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ABSTRACT

IZA DP No. 12192 MARCH 2019

The Causal Effects of Education on Adult 
Health, Mortality and Income: Evidence 
from Mendelian Randomization and the 
Raising of the School Leaving Age*

We compare estimates of the effects of education on health and health behaviour using 

two different instrumental variables in the UK Biobank data. One is based on a conventional 

natural experiment while the other, known as Mendelian randomization (MR), is based on 

genetic variants. The natural experiment exploits a compulsory schooling reform in the 

UK in 1972 which involved raising the minimum school leaving age (RoSLA). MR exploits 

perturbations of germline genetic variation associated with educational attainment, 

which occur at conception. It has been widely used in epidemiology and clinical sciences. 

Under monotonicity, each IV identifies a LATE, with potentially different sets of compliers. 

The RoSLA affected the amount of education for those at the lower end of the ability 

distribution whereas MR affects individuals across the entire distribution. We find that 

estimates using each approach are remarkably congruent for a wide range of health 

outcomes. Effect sizes of additional years of education thus seem to be similar across 

the education distribution. Our study corroborates the usefulness of MR as a source of 

instrumental variation in education. 
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1. Introduction 

 

The positive associations between years of education on the one hand and health, wealth and 

longevity on the other hand have been consistently recorded across countries and time periods 

(see e.g. overviews in Galama et al., 2018, Hahn and Truman, 2015, Cutler and Lleras-Muney, 2014, 

Furnée et al., 2008, and OECD, 2006). These associations may reflect causal effects of education, 

by affecting health-related behaviours (such as smoking or taking exercise) or by way of the impact 

of the increased income and labour market opportunities due to higher levels of education. 

Alternatively, the associations could be driven by unobserved confounders such as socioeconomic 

and family lifestyle factors and early-life health.  

 

For public policy purposes it is important to understand the extent to which investments in 

education cause improvements in health. Natural experiments can potentially be used to identify 

such causal effects of education in the presence of unobserved confounders. Natural experiments 

exploit institutional features or reforms that influence when people leave school but are not 

dependent on unobserved confounders and only affect adult health through education (see Angrist 

and Krueger, 2001). A prime example concerns increases in the legal minimum school leaving age 

(RoSLA, after “Raising of School Leaving Age”). RoSLA forces some people to remain in school 

for longer than they would have otherwise chosen, and this tends to increase average education 

levels in the relevant cohorts. Exposure to RoSLA can then be used as an instrumental variable 

(IV) for a wide range of later-life outcomes, including health outcomes (see e.g. Clark and Royer, 

2013, and Davies et al., 2018). 

 

A limitation of such approaches is that they identify a highly specific treatment parameter: the local 

average treatment effect (LATE) among the so-called compliers; that is, among those for whom 

the reform is binding. With RoSLA, the compliers are likely to be those at the lower end of the 

ability distribution. The estimates using the RoSLA do not necessarily generalize to the effects of 

education on health outcomes at other points in that distribution. This is particularly relevant for 

past reforms where the fraction of affected individuals was relatively small. 

 

In this paper, we contrast estimates using a RoSLA design with estimates using a completely 

different IV approach, known as Mendelian randomization (MR) in epidemiology. This uses 

specific genetic variants (single nucleotide polymorphisms or SNPs; see below) as instrumental 

variables for an exposure on an outcome (Davey Smith and Ebrahim 2003, Davey Smith and 
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Hemani 2014, and Davies, Holmes and Davey Smith 2018). The natural experiment in this case 

occurs at conception when each child inherits half of each of its parents’ genomes. In recent years, 

this has become widely used in epidemiology (Boef et al. 2015). As this approach is as yet rather 

unknown in economics, we discuss it and its pros and cons in detail (see Section 2 below). In our 

application, we use a polygenic education score based on the presence of variant forms of genes 

(alleles) that are known to associate with educational attainment. Movement from one standard 

deviation below the mean of this score to one standard deviation above the mean is associated 

with 0.30 additional years of education. Importantly, the differences in education induced by this 

genetic variation increase attainment across the entire population.  

 

Both RoSLA and Mendelian randomization depend on a range of assumptions (see e.g. Glymour 

et al., 2012, Davies, Holmes and Davey Smith 2018). As with any IV approach, the candidate 

instruments must be both relevant and valid. With Mendelian randomization, we are particularly 

concerned about the threat to validity from so-called dynastic effects, which occur if genotypes 

associated with education are systematically related to parental behaviours that affect child 

outcomes in ways that are not channelled through the child’s education. It is difficult to rule out a 

priori that the presence of alleles with particularly strong behavioural effects do not simultaneously 

affect offspring education and also affect the style in which the offspring is raised in the family 

(Kong et al., 2018). Controlling for early-life conditions, birth weight and breastfeeding exposure 

allows us to deal with dynastic effects to a certain extent. Towards the end of the paper we discuss 

the type of data that would need to be collected for a more comprehensive analysis controlling for 

dynastic effects in Mendelian randomization. Estimates using the RoSLA are unlikely to be 

affected by dynastic effects. However, candidate IVs based on natural experiments carry their own 

weaknesses.1  

 

The core instrumental variable assumptions are insufficient to point identify a causal effect. A 

widely used assumption to achieve point identification is monotonicity – that the instrument 

affects everyone in the same direction. This assumption identifies the effect of the exposure on 

individuals whose treatment status was affected by the instrument, the local average treatment 

                                                             
1 Consider for example the usage of distance to college or season of birth as IVs for effects of education. 
The residential location and the date of birth reflect parental choices which in turn reflect parental 
attitudes and preferences, and the latter may directly affect the offspring’s economic and health outcomes 
(see e.g. Buckles and Hungerman, 2013). Also, parental awareness of the effect of distance to college or 
season of birth on education may influence how they teach their own children about health issues (Van 
den Berg, 2007).  
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effect (LATE). This assumption is likely to hold for the RoSLA natural experiments as well as for 

Mendelian randomization. The genetic score used as the instrument in the Mendelian 

randomization analysis uses SNPs and on an individual basis, there is little evidence that these 

SNPs have non-monotonic effects on education across the population (see section 3 below).  

 

Epidemiologists have used Mendelian randomization to investigate a range of topics, for example 

to investigate the positive association between short-sightedness and education (Mountjoy et al., 

2018). A rare application of Mendelian randomization in the economics literature is in Von Hinke 

et al. (2016) which estimated effects of fat mass on academic performance and blood pressure. 

Böckerman et al. (2018) includes a brief overview of existing Mendelian randomization studies by 

economics researchers. 

 

We use novel data from the UK Biobank which contains a wide range of health outcomes as well 

as genome-wide data. In particular, the Biobank includes questionnaire measures of health 

behaviours and clinical and self-reported measures of health. It is linked to national cancer 

registries and mortality records, providing precise administrative data on these outcomes. We use 

the 74 genetic variants detected in the Genome-Wide Association Study (GWAS) on educational 

attainment (Okbay et al., 2016) to construct a weighted genetic score.2 Many of the Biobank 

participants were in cohorts affected by the 1972 compulsory increase of the minimum school-

leaving leaving age from 15 to 16. This reform affected individuals born from September 1957 

onwards and increased average schooling by 0.25 years, which is similar to the increase in education 

association with a movement from one standard deviation below to one standard deviation above 

the mean genetic score. 

 

Triangulating the results from both IV approaches is informative on the merits of either of the 

approaches. As it turns out, both approaches provide evidence that education causally reduces the 

risk of hypertension, diabetes, stroke and heart attack, as well as increased grip strength (a measure 

of health in ageing) and reduced BMI. We also find impacts on some health behaviours: reducing 

prevalence of smoking and hours watching television but increasing alcohol consumption. We 

demonstrate that our instrumental variables are not correlated with other allele scores for a vast 

range of other traits that may affect later health.  

 

                                                             
2 We do not use more recent GWAS of educational attainment (Lee et al. 2018), because this used the UK 
Biobank and so could introduce weak instrument bias (Burgess et al. 2016). 
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The results based on the two approaches are congruent for most of the health outcomes. Indeed, 

the magnitudes of the causal effects are similar, despite each instrument identifying the effects in 

a different set of compliers. This suggests that the effects of education on health may be similar 

across the education distribution. This result is of importance for policy but also for the 

methodology of studying causal effects of education on health. In particular, our study suggests 

that Mendelian randomization is a potentially useful source of instrumental variation in education. 

In our setting, it allows for an extrapolation of effects among compliers in the RoSLA setting to 

other segments of the education distribution.  

 

Our paper is organized as follows. Section 2 explains the concept of Mendelian randomization and 

its application as an IV for education. In this section we also discuss the RoSLA. We briefly discuss 

relevant existing empirical studies that exploit the 1972 RoSLA as an instrument, and we discuss 

the two studies that use Mendelian randomization as an instrument for education, both with data 

from Finland (Böckerman et al., 2017, and Viinikainen et al., 2018). Section 3 describes the data. 

