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identical leading to the same parameter estimates after correct reparametrization. Second, 

binning of effect window endpoints allows identification of dynamic treatment effects 

even when no never-treated units are present. Third, classic dummy variable event study 

designs can be naturally generalized to models that account for multiple events of different 

sign and intensity of the treatment, which are particularly interesting for research in labor 

economics and public finance.
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1 Introduction

The credibility revolution in empirical economics has led researchers to set up more trans-

parent (quasi-)experimental research designs. This shift has increased the policy relevance

and the scientific impact of empirical work (Angrist and Pischke, 2010). An important ele-

ment that enhanced transparency is the visualization of treatment effects and/or identiying

assumptions. Ideally, the main empirical take-away of the study can be summarized in one

graph. Differences-in-differences (DD) models are particularly popular design as they directly

derive from the rationale of experiments and are usually intuitive in terms of the empirical

model and the underlying assumptions. A particularly appealing specification, belonging

to the family of DD models, is the event study (ES) design. Originating from the finance

literature, event study designs have initially been used to analyze the impact of an unantic-

ipated event on stock prices. This rationale has been translated to other fields of applied

economics, mostly public finance and labor economics. Here an event is usually defined as

a policy change and the outcome is the price or quantity of the market under study. Tech-

nically, the outcome variable in a year t is regressed on a set of dummy variables, which

indicate when the event has happened relative to t. In many ways, the event study design is

the poster child of empirical methods used in the credibility revolution since (i) coefficients

can be graphed, (ii) the graphs are very intuitive in the sense that both post-event effects

and the identifying assumption of “no pre-event trends” are immediately visible, and (iii)

the underlying econometrics are intuitive as they boil down to a simple panel data model

where the regressors of interest are a set of non-parametric event indicators which are defined

relative to the event. Figure 1 plots the use of event study designs in economics over time.

We measure the use by the share of studies mentioning the term “event study” in the Top

Five economics journals.1 While we see a steady increase since 1990, there is sharp increase

since 2010. Moreover this increase is mostly driven by the three journals focusing on applied

microeconomic work among the Top-Five, i.e. the American Economic Review (AER), the

Quarterly Journal of Economics (QJE), and the Journal of Political Economy (JPE).

Despite its intuitive appeal, there is remarkable heterogeneity in how event study designs

are implemented in practice. In particular, there is a tendency to refer to the term event study

rather loosely. First, there is the distinction between the original event study originating in

the finance literature and the adaption used in current applied micro research, mostly in

the fields of public and labor economics. Second, within the later field, some researchers

employ the term for a simple graph plotting an outcome for the treatment (and sometimes

the control) group relative to some event in the spirit of a difference-in-difference graphs. As

1 More than 80% of the studies mentioning event study designs actually implement one.
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Figure 1: The rise of event studies in economics

Notes: This graph plots the three-year moving average of the share of studies mentioning event study

designs in top economics journals. We use a 3-year moving average to control for mean reversion. The

Top 5 journals are the American Economic Review (AER), the Quarterly Journal of Economics (QJE),

the Journal of Political Economy (JPE), Econometrica and the Review of Economic Studies. We report

results for AER, QJE and JPE separately as these there journals are known to publish many applied

microeconometric studies.

a consequence, more than one third of the non-finance papers published in the AER, QJE or

JPE since 2010 using event study designs do not specify a regression equation. Another issue

which leads to heterogeneity in the implementation of event studies is the treatment of the

ends of the effect window, which is the window within which the effect is studied.2 Among

the papers that specified a regression equation, only 15% discussed how they modeled the

endpoints, which – as it will turn out below – is important. Moreover, empirical economists

differ in how they apply the event study rationale to multiple events and events with different

treatment intensities.

The purpose of this paper is to clarify our understanding of event study designs both in

methodological and practical terms. We depart from the simplest institutional environment

in which event study designs are applied: in a typical panel set-up with a large number of units

and relatively few time periods, each unit receives one single-treatment – the event – at a unit-

specific point in time. As necessary in most practical applications, we limit the effect window

to a finite number of leads and lags, which requires binning the endpoints of the window.

In this set-up, we show that event study coefficients are identical to the cumulated lags and

leads in a distributed-lag (DL) model. However, the equivalence requires to carefully choose

2 A more widely used synonym is event window, which as it will turn out, is less accurate.
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the corresponding number of leads and lags and the length of the observation window for the

dependent variable and the event indicators in the DL and the ES model. Having derived the

equivalence between the standard ES design and DL models, we show that the rationale of

the equivalence can be easily generalized and adapted to institutional environments, which

are more common in public and labor economics. These environments include (i) multiple

events, such as a sequence of state-level minimum wage increases, (ii) events of different sign

and intensity of the treatment, such as a tax increase in one year and a decrease a couple of

years later. While making these methodological points, the paper provides practical advice

and highlights pitfalls when setting up event study designs and when comparing the results

of ES and DL models. We illustrate our results using simple numerical examples.

This paper adds to the recent methodological literature on event study and distributed-lag

models. Freyaldenhoven et al. (2018) suggest how to extend the standard event study design

to account for unobserved confounders generating a pre treatment trend in the outcomes

and still recover the causal effect of the event. Roth (2018) shows that treatment effects can

be biased conditional on passing the flat pre-trend test. Abraham and Sun (2018) point to

a different form of identification problem arising in the case of staggered treatments with

heterogeneous dynamic treatment effects – a similar problem also arises in static diff-in-diff

models (Athey and Imbens, 2018; de Chaisemartin and D’Haultfoeuille, 2018). In our set-

up, we assume homogeneous treatment effects and abstract from endogeneity concerns. In

this respect our study is related to Borusyak and Jaravel (2017) who point to a potential

underidentification problem in panel data event study designs where dynamic treatment

effects can only be identified up to a linear trend. We show below that restricting the effect

window at a certain lead/lag – a practical necessity in many applications – and binning the

endpoints alleviates such concerns by introducing parameter restrictions that help to separate

trends in the dynamic treatment and secular time effects even in the absence of never treated

units. At the same time, we show that choosing the length of the effect window determines

whether a unit-year observation is assigned to the treatment or the control group and hence

is not innocuous.

