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ABSTRACT

IZA DP No. 11313 FEBRUARY 2018

Reallocation and the Role of 
Firm Composition Effects on 
Aggregate Wage Dynamics

Aggregate wages display little cyclicality compared to what a standard model would 

predict. Wage rigidities are an obvious candidate but a recent strand of the literature has 

emphasized the need to take into account the growing importance of worker composition 

effects during downturns. With reference to the Italian case we document that also firm 

composition effects increasingly matter in explaining the aggregate wage dynamics, i.e. 

aggregate wage growth has been lifted up by the increase in the employment weight 

of high wage firms. To the extent that this reallocation occurs towards more productive 

firms, the composition effects may also reflect an efficiency enhancing mechanism. We 

use a newly available dataset based on social security records covering the universe of 

Italian employers be-tween 1990 and 2013 and employ a standard measure of allocative 

efficiency on wages paid across firms. We show that this measure has improved over time 

since prior to the recent downturn and that it is aligned, at the sectoral level, with measures 

of productivity growth and market openness to competition. We then focus on the recent 

downturn and find that large firms were able to adjust wages more than small firms, and 

that small firms instead adjusted employment to a larger extent. Finally, we document 

that the continued improvement in the measure of allocative efficiency over this period 

correlates positively with measures of economic activity (evolution of employment and 

value added) across sectors.
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1. Introduction 1 

During downturns aggregate wages appear almost unresponsive to business cycle 

fluctuations. This holds true even for the recent recessionary episode, despite the duration and the 

severity of the crisis. Common explanations are wage rigidities as resulting from various market 

frictions – see Adamopoulou et al. (2016), Verdugo (2016), Devicienti Maida Sestito (2007), 

Dickens et al. (2007). However, a recent strand of  the literature has provided evidence that low-

paid workers were more severely affected during the recent downturn and therefore composition 

effects might have played a particularly important role – see Daly and Hobijn (2016) for the U.S., 

Verdugo (2016) for the Eurozone countries. In this paper we contribute to the literature by 

documenting the presence of firm composition effects – as opposed to worker composition effects – 

on the aggregate wage, arising from the reallocation of resources from low- to high-wage firms. In 

addition, we propose and corroborate a specific interpretation of this empirical finding, which is 

grounded in the literature on reallocation – Restuccia and Rogerson (2008), Hsieh and Klenow 

(2009) Bartelsman, Haltiwanger, and Scarpetta (2013). If recessions affect low-productivity firms 

more severely than high-productivity firms – Caballero and Hammour (1994), Foster, Grim and 

Haltiwanger (2016) – and more productive firms pay higher wages – Bagger, Christensen and 

Mortensen (2014) –, then during recessions the allocation of resources will shift from low- to high-

wage firms increasing the aggregate wage, even in the absence of wage changes at the firm level. 

To our knowledge, we are the first to provide evidence of firm composition effects on the aggregate 

wage and to propose this interpretation of this empirical finding. Under this interpretation, firm 

composition effects on the aggregate wage are associated with a corresponding firm composition 

effect on aggregate productivity. Thus, in principle, the rise in the aggregate wage resulting from 

this mechanism may be associated with an improvement in aggregate competitiveness vis-a-vis 

trading partners. Finally, we note that the approach adopted in this paper (of using firm data on 

wages as a proxy for firm productivity) may prove useful for studies on reallocation. Measures of 

allocative efficiency are sensitive to the availability of data on the bottom part of the productivity 

distribution. While comprehensive data on value added may be difficult to come by, administrative 

data on wages constructed from social security records are widely available for many countries and 

long periods of time. 