Section 4 presents the results. Section 5 concludes. Supplementary tables and figures are in an 

extensive appendix. 

 

 

2. Empirical Strategy 

 

We use instrumental variable estimators to estimate the effects of additional schooling on each of 

the income, health and health-behaviour outcomes. As with the recent literature, our first approach 

is to use a change in the minimum school-leaving age to identify the causal effect of schooling. 

The Raising of the School Leaving Age Order passed in March 19723, required individuals in 

England and Wales to remain in school until the end of the academic year in which they turned 

16, a one-year increase from the previous minimum age of 15. The change came into effect from 

1st September 1972 and affected all individuals turning 15 from 1st September 1972 onwards i.e. 

those born from 1st September 1957 onwards. As children in the UK begin school in the academic 

year in which they turn 5, this change increased the minimum number of years of schooling from 

10 to 11. The increased minimum school leaving age was supported by new buildings and the 

additional year for those extra students who previously were not staying on for it was part of a 

                                                             
3 See: www.legislation.gov.uk/uksi/1972/444/pdfs/uksi_19720444_en.pdf  
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new five-year secondary education curriculum for all students, (i.e. it was not a remedial year for 

those who would otherwise drop out).4  

 

Figure 1 shows the impact of this reform on the schooling distribution by quarter of birth. The 

passing of the new law (indicated by the vertical black line) is associated with a sharp drop, down 

to approximately zero, in the proportion of each cohort gaining 10 years of education or fewer. 

The appearance of some non-compliance with the new minimum in the figure is due to the 

structure of the academic year in the UK: individuals are assigned to a school cohort depending 

on birth date, with 1st September the key assignment date. As such, when some individuals born 

in the third quarter of the year (those born in July and August) officially leave school in the June 

of their final school year, it is before they have had their birthday that year. Our measure of years 

of schooling is derived from the age when the individual reports leaving school, therefore if 

individuals born in July/August report the age on the day that they left school rather than their 

age at the end of that school year (i.e. end of August) it will give the incorrect impression that they 

have not completed the compulsory years of schooling even though they have.  

 

To more formally establish the impact of this reform on educational attainment we estimate the 

effect of the 1972 RoSLA reform on remaining in school beyond the age of 15. It has been shown 

in the literature (see Chevalier et al., 2004, for example) that the reform induced some individuals 

to remain in school an additional year but there was very little increase beyond this. As such the 

increase in the proportion remaining beyond 15 is approximately equal to the increase in the 

average number of years of schooling. As ever with instrumental variables, the suitability of the 

instrument depends on satisfying the relevance and validity criteria. For the raising of the school-

leaving age the relevance assumption will hold provided participants who attended school after 

the minimum school leaving age was increased stayed in school for longer on average.  

 

We demonstrate that the instrument is relevant and strong via the first stage regressions reported 

in section 4. The RoSLA will be a valid instrument as long as it is independent of potential 

treatments and outcomes and is excludable from the structural equation i.e. as long as the reform 

did not directly affect the outcomes and is uncorrelated with any unobservables that affect the 

outcomes. We can demonstrate balancing tests to show that there are few detectable differences 

between the cohorts pre and post-RoSLA (see section 4), moreover because parents could not 

                                                             
4 More of the historical context and detail of the 1972 RoSLA can be found in McCulloch, et al. (2012).  
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have anticipated the RoSLA reform (the exact implementation date was announced only months 

before coming into effect) it is highly unlikely to be associated with family background factors that 

could confound the association of education and later outcomes. Similarly, the decision to enact 

the reform was not taken in light of anything to do with the particular cohorts affected and as such 

assignment to the ‘treatment’ is as good as random. The validity of the RoSLA instrument could 

be questioned if the reform also affected the labour market around the time the participants 

entered the workforce, though other papers investigating this have shown that this is not the case 

(see Buscha and Dickson, 2015).  

 

Since the seminal study of Lleras-Muney (2005), the use of compulsory schooling reforms to study 

causal effects of education on health has burgeoned (see Galama et al., 2018, for an overview). A 

number of studies use the 1972 RoSLA for this purpose (Clark and Royer, 2013, Powdthavee, 

2010, Jürges et al., 2013, Janke et al., 2018, Avendado et al., 2018, and Davies et al., 2018). These do 

not all focus on the same health outcomes, and they sometimes differ in terms of findings. To 

some extent the latter may be attributed to differences in the data sources, their sampling dates 

and sample sizes, the character of the outcome variables (self-reported or clinically determined) 

and the empirical strategy. For example, smaller studies tended to use larger regression 

discontinuity bandwidth thus including a greater number of cohorts before and after the reform. 

See Davies et al. (2018) for a detailed discussion. Additionally, our data is more recent than other 

data sources, therefore the participants are older and sicker thus for some of the binary outcomes 

(e.g. coronary heart disease) there are more events and thus greater statistical power. 

 

Our second approach is to use genetic variants (alleles) associated with education to create an 

instrumental variable for education. This strategy exploits the natural experiment that occurs at 

conception – when each child inherits half of each of their parents’ genomes. This process means 

that at each point (loci) at which DNA varies between people there is a 50% chance of inheriting 

one or other of each parents’ alleles. These variants differ in terms of the chemical bases (Adenine, 

Cytosine, Guanine, and Thymine) paired together. These loci where DNA varies between people 

are called polymorphisms and the most studied form of polymorphisms are Single Nucleotide 

Polymorphisms. This is a point in the genome in which just one of the chemical base pairs differ. 

The 2016 educational attainment Genome Wide Association Study (GWAS) of Okbay et al. 

reported the association of 8,259,394 genetic variants and the years of education in a meta-analysis 

of 64 studies, which did not include the UK Biobank. Okbay et al. identified 74 SNPs that 

associated with educational attainment (p<5x10-08) after correcting for multiple testing. On 
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average, at each of these 74 SNPs, people with a particular allele are likely to have higher 

educational attainment than another individual with the alternative allele.  

 

All of the eligible participants in our data provided a blood sample which was used to extract 

DNA.5 Using the extracted genetic information allowed the genotyping of around 800,000 SNPs 

for each participant. Exploiting this information, we were able to construct an ‘education allele 

score’ for each individual determined by the presence or not of the 74 SNPs which were associated 

with years of education in the Okbay et al. discovery sample. The allele score is the sum of the 

number of education increasing alleles for each participant, with the contribution of each allele to 

the score weighted by the size of the coefficient reported by the GWAS.  Combining many alleles 

into a single score mitigates the danger of many weak instruments bias (Bound et al. 1995). The 

allele score has a mean of 0.325 and standard deviation of 0.10, and represents the known effects 

of genetic variants on educational attainment.  

 

Economists rarely use Mendelian randomisation and as such it is important to highlight the 

conditions under which Mendelian randomization can be used in an instrumental variables strategy 

seeking to identify the causal effect of the treatment (in our case education) on the outcomes of 

interest.  Von Hinke et al. (2016) formally set out these conditions, relating them to the standard 

assumptions necessary for a suitable instrument in the econometrics literature. We refer the reader 

to von Hinke et al. (2016) for a more in-depth discussion of the use of genetic markers as 

instrumental variables along with more details on genetics. In brief, these assumptions are: 

1. Relevance: there is a non-zero effect of the instrument on the treatment variable. 

2. Validity, which comprises:  

a) Independence: the instrument is independent of all potential treatments and potential 

outcomes i.e. it is as good as randomly assigned. 

b) Exclusion: the exclusion restriction requires that there is no effect of the instrument 

on the outcome variable that is not mediated via the treatment variable (in our case 

education).   

3. Monotonicity: the potential value of the treatment variable is at least as high when the 

instrument takes value z’ as it is when the instrument has value z, or vice versa, that the 

potential value of the treatment variable when the instrument takes the value z’ is equal to 

or lower than its potential value when the instrument takes the value z, for all individuals. 

                                                             
5 These were extracted using the Axiom and BiLEVE genome-wide arrays. For more information on this see the 
Appendix. 
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In other words, whether positive or negative, the impact of the instrument on the 

treatment variable is in the same direction for all individuals.  

 

It is worth highlighting the threats to identification relevant to each of these assumptions in our 

Mendelian randomization context of using alleles associated with educational attainment to 

construct an instrument for education, aiming to uncover the causal impact of education on later 

health behaviours and outcomes.  