The remainder of this paper is structured as follows. Section 2 sets up a standard version

of an event study model in the simplest institutional environment and shows that the spec-

ification is equivalent to a standard distributed-lag model. In Section 3, we generalize the

institutional environment and allow for multiple and heterogeneous events across and within

units. We show that event study designs can also be used in these settings, and discuss

the additional adjustments and assumptions that need to be made in this case. Section 4

concludes.
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2 Standard Event Study Design

In this section, we show that the event study model is equivalent to a distributed-lag model.

We start by setting up the event study design in the simplest institutional environment and

refer to this model as the standard event study set-up throughout the paper. We then show

that this standard event study model is a re-parametrization of the distributed-lag model.

On the way, we stress important assumptions that are necessary for the correct specification

of both models. In Subsection 2.4, we illustrate all formal claims using a numerical example.

2.1 Set-up

We start our analysis with a standard event study set-up, where each unit i receives at

most one single treatment at unit-specific time ei. We intend to estimate the effect of this

treatment on our dependent variable y, which we observe at different time periods t = t, ..., t̄.

We call [t, ..., t̄] the observation window for the dependent variable. As the treatment effect is

allowed to vary over time, we are interested in studying its dynamics over a window ranging

from j < 0 periods prior to the event to j̄ ≥ 0 after the event. We refer to this window as the

effect window. In this set-up, the standard event study specification is given for all t = t, ..., t̄

by:

yit =

j̄∑
j=j

βjb
j
it + µi + θt + εit (1)

where µi is a unit fixed effect, θt is a time fixed effect. In the standard set-up, bjit is a treatment

indicator for an event happening j ∈ [j, j̄] periods away from t, which is commonly defined

as

bjit =


1[t ≤ ei + j] if j = j

1[t = ei + j] if j < j < j̄

1[t ≥ ei + j] if j = j̄ .

(2)

Treatment indicators bjit are binned at the endpoints, indicating if treatment for unit i at

time t happened j̄ or more periods ago, or j periods or more into the future. We rewrite

definition (2) and propose the following generalized, more versatile (cf. Section 3.3.2) and

5



arguably more intuitive definition for all t = t, ..., t̄:3

bjit =


∑t̄−j−1

s=t−j dis if j = j

di,t−j if j < j < j̄∑t−j̄
s=t−j̄+1

dis if j = j̄.

(3)

In the standard set-up, dit is an event dummy that takes the value 1 in the year of the

treatment, ei, and zero otherwise. Section 2.4 shows the construction of the binned treatment

indicator in a numerical example.

Remark 1 (Limited effect window).

Following the standard, we limit the effect window to j < 0 periods prior to the event and

j̄ ≥ 0 after the event, i.e. the effect is assumed to stay constant before and after this effect

window. This is equivalent to an effect window from −∞ to ∞ and assuming βj = βj for all

j < j and βj = βj̄ for all j > j̄. This is achieved by binning the treatment indicator.

Remark 1 implies that the standard event study model relies on additional but often

economically plausible parameter restrictions. These restrictions reduce the number of pa-

rameters to be estimated and thereby alleviate potential underidentification problems (see

Section 2.3).

Due to the leads of lags of the treatment indicator in the event study model, information

on the treatment needs to be observed for a longer observation window than for the dependent

variable. In the following remark, we summarize the data requirements for a given observation

window of the dependent variable.

Remark 2 (Data requirements). For a given balanced panel of the dependent variable from

[t, t̄] and an effect window [j, j̄], we need to observe events from t − j̄ + 1 to t̄ + |j| − 1. If

events are derived from changes in policy variables, i.e. treatment status, we need to observe

treatment status from t− j̄ to t̄+ |j| − 1.

To understand the intuition behind Remark 2, it is first important to note that an event

that happens before t, i.e. the first data year of the dependent variable, can affect the outcome

like any other event happening between t and t̄ and needs to be taken into account. Likewise,

we should account for events that happen after t̄ if we want to test for pre-trends.

3 Note that the definition of endpoints in (3) is equivalent to other recently applied variants. In our

notation, the specification of Fuest et al. (2018) is given by b
j

it =
∑t̄−1

s=t di,s−j and bj̄it =
∑t

s=t+1 di,s−j̄ .

Likewise, it can be rewritten as b
j

it =
∑j

s=t−(t̄−j−1) di,t−s and bj̄it =
∑t−(t−j̄+1)

s=j̄
di,t−s, which is equivalent to

Smith et al. (2017) using t, t̄ instead of the implicitly assumed negative and positive infinity.
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This rationale prompts the second question of how long before t and after t̄ do we need

to observe events at the minimum. From Remark 1, we know that treatment effects are

assumed to be constant after j̄ and before j periods. Hence, we need to observe events at

least from t− j̄ to t̄+ |j|. By Remark 2, it, however, suffices to observe events in one fewer

year at each end of the data window, hence from t− j̄+ 1 to t̄+ |j| − 1. To see this, consider

a case where the event takes place at t − j̄. Due to the binning, the treatment indicator bj̄it

will be equal to one for this unit for all t. Conditional on unit fixed effects, this unit cannot

be used to identify treatment effects An analogous argument applies at the other end of the

data window.

So far, we assumed to observe events directly. In many applications, an event is, however,

defined by the researcher as a change in policy variables, such as tax rates or minimum wages.

We call such policy variables the treatment status xit. In the standard set-up, treatment status

is a dummy variable that changes from 0 to 1 at the time of the event. If we generate event

dummies from changes in policy states, the observation window for the treatment status

needs to be observed for an additional period in the beginning, hence from t − j̄ onwards.

Figure 2.1 visualizes the required width of the observation window for a given limited effect

window.

t− j̄ t t̄ t̄+ |j|

Observation window for dependent variable, yit

Observation window for treatment indicator, dit

Observation window for treatment status, xit

Figure 2: Data requirements

Remark 3 (Standardization).

Treatment indicators bjit sum up to one over all j for treated units or to zero for non-treated

units.4 The parameters βj are therefore only identified up to a constant due to the individual

fixed effect µi. Thus at least one coefficient βj needs to be fixed as a standardization. We

follow the standard and drop the pre treatment indicator b−1
it from the regression, standardizing

its coefficient β−1 to zero.