Our analysis is conducted on a newly available set of social security data covering the 

universe of employers between 1990 and 2013 in Italy, and comprising a sample of employees for 

                                                           
1 We are grateful to Matteo Bugamelli, Andrea Linarello, Francesco Manaresi, Paolo Sestito, Luigi Federico Signorini, 
Roberto Torrini, Eliana Viviano, and seminar participants at the Bank of Italy lunch seminar for helpful comments. The 
views expressed in this paper are those of the authors and do not necessarily reflect those of the Bank of Italy. 
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the period between 1990 and 2014. After describing the data in section 2, we replicate composition 

studies by employing a standard tool in labour economics to assess differences among groups of 

workers, the Blinder-Oaxaca (Oaxaca, 1973) decomposition, which we augment with firm 

characteristics – section 3. We find that firms characteristics became positive and significant during 

the recent crisis and we proceed by applying on wage data a standard measure of allocative 

efficiency, the Olley and Pakes (1996) decomposition (��) – section 4. Olley and Pakes note that 

aggregate productivity (in our case the aggregate wage) can be decomposed exactly into the simple 

average of productivity across firms (within component) and a correlation term, between 

productivity and size (the �� term). To the extent that workers are not randomly distributed across 

firms, and more productive firms are larger, this correlation is positive. An increase of the �� term 

is interpreted as an improvement in allocative efficiency. We find that the �� contribution to the 

aggregate wage has increased since before the crisis, starting in 2006. We also provide evidence 

that small firms tended to respond to adverse shocks by cutting employment, while larger firms 

tended to respond by curbing wages. We decompose the �� contribution to the aggregate wage into 

a quantity component and a price component and we show that the first component is 

countercyclical (consistently with small firms adjusting employment more than large firms) and the 

second component is procyclical (consistently with large firms curbing wages more than small 

firms). The second component dominates on the first one at the trough of the crisis, resulting in a 

temporary reduction of the �� contribution to the aggregate wage, which then resumes growing.  

Furthermore, we suggest that the rise in the �� contribution to the aggregate wage is 

associated with the improvement in the allocative efficiency of workers across firms over the last 

decade, which has been documented in other recent studies – Calligaris, Del Gatto, Hassan, 

Ottaviano, Schivardi (2016) Gamberoni, Giordano, Paloma (2016), Linarello Petrella (2017). Since 

we only have value added data for the subset of firms that are limited liability companies and since 

the �� decomposition is sensitive to the omission of small firms, we cannot test this claim directly.2 

Instead, in section 5, we contrast the time path of the �� contribution to the aggregate wage against 

the same measure derived from labour productivity data from Linarello and Petrella (2017) (who 

                                                           
2 The �� term is equal to difference between the employment-weighted average and the unweighted average of 
productivity. Small firms represent the vast majority of firms but account for a relatively small fraction of total value 
added and employment. Thus, omitting small firms severely distorts the unweighted average, while leaving the 
weighted average relatively unaffected. Indeed, Calligaris et al. (2016) and Gamberoni et al. (2016) use data for limited 
liability companies and find no improvement in allocative efficiency prior to the crisis, while Linarello and Petrella 
(2017) using data on the universe of firms find that the �� term has been increasing since 2005 – though more 
markedly after 2009. Linarello and Petrella show that these results can be (at least in part) reconciled with one another 
once accounting for sample differences. They truncate their data by class size and/or legal form and show that results 
are sensitive to the omission of small firms which are not limited liability companies, especially regarding the period 
before the crisis. 
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use productivity data on the universe of Italian firms rather than on limited liability companies 

only), and we find that the two series strongly co-move. Second, we show that changes of the �� 

contribution to the average wage are positively correlated with changes in labour productivity at the 

two digit sector level – accounting for sector and time fixed-effects – suggesting that reallocation 

could have been the driver of both productivity growth and firm composition effects on wages. 

Furthermore, we find that changes in the �� contribution to the average wage at the sectoral level 

are negatively correlated with market concentration – as measured by the Herfindhal index –, 

indicating that these composition effects were indeed stronger in sectors where competition is more 

intense, and which are more prone to reallocation. Finally, we show that, despite the 

contemporaneous increase of the unemployment rate, the rise of the �� contribution during this 

period is positively correlated with output and employment growth, across two digit sectors, 

indicating that the improvement in the allocation of resources was also associated with job creation 

rather than job destruction. Section 6 concludes. 

 

2. Data 

The source for our data consists of social security payments to the Italian National Social 

Security Institute (INPS) made by reporting units (“establishments”) for their employees (with an 

open-ended contract, a fixed-term contract, or an apprenticeship contract) between 1990 and 2014. 