 

With respect to the first assumption, for any candidate instrument it is important to demonstrate 

its relevance. As detailed above, the allele score is constructed from 74 SNPs that associated with 

educational attainment at genome-wide significance levels (p<5x10-08) in the discovery sample of 

the educational attainment GWAS (see Okbay et al., 2016). The UK Biobank used in our study 

was not included in the Okbay study’s discovery sample. These alleles used to construct the 

instrument have been shown to be robustly associated with educational attainment at the 

population level and as such there is a firm theoretical basis for their use as an instrument for 

education. We demonstrate empirically that the polygenic education score associates with 

educational attainment in the UK Biobank in section 4 where we report on the first stage 

regressions. Table 4 shows that the polygenic score strongly associates with educational attainment 

and exceeds the usual thresholds for weak instruments, with partial F-statistics ranging from 284 

to 1101 depending on the health outcome of interest. Moreover, the change in years of education 

induced by the instrument is economically significant: moving from one standard deviation below 

the mean of the education allele score to one standard deviation above is associated with an 

additional 0.30 years of schooling. Another way to put it is that a unit increase in the allele score 

was associated with an additional 1.45 years of education, which is even greater than the treatment 

induced by the RoSLA, for those who were bound by the reform. Therefore, both instruments 

induce non-trivial increases in education.  

 

In terms of the first aspect of validity i.e. independence, Mendelian randomization is analogous to 

a randomised experiment in which allocation to the treatment group is randomly assigned over all 

eligible individuals in the population. This randomization at conception means that at each SNP, 

alleles are likely to be independent of the environment conditional on parental genotype (Davey 

Smith et al. 2007). However, very few large studies have genetic data on parental genotype. In 

samples of unrelated individuals, it is possible for there to be differences in allele frequency across 

the population (e.g. between the North and South of the United Kingdom, see Haworth et al. 
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2018). If these differences also associate with differences in the outcomes, then the SNP-outcome 

association may be biased. In population genetics this is known as ‘population stratification’. We 

deal with this issue of population stratification by controlling for the first 10 principal components 

of genetic variation. We assume that the alleles related to education are independent of 

confounders conditional on the principal components. 

 

The allocation of genes is random at the family trio level (from two parents, to their off-spring). 

Therefore, the most robust identification for a Mendelian randomization study comes from 

comparison of mother-father-offspring trios or biological sibling pairs. Mendelian randomization 

assumes that social class, income and all other socioeconomic factors are balanced across 

genotypes such that the value of the instrument assigned is not related to these characteristics that 

may also affect the treatment and the outcome. The recent literature exploring the Mendelian 

randomization methodology in economics (see von Hinke et al., 2016, and references therein) 

suggests that, at population level, genetic variants are largely unrelated to many socio-economic 

and behavioural characteristics that could confound estimates (once we have conditioned on the 

principal components of population stratification). As such, observational studies using genetic 

information from just one individual per family should not be confounded by relationships between 

genotype and socio-economic characteristics.  

 

The presence of assortative mating based on characteristics that have particular genes associated 

with them could violate the independence assumption required for unbiased estimation, for 

example if more educated women partner with taller men. It is for this reason that within family 

identification is the cleanest way in which to operationalise the Mendelian randomization 

technique. However, even when observing only one individual per family, Mendelian 

randomization is valid if the assumption can be maintained that genotypes are unrelated to other 

characteristics that may affect the outcomes of interest, something that as noted above, the 

literature suggests is likely to hold.  

 

We can partially explore this by testing the extent to which the distributions of observable 

characteristics are similar for different values of the instrument. Given that any observed 

characteristic could in theory be an outcome resulting from the treatment – i.e. in our case a result 

of the instrument working through its effect on education – we need to test for differences in pre-

treatment characteristics. Figures 3 and 4, discussed in detail in section 4, report the balance of 

pre-treatment characteristics between those of different genotypes. There is some suggestion that 
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the genotypes relating to educational attainment are correlated with maternal (non)smoking during 

pregnancy, birthweight, and with factors relating to the geographic location of birth (closer to 

London) and the deprivation of birth area. However, in all cases, the correlation between these 

characteristics and the genotype is of similar magnitude to the correlation between these 

characteristics and an indicator for being affected by the 1972 RoSLA. Nevertheless, as a sensitivity 

analysis we control for these observable pre-treatment characteristics in our regression estimates.  

 

The second part of the validity assumption, the exclusion restriction, requires that the instrument 

has no other effect on the outcomes except via their effect on education. This assumption could 

be violated in a number of ways. Firstly, if parents’ behaviour is affected by the genotypes we are 

using as instruments and these behaviours affect their offspring’s outcomes, then this can result 

in biased estimates of the effect of education. This is because if as a result of their education, individuals 

with higher levels of education parent in a different way to those with lower levels and this impacts 

their child’s health, this will create a link between the child’s genotype (inherited from their parents’ 

genotypes) and the outcome, that does not work through the child’s treatment (education). 

Similarly, there is a risk that parental behaviours that are not caused by their genotype but are 

correlated with it, affect child health by affecting child behaviours. For example, if people who 

choose more education are also the types who choose to exercise more (not because of education 

but because of other preferences), and they pass this behaviour on to their children, there will be 

a link between the child’s genotype and their health outcomes that does not work through their 

education. Again, to some extent we can address this by examining the correlation between 

education variants and SNPs associated with other characteristics which may drive parenting 

behaviour. Figures 3 and 4 show that there is little evidence of correlations between the SNPs 

known to associate with educations and polygenic risk scores for many socio-economic and 

neuropsychiatric characteristics. 

 

In general, since education is a treatment with heterogenous effects across the population, in most 

cases it is not possible to demonstrate that the exclusion restriction holds. Studies instead rely on 

economic theory and intuition to make the case for the validity of their instrument. In contrast, 

Mendelian randomization relies on biological and genetic rather than economic theory. Mendel’s 

second law states that the inheritance of one genetic trait is independent of the inheritance of 

another trait. Therefore, the exclusion restriction is unlikely to be violated since the inheritance of 
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the alleles associated with educational attainment is unlikely to be related to inheritance of alleles 

related to other aspects of health (e.g. risk variants for coronary heart disease).6   

 

In a model in which we expect there to be heterogeneous treatment effects, to be able to interpret 

the results as ‘local average treatment effects’ requires the final assumption: monotonicity. For the 

genetic instrument, this entails that for each individual in the population, putting an education 

increasing allele in place of one not associated with education would either increase or have no 

effect on their education. As we only ever observe an individual’s realised genotype, we cannot 

prove monotonicity. However, there is no evidence to date that any of these SNPs have the 

opposite effects in any sub-groups (Okbay et al., 2016) and as such we proceed on the assumption 

that monotonicity holds. 

   

The literature using Mendelian Randomisation to derive IV estimates of causal effects of education 

on health outcomes is much sparser than is the case for instruments derived from compulsory 

schooling reforms. Two studies use Finnish data. Viinikainen et al. (2018) use the same 74 SNPs 

that we employ to derive a polygenic risk score for educational attainment and use this to estimate 

the causal effect of education on depression. Despite a strong association between the instrument 

and years of education, they found little evidence that education causally affects depressive 

symptoms: though consistent with the OLS estimates, their Mendelian randomization estimates 

were very imprecise. Similarly, Böckerman et al. (2017) use the 74 SNPs associated with educational 

attainment to study the causal effect of education on obesity. They find some evidence that 

education has a causal impact: the Mendelian randomization results suggest one additional year of 

schooling reduces BMI by 0.84 kg/m2 though the 95% confidence interval is (-0.07, 1.77). In these 

Finnish studies, the small sample sizes may have hindered precise estimation, making it difficult to 

draw firm conclusions.  

 

In operationalising the IV approach, we used two-stage least squares (see Angrist et al., 1996). For 

the genetic instrument, in the first stage we estimate equation (1) in which the dependent variable, 

!"#$, is years of education and %"# is the polygenic education score for individual i from cohort c. 

We include controls for the year and month of birth, gender, the year and month of birth dummies 

                                                             
6 The phenomenon of ‘linkage disequilibrium’ could threaten Mendel’s second law and see some traits co-inherited, 
however this is rare for SNPs on different chromosomes and the likelihood of linkage disequilibrium is largely 
determined by the distance between the loci of the alleles in question. In the covariate balance tests below only use 
SNPs for different traits that are a sufficient distance from the education SNPs, to investigate the independence 
assumption. For more information see the Appendix.  
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interacted with gender, and the first 10 principal components of population genetic stratification. 

In later analyses we include additional controls to capture background characteristics of the 

individuals: whether they were breastfed, whether their mother smoked during pregnancy, their 

birth weight, and the deprivation level of their birth location. All standard errors are robust and 

clustered by month of birth. 

 

 !"#$ = '( + '*%"# + +,-. '/ + 0"#$ (1) 

 

In the second stage (equation (2)), we regress our measures of health behaviours, health outcomes 

and income, 1"#$, on the fitted values of education derived from the first stage, again including the 

same control variables in the  2"# vector as for the first stage.  