4 The binned event indicators bjit are perfectly multicollinear with the individual effect µi because for all

t = t, ..., t̄:
∑j̄

j=j b
j
it = 1 if t− j ≤ ei ≤ t+ |j| and

∑j̄
j=j b

j
it = 0 if ei < t− j or ei > t+ |j|. For non-treated

as well not-yet treated and always-treated units (see below) units all indicators are zero for all t.

7



After the standardization β−1 = 0, the parameter βj is the effect j time periods after the

event compared to the level one period before the event.

2.2 Equivalence

Result 1 shows how the standard event study specification in equation (1) can be transformed

into an equivalent distributed-lag model:

Result 1 (Equivalence of Event Study and Distributed-Lag Model).

The standard event study specification with effect window from j to j̄ for all t = t, ..., t̄

yit =

j̄∑
j=j

βjb
j
it + µi + θt + εit

and binned event indicator defined in (3) is equivalent to a distributed-lag specification with

j̄ lags and |j|-1 leads for all t = t, ..., t̄

yit =

j̄∑
j=j+1

γjxi,t−j + µi + θt + εit (4)

where the explanatory variable xit is a dummy variable with initial value xi,t−j̄ = 0 that

changes from 0 to 1 at an event, i.e. xit = xi,t−1 +dit for all t = t− j̄+1, ..., t̄+ |j|−1. Given

the standardization β−1 = 0, the event study effects β can be recovered from the distributed-lag

coefficient γ as

βj =


−
∑−1

k=j−1 γk if j ≤ j ≤ −2

0 if j = −1∑j
k=0 γk if 0 ≤ j ≤ j̄

(5)

Proof: see Appendix A.

Result 1 encompasses various implications. Equation (5) shows that event study coeffi-

cients β are numerically identical to the cumulative sum of the distributed-lag coefficients

γj. When looking at post-treatment, that is j ≥ 0, the cumulative sum of γj for k = 0, ..., j

needs to be calculated. For pre-treatment, j < 0, we standardize the cumulated distributed-

lag coefficients analogously to the event study design by setting γ−1 = 0 (cf. Remark 3). We

then generate the cumulative sum for the pre treatment period by summing distributed-lag

coefficients away from zero (minus one) for each j <= −2.
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The equivalence of event study and distributed-lag model with the re-parametrization in

(5) also holds in first differences:

∆yit =

j̄∑
j=j

βj∆b
j
it + θt + ∆εit (6)

=

j̄∑
j=j+1

γj∆xi,t−j + θt + ∆εit (7)

where ∆xi,t−j = di,t−j.

The distributed-lag specification in equation (4) immediately reveals that its estimation

requires to observe the event dummy dit from period (t− j̄+1) to (t̄+ |j|−1) as in Remark 2.

Note that the distributed-lag specification is either a regression of levels on levels (equation

4) or of changes on changes (equation 7) while the event-study specification is a regression

of levels on (binned) changes (equation 1).5

Small differences in the notation are very important and distinguish distributed-lag and

event study models. In the event study, variables b have to be defined, which is indicated by

the superscript index j. In the distributed-lag model j is part of the time index and we need

no further definition of the distributed-lag variables. Vice versa, we can directly interpret

the coefficients of the event study design βj, while we need to cumulate the γ coefficients of

distributed-lag model to learn about the dynamic treatment effects.

Remark 4 (Deriving event study effects from the distributed-lag estimates).

Estimates for the event study effects β can be derived from the distributed-lag estimates γ̂

according to equation (5). This linear transformation transfers the statistical properties (con-

sistency and asymptotic normality) of γ̂ to the calculated β̂. Standard errors of β̂ can be

calculated from the variances and covariances of the vector γ̂ by the usual formula for linear

combinations. Point estimates and standard errors of directly estimating β̂ in the event study

model or of indirectly estimating β̂ in the corresponding distributed-lag model are numerically

identical.

Remark 5 (Interpreting the estimated parameters).

The models do not impose any restriction on the effect size across units. It is possible that

the event for unit i at time t has a different effect than the event happening in unit l at time

s. The coefficient βj, for all j ≥ 0, is the average effect of the treatment j periods after the

event. Likewise, βj, for all j < 0, is the average pre-treatment effect.

5 With an infinite effect window, the event study specification is just a regression of levels on changes in

the treatment status, i.e. a dummy variable for an event: yit =
∑∞

j=−∞ βj1[t = ei + j] + µi + θt + εit =∑∞
j=−∞ γjxi,t−j + µi + θt + εit where ∆xit = dit = 1[t = ei + j] and γj = βj − βj−1.

9



2.3 Estimation and Identification

The event study model in equation (1) and the distributed-lag model in equation (4) are

panel data models with a large number of units i = 1, ..., N over few time periods t = t, ..., t̄.

Both models include unit and time effects. The parameters β and γ, respectively, can there-

fore be estimated with standard fixed effects estimation including time period dummies.6

These estimates are consistent and asymptotically normal as N → ∞ under the standard

assumptions for panel data models with large N and small T . Alternatively, both models

can be estimated with standard ordinary least squares in first differences and including time

period dummies as in equations (6) and (7). The first difference estimator is consistent and

asymptotically normal under the same assumption as the fixed effects estimator in levels. De-

pending on the autocorrelation of the error term, either fixed effects estimation or estimation

in first differences is more efficient.

It is important to assure that the model is econometrically identified such that the dynamic

effects, βj, are distinguished from secular time trends, θt. Borusyak and Jaravel (2017)

show that with an infinite effect window, [j, j̄] = [−∞,∞], the dynamic effects are only

identified up to a linear trend.7 However, limiting the effect window as in Remark 1 (by

binning of the event dummies in the event study model) introduces additional restrictions

that allow separately identifying dynamic effects, βj, and secular time trends, θt. Intuitively,

observations outside of the effect window are similar to never-treated units: they serve as

a control group and help to bin down secular time trends.8 Hence, binning of endpoints –

a practical necessity in many application – allows for identification even in the absence of

never-treated units and is an alternative to dropping an additional pre-treatment indicator

or resorting to unit random fixed effects. At the same time, choosing the length of the

effect window determines whether a unit-year observation is assigned to the treatment or the

control group and hence is not innocuous.