From this master data, INPS extracts two datasets. The first dataset consists of the universe of firms 

with at least one employee at some point during a given calendar year – this extraction runs only up 

to 2013 and provides data at the firm level. The second consists of the employment histories of all 

workers born on the 1st or the 9th day of each month (24 dates per calendar year, or 6.5% of the 

workforce). In this paper we restrict attention to the non-agricultural business sector and use the tax 

filing number as the definition of firm3. 

In the data appendix we assess the quality of our data against the Eurostat National Accounts 

(ENA; ESA 2010) and the Eurostat Structural Business Statistics (ESBS) and we conclude that 

INPS data provide a reasonably good approximation of national aggregates from official statistics 

regarding employer business demographics, employment and gross wages. INPS data do not 

contain accounting information, implying that there is no direct information on labour productivity. 

However a subset of the employers in INPS can be merged with Cerved, the business register 

                                                           
3 A same tax filing number can be associated with more than one reporting unit making social security payments to 
INPS. 
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containing balance sheet data for the universe of Italian limited liability companies. In the data 

appendix we conclude that, when combined with CERVED, the INPS data also returns a reasonably 

good picture of balance sheets, but only for firms with at least 10 employees.  

Tables 1 and 2 report some descriptive statistics on firms and workers respectively. Over the 

24 years of the sample the share of industrial firms over the total number of firms declines from 49 

to 36%, average firm size declines approximately from 8.0 to 7.4 employees, the pool of employers 

increases from 1.1 to 1.4 million, and the nominal monthly gross wage almost doubles, from 1100 

to 2100 euros. Table 1 also shows that the share of industrial firms in the economy has declined 

even more rapidly during the recent crisis, while the average firm size has declined more slowly. 

This suggests that firms composition, and not only workers composition, may matter for the 

aggregate wage dynamics. 

Figure 1 digs into the reasons behind the limited response of aggregate wages to the adverse 

cyclical conditions by focusing on the recent crisis and analyzing wage and employment 

adjustments by firm size.  The Figure reports the evolution of firm value added (VA), wage per 

employee (W, employment-weighted) and firm employment (E) computed by size cell and rescaled 

to a base year. Changes in value added are meant to proxy the magnitude of the shocks affecting 

firms in a particular size class; changes in wages and employment are meant to proxy the firms’ 

response to these shock along the price and quantity dimensions. Firms are partitioned in four size 

classes: micro (1-9), small (10-49), medium (50-249) and large firms (250 employees or more). The 

value added plots suggest that the financial crisis hit all firms with a similar intensity, except for 

large firms which were affected for a more prolonged period of time. Instead, the sovereign debt 

crisis hit small- and medium-size firms harder and more persistently, while large firms rebounded 

quickly. The response along the wage and employment margins differs by class size. Large firms 

appear to be more responsive along the wage margin while small firms appear to be more 

responsive along the employment margin.4,5 The fact that larger firms, which are on average more 

productive and pay higher wages, became relatively larger during the recent crisis suggests that  

                                                           
4
 Employment in the firm extraction of the INPS data is not adjusted for short time work benefits (STWB, or Cassa 

Integrazione Guadagni). A firm resorting to STWB would then appear to reduce the wage bill, while leaving 
employment unchanged. Therefore, the wage per employee would appear to decline. While this remains a potential 
issue, in a companion paper we show that medium-size firms used STWB more intensely than large firms – 
Adamopoulou et al. (2016). 
5
 The entry and exit plots in Figure 2 show that the entry rate for the small-size class (which accounts for the vast 

majority of entries and exits) dropped sharply in 2009, much more than the exit rate rose. The entry and exit rates 
somewhat recovered in 2010 and then kept deteriorating, particularly the exit rate which displays a lagged response. 
Over the six years between 2008 and 2013 the net entry rate of small firms decreases by a staggering 6 percentage 
points, first driven by the continued decline of the entry rate and then by the rise of the exit rate. 
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part of the small cyclical response of aggregate wages may be due to workers’ reallocation towards 

(and therefore to the relatively larger share of workers employed in) larger, higher paying, firms. 