 

 1"#$ = 3( + 3*!4"#$ + +,-. 3/ + 5"#$ (2) 

 

We use all of the cohorts in the data, dealing with the effects of age by controlling for year and 

month of birth.  

 

For the RoSLA instrument, in the first stage we estimate equation (1) with the dependent variable, 

!"#$, being a dummy variable for remaining in school beyond age 15 for participant i of birth 

cohort c, at time t. The instrument, %"# , is a dummy variable equal to one if the participant was a 

member of the cohort affected by the reform, and equal to zero if they were not affected.  

 

The UK Biobank data is sufficiently large that for the RoSLA instrument, we can focus attention 

on just the two school cohorts born in the 12-months before and the 12-months after 1 September 

1957, effectively calculating a mean difference estimate but correcting for gender and month of 

birth effects. In line with Davies et al. (2018) we then implement a difference-in-difference process 

to remove the average cohort-on-cohort differences in health outcomes that we observe between 

contiguous cohorts due to the effects of ageing. We estimated these average cohort-on-cohort 

differences using each of the five non-overlapping pairs of cohorts in the 10 years before and the 

10 years after the reform. Within each of these cohort pairs the school leaving age is the same, and 

so any observed health differences between cohorts cannot be due to school leaving law 

differences but rather may be due to other factors such as the age difference between cohorts 

observed at a single time point in the UK Biobank. We calculated the average difference between 

cohorts pooling the estimates for these 10 cohort pairs and then remove this from the difference 
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between the cohorts immediately either side of the reform to leave the estimated treatment effect 

of the RoSLA. We estimated this difference and its standard error using the method described by 

Altman and Bland (2003).  

 

While for the RoSLA we defined the treatment as remaining in school after the age of 15, for 

Mendelian randomization we used a continuous measure of years of education defined by the 

International Standard Classification of Education (ISCED), as used in Okbay et al. 2016 (more 

details below). Though the treatments differ slightly between the two instruments, the fact that the 

1972 RoSLA induced those bound by the reform to remain in school for one additional year and 

very few remained any longer than that, means that the treatment effect of remaining in school 

beyond 15 translates to attaining one additional year of schooling. As such, the increase in the 

proportion of the cohort remaining in school beyond age 15 is equivalent to the increase in the 

average years of schooling for the affected cohorts, making the return to remaining in school 

beyond 15 approximately the return to one additional year of schooling i.e. the same scale as the 

Mendelian randomisation instrument estimates.   

 

3. Data 

 

Our data comes from the UK Biobank project. This project originally invited 9.2 million people 

aged between 40 and 69 to attend 23 centres across Great Britain. Of those invited, 503,325 (5.5%) 

were recruited to the study between 2006 and 2010. Figure 2 illustrates the inclusion/exclusion of 

individuals to our estimation sample of 315,436.  

 

The participants were asked if they had a college or university degree and if they did not have a 

degree, they were asked what age they left full-time education. For RoSLA, we assumed that 

individuals who reported that they left school at age 15 or younger and who did not have a degree, 

left education prior to the age of 16, while everyone else was assumed to have left education after 

the age of 15. The participants also reported their highest qualification; we used this to derive a 

continuous measure of years of education based on the International Standard Classification of 

Education, which is the internationally harmonized measure used in the education GWAS for 

education. On average the UK Biobank participants were more educated that the British 

population: in the Biobank, 41.0% have a degree or equivalent, 64.0% have any post-16 education 

and 82.1% have at least one academic qualification. The corresponding figures from the 2011 UK 
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Census for individuals aged 40-70 are 27.9%, 61.8% and 76.5% respectively.7 However, we use 

inverse probability weighting to make our sample match the population education distribution, 

and all of our results are robust to using this weighting or not (Hughes et al., 2017).  

 

With regard to health outcomes, participants were asked whether they had ever been diagnosed by 

a doctor with the following health conditions: high blood pressure, stroke, diabetes, or heart attack. 

They were asked if they had ever had a whole week where they felt depressed or down. The 

diagnoses of cancer and information about the death of the participants were taken from linkage 

to national cancer and mortality registries.8 In addition to self-reports of health, a number of 

measurements were taken during participants’ visits to a UK Biobank assessment centre, 

specifically: height and BMI, two measures of diastolic and systolic blood pressure (recorded via 

an electronic blood pressure monitor, with the measurements taken two minutes apart), arterial 

stiffness (measured using an electronic measure device), grip strength (measured in kilos using a 

hydraulic hand dynamometer). We residualized the measures of grip strength and arterial stiffness 

to control for potential between device heterogeneity. Verbal-numeric reasoning was measured via 

13 logic puzzles that the participants had to answer in 2 minutes. Their score is the number of 

correct answers. 

 

During their assessment centre visit the participants were asked to report their health behaviours. 

They were asked about how frequently they consumed alcohol. This is coded 6 if they drank every 

day, 5 for three or four times a week, 4 for once or twice a week, 3 for one to three times a week, 

2 for special occasions only, and 1 for never. They were asked if they were a current, ex or never 

smoker. They were asked how often they vigorously and moderately exercised in a typical week. 

Finally, they were asked if their pre-tax income was below £18,000; between £18,000 and £30,999; 

between £31,000 and £50,999; between £52,000 and £100,000; or above £100,000. Participants 

who did not answer these questions were coded as missing.  Table 1 summarises the characteristics 

of the individuals in the UK Biobank sample that we use.  

 

4. Results 

Covariate Balance Tests 

                                                             
7 See 
https://www.ons.gov.uk/peoplepopulationandcommunity/culturalidentity/ethnicity/adhocs/006962ct06762011ce
nsusagebyhighestlevelofqualificationenglandandwales. Last accessed 09/08/17. 
8 Follow-up for the linked data ended with the last recorded death on 16th February 2014. 
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To address the concern that our instruments, particularly the polygenic education score, may be 

associated with other genetic and non-genetic characteristics that might also impact health and 

related outcomes, we estimated the relationship between each instrument, education and a number 

of genetic and non-genetic characteristics measured for our sample (Davies et al. 2018). These 

estimates are constructed from the ratio of the reduced form impact of the instrument on the 

characteristic of interest to the reduced form impact of the instrument on education (for the binary 

RoSLA instrument these are Wald estimates). The estimates adjust for month of birth, gender and 

the first 10 principal components of population stratification. These estimates allow any 

relationships to be considered on a comparable scale, indicating the ‘impact’ of a one-year increase 

in years of schooling induced by the instrument in question on the outcome. The OLS estimates 

of the impact of an additional year of education on these outcomes are included for comparison. 

In terms of the genetic, we look at polygenic risk scores for 45 traits that may also affect our 

outcomes of interest, constructing the scores from SNPs that were associated with each trait (for 

more information on the precise construction of these scores see the Appendix). In addition, we 

construct similar estimates for 16 non-genetic pre-determined characteristics relating to 

circumstances around the time of birth, childhood or family background.  

 

Table 2 contains these estimates, which are also illustrated in Figures 3 and 4. The point estimates 

capturing the associations between educational attainment, the polygenic education score and the 

genetic risk scores for the 45 traits are almost all close to zero. For the most part they are similar 

in magnitude to the estimates derived using the RoSLA instrument, which is important given that 

we are very confident that being born in a cohort affected by the school leaving age reform is not 

related to an individual’s genetic characteristics. The educational attainment genetic score is weakly 

associated with polygenic scores for other observed outcomes including bipolar disorder, 

childhood intelligence, inspection time, simple reaction time and infant head circumference. 

However, there was little evidence that these were any larger associations than those for the 

RoSLA. As we would expect, in all cases the estimates derived from the RoSLA instrument were 

less precise.    

 

With regard to the 16 non-genetic pre-determined characteristics relating to circumstances around 

the time of birth, childhood or the family background of the individuals, Table 2 and Figure 4 

show that the magnitude of any association between the polygenic education score and these 

outcomes is very small – in all but four cases smaller even than the association between RoSLA 

and these outcomes. There is evidence that the genetic variants for education are non-randomly 
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distributed around the UK – with greater prevalence in the south and east, and in general closer 

to London (for further details see Haworth et al., 2018). There is also some evidence that the 

educational attainment genetic score associates with birthweight, having been breastfed, being 

taller than average at age 10 and whether the individual’s mother smoked during pregnancy. These 

associations may have been induced by dynastic effects or assortative mating (see Hartwig et al., 

2018). For example, dynastic effects could arise because those with more education associated 

alleles will by definition have parents with more education associated alleles. If these more 

educated parents behave differently – smoking less in pregnancy – then this will create an 

association between the education associated SNPs and maternal smoking during pregnancy. 