The model is econometrically identified if (i) each lag and lead j is observed in the outcome

6 Throughout the paper, we understand identification as the purely mechanical recovery of the coefficients

of interest, β, and not their causal interpretation.
7 In practice, an infinite effect window implies including the maximal number of leads and lags that can

be observed in the data.
8 Formally, let us adjust equation (5) in Borusyak and Jaravel (2017) to our notation for the case of an

infinite effect window: yit =
∑∞

j=−∞ βj1[t = ei + j] + µi + θt + εit =
∑∞

j=−∞(βj + λ · j)1[t = ei + j] +

(µi + λ · ei) + (θt − λ · t) + εit. Dynamic treatment effects are therefore only identified up to the linear trend

λ · j. Equivalently, in the first difference distributed-lag representation, we can write ∆yit =
∑∞

j=−∞ γj1[t =

ei + j] + θt + ∆εit =
∑∞

j=−∞(γj + λ)1[t = ei + j]− λ + θt. The underidentification problem exists because∑∞
j=−∞ λ1[t = ei + j] = λ. However, with a limited effect window, the equation does not hold anymore

because
∑j̄

j=j+1 λ1[t = ei + j] = 0 6= λ if t < ei − |j|+ 1 or t > ei + j̄.

10



window [t, t̄] for at least one unit but not necessarily for the same unit, (ii) for at least one

observed endpoint (j or j̄) in t there is at least one other unit which is treated after (t + j)

or before (t− |j̄|). Condition (ii) guaranties that at least one endpoint is directly identified

from a comparison with a control group for which period t is outside of its effect window.

Condition (ii) is automatically satisfied in the presence of at least one never-treated unit.

Condition (i) identifies all other effects either from a direct comparison with a control group

or from an iterative comparison of effects. The identified endpoint allows backing out all other

treatment effects and all time fixed effects iteratively. This is equivalent to the econometric

identification in staggered treatment difference-in-differences designs. In Appendix B, we

present intuitive examples demonstrating how identification is achieved.

2.4 A Numerical Example

We illustrate the equivalence defined in Result 1 using the following

Example 1. We assume a panel that runs from t = 2000 to t̄ = 2010 and an effect window

from j = −3 to j̄ = 4. For unit i, the single event takes place at ei = 2005.

In example 1, the explanatory variables of the event study model in levels (equation 1)

and in first differences (equation 6) are visualized by the following matrices, respectively.

t

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

b−3
it b−2

it b−1
it b0

it b1
it b2

it b3
it b4

it

1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1

∆b−3
it ∆b−2

it ∆b−1
it ∆b0

it ∆b1
it ∆b2

it ∆b3
it ∆b4

it

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

-1 1 0 0 0 0 0 0

0 -1 1 0 0 0 0 0

0 0 -1 1 0 0 0 0

0 0 0 -1 1 0 0 0

0 0 0 0 -1 1 0 0

0 0 0 0 0 -1 1 0

0 0 0 0 0 0 -1 1

0 0 0 0 0 0 0 0

The left matrix shows how the event indicator bjit is binned at endpoints j and j̄ as

described in Remark 1. Moreover, the need for standardization (cf. Remark 3) becomes

visible as all row sums in the left matrix are equal to one. Binning also implies that if the

reform had happened on or before t = t − j̄ = 2000 − 4 = 1996 (rather than in t = 2005

11



as assumed in the example), bj̄it = b4
it = 1 for all t from 2000 to 2010. In this case of an

always-treated unit, bj̄it = b4
it is a constant and its effect is absorbed in the unit fixed effect

µi. By the analogous argument, events on or after t = t̄ + |j| = 2010 + 3 = 2013 imply

b
j

it = b−3
it = 1 for all t from 2000 to 2010 whose effect is absorbed in µi. It therefore suffices

to know all events from time period t − j̄ + 1 = 1997 to t = t̄ + |j| − 1 = 2012 to estimate

the model, see Remark 2.

The following matrices visualize the explanatory variables of the distributed-lag model

applied to Example 1, again in levels and first-differences respectively.

t

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

xi,t+2xi,t+1 xit xi,t−1xi,t−2xi,t−3xi,t−4

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

1 0 0 0 0 0 0

1 1 0 0 0 0 0

1 1 1 0 0 0 0

1 1 1 1 0 0 0

1 1 1 1 1 0 0

1 1 1 1 1 1 0

1 1 1 1 1 1 1

1 1 1 1 1 1 1

∆xi,t+2∆xi,t+1 ∆xit ∆xi,t−1∆xi,t−2∆xi,t−3∆xi,t−4

0 0 0 0 0 0 0

0 0 0 0 0 0 0

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

0 0 0 0 0 0 0

Notice how the event study model with effects up to j̄ = 4 years after event and |j| = 3 years

before the event corresponds to a distributed-lag model with j̄ = 4 lags and |j|−1 = 2 leads.

Also notice that the right matrix becomes a zero matrix if the event takes place on or before

1996 and on or after 2013. Hence, again only information of events between 1997 and 2012 is

necessary to estimate the model. The four matrices can also be used to verify the condition

that allow deriving our Result 1: bjit = di,t−j = ∆xi,t−j and bji,t−1 = di,t−j−1 = ∆xi,t−j−1

for j = −3 < j < j̄ = 4 as well as ∆b
j

it = ∆b−3
it = −di,t−j−1 = −di,t−2 = −∆xi,t−2 and

∆bj̄it = ∆b4
it = di,t−j̄ = di,t−4 = ∆xi,t−4.

3 Generalization

In many applications, treatment may occur repeatedly and be of different intensities across

units and/or time. A common solution is to dichotomize treatment variables and use a

dummy variable that is switched on for large policy changes (see, e.g., Simon, 2016; Fuest

et al., 2018). However, the parameter estimates of such an artificial dichotomization are
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hard to interpret both in magnitude and direction.9 Moreover, the dichotomization of the

treatment variable eliminates valuable information which could otherwise be used to identify

the magnitude of the effect.