 

3 Composition effects and the role of firm characteristics, the Blinder-Oaxaca 

decomposition 

We use the employer-employee data from INPS to replicate and extend previous work on the 

rising importance of composition effects over time and particularly during the crisis in explaining 

aggregate wage dynamics – Daly and Hobijn (2016), Verdugo (2016). Compared to the data used in 

these studies, the INPS data has the advantage of covering a longer time-span, thus allowing us to 

study the evolution of composition effects with a very long time perspective and to evaluate how 

they evolved prior to the recent crisis. Second, the availability of information on the employer-

employee matches allows us to disentangle and separately evaluate composition effects due to 

workers’ characteristics and composition effects due to firms’ characteristics.  For the 

decomposition of wage changes between two consecutive years we use a standard Blinder-Oaxaca 

decomposition (Oaxaca, 1973). For this analysis we use the micro data at the worker level and we 

match them to the firms’ universe to get information on firms’ size, sector and age. The data are 

collapsed at the worker-year level by considering the job of the longest duration, so as not to 

oversample workers with multiple employment spells within the same year. The Oaxaca 

decomposition provides us with a synthetic measure of the changes in the composition of the 

workforce and it is based on a standard linear model of wage formation (Mincer, 1974): 

log���	
� = 
���
 +	
��	
 + ��	
, 

where ��	
 refers to the daily wage of worker i, employed in firm j in year t;6 ��
 are workers’ 

characteristics (gender; age; a dummy for immigrants; a dummy for full time employees; a dummy 

for those with a permanent contract; dummies for blue collars, white collars or middle managers; a 

dummy for workers that were under short term work benefits at some point during the year), and �	
 
are firm characteristics (sector at one digit level; size and age). Finally ��	
	is an error term. Note 

that we allow coefficients to change yearly. 

The mean outcome difference between year t and t-1 can be expressed as: 

                                                           
6 Note that for part-time workers we multiply the daily wage by two, in order not to confound the effect of daily hours 
with  the effect of wages.  
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The first and the second term of the equation above refer to the change in mean wage due to 

changes in workers’ and firms’ characteristics between year t and year t-1. 

Figure 3 summarizes the relative importance of composition effects and their components. 

The dotted line refers to the overall contribution of composition effects to the wage growth over 

time. We find that the importance of composition effects changed widely after the recent crisis, in 

line with Daly and Hobijn (2016). While before 2009, the contribution of composition effects was 

on average negative and non-significant (none of the effects reach statistical significance at 

conventional level before 2009), after 2009 compositional effects start to be positive and 

statistically significant. The dashed and the solid lines, instead, distinguish between the contribution 

of firms’ and workers’ characteristics. They show that, at least before the crisis, most of the 

composition effect was driven by workers’ characteristics. These results on workers are in line with 

the previous literature (Hines, Hoynes and Krueger, 2001 for instance), that shows that job losses 

during downturns disproportionally affect workers with lower than average wages. Figure 4 

analyses which characteristic drove this positive composition effect and shows that a large part is 

due to changes in the workers’ age and occupation. What we add into the standard Oaxaca 

decomposition analysis are firms’ characteristics. We find that there is an increasing positive 

contribution of firm characteristics after the crisis. Figure 4 shows that an increasing part of changes 

in average aggregate wages over time is due to the fact that more workers are allocated to larger and 

older firms in the service sector, which tend to pay higher wages. 

In the reminder of the paper we propose and corroborate the interpretation according to 

which the rising importance of firm composition effects on the aggregate wage reflects the 

improvement in the allocation of resources: if more productive firms pay higher wages and 

employment shifts from low-productivity and low-wage firms to high-productivity and high-wage 

firms, aggregate productivity and the aggregate wage will rise, even if the average wage paid by 

individual firms and their productivity do not vary. 