Similarly, assortative mating could be a factor if more educated people partner with taller people, 

this will induce an association between education variants and height. Nevertheless, in all cases it 

is important to stress that these associations are weak and as noted there is little evidence that the 

polygenic education score associations are any stronger than those for RoSLA. In each case we 

can include these covariates as controls in the model to reduce any bias these associations could 

otherwise cause our estimates (see below). There is an association between RoSLA and the 

likelihood that the mother and father of the individual are alive. This is to be expected since at the 

discontinuity, those affected by RoSLA are on average one year younger than those unaffected 

and so it is therefore more likely that their parents are still alive.  

 

First stage association of the instruments and education 

As we have 25 outcome variables, there are 25 first stage regressions for each instrument, the 

sample size varying due to different degrees of missing values for the outcome variables. Figure 1 

shows pictorially the first stage for the RoSLA instrument, and this drop of around 20 percentage 

points in the probability of leaving at age 15 is typical of our estimation results. People born from 

1st September 1957 onwards and so potentially affected by the 1972 RoSLA were 23.0 (s.e. 0.69) 

percentage points more likely to remain in school beyond the age of 15. For the Mendelian 

randomization instrument, each unit increase in the polygenic education score was associated with 

1.45 additional years of education (s.e. 0.05).9 Neither instrument is likely to suffer from weak 

instrument biases, with the F-statistics for the exclusion of the instrument from the first stage 

ranging from 788 to 2,206 for the RoSLA instrument depending on the outcome variable, and 

from 284 to 1,101 for the polygenic education score. We display these F-statistics as a column in 

the main results table, Table 3.  Both instruments induce a sizeable degree of variation in education 

                                                             
9 These first stage estimates relate to the first stage of the mortality regressions where we have the largest sample 
size and thus most reliable estimate. 
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which is a particularly important finding for the polygenic score instrument. While each individual 

SNP only explains a very small proportion of the variation in education, in aggregate across all 74 

SNPs they explain a substantial fraction the variation. This means the identification of the effect 

of education does not require extrapolation of very small induced variations. Figure 5 illustrates 

the ways in which each instrument impacts upon the education distribution (following Angrist and 

Imbens, 1995). The upper panel shows the difference in the cumulative distribution function of 

age left full-time education for the post-RoSLA cohorts compared with the pre-RoSLA cohorts. 

The negative difference for ages 15-17 which then flips to a small positive difference for ages 18-

20 reflect that the post RoSLA distribution sees a shift in the density leaving at ages 16 and 17 up 

from age 15 but not much change further up the education distribution. The lower panel shows a 

series of differences in the cumulative distribution function of age left full-time education, but this 

time each curve represents the difference between the distribution for the highest (5th) quintile of 

the polygenic education score and the other quintiles. The pattern is the same whichever quintile 

is being compared with the top quintile, in each case the lower quintile has greater density at lower 

leaving ages. This is more pronounced in the lowest versus highest quintile (solid line) and as we 

move up the quintiles of the polygenic education score, the difference with the top quintile 

reduces, but the pattern is still the same – more weight in the lower leaving ages the lower the 

quintile of the polygenic education score. This shows that increasing the polygenic education score 

shifts the whole distribution of leaving ages rightwards – that is: the increases in education 

associated with increasing values of the polygenic risk score are not concentrated in just one part 

of the education distribution, the whole distribution is shifted.  

 

Results – health outcomes, health behaviours and income 

Table 3 shows our estimation results capturing the impact of additional schooling on our outcomes 

of interest, using OLS and the two instrumental variables strategies: the 1972 RoSLA and 

Mendelian randomization. All of the estimates are also presented graphically in Figure 6. 

The observational associations estimated by OLS generally follow the patterns that we would 

expect from the literature. An additional year of education is associated with lower risk of having 

had a diagnosis of hypertension, diabetes, having a stroke, having a heart attack, being a current 

or ever smoker or dying during the follow up of the sample. There is no impact on cancer risk but 

education is observationally associated with increased risk of a diagnosis of depression. Additional 

education is also associated with greater grip strength (indicating greater health), lower arterial 

stiffness, lower BMI, lower blood pressure, and greater fluid intelligence. Education is associated 

with a higher probability of having a higher income, though with a smaller absolute impact on the 
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probability in the higher parts of the income distribution (over £52,000 p.a. and over £100,000 

p.a.). There was little association with happiness but the lifestyle relationships show an interesting 

pattern: more educated participants consumed more alcohol and did less moderate exercise, 

watched fewer hours television and did more vigorous exercise. 

 

Moving to the IV columns, as we would anticipate, the estimates are less precise. For example, 

with respect to mortality, the Mendelian randomization estimate of a 0.40 percentage point lower 

risk has a standard error of 0.23 percentage points and so the 95% confidence interval just includes 

zero. The RoSLA estimate is notably larger at 1.4 pp reduction, though its standard error (0.5 pp) 

would not rule out the same size estimate as the Mendelian randomization instrument. For 

morbidity outcomes the two IVs give estimates of a similar magnitude in several cases: for risk of 

hypertension both IV estimates are a 1.0 percentage point reduction in risk for an additional year 

of education. For heart attack the estimates are a 1.2 percentage point reduction in risk (MR) and 

a 0.5 pp reduction (RoSLA). Risk of stroke again sees similar estimates: at 0.5 pp (MR) and 1.1pp 

(RoSLA). As with the OLS, there is no estimated impact of education on cancer risk using either 

IV, but unlike the observational associations, neither IV finds an impact of education on 

depression diagnosis. Diabetes is the one morbidity outcome for which the IV estimates differ 

more: the Mendelian randomization estimate is a reduction of 1.4 percentage points, whereas the 

RoSLA estimates a reduction of 3.1 pp for an additional year of education.  

 

Both instrumental variable estimates suggest an additional year of schooling increases grip 

strength: by 0.42kg for the Mendelian randomization estimate, and by 1.00kg for the RoSLA 

estimate. However, the IV estimates for arterial stiffness, the other measure of healthy ageing, are 

very imprecisely estimated. For blood pressure, the OLS estimate is a reduction in both diastolic 

and systolic blood pressure, by 0.12 and 0.32 mmHg respectively per additional year of education. 

The Mendelian randomization analysis suggests much larger causal effects (-0.82mmHg diastolic 

and -1.20 mmHg systolic, both precisely estimated) whereas the RoSLA estimates are imprecise 

and both suggest an increase in blood pressure as a result of additional schooling.  

 

Interestingly both IV estimates of the impact of education on BMI were very similar, -0.71 kg/m2 

for the Mendelian randomization estimate, -0.86 kg/m2 for the RoSLA IV, both much larger in 

magnitude than the observational association that an additional year of education reduces BMI by 

0.18 kg/m2. As with the OLS estimate, neither instrument found an impact of additional education 

on happiness, however for intelligence both IV estimates are precisely estimated and suggest a 
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positive causal effect of education:  the RoSLA IV is +0.46 and the Mendelian randomization 

+0.93. These are large impacts given the standard deviation of the intelligence measure is 2.10. 

 

With regard to health behaviours, both instrumental variable estimates are very similar for the 

impact of a year of education on the propensity to be a current or ever smoker – reducing the risk 

of being a current smoker by approx. 4.5 percentage points and of ever being a smoker by 8.3 

percentage points. Similarly, for alcohol consumption and hours watching TV, the IV estimates 

are in the same direction as the OLS but larger: an additional year of education is associated with 

0.07 unit increase in alcohol consumption, whereas the corresponding IV estimates are 0.17 

(RoSLA) and 0.19 (MR). For TV watching the IV estimates are -0.38 hours per day (RoSLA) and 

-0.48 (MR), both precisely estimated. The instrumental variable impacts on exercise are in general 

small and imprecise.  

 

Estimated by OLS, the impact of an additional year of education on the absolute probability of 

earning over certain income thresholds follows a pattern whereby the greatest impact is on income 

over £31,000 p.a. with the impacts on income over £18,000 p.a. and income over £52,000 p.a. 

smaller and almost the same as each other. The impact on income over £100,000 p.a. is the smallest 

of all. Interestingly the IV point estimates follow exactly the same pattern, though in almost every 

case the IV estimates are larger than the OLS in magnitude but less precisely estimated. In each 

case the two instrumental variable estimates are similar to each other.  