In this section, we therefore propose a generalized event study approach which accommo-

dates institutional set-ups where multiple events with known treatment intensity take place.

In particular, we show how effects of single events with varying treatment intensity, multiple

events of identical intensity and multiple events of different intensities can be estimated using

the full information of the treatment intensity.

3.1 Equivalence

Let us consider the general case where each unit i may be treated in any period t and

treatment intensity is known but may be different in each period. In this case, dit is no longer a

dummy variable, but indicates the direction and intensity of events for each i and t. Typically,

those kind of models are estimated in a distributed-lag model in first differences as given in

(7), where treatment status, xit, is defined recursively as xit = xi,t−1 + ∆xit = xi,t−1 + dit

with initial value xi,t−j̄ = 0.10

However, the event study approach can also accommodate this general case because the

equivalence Result 1 and Remarks 1 to 4 also hold in the general case. The only difference is

that the binned treatment variable bjit needs to be generated as in our alternative definition

(3) and not as in the more common definition (2).

By Remark 5, the event study coefficients in the standard case measure the average event

effect. These average reform effects might differ across units because of (i) heterogeneous,

unit-specific event effect for the same event, (ii) homogeneous treatment effect but different

events across units.11 The generalization removes (parts of) the latter sources of heterogeneity

9 To see this, consider the following case: each unit is treated once, there are two types of treatment: a

small reform dsit = 1 or a large reform d`it = 2; treatments are distributed randomly in time and treatment

effects are linear in the intensities of the reform. Ignoring small events and applying the standard event

dummy set-up yields dsit = 0, d`it = 1. In this case, units with small reforms become part of the the control

group although they respond to the reform. This induces a bias in the time fixed effects and thereby also

in the treatment coefficients. Depending on elasticity of the treatment effect with respect to the reform

intensity, the share of large vs. small reforms and the relative size of effect window to observation window,

it is possible that estimates in the model only using the large reforms can be larger, smaller or identical to

the model using all reforms. A possible fix for this ambiguity is to exclude units with small events from the

sample, in which case, the model is, however, estimated on a different and possibly selective sample.
10 Of course, distributed lag models in levels are suitable, too.
11 On an abstract level, the distinction between the two is somewhat arbitrary because you could interpret

an event of the same size happening in a different unit (or time) as a different event.
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at the cost of an additional assumption, sacrificing parts of the non-parametric appeal of event

study designs. At the same time, estimates of the treatment effect become more precise if

the assumption is correct.

3.2 A Numerical Example

In the following, we provide a brief generic numerical example for the general case.

Example 2. We assume a panel that runs from t = 2000 to t̄ = 2010 and an effect window

from j = −3 to j̄ = 4. For individual i, one event of intensity di,2003 = 0.2 takes place in

2003, another event of intensity di,2004 = −0.1 in 2004 and yet another event of intensity

di,2006 = 0.3 in 2006; there are no event in the other years.

The following four matrices show the explanatory variables for the event study in levels bjit

and in first differences ∆bjit, as well as for the distributed-lag model in levels, xit = xit+∆xi,t−1

with initial value xi,t−j̄ = 0, and in first differences, ∆xit = dit:

t

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

b−3
it b−2

it b−1
it b0

it b1
it b2

it b3
it b4

it

0.4 0 0 0 0 0 0 0

0.2 0.2 0 0 0 0 0 0

0.3 -0.1 0.2 0 0 0 0 0

0.3 0 -0.1 0.2 0 0 0 0

0 0.3 0 -0.1 0.2 0 0 0

0 0 0.3 0 -0.1 0.2 0 0

0 0 0 0.3 0 -0.1 0.2 0

0 0 0 0 0.3 0 -0.1 0.2

0 0 0 0 0 0.3 0 0.1

0 0 0 0 0 0 0.3 0.1

0 0 0 0 0 0 0 0.4

∆b−3
it ∆b−2

it ∆b−1
it ∆b0

it ∆b1
it ∆b2

it ∆b3
it ∆b4

it

-0.2 0.2 0 0 0 0 0 0

0.1 -0.3 0.2 0 0 0 0 0

0 0.1 -0.3 0.2 0 0 0 0

-0.3 0.3 0.1 -0.3 0.2 0 0 0

0 -0.3 0.3 0.1 -0.3 0.2 0 0

0 0 -0.3 0.3 0.1 -0.3 0.2 0

0 0 0 -0.3 0.3 0.1 -0.3 0.2

0 0 0 0 -0.3 0.3 0.1 -0.1

0 0 0 0 0 -0.3 0.3 0

0 0 0 0 0 0 -0.3 0.3
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t

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

xi,t+2xi,t+1 xit xi,t−1xi,t−2xi,t−3xi,t−4

0 0 0 0 0 0 0

0.2 0 0 0 0 0 0

0.1 0.2 0 0 0 0 0

0.1 0.1 0.2 0 0 0 0

0.4 0.1 0.1 0.2 0 0 0

0.4 0.4 0.1 0.1 0.2 0 0

0.4 0.4 0.4 0.1 0.1 0.2 0

0.4 0.4 0.4 0.4 0.1 0.1 0.2

0.4 0.4 0.4 0.4 0.4 0.1 0.1

0.4 0.4 0.4 0.4 0.4 0.4 0.1

0.4 0.4 0.4 0.4 0.4 0.4 0.4

∆xi,t+2∆xi,t+1∆xit∆xi,t−1∆xi,t−2∆xi,t−3∆xi,t−4

0.2 0 0 0 0 0 0

-0.1 0.2 0 0 0 0 0

0 -0.1 0.2 0 0 0 0

0.3 0 -0.1 0.2 0 0 0

0 0.3 0 -0.1 0.2 0 0

0 0 0.3 0 -0.1 0.2 0

0 0 0 0.3 0 -0.1 0.2

0 0 0 0 0.3 0 -0.1

0 0 0 0 0 0.3 0

0 0 0 0 0 0 0.3

3.3 Typical Cases and Applications

In this subsection we briefly discuss typical cases of the generalized event study design and

provide selected examples from recent applications in top five journals if there are any. Nu-

merical examples for the special cases in 3.3.1 to 3.3.3 can be found in Appendix C.

