia, Costa Rica

Dominican Republic, Ecudor, Guatemala, Honduras, Jamaica,
Mexico, Nicaragua, Panama, Peru, Paraguay, El Salvador,
Trinidad & Tobago, Uruguay and Venezuela.

Asia and Australia Australia, Bangladesh, China, Hong Kong, Indonesia, India,
Japan, Korea, Sri Lanka, Malaysia, Nepal, New Zealand,
Pakistan, Philippines and Thailand.

Middle East and Algeria, Egypt, Iran, Israel, Jordan, Morocco, Syria, Tunisia
North Africa and Turkey
(MENA)
Rest of the World Burundi, Benin, Burkina Faso, Chad, Cote d’Ivoire, Cameroon,

Congo, Comoros, Cape Verde, Gabon, Gambia, Ghana, Guinea,
Guinea-Bissau, Equatorial Guinea, Ethiopia, Hungary, Iceland,
Kenya, Lesotho, Madagascar, Mali, Mauritius, Mozambique,
Malawi, Niger, Nigeria, Romania, Rwanda, Senegal, Seychelles,
South Africa, Tanzania, Togo, Uganda, Zambia and Zimbabwe.

Sample period: 1981-2000
Countries to be added to the lists given above:
Latin America Antigua, Belize, Grenada, St.Kitts&Nevis, St.Lucia and

St.Vincent & Grenedine.
Rest of the World Poland.
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A Properties of Residuals in Regression Models
Subject to Structural Breaks

Abstracting from the cross section index i, the regression model (11) with a
single break can be written as

yt =

{
µy + β

′
1(xt − µx) + σ1εt, t = 1,2, ..., T1,

µy + β
′
2(xt − µx) + σ2εt, t = T1 + 1, ..., T

where the k × 1 slope coefficients, βj, and the error variances, σ2j , for j = 1,2,
are subject to a single break at time t = T1, and εt ∼ iid(0, 1). The implied
intercepts are given by

αj = µy − β′jµx, j = 1, 2,

The unconditional means of yt and xt, namely µy and µx, are not subject to
change. We also assume that xt follows the covariance stationary process:

xt = µx +
∞∑

s=0

Ψsνt−s, νt ∼ iid(0, Ik),
∞∑

s=0

‖Ψs‖<∞. (33)

where νt and εt′ , are independently distributed for all t and t′. We shall also
assume that the innovations in the xt process, νt, are symmetrically distributed
around zero.

Suppose now that the breaks are ignored and the residuals, et, are computed
by running the ordinary least squares regression of yt on xt over the whole
sample, t = 1, 2, ..., T . We have

et = yt − α̂− β̂′xt, (34)

where

β̂ =

[
T∑

t=1

(xt − x)(xt − x)′
]−1 [ T∑

t=1

(xt − x)(yt − y)

]
,

α̂ = y − β̂′x, x =
1

T

T∑

t=1

xt, and y =
1

T

T∑

t=1

yt.

In what follows we establish that for all t = 1, 2, ..., T, the OLS residuals et are
odd functions of the disturbances, εt and E(et) = 0.

We first note that

y = µy + λ1β
′
1(x1 −µx) + (1− λ1)β

′
2(x2 −µx)

+σ1λ1ε1 + σ2(1− λ1)ε2,

where λ1 = T1/T, x1 =
1
T1

∑T1
t=1 xt, x2 =

1
T−T1

∑T
t=T1+1

xt, etc. Hence, for
t ≤ T1

yt − y = µy − y + β′1(xt −µx) + σ1εt,
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and for t > T1
yt − y = µy − y + β′2(xt −µx) + σ2εt.

Also since
E (xt) = µx,

then for all t,
E(yt − y) = 0, for t = 1, 2, ..., T.

Consider now the residuals defined by (34) and note that

et = (yt − y)− β̂′(xt − x). (35)

Hence it is sufficient to show that the second term has zero expectations for all
t. Under the data generating mechanism

Q β̂ = Q1β1 +Q2β2 + σ1

T1∑

t=1

(xt − x)εt

+σ2

T∑

t=T1+1

(xt − x)εt,

where

Q =
T∑

t=1

(xt − x)(xt − x)′

Q1 =
T1∑

t=1

(xt − x)(xt − x)′, and Q2 = Q−Q1.

Therefore

β̂
′
(xt − x) = β′1Q1Q

−1(xt − x) + β′2Q2Q
−1(xt − x)

+σ1

T1∑

t=1

εt(xt − x)′Q−1(xt − x)

+σ2

T∑

t=T1+1

εt(xt − x)′Q−1(xt − x).

Since xt and εt′ are independently distributed for all t and t′, the last two terms
have zero unconditional expectations. Also using (33) it is easily seen that

xt − x =
∞∑

s=0

Ψs (νt−s − ν̄−s) , ν̄−s =
1

T

T∑

t=1

νt−s,

which establishes that xt − x is an odd function of {νt}, the innovations in xt.
Since Q and Q1 are even functions of {νt} , it follows that QjQ−1(xt − x),

34



for j = 1, 2 are also odd functions of {νt} and in view of the symmetry of
{νt} will have zero mean unconditionally. Thus, under our assumptions, et

and ξt =
(∑

e2t
)−1/2

et are odd functions of {εt,νt} , and therefore have zero
expectations for all t, despite the breaks in the slopes and the error variances.
This result continues under multiple breaks and/or even if Ψi are subject to
one or more breaks. The key assumptions are symmetry of the innovations, εt
and νt, and the time-invariance of the unconditional means of yt and xt.