 

One of the outcome variables included in the UK Biobank is adult height. There is a positive 

association between height and educational attainment in the cross section, though this is likely to 

be driven by reverse causation from height to education as height is largely determined prior to 

completing full time education. Interestingly both of the IV estimates also find a positive effect of 

education on height. The Mendelian randomization results for height suggest that differences in 

education associated with genetic variants also correlate with differences in height which implies 

that there may be some influence of dynastic effects/assortative mating on the result. We 

investigated this in the covariate balance tests in Table 2 where we find a small positive association 

between educational attainment instrumented using Mendelian randomization and the probability 

of reporting having been taller than average at age 10. At the same time there is no impact of 

education (via MR) on comparative body size at age 10 which may suggest that any 

dynastic/assortative mating pathway is not straightforward.  
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Robustness 

In light of the concerns raised in the empirical strategy section, we test the robustness of our 

Mendelian randomization estimates in a number of ways: firstly, we test the sensitivity to the 

inclusion of different sets of control variables. Our main analysis controls for year and month of 

birth, gender, the interaction of year and month of birth with gender, and the first 10 principal 

components of population genetic stratification. In later analyses we include additional controls to 

capture background characteristics of the individuals: whether they were breastfed, whether their 

mother smoked during pregnancy, their birth weight, and the deprivation level of their birth 

location. Estimates are displayed visually in Figures A1 and A2 with coefficient estimates reported 

in Appendix Table A1. Our estimates are extremely robust to the inclusion or exclusion of the 

different sets of controls, with point estimates and standard errors almost identical to each other 

in each specification. Only in the case of grip strength does the exclusion of all controls have a 

notable impact, the point estimate reducing from 0.42kg to 0.14kg and becoming less precise, the 

95% confidence interval now including zero. Finally, the results were robust to whether or not we 

weight the sample to take account of the under-representation of the lower educated in the UK 

Biobank vis-à-vis the Census figures (see Figures A3 and appendix Table A2).  

 

5. Conclusion 

 

Our paper makes a substantial contribution to the literature on returns to education. We compared 

estimates of the effect of education on health outcomes using a commonly used policy reform 

“natural experiment” and a Mendelian randomization approach using genetic instrumental 

variables. Each method has distinct strengths and limitations, and under monotonicity they 

estimate the average effects of education in different subpopulations. As such they are 

complements rather than substitutes. As it turns out, the results using the two sources of 

identification are remarkably similar. Each approach provides significant evidence that education 

causally reduces the risk of hypertension, diabetes, stroke, heart attack and over-all mortality, and 

that it leads to an increased grip strength and lower BMI. Again, in each case, we find impacts on 

some health behaviours: education reduces prevalence of smoking and the number of hours 

watching television, but it increases alcohol consumption. Also, in each case, education increases 

the frequency of moderate exercise. Neither approach finds evidence of effects of education on 

depression, cancer or arterial stiffness. We find little evidence for correlations of the proposed 

instrumental variables with other allele scores for a range of other traits that may affect later health.  
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From a methodological point of view, perhaps the most fascinating implication is that the two 

approaches provide such remarkably congruent results for almost each measured health outcome. 

Indeed, the magnitudes of the estimated causal effects are similar, notwithstanding the fact that 

each instrument identifies a different set of LATE compliers. This can be interpreted as suggestive 

evidence for effects of education on health to be of a similar magnitude across the distribution of 

attained education levels. This result is of importance for policy but also for the methodology of 

studying causal effects of education on health. In particular, our study suggests that Mendelian 

randomization is a potentially useful source of instrumental variation in education. In our setting, 

it allows for an extrapolation of effects among compliers in the RoSLA setting to other segments 

of the education distribution.  

 

Our study has identified some study limitations and hence gives rise to a number of topics for 

further research. Notably, the estimation results based on Mendelian randomization may be 

affected by dynastic effects which occur if there are effects of expression of the relevant SNPs in 

parents to their offspring’s health outcomes. In the near future such limitations will be 

surmountable using large studies with genomic data from related individuals such as siblings and 

mother-father-offspring trios. These molecular genetically informed studies are likely to transform 

our understanding of the transmission of human capital from parents to their offspring.  
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Table 1 – characteristics of UK BioBank participants 
 

 N Proportion 
Count/ 

Std. Dev. 
Male                   315,436  0.46  146,571  

Year of birth                   315,436  1951  8  

Age left education                   315,436  18.19  3  

    
Outcomes N Proportion Count 
Hypertension                   307,496  0.25 76,638  

Diabetes                   313,766  0.04 13,877  

Stroke                   314,978  0.02 4,772  

Heart attack                   314,978  0.02 7,175  

Depression                   300,594  0.15 44,283  

Cancer                   314,152  0.13 40,014  

Died                   315,436  0.02 5,340  

Ever smoked                   314,422  0.10 31,259  

Currently smoke                   314,422  0.45 141,825  

Income over £18k                   274,617  0.78 215,423  

Income over £31k                   274,617  0.53 145,685  

Income over £52k                   274,617  0.27 72,867  

Income over £100k                   274,617  0.06 15,190  

 N Mean Std. Dev. 

Grip strength (kg)                   314,788  0.33 10.89 

Arterial stiffness                   113,856  0.02 4.07 

Height (cm)                   314,760  168.92 9.26 

BMI (kg/m2)                   314,455  27.36 4.75 

Diastolic (mmHg)                   297,872  82.25 10.12 

Systolic (mmHg)                   297,871  138.11 18.62 

Intelligence (0 to 13)                   113,033  6.25 2.10 

Happiness (0 to 5 Likert)                   114,971  3.45 0.70 

Alcohol consumption (0 low to 5 high)                   315,239  3.16 1.48 

Hours watching television per day                   304,230  2.86 1.63 

Moderate exercise (days/week)                   301,195  3.61 2.33 

Vigorous exercise (days/week)                   301,440  1.82 1.94 
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Table 2: Estimates of the ‘impact’ of an additional year of education on polygeneic scores for 45 traits and 16 non-genetic characteristics 
 

 
Observed educational 

attainment   
Education instrument by 

RoSLA   
Education instrumented by 
Mendelian randomization 

Outcomes         
Polygeneic scores  Coefficient s.e.    Coefficient s.e.    Coefficient s.e.  
Height 0.002** 0.000  -0.017 0.020  0.000 0.003 
Body mass index -0.001** 0.000  -0.004 0.009  -0.009 0.003 
Body fat percentage -0.001 0.001  0.046 0.064  -0.025 0.009 
Cigarettes smoked per day -0.002 0.002  -0.139 0.111  -0.016 0.018 
Ever vs never smoked 0.000 0.000  -0.009 0.018  -0.011** 0.003 
Age of smoking initiation 0.000** 0.000  0.000 0.004  -0.002 0.001 
Alcohol dependence -0.001* 0.001  -0.110 0.067  -0.011 0.010 
Birth weight 0.001** 0.000  -0.011 0.011  0.011 0.002 
Birth length 0.000** 0.000  -0.008 0.014  0.008 0.002 
Infant head circumference 0.000** 0.000  -0.002 0.005  0.020 0.001 
Age at menarche 0.001** 0.000  -0.020 0.059  -0.012 0.011 
Depressive symptoms 0.000 0.000  -0.012 0.006  -0.008** 0.002 
Major depressive disorder 0.000 0.000  -0.023 0.021  -0.002 0.006 
Autism 0.001 0.001  0.023 0.049  -0.022 0.010 
Schizophrenia 0.000 0.001  0.032 0.046  0.013 0.011 
Bipolar disorder 0.003** 0.001  0.030 0.057  0.041** 0.006 
Migraine in bipolar disorder 0.000 0.001  0.015 0.063  0.017 0.015 
PGC cross-disorder traits 0.001** 0.000  0.011 0.021  0.011* 0.004 
Alzheimer's disease -0.001** 0.000  -0.009 0.032  0.003 0.006 
Father’s age at death 0.000** 0.000  0.008 0.007  0.000 0.002 
Mother’s age at death 0.000** 0.000  -0.006 0.008  0.003* 0.002 
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Agreeableness 0.001 0.001  0.007 0.059  -0.003 0.016 
Conscientiousness 0.000 0.001  0.010 0.049  -0.009 0.009 
Extraversion -0.001 0.001  0.140 0.094  -0.005 0.018 
Openness to experience 0.000 0.001  0.002 0.104  -0.020 0.013 
Neuroticism 0.000** 0.000  0.019 0.011  -0.004 0.002 
Internalizing problems -0.001 0.000  -0.036 0.035  -0.002 0.011 
Subjective well being 0.000** 0.000  -0.003 0.004  0.000 0.001 
Chronotype 0.000** 0.000  -0.014 0.011  0.008** 0.002 
Sleep duration 0.000** 0.000  0.000 0.005  0.004** 0.002 
G speed factor 0.000 0.000  -0.026 0.024  0.016 0.010 
Symbol search 0.000 0.001  0.002 0.043  -0.114** 0.010 
Digit symbol 0.001 0.001  0.024 0.021  0.004 0.007 
Inspection time -0.002* 0.001  -0.003 0.039  0.025 0.013 
2-choice reaction time -0.001* 0.001  -0.005 0.042  0.001 0.009 
8-choice reaction time -0.001* 0.001  0.030 0.049  -0.011 0.008 
Simple reaction time -0.001** 0.000  -0.009 0.014  0.020** 0.006 
Childhood intelligence 0.000** 0.000  -0.004 0.009  0.028** 0.003 
Cognition Sniekers et al. 0.001** 0.000  0.002 0.006  0.006** 0.001 
Cognition Trampush p<5E-07 0.000** 0.000  0.003 0.004  0.002** 0.001 
High IQ Zabaneh 0.000** 0.000  -0.007 0.008  0.001 0.002 
Omega-3 fatty acids 0.001** 0.000  0.004 0.024  0.001 0.004 
Omega-6 fatty acids 0.000 0.000  0.025 0.023  0.000 0.005 
Omega-9 and sat. fatty acids 0.001** 0.000  0.012 0.028  -0.018** 0.006 
Other PUFA 0.001** 0.000  -0.026 0.021  0.001 0.007 
Linoleic acid (LA) 0.000 0.001  0.003 0.027  -0.007 0.007 
Mono-unsaturated fatty acids 0.000 0.000  0.019 0.019  -0.023** 0.006 
Zinc -0.001* 0.001  -0.050 0.040  -0.011 0.006 
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Observed educational 