3.3.1 Single Events of Varying Treatment Intensity

Consider the case where each unit receives one treatment, but treatment intensity di differs

across units (see Appendix C.1 for a numerical example). Note that the event study specifi-

cation in levels looks like a regression of levels (yit) on changes (di,t−j). However, the identical

distributed-lag model in levels shows that the model is derived from an intuitive regression of

levels (yit) on levels (xit), i.e. on the cumulated changes di. Besides the classic event study,

this case is quite frequently applied as it fits an institutional setting where a shock at some

aggregate level hits units at a disaggregate level with different intensities (see, e.g., Alsan

and Wanamaker, 2018; Charles et al., 2018; Clemens et al., 2018; Goodman-Bacon, 2018).

3.3.2 Multiple Events of Identical Intensity

Consider the case where events of identical intensity take place repeatedly for a unit. In this

case, dit is an event dummy that takes the value 1 in any period where an event took place

and 0 in other periods. The binned treatment variable bjit is again generated by definition (3).

At the endpoints j and j̄, the binned treatment variable bjit is the backward cumulated event

dummy di,t+|j| and the forward cumulated event dummy di,t−j̄, respectively (see Appendix
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C.2 for a numerical example.) Note how the more common definition of the binned treatment

variable in definition (2) fails in this case.

In the case of multiple events, the parameter βj estimates the average effect of all single

and multiple events j periods after the event. Interestingly, the application of this model

is relative rare and mostly used in papers applying the original model used in the finance

literature (see, e.g. Dube et al., 2011, for an exception). However, many institutional set-ups

would fit the model well, such as hospital admissions or firm switches. Some studies only

focus on the first of potentially many events. Two things are important to note here. First,

depending on the proximity of multiple events pre-treatment and post-treatment effect might

overlap, which could lead to a bias. Second, following Remark 2, it is important to ensure

that no event happened outside the observation window for the dependent variable but inside

the window for the treatment indicator.

3.3.3 Multiple Events of Different Intensities and Direction

Last, we consider the most general case, described in Section 3.1. There are many settings

that fit this model, such as multiple tax changes or minimum wage hikes, and correspondingly

many applications. Traditionally, the corresponding models were framed as distributed lag

models rather than event study designs (Suárez Serrato and Zidar, 2016; Drechsler et al.,

2017; Fuest et al., 2018). A special case is when events have a different direction. Assume

that dit is a variable that takes the value 1 in periods with a “positive” treatment, −1 in

periods with a “negative” treatment and 0 in periods without a treatment. The parameter

βj estimates the average effect j periods after the event of all “positive” treatments and

– with reversed sign – all “negative” treatments. In other words, the effects of “positive”

and “negative” treatments are assumed symmetric with opposing signs. A typical example

would be the introduction of a new law in some period and the abolition of the law in some

later period, or the opening and closing of plants across regions. We are not aware of any

recent application of this case, while the model could be suitable for studying settings, such

as introduction of a policy that will eventually sunset, or the opening and closing of plants.

4 Conclusion

In this paper, we have made remarks about the standard event study design and its gen-

eralization. First, event study designs and distributed-lag models are equivalent and lead

to numerically identical parameter estimates after correct transformation of the parameters.

Second, binning of the endpoints of the effect window allows identification of both secular
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time fixed effects and dynamic treatment effects even when no never-treated units are present.

Third, classic event study designs using dummy variables as event indicators can be naturally

generalized to models that account for multiple events of different intensities and signs.
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Appendix A Proof of Equivalence

In the following we show that the standard event study is numerically equivalent to the

distributed-lag model. We start by rewriting the equation (1) in first differences. The first-

difference model, which omits the first time period t and is defined for all t = t + 1, ..., t̄, is

given by

∆yit = yit − yi,t−1 =

j̄∑
j=j

βj∆b
j
it + θt + ∆εit

where ∆bjit = bjit − b
j
i,t−1 and where individual fixed effects µi cancel.

From (3), it follows that bjit = di,t−j and bji,t−1 = di,t−j−1 for j < j < j̄. Moreover, verify

that ∆b
j

it = −di,t−j−1 and ∆bj̄it = di,t−j̄. We can therefore rewrite for all t = t+ 1, ..., t̄

∆yit =

j̄∑
j=j

βj∆b
j
it + θt + ∆εit

= βj∆b
j

it +

j̄−1∑
j=j+1

βj(b
j
it − b

j
i,t−1) + βj̄∆b

j̄
it + θt + ∆εit

= −βjdi,t−j−1 +

j̄−1∑
j=j+1

βj(di,t−j − di,t−j−1) + βj̄di,t−j̄ + θt + ∆εit

= −βjdi,t−j−1 +

j̄−1∑
j=j+1

βjdi,t−j −
j̄−1∑

j=j+1

βjdi,t−j−1 + βj̄di,t−j̄ + θt + ∆εit

= −βjdi,t−j−1 + βj+1di,t−j−1 +

j̄−1∑
j=j+2

βjdi,t−j −
j̄−1∑

j=j+2

βj−1di,t−j − βj̄−1di,t−j̄ + βj̄di,t−j̄ + θt + ∆εit

= (βj+1 − βj)di,t−j−1 +

j̄−1∑
j=j+2

(βj − βj−1)di,t−j + (βj̄ − βj̄−1)di,t−j̄ + θt + ∆εit

= γj+1di,t−j−1 +

j̄−1∑
j=j+2

γjdi,t−j + γj̄di,t−j̄ + θt + ∆εit

=

j̄∑
j=j+1

γjdi,t−j + θt + ∆εit =

j̄∑
j=j+1

γj∆xi,t−j + θt + ∆εit

where γj = βj − βj−1 and where we define ∆xit = dit. Hence the event study model in

differences is equivalent to a distributed-lag model in differences with j̄ lags and |j|−1 leads.
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The re-parametrization holds accordingly in levels for all t = t, ..., t̄ as

yit =

j̄∑
j=j

βjb
j
it + µi + θt + εit =

j̄∑
j=j+1

γjxi,t−j + µi + θt + εit

where treatment status xit is defined recursively as xit = xi,t−1 + ∆xit = xi,t−1 + dit with

initial value xi,t−j̄ = 0. The respective level equation is only defined up to a constant. We can

therefore set the initial treatment status xt−j̄ to an arbitrary value, e.g. xt−j̄ = 0. Adding a

constant c to xit and xi,t−1 does not affect ∆xit.
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Appendix B Identification

In the following, we present intuitive cases that demonstrate how identification is achieved.