B Residuals fromAR(p)Models Subject to Breaks

Consider the AR(p) model defined over the period t = 1, 2, ..., T ; and assumed
to have been subject to a single structural break at time T1 :

yt =

{
α1 + β11yt−1 + β12yt−2 + ...+ β1pyt−p + σ1εt, , for t ≤ T1,
α2 + β21yt−1 + β22yt−2 + ...+ β2pyt−p + σ2εt, , for t > T1,

.

(36)
where εt ∼ iid(0, 1) for all t,

αj = µj(1− τ ′pβj), j = 1, 2, (37)

βj = (βj1, βj2, ..., βjp)
′ and τ p is a p× 1 unit vector.

Suppose that the structural break is ignored and residuals are computed by
estimating the AR(p) model in yt using the OLS regression yt on an intercept
and xt = (yt−1, yt−2, ..., yt−p)

′ making using of the available observations ̥T =
(y1−p, y2−p, ..., y0, y1, ..., yT ). In this case the fitted residuals are given by

et = yt − α̂− β̂′xt, t = 1, 2, ..., T (38)

where xt = (yt−1, yt−2, ..., yt−p)′, β̂ = (β̂1, β̂2, ..., β̂p)
′

β̂ = (X′MX)
−1
X′My, (39)

α̂ =
τ ′Ty− τ ′TXβ̂

T
, (40)

y =(y1, y2, ..., yT ), X =(y0,y−1, ...,y−p+1), y−j+1 = (y−j+1, y−j+2, ..., yT−j)
′
,

τT is a T × 1 vector of ones, and M = IT − τT (τ ′TτT )−1τ ′T . In what follows
we shall establish that E(et) = 0 for t = 1, 2, ..., T so long as µ1 = µ2, εt
is symmetrically distributed, and E(et) exists. We shall provide a proof for
the stationary case with a single break, although the result holds much more
generally both in the presence of multiple breaks and if there are unit roots in
the pre- and/or post-break processes.

In the case where the pre-break regime is stationary, the distribution of the
initial values, xp = (y1−p, y2−p, ..., y0)′, can be written as

xp − µ1τp ∼ (0, σ
2
1Vp), (41)
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where Vp is a positive definite matrix.
Using (41) and (36) for t = 1, 2, ..., T , in matrix notations we have

B y∗ = d+D ε∗, (42)

where y∗ =
(
x′p,y

′)′, ε∗= (ε1−p, ε2−p, ...ε0, ε1, ε2, ..., εT )′

D = σ1



ψp 0 0

0 IT1 0

0 0 (σ2/σ1) IT2


 , d =




µ1τp
µ1(1− β∗1)τT1
µ2(1− β∗2)τT2


 , (43)

B =




Ip 0 0

B21 B22 0

0 B32 B33


 . (44)

The sub-matrices, Bij, depend only on the slope coefficients, β1 and β2 and are
as defined in Appendix B of Pesaran and Timmermann (2004). IT1 and IT2 are
identity matrices of order T1 and T2, respectively, T2 = T − T1, ε

∗ ∼ (0, IT+p),
and ψp is a lower triangular Cholesky factor of Vp, namely Vp = ψpψ

′
p.

Using (42) it is easily seen that

y−j+1 =Gj(c+Hε
∗), for j = 0, 1, ..., p, (45)

whereGj are T ×(T +p) selection matrices defined byGj = (0T×p−j
...IT

...0T×j),
H = B−1D, and c = B−1d. In particular,

y =G0(c+Hε
∗),

and
X =

[
G1(c+Hε

∗),G2(c+Hε
∗), ...,Gp(c+Hε

∗)
]
.

However, as shown in Pesaran and Timmermann (2004, Appendix B), under
µ1 = µ2 = µ, Gjc = µτT , and the (i, j) element of X′MX will be given
by ε∗′H′G′

iMτGjHε
∗, for i, j = 1, 2, ..., p, and the jth element of X′My by

ε∗′H′G′
jMτG0Hε

∗, for j = 1, 2, ..., p. Hence, under µ1 = µ2, β̂ will be an even
function of ε. Similarly, using (40) and recalling that Gjc = µτT , we have

α̂ = µ


1−

p∑

j=1

β̂j


+

(
τ ′TG0Hε

∗

T

)
−

p∑

j=1

(
τ ′TGjHε

∗

T

)
β̂j. (46)

Using this result in (38) and noting that for t ≤ T1

yt − µ =

p∑

j=1

β1j(yt−j − µ) + σ1εt,

we have

et = −
p∑

j=1

(
β̂j − β1j

)
(yt−j−µ)+σ1εt−

(
τ ′TG0Hε

∗

T

)
+

p∑

j=1

(
τ ′TGjHε

∗

T

)
β̂j.
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Similarly, for t > T1:

et = −
p∑

j=1

(
β̂j − β2j

)
(yt−j−µ)+σ2εt−

(
τ ′TG0Hε

∗

T

)
+

p∑

j=1

(
τ ′TGjHε

∗

T

)
β̂j.

It is now easily seen that in both regimes et is an odd function of the standardized
errors, εt, t = −p+ 1,−p+ 2, ..., T , and under the distributional symmetry of
the errors, we have

E (ξt) = E



(

T∑

t=1

e2t

)−1/2
et


 = 0, for t = 1, 2, ..., T.

Note that for ξt to be well defined we need T > p+ 1, and E (ξt) exists for all
T > p+ 1. In contrast, the condition for the existence of the moments of et is

much more complicated and demanding. For example, E (et) exists if E
(
β̂i

)

exists. A sufficient condition for the latter is known in the literature only for
the simple case of p = 1. In this case

β̂1 =
ε∗′H′G′

1MτG0Hε
∗

ε∗′H′G′
1MτG1Hε

∗ ,

and E
(
β̂1

)
exists if T > 3. (See Pesaran and Timmermann (2004)).
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