attainment  
Education instrument by 

RoSLA  
Education instrumented by 
Mendelian randomization 

Outcomes           
Non-genetic characteristics Coefficient s.e.   Coefficient s.e.    Coefficient s.e.  
Easting 0.012** 0.001  0.028 0.034  0.068** 0.009 
Northing -0.013** 0.001  -0.061 0.046  -0.068** 0.010 
Index of Multiple Deprivation 0.025** 0.001  0.144 0.076  0.114** 0.010 
Urban vs. rural -0.002** 0.000  0.040** 0.013  -0.015** 0.005 
Distance from London -0.011** 0.001  -0.047 0.035  -0.069** 0.007 
Birthweight 0.010** 0.002  0.077 0.071  0.061** 0.017 
Breastfed 0.001** 0.000  0.034 0.034  0.012 0.007 
Mother smoked in pregnancy -0.008** 0.001  -0.109** 0.036  -0.069** 0.005 
Comparative body size age 10 0.009** 0.001  0.062 0.086  0.017 0.012 
Comparative height age 10 0.017** 0.002  0.043 0.066  0.081** 0.008 
Father alive 0.029** 0.000  0.212** 0.030  0.003 0.006 
Mother alive 0.037** 0.000  0.190** 0.017  0.016** 0.006 
Number of brothers -0.047** 0.001  -0.375** 0.099  -0.123** 0.018 
Number of sisters -0.043** 0.001   -0.178* 0.079   -0.114** 0.009 
Notes:  each coefficient is from a separate regression, in each regression controls are included for month of birth, gender and the first 10 principal components of population 
stratification.  
*p<0.05, **p<0.01. 
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Table 3: The effect of one additional year of schooling on morbidity, mortality and socioeconomic outcomes 

 OLS   IV: RoSLA    IV: Mendelian randomization   

Outcome Coefficient s.e. N   Coefficient s.e. 
First stage  
F-statistic N   Coefficient s.e. 

First stage  
F-statistic N 

Hypertension -0.007** 0.000 307496  -0.009* 0.004 2126 21768  -0.010 0.006 1060 307496 
Diabetes -0.003** 0.000 313766  -0.031** 0.006 2187 22049  -0.014** 0.003 1096 313766 

Stroke -0.001** 0.000 314978  -0.011** 0.003 2202 22110  -0.005* 0.002 1101 314978 

Heart attack -0.003** 0.000 314978  -0.005* 0.002 2202 22110  -0.012** 0.003 1101 314978 
Depression 0.006** 0.000 300594  -0.014 0.015 2028 21085  0.003 0.005 1040 300594 

Cancer 0.000 0.000 314152  -0.001 0.012 2182 22011  0.000 0.005 1092 314152 

Died -0.001** 0.000 315436  -0.014** 0.005 2206 22138  -0.004 0.002 1099 315436 
Ever smoked -0.016** 0.000 314422  -0.084** 0.022 2202 22086  -0.083** 0.008 1094 314422 

Currently smoke -0.011** 0.001 314422  -0.047** 0.011 2202 22086  -0.044** 0.005 1094 314422 

Income over £18k 0.039** 0.001 274617  0.058** 0.010 1866 19921  0.094** 0.008 935 274617 
Income over £31k 0.046** 0.000 274617  0.129 0.014 1866 19921  0.113** 0.007 935 274617 

Income over £52k 0.033** 0.001 274617  0.049* 0.022 1866 19921  0.092** 0.006 935 274617 

Income over £100k 0.009** 0.000 274617  0.007 0.011 1866 19921  0.030** 0.003 935 274617 
Gripstrength (kg) 0.247** 0.006 314788  1.002** 0.168 2161 21989  0.417** 0.101 1090 314788 

Arterial stiffness -0.057** 0.007 113856  -0.093 0.213 788 8537  -0.038** 0.093 304 113856 

Height (cm) 0.277** 0.005 314760  0.334 0.190 2196 22077  0.986** 0.093 1096 314760 
BMI (kg/m2) -0.177** 0.004 314455  -0.858** 0.153 2197 22055  -0.714** 0.074 1094 314455 

Diastolic (mmHg) -0.119** 0.009 297872  0.215 0.424 2116 21494  -0.818** 0.133 1003 297872 

Systolic (mmHg) -0.319** 0.014 297871  1.273* 0.610 2114 21492  -1.203** 0.257 1003 297871 
Intelligence (0 to 13) 0.251** 0.003 113033  0.455**  0.124 791 8540  0.925** 0.065 284 113033 

Happiness (0 to 5 Likert) 0.000 0.001 114971  -0.010 0.047 807 8626  -0.002 0.018 302 114971 

Alcohol consumption (0 low to 5 high) 0.075** 0.001 315239  0.173** 0.055 2204 22123  0.186** 0.021 1100 315239 
Hours watching television per day -0.157** 0.001 304230  -0.380** 0.071 2140 21206  -0.487** 0.026 1005 304230 

Moderate exercise (days/week) -0.020** 0.002 301195  0.160 0.087 2017 21330  -0.098** 0.032 1022 301195 
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Vigorous exercise (days/week) 0.004** 0.002 301440   0.025 0.058 2011 21379   -0.020 0.029 1022 301440 
 
Notes: Standard errors clustered by month of birth. IV: MR includes controls for the year and month of birth, gender, the year and month of birth dummies interacted with gender, 
and the first 10 principal components of population genetic stratification. IV: RoSLA includes controls for month of birth and gender. *p<0.05, **p<0.01 
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Figure 1: The impact of the 1972 Raising of the School Leaving Age (RoSLA) 
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Figure 2: Selection of participants into the study 
  

9,238,453 invited 
 

503,317 consented 
 

502,664 provided data 
 

8,735,136 did not respond or consent 
 

653 did not provide data or withdrew 
 
15,255 had no genotype data 
 

487,409 had genotyping data 
 

486,566 included 
 

843 had sex mismatches, sex 
chromosome aneuploidy, or excess 
heterozygosity  
 

408,258 Europeans 
 

78,308 non-European 
 

334,980 Unrelated 
 

73,276 related 
 

334,974 with consent 
 
 

6 withdrew consent 
 



 36 

Figure 3: Estimates of the ‘impact’ of an additional year of education on polygeneic scores for 45 
traits comparing observed educational attainment ●, education instrumented by RoSLA ■, and 
education instrumented by the polygenic education risk score ▲.

 
 
Notes: Adjusted for month of birth, sex, and the ten principal components of population stratification. Confidence 
intervals allowing for clustering by month of birth reported. Sample weighted to adjust for under sampling of less 
educated. 
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Figure 4: Estimates of the ‘impact’ of an additional year of education on 16 non-genetic 
characteristics comparing observed educational attainment ●, education instrumented by RoSLA 
■, and education instrumented by the polygenic education risk score ▲. 
.

 
 
 
Notes: Adjusted for month of birth, sex, and the ten principal components of population stratification. Confidence 
intervals allowing for clustering by month of birth reported. Sample weighted to adjust for under sampling of less 
educated. 
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Figure 5: Differences in age left school across the Raising of the School Leaving Age (top) and 
quintiles of the educational attainment polygenic risk score (bottom) 
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Figure 6: The effect of one additional year of schooling on morbidity, mortality and 
socioeconomic outcomes, estimated via OLS ●, and instrumenting education using the 1972 
Raising of the School Leaving Age ■, and the polygenic educational attainment genetic risk score 
▲. 

 
Notes: Adjusted for month and year of birth, sex, and the ten principal components of population stratification. 
Confidence intervals allowing for clustering by month of birth reported. Sample weighted to adjust for under 
sampling of less educated. 
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Appendix 

 

Construction of the polygenic scores for education and other traits 

We constructed the scores from extracted SNPs that were associated with each trait at p<5e-5. 