The empirical model is described by equation (7), hence

∆yit = γ−1di,t−1 + γ0di,t + γ1di,t+1 + θt + ∆εit.

There are no unit fixed effects and there is no constant in this regression, so no time fixed

effect has to be dropped for identification. Moreover, the cases in this appendix reveal

that identification is most easily studied in the first difference version of the distributed-lag

specification.

Consider the following seven cases with an effect window from j = −2 to j̄ = 1.

Case 1 (identified). Unit 1 is treated in t = 2, unit 2 is not treated, panel from t = 0 to

t̄ = 3.

The matrix of explanatory variables in Case 1 is given by

t i

0 1

1 1

2 1

3 1

0 2

1 2

2 2

3 2

t1 t2 t3

. . .

1 0 0

0 1 0

0 0 1

. . .

1 0 0

0 1 0

0 0 1

dt−1 dt dt+1

. . .

1 0 0

0 1 0

0 0 1

. . .

0 0 0

0 0 0

0 0 0

← observation of ∆y1 one period before event

← observation of ∆y1 at event

← observation of ∆y1 one period after event

← control for ∆y1 one period before event

← control for ∆y1 at event

← control for ∆y1 after period before event

where t1, t2 and t3 are dummy variables for the three time periods 1, 2 and 3, respectively.

This is the example given in Borusyak and Jaravel (2017). The non-treated unit pins

down the time fixed effects, which thereby can be separated from the dynamic treatment

effects. The matrix of explanatory variables has full rank.
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Case 2 (not identified). Both units are treated in t = 2, panel from t = 0 to t̄ = 3.

t i

0 1

1 1

2 1

3 1

0 2

1 2

2 2

3 2

t1 t2 t3

. . .

1 0 0

0 1 0

0 0 1

. . .

1 0 0

0 1 0

0 0 1

dt−1 dt dt+1

. . .

1 0 0

0 1 0

0 0 1

. . .

1 0 0

0 1 0

0 0 1

← observation of ∆y1 one period before event

← observation of ∆y1 at event

← observation of ∆y1 one period after event

← observation of ∆y1 one period before event

← observation of ∆y1 at event

← observation of ∆y1 one period after event

Clearly, the model in case 2 is not identified. Treatment and time effects cannot be separated.

This can be remedied if we shift the treatment of one unit by one year.

Case 3 (identified). Unit 1 treated in t = 2, unit 2 treated in t = 3, panel from t = 0 to

t̄ = 3.

t i

0 1

1 1

2 1

3 1

0 2

1 2

2 2

3 2

t1 t2 t3

. . .

1 0 0

0 1 0

0 0 1

. . .

1 0 0

0 1 0

0 0 1

dt−1 dt dt+1

. . .

1 0 0

0 1 0

0 0 1

. . .

0 0 0

1 0 0

0 1 0

← observation of ∆y1 one period before event

← observation of ∆y1 at event

← observation of ∆y1 one period after event

← control for ∆y1 one period before event

Case 3 demonstrates the main intuition behind the identification when binning endpoints.

The staggered treatment enables to pin down one time fixed effects for unit 2 and t = 1. If

t1 is identified, we can back out dt−1 for unit 1, then t2 for unit 2, and so on. For such an

iterative procedure it is necessary that we observe all event indicators in the data window,

they do not have to observable completely for one unit.
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Case 4 (identified). Unit 1 treated in t = 2, unit 2 treated in t = 4, panel from t = 0 to

t̄ = 3.

t i

0 1

1 1

2 1

3 1

0 2

1 2

2 2

3 2

t1 t2 t3

. . .

1 0 0

0 1 0

0 0 1

. . .

1 0 0

0 1 0

0 0 1

dt−1 dt dt+1

. . .

0 1 0

0 0 1

0 0 0

. . .

0 0 0

0 0 0

1 0 0

← observation of ∆y1 at event

← observation of ∆y1 one period after event

← control for ∆y2 one period before event

← control for ∆y1 at event

← control for ∆y1 one period after event

← observation of ∆y2 one period before event

Again, we can iteratively separate event from time effects even though we do not observe a

full set of event effects for a single unit. However, it is important that we observe at least

one endpoint in a year t where the other unit is not treated.

Case 5 (not identified). Unit 1 treated in t = −1, unit 2 treated in t = 4, panel from

t = 0 to t̄ = 3.

t i

0 1

1 1

2 1

3 1

0 2

1 2

2 2

3 2

t1 t2 t3

. . .

1 0 0

0 1 0

0 0 1

. . .

1 0 0

0 1 0

0 0 1

dt−1 dt dt+1

. . .

0 0 1

0 0 0

0 0 0

. . .

0 0 0

0 0 0

1 0 0

← observation of ∆y1 one period after event

← control for ∆y2 one period before event

← control for ∆y1 one period after event

← observation of ∆y2 one period before event

Here, identification is not achieved. The matrix of explanatory variables has rank 5, as e.g.,

dt+1 = t1−t3−dt−1. The effect one period before and one period after the event are identified

but the effect at the event is not observed for any unit.
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Case 6 (not identified). Unit 1 treated in t = 1, unit 2 treated in t = 3, panel from t = 0

to t̄ = 3.

t i

0 1

1 1

2 1

3 1

0 2

1 2

2 2

3 2

t1 t2 t3

. . .

1 0 0

0 1 0

0 0 1

. . .

1 0 0

0 1 0

0 0 1

dt−1 dt dt+1

. . .

0 1 0

0 0 1

0 0 0

. . .

0 0 0

1 0 0

0 1 0

← observation of ∆y1 at event

← observation of ∆y1 one period after event

← control for ∆y2 at event

← control for ∆y1 at event

← observation of ∆y2 one period before event

← observation of ∆y2 at event

Here, identification is not achieved. The matrix of explanatory variables has rank 5, as e.g.,

dt−1 = t2−dt+1. Iterative identification is not possible. The reason is that only two endpoints

in the data window are observed in the same year (t = 2).