 

4 Allocative efficiency and aggregate wage dynamics, the OP decomposition 

An extensive literature has documented the importance of the allocation of resources in 

determining the aggregate productivity level when firms are heterogeneous – Olley and Pakes 
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(1996) and more recently Restuccia and Rogerson (2008) and Hsieh and Klenow (2009). To the 

extent that more productive firms also pay higher wages, for example due to labour market frictions 

(Bagger, Christensen, and Mortensen, 2014), an improved allocation of resources, coming in the 

form of an employment shift towards more productive firms over time, will result in average wage 

increases even in the absence of wage increases at the firm level. A similar argument applies if 

recessions are cleansing and more productive firms, that also pay higher wages, are more likely to 

withstand negative shocks and retain their employment levels. Foster, Grim and Haltiwanger (2014) 

argue that the recent recessionary period was characterized by cleansing in the U.S. though to a 

lesser extent compared to previous downturns. As such, firm composition effects on the aggregate 

wage may then result from an improvement in the allocation of resources across firms. As long as 

the shift benefits firms paying not only higher wages but also characterized by a higher productivity 

and a lower unit labour cost, such composition effects will improve external competitiveness. To 

assess whether the allocation of resources has improved in Italy and whether this may have resulted 

in composition effects raising the dynamics of wages, we employ a standard measure of allocative 

efficiency, the Olley and Pakes decomposition (1996). 

Given a quantity x4 measured at the firm level (the wage, or labour productivity) and the 

corresponding quantity measured at the aggregate level, �̅, defined as the employment weighted 

mean of �� across firms, the Olley and Pakes decomposition is the unweighted mean of ��, �6, plus a 

residual component, the �� term, which turns out to be the covariance between �� and the 

employment level (relative to the average) across firms: 

�̅
 ≡8��
9�

�∈;

= �6
 + ��
 

�<=ℎ<?	=@AB:	�6
 ≡ 1|F|8��

�∈;

 

��	=@AB:	��
 ≡8(��

�∈;

− �6
)(9�
 − 1|F|), 

where F is the set of active firms in the economy, 9�
 ≡ 'GHIH =
'GH
|;|'H is the employment share of firm < 

at time t, �
 is aggregate employment, @
 is average firm size and t denotes time. The OP term can 

be defined equivalently as the difference between the employment-weighted mean of x and the 

unweighted mean of x; thus, it has a natural interpretation as a measure of allocative efficiency 

when applied to productivity: if firms differ in terms of productivity and resources are randomly 
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allocated, then the covariance between size and productivity is zero and aggregate productivity 

equals the unweighted average (�̅ = �6). Instead, if more resources are allocated to more productive 

firms, the covariance between size and productivity is positive and aggregate productivity is larger 

than the unweighted average (�̅ > �6). To assess the impact of reallocation to changes in the 

aggregate level �̅, we focus on the relative contribution of the �� term to �̅, KLM̅ . As resources are 

reallocated to more productive firms, aggregate productivity rises along with the �� term, even if 

no change in productivity occurs at the firm level (�6
 is unchanged), and the ratio 
KL
M̅  increases. Vice 

versa, if the wage increases by the same factor across all firms, then the contribution of the OP term 

to aggregate productivity, ��/�̅, remains constant. 

Similarly, when applying the decomposition to wages, a rise in the contribution of the �� 

term signals a rise of the aggregate wage that is due to a shift of workers from low to high wage 

firms, rather than to wage changes at the firm level. If firms paying a higher wages also have a 

higher productivity, then, changes in the contribution of the �� term will reflect changes in 

aggregate efficiency. Figure 5 displays the ratio ��/�̅ over the sample period for the 

nonagricultural business sector and for manufacturing and the service sector separately. Starting in 

2006 the percentage contribution of the �� term started increasing, temporarily dropping at the 

trough of the two crisis, in 2009 and 2013. As we show below, these drops are not due to a reversal 

in the allocation of resources, from high- to low-wage firms, but rather to the greater ability of large 

firms to curb wages relatively to small firms. Focusing on the manufacturing and service sectors, 

we find that the �� contribution to the aggregate wage level was stable until 2002 and has been 

rising steadily in the manufacturing sector after that (with the exception of 2009), while it has 

declined until 2002 and then started rising after 2004 in the service sector (dropping in 2009 and 

2013).  

Next we compute the dynamic �� decomposition proposed by Melitz and Polanec (2014). 

This decomposition allows us not only to disentangle the contribution of firms’ entry and exit – two 

potentially important sources of changes in the allocation of resources over the cycle – to the 

dynamic of the aggregate wage, but also to determine whether movements of the �� term are due to 

wage or employment adjustments at the individual firm level. The dynamic �� decomposition is 

defined as: 

∆�P
 ≡ ∆�Q
R + ∆��
R + S
I(�P
I − �P
R) − S
��T (�P
��T − �P
��R ), 

where U, � and V denote the set of continuing firms (firms that are active both at t and t-1) of 

entering firms (firms that enter at t) and exiting firms (firms that exit at t-1) respectively, S
��T ≡
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∑ 9�
���∈THXY  is the labour share at time t-1 of exiting firms and �P
��T is the employment-weighted 

average wage that firms in such group pay – similarly for S
I, �P
I and �P
R. ∆�Q
R + ∆��
R is simply 

the time difference of the static �� decomposition discussed above, computed on the subset of 

firms surviving between time t and time t-1. 

Intuitively, the dynamic �� decomposition is an identity unbundling the contribution of 

firms that exit or enter, therefore allowing to compute the �� decomposition on the set of 

continuing firms. Because the �� decomposition is computed on the same set of firms both at t and 

t-1, we can trace changes in the �� term back to employment and wage changes at the firm level. 

While entry and exit cancel each other in steady state, their net contribution may deviate markedly 

away from zero over the cycle, if entry and exit rates swing asymmetrically – as we have 

documented to be the case over the period under examination – and within quantities differ from 

one another – i.e. if �P
��T  differs from �P
��I . In practice, as we document below, the net contribution 

of the combined entry and exit terms turns out to be small relative to movements of the within and 

�� terms. Thus, results for the dynamic �� can be readily related to changes in the static �� (i.e. to 

the slope of the “�� line” in Figure 5) and the dynamic �� decomposition can be used to analyze 

whether the movements of the static �� term are driven by employment or wage adjustments at the 

firm level.7 

Figure 6 displays the percentage point contribution of the within, �� and net-entry terms 

against the dynamics of the aggregate wage (then, for example, the “�� line” is the ratio ∆��
R/
�P
��). The contribution of net entry is negative and stable, around -0.4 ppt. Firms that enter or exit 

the market both pay lower wages than incumbents, yet new firms tend to pay wages even lower than 

firms that exit, so the negative contribution of entry dominates the positive contribution of exit. This 

may depend on worker composition differing across firms (e.g. new firms employ younger workers) 

or wage rigidities (firms that exit where unable to lower wages). The sharp slowdown of the 

aggregate wage in 2009 is due, in similar proportions, to the slowdown of the within term – the 

contribution of which remains positive throughout the period – and the decline of the �� term – the 

contribution of which turns negative in 2009. A similar, somewhat less pronounced, pattern is 

observed following the onset of the sovereign debt crisis in 2012, though the �� term continues to 

decline in 2013 while the within term rebounds. As for the comparison over time, Figure 6 also 

                                                           
7 Of course, to the extent that the within and �� terms have opposite sign and partly compensate one another, the 
contribution of net entry to the dynamic of the aggregate wage may be sizable. Here we only observe that changes in the 
static �� term and the �� term of the dynamic ��	decomposition can be easily related to one another if the �� term of 
the dynamic �� decomposition is large relative to the net entry term. We do not claim that that entry and exit are not 
important for reallocation. 
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indicates that the �� term has become negative at the trough of each cycle (the shaded areas) and 

the within component has progressively slowed down between 1992 and 1994 and then again 

during the recent downturn, while it had recovered by 2004 following the 2002 slowdown. 

The negative contribution of the �� term to aggregate wage dynamics in 2009 and 2012-

2013 indicates that the cross-sectional covariance between size and wages declines during the crises 

period. Heuristically, this can be due to either large firms cutting wages more than small firms; or to 

high-wage firms cutting employment more than low-wage firms. To try and assess which of the two 

hypothesis is substantiated by the data we perform a shift-share decomposition of the ��: 

∆��
R = Z[\ ]@�
@
 , �
^< ∈ U
_ − Z[\ ]
@�
��
@
�� , �
��^< ∈ U
_

= Z[\ ]∆ @�
@
 , �
^< ∈ U
_������� ������!
`)$%
�
a

+ Z[\ ]@�
@
 , ∆�
^< ∈ U
_������� ������!
1,�"'

+ Z[\ ]∆ @�
@
 , ∆�
^< ∈ U
_. 

Results are reported in Figure 7. According to the decomposition, changes in the covariance 

between size and wages across firms can be viewed as stemming from changes in the correlation 

between size and wage changes – which we refer to as the “price effect” – or between wage and 

size changes – which we refer to as the “quantity effect” – plus a cross term. The cross term is an 

interaction and does not have an obvious interpretation: it can be viewed as a relevant component of 

the price and/or quantity effects. However, adding the cross term to either the quantity or price 

terms does not change their cyclical behavior (in particular it does not flip the sign of the quantity 

term in 2009). We therefore disregard the cross term and proceed with a qualitative interpretation of 

the decomposition results. The quantity effect is countercyclical suggesting that low wage (small) 

firms cut employment more than high wage (large) firms; as a result, the ��, i.e. the covariance 

between wages and (relative) size, should increase. The price effect is procyclical meaning that 

large firms curb wages more than small firms, which should lower the �� other things equal. The 

second effect dominates, and the �� decreases in 2009 contributing to the slowdown of the 

aggregate wage dynamics. Note that these results are consistent with the qualitative patterns of 

employment and wages by class size over the crisis highlighted in the data section: large firms 

adjust wages more, while small firms adjust employment more when hit by a shock. The finding 

that large firms are more responsive along the wage margin is consistent with the empirical analysis 

of Rosolia (2015), who finds that, while contractual wages respond slowly to cyclical conditions 

due to the staggered nature of the Italian wage setting institutional framework, the extra-contractual 

components display a significant degree of responsiveness. To the extent that large firms are more 

productive and that more productive firms pay higher wages, and are not constrained by the minima 
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set in national contracts, then these firms are better able to adjust wages than small firms. We 

further pursue this line of inquiry in a companion paper, Adamopoulou et al. (2016). 

 

5. Reallocation and efficiency: destruction or creation?  

The previous sections provide extensive evidence of a wage enhancing reallocation of labour 

across firms that took place in Italy during the last decades. In this section we explore whether this 

reallocation was also efficiency-enhancing and we provide some suggestive evidence on whether 

the underlying forces were solely destructive or also creative. 

An increase in the �� contribution indicates that the covariance between size and wages 

across firms has been rising. We may interpret this as evidence that the employment composition 

has been shifting towards high-wage and high-productivity firms, thus that composition effects over 

this period may partly reflect an improvement in the allocation of resources. An alternative, less 

benign, interpretation is that over time employment has been shifting towards firms paying higher 

wages, but not towards firms with a higher productivity; or that larger firms granted higher wage 

increases, unrelated to productivity changes – for example because of higher unionization levels and 

higher firing costs at these firms.8  

While we are unable to study in a unified framework the relationship between employment, 

wages and productivity at the firm level – due to the lack of comprehensive information on 

productivity – we provide some indirect evidence of the relationship between productivity dynamics 

and changes in the allocation of resources as captured by the changes in �� contribution to 

aggregate wages that support our interpretation. As mentioned in the data appendix, INPS-Cerved 

severely underrepresent small employers and the small firms in this merged dataset (small limited 

liability companies with at least one employee) are likely to be much more productive than the 

average small employer in INPS.9 Indeed, while in INPS the smaller the size category, the lower the 

wage, firms with 9 employees or less in INPS-Cerved display a higher value added per worker than 

larger firms.10 As shown by Linarello and Petrella (2017), the omission of small firms severely 

distorts the �� decomposition on productivity, thus we are not able to perform the same analysis on 

                                                           
8
 Prior to the Jobs Act, which was enacted in 2015, a worker could be reinstated by court order if the layoff was deemed 

unlawful and the firm had more than 15 employees. 
9 Also, labour services provided by the owner – which are not accounted for in our data -- amount to a larger fraction of 
total labour services for small firms, biasing their labour productivity upwards. 
10

 This could also be due to small firms having a higher share of irregular workers or “quasi-employee” (workers who 
are formally self-employed though performing at the firm the same tasks as an employee), who are not accounted for in 
the INPS data. 
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productivity as on wages. This is because while small businesses account for a relatively small 

employment share, their number is large, therefore their omission biases severely the unweighted 

average of aggregate productivity while leaving the weighted average relatively unaffected.  

Instead, we compare the �� contribution to aggregate wages with series for the �� 

contribution to aggregate labour productivity computed from ASIA, the administrative register 

covering the universe of Italian employer businesses for 2005, 2008 and 2011 through 2013 that 

contains data on value added and employment.11 Results are reported in Figure 5 which shows that 

the two series generally move in line with one another.12 The �� contribution to the aggregate 

productivity is higher in 2008 than in 2005, suggesting it might have started to increase prior to the 

onset of the recessionary period, as we find to be the case for the �� contribution to the aggregate 

wage. While the official start of the financial crisis in the U.S. is the fourth quarter of 2007, the 

crisis reached Italy with some delay and 2008 is still a year of positive (although slowing) 

employment and output growth as it can be seen in Figure 1. Focusing on the manufacturing and the 

service sectors, we find that the �� contribution on aggregate productivity and on the aggregate 

wage move together in the manufacturing sector; instead, the �� contribution to aggregate 

productivity declines slightly in the service sector between 2005 and 2008 before starting to rise in 

line with the �� contribution to the aggregate wage. 

We then proceed by contrasting the evolution of the �� contribution to the aggregate wage 

with the evolution of labour productivity across sectors. Even though INPS-Cerved is not 

comprehensive enough to compute a reliable �� decomposition on value added per worker across 

employers, we can use it to compute average labour productivity at the sector level since small 

firms have a relatively small employment weight. We measure labour productivity as value-added 

per worker and we correlate its year-to-year changes to the year-to-year changes in �� contribution 

to the average wage across sectors.13 Columns 1 and 2 of Table 3 display regressions for the entire 

period, 1994-2013, as well as for the period during which the �� contribution to the aggregate 

                                                           
11 We thank Linarello and Petrella who kindly provided us with the numbers displayed in Figure 5 and refer the 
interested reader to their work – Linarello and Petrella (2017)  – for a more thorough examination of changes in 

allocative efficiency and productivity in Italy over this period. When computing the �� decomposition on value added 
per worker using INPS-Cerved we obtain a contribution which is much smaller though displaying a similar pattern. The 
contribution is negative for private services and it is around 11% for manufacturing. 
12

 We showed that the results of the OP decomposition computed with wages and with value added per worker are 
similar.  Since administrative data on wages constructed from social security records are more easily available than data 
on value added, using firm data on wages as a proxy for firm productivity may prove useful for future studies on 
reallocation. 
13 We follow previous literature and we exclude from the analysis the Financial sector-NACE 2002 (J) which was at the 
center of the Great Recession, as well as Mining (CA-CB), Refining (DF), and Energy (E) since the developments in 
these sectors are often susceptible to external factors (e.g. price volatility). 
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wage has started to increase, i.e. 2006-2013. The regressions include sector and time fixed effects. 

The results suggest that the �� contribution to aggregate wages increased in those sectors where 

productivity increased more, especially after 2006. We interpret this positive relation as evidence 

corroborating the conjecture that composition effects on the average wage at the sectoral level 

reflect changes in allocative efficiency leading also to increases in the average sectoral productivity. 

Next, if resources are shifted towards more productive firms as a result of market forces, 

then such shift should be more likely to occur in sectors where competition is stronger. Table 3, 

columns 3 and 4 correlate the level of the Herfindahl index