We used a lower threshold than is usually used for genome-wide significance (p<5e-8) to define 

the scores because we wanted to maximise the explanatory power of the scores. We constructed 

the polygenic risk scores from extracted SNPs that were associated with each trait at p<5e-5. We 

used a lower threshold than is usually used for genome-wide significance (p<5e-8) to define the 

scores because we wanted to maximise the explanatory power of the scores. Furthermore, it is 

not possible for the educational attainment genetic score to have pleiotropic effects on the other 

polygenic scores. We LD pruned the SNPs for each trait using a threshold of r2>0.001 across a 

distance of 10,000kb. We excluded SNPs from these scores that were in LD (r2>0.001) with the 

74 SNPs identified as associated with educational attainment at the genome-wide level (p<5e-08) 

the educational attainment GWAS (Okbay et al., 2016). This resulted in a set of SNPs in 

independent points in the genome for each trait. We constructed allele scores equal to the sum 

of the effect alleles for each trait (as per Burgess and Thompson, 2014). The contribution of 

each SNP to the allele score was weighted by the coefficient reported in the GWAS for that trait. 

We harmonised the direction of SNP effects between UK Biobank and the GWAS. Finally, we 

checked for consistency of the allele frequency reported in the GWAS and the UK Biobank data. 

The allele frequencies were correlated 0.9913, and the maximum difference in allele frequency 

was 0.091. 
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Table A1: The effect of one additional year of schooling instrumented using Mendelian Randomisation on morbidity, mortality and socioeconomic 
outcomes, robustness analysis: controls 
 

 Basic controls (Table 3)  No controls  Full set of controls 
Outcome Coefficient s.e.   Coefficient s.e.  Coefficient s.e. 
Hypertension -0.010 0.006  -0.012* 0.006   -0.012 0.011 
Diabetes -0.014** 0.003  -0.015** 0.003  -0.018** 0.005 
Stroke -0.005* 0.002  -0.005* 0.002  -0.002 0.003 
Heart attack -0.012** 0.003  -0.013** 0.003  -0.011** 0.004 
Depression 0.003 0.005  0.002 0.005  -0.006 0.008 
Cancer 0.000 0.005  0.000 0.005  -0.005 0.008 
Died -0.004 0.002  -0.004* 0.002  0.000 0.003 
Ever smoked -0.083** 0.007  -0.084** 0.008  -0.084** 0.012 
Currently smoke -0.044** 0.005  -0.043** 0.005  -0.046** 0.008 
Income over £18k 0.094** 0.008  0.093** 0.008  0.078** 0.011 
Income over £31k 0.113** 0.007  0.113** 0.007  0.110** 0.013 
Income over £52k 0.092** 0.006  0.093** 0.006  0.097** 0.010 
Income over £100k 0.030** 0.003  0.030** 0.003  0.038** 0.005 
Gripstrength (kg) 0.417** 0.101  0.142 0.154  0.339* 0.166 
Arterial stiffness -0.038** 0.093  -0.085 0.090  -0.284 0.147 
Height (cm) 0.986** 0.093  0.709** 0.128  0.961** 0.160 
BMI (kg/m2) -0.714** 0.074  -0.718** 0.074  -0.722** 0.127 
Diastolic (mmHg) -0.818** 0.132  -0.890** 0.136  -0.918** 0.240 
Systolic (mmHg) -1.203** 0.257  -1.324** 0.268  -1.621** 0.470 
Intelligence (0 to 13) 0.925** 0.065  0.911** 0.065  0.894** 0.113 
Happiness (0 to 5 Likert) -0.002 0.018  -0.004 0.018  0.032 0.035 
Alcohol consumption (0 low to 5 high) 0.186** 0.021  0.174** 0.021  0.142** 0.034 
Hours watching television per day -0.487** 0.026  -0.481** 0.027  -0.478** 0.044 
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Moderate exercise (days/week) -0.098** 0.032  -0.103** 0.032  -0.119* 0.055 
Vigorous exercise (days/week) -0.020 0.029   -0.030 0.030   -0.039 0.044 
Notes: Basic specification controls for the year and month of birth, gender, the year and month of birth dummies interacted with gender, and the first 
10 principal components of population genetic stratification. Full set of controls contains the basic set plus whether the individual was breastfed, 
whether their mother smoked during pregnancy, their birth weight, and the deprivation level of their birth location. Standard errors clustered by 
month of birth. Sample weighted to adjust for under sampling of less educated. *p<0.05, **p<0.01   
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Table A2: The effect of one additional year of schooling instrumented using Mendelian Randomisation on morbidity, mortality and socioeconomic 
outcomes, robustness analysis: weighting 
 

 Weighted results (Table 4)  Unweighted results 
Outcome Coefficient s.e.  Coefficient s.e. 
Hypertension -0.010 0.006   -0.018** 0.005 
Diabetes -0.014** 0.003  -0.012** 0.003 
Stroke -0.005* 0.002  -0.004* 0.002 
Heart attack -0.012** 0.003  -0.009** 0.002 
Depression 0.003 0.005  0.002 0.004 
Cancer 0.000 0.005  0.002 0.004 
Died -0.004 0.002  -0.002 0.002 
Ever smoked -0.083** 0.007  -0.077** 0.007 
Currently smoke -0.044** 0.005  -0.038** 0.004 
Income over £18k 0.094** 0.008  0.087** 0.006 
Income over £31k 0.113** 0.007  0.114** 0.007 
Income over £52k 0.092** 0.006  0.097** 0.007 
Income over £100k 0.030** 0.003  0.035** 0.003 
Gripstrength (kg) 0.417** 0.101  0.408** 0.085 
Arterial stiffness -0.038 0.093  -0.035 0.088 
Height (cm) 0.986** 0.093  0.949** 0.080 
BMI (kg/m2) -0.714** 0.074  -0.781** 0.062 
Diastolic (mmHg) -0.818** 0.132  -0.871** 0.115 
Systolic (mmHg) -1.203** 0.257  -1.323** 0.216 
Intelligence (0 to 13) 0.925** 0.065  0.929** 0.063 
Happiness (0 to 5 Likert) -0.002 0.018  -0.018 0.017 
Alcohol consumption (0 low to 5 high) 0.186** 0.021  0.187** 0.018 
Hours watching television per day -0.487** 0.026  -0.500** 0.022 
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Moderate exercise (days/week) -0.098** 0.032  -0.081** 0.028 
Vigorous exercise (days/week) -0.020 0.029   -0.005 0.025 
Notes: Adjusted for year, month of birth, sex, interaction of year of birth and sex, and the 10 principal components of population stratification. Standard errors clustered by 
month of birth. *p<0.05, **p<0.01 



 45 

Figure A1: The effect of one additional year of schooling on morbidity, mortality and 
socioeconomic outcomes estimated using the educational attainment genetic score with and 
without adjusting for the sex, month and year of birth and principal components of population 
stratification ▲ and ▲ respectively.  

 
 
Notes: Confidence intervals allowing for clustering by month of birth reported. Sample weighted to adjust for under 
sampling of less educated.  
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Figure A2: The effect of one additional year of schooling on morbidity, mortality and 
socioeconomic outcomes estimated using the educational attainment genetic score with and 
without additionally adjusting breastfeeding, mother smoked during pregnancy, birth weight, 
birth location and deprivation (easting, northing, and distance to London) ▲ and ▲respectively.  

 
Notes: Confidence intervals clustered by month of birth reported. Sample weighted to adjust for under sampling of 
less educated. All results adjust for month and year of birth, sex, and the ten principal components of population 
stratification. 
  

Hypertension

Diabetes

Stroke

Heart	a1ack

Depression

Cancer

Died

Ever	smoked

Currently	smoke

Income	over	£18k

Income	over	£31k

Income	over	£52k

.																																	Income	over	£100k

Morbidity

Mortality

Health	behaviours

Income

-20 -15 -10 -5 0 5 10 15 20
Risk	difference*100

Gripstrength	(kg)

Arterial	sMffness

Height	(cm)

BMI	(kg/m2)

Diastolic	(mmHg)

Systolic	(mmHg)

Intelligence	(0	to	13)

Happiness	(0	to	5	Likert)

Alcohol	consumpMon	(0	low	to	5	high)

Hours	watching	television	per	day

Moderate	exercise	(days/week)

Vigorous	exercise	(days/week)

Indicators	of	aging

Anthropometry

Blood	pressure

Neurocogni<ve

Health	behaviours

-3 -2 -1 0 1 2 3
Mean	difference



 47 

Figure A3: The effect of one additional year of schooling on morbidity, mortality and 
socioeconomic outcomes estimated using the educational attainment genetic score with and 
without weighting for under-sampling of less educated ▲ and ▲ respectively. The weighting did 
not affect the estimates. 

 
 
Notes: Adjusted for month and year of birth, sex, and the ten principal components of population stratification. 
Confidence intervals allowing for clustering by month of birth reported. 
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