Case 7 (identified). Unit 1 treated in t = 0, unit 2 treated in t = 1, unit 3 treated in

t = 2, unit 4 not treated, panel from t = 0 to t̄ = 1.

t i

0 1

1 1

0 2

1 2

0 3

1 3

0 4

1 4

t1

.

1

.

1

.

1

.

1

dt−1 dt dt+1

. . .

1 0 0

. . .

0 1 0

. . .

0 0 1

. . .

0 0 0

← observation of ∆y1 one period before event

← observation of ∆y2 at event

← observation of ∆y3 one period after event

← control for ∆y1,t−1, ∆y2,t, ∆y3,t+1

All three dynamic effects are directly identified in direct comparison to a never-treated unit.

The matrix of explanatory variables is full rank. This case shows that the observation window

for the dependent variable can be shorter than the effect window.
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Appendix C More Numerical Examples

C.1 Single Events of Varying Treatment Intensity

Example C.1. We assume a panel that runs from t = 2000 to t̄ = 2010 and an effect window

from j = −3 to j̄ = 4. For individual i, the single event of intensity di = 0.1 takes place at

ei = 2005.

The explanatory variables for the event study in levels, bjit, and in first differences, ∆bjit,

are

t

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

b−3
it b−2

it b−1
it b0

it b1
it b2

it b3
it b4

it

0.1 0 0 0 0 0 0 0

0.1 0 0 0 0 0 0 0

0.1 0 0 0 0 0 0 0

0 0.1 0 0 0 0 0 0

0 0 0.1 0 0 0 0 0

0 0 0 0.1 0 0 0 0

0 0 0 0 0.1 0 0 0

0 0 0 0 0 0.1 0 0

0 0 0 0 0 0 0.1 0

0 0 0 0 0 0 0 0.1

0 0 0 0 0 0 0 0.1

∆b−3
it ∆b−2

it ∆b−1
it ∆b0

it ∆b1
it ∆b2

it ∆b3
it ∆b4

it

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0.1 0.1 0 0 0 0 0 0

0 -0.1 0.1 0 0 0 0 0

0 0 -0.1 0.1 0 0 0 0

0 0 0 -0.1 0.1 0 0 0

0 0 0 0 -0.1 0.1 0 0

0 0 0 0 0 -0.1 0.1 0

0 0 0 0 0 0 -0.1 0.1

0 0 0 0 0 0 0 0

The corresponding explanatory variables of the distributed-lag model in levels, xit =

xit + ∆xi,t−1 = xit + di,t−1 with xi,t−j̄ = 0, and in first differences ∆xit = dit, are

t

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

xi,t+2xi,t+1 xit xi,t−1xi,t−2xi,t−3xi,t−4

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0.1 0 0 0 0 0 0

0.1 0.1 0 0 0 0 0

0.1 0.1 0.1 0 0 0 0

0.1 0.1 0.1 0.1 0 0 0

0.1 0.1 0.1 0.1 0.1 0 0

0.1 0.1 0.1 0.1 0.1 0.1 0

0.1 0.1 0.1 0.1 0.1 0.1 0.1

0.1 0.1 0.1 0.1 0.1 0.1 0.1

∆xi,t+2∆xi,t+1 ∆xit ∆xi,t−1∆xi,t−2∆xi,t−3∆xi,t−4

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0.1 0 0 0 0 0 0

0 0.1 0 0 0 0 0

0 0 0.1 0 0 0 0

0 0 0 0.1 0 0 0

0 0 0 0 0.1 0 0

0 0 0 0 0 0.1 0

0 0 0 0 0 0 0.1

0 0 0 0 0 0 0
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C.2 Multiple Events of Identical Intensity

Example C.3. We assume a panel that runs from t = 2000 to t̄ = 2010 and an effect window

from j = −3 to j̄ = 4. For individual i, a first event takes place at 2004 and a second at

2006.

The explanatory variables of the event study model in levels and in first differences are

t

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

b−3
it b−2

it b−1
it b0

it b1
it b2

it b3
it b4

it

2 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0

1 0 1 0 0 0 0 0

0 1 0 1 0 0 0 0

0 0 1 0 1 0 0 0

0 0 0 1 0 1 0 0

0 0 0 0 1 0 1 0

0 0 0 0 0 1 0 1

0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 2

∆b−3
it ∆b−2

it ∆b−1
it ∆b0

it ∆b1
it ∆b2

it ∆b3
it ∆b4

it

0 0 0 0 0 0 0 0

-1 1 0 0 0 0 0 0

0 -1 1 0 0 0 0 0

-1 1 -1 1 0 0 0 0

0 -1 1 -1 1 0 0 0

0 0 -1 1 -1 1 0 0

0 0 0 -1 1 -1 1 0

0 0 0 0 -1 1 -1 1

0 0 0 0 0 -1 1 0

0 0 0 0 0 0 -1 1

The explanatory variables of the distributed-lag model in levels, xit = xit + ∆xi,t−1 =

xit + di,t−1 with xi,t−j̄ = 0, and in first differences, ∆xit = dit, are

t

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

xi,t+2xi,t+1 xit xi,t−1xi,t−2xi,t−3xi,t−4

0 0 0 0 0 0 0

0 0 0 0 0 0 0

1 0 0 0 0 0 0

1 1 0 0 0 0 0

2 1 1 0 0 0 0

2 2 1 1 0 0 0

2 2 2 1 1 0 0

2 2 2 2 1 1 0

2 2 2 2 2 1 1

2 2 2 2 2 2 1

2 2 2 2 2 2 2

∆xi,t+2∆xi,t+1 ∆xit ∆xi,t−1∆xi,t−2∆xi,t−3∆xi,t−4

0 0 0 0 0 0 0

1 0 0 0 0 0 0

0 1 0 0 0 0 0

1 0 1 0 0 0 0

0 1 0 1 0 0 0

0 0 1 0 1 0 0

0 0 0 1 0 1 0

0 0 0 0 1 0 1

0 0 0 0 0 1 0

0 0 0 0 0 0 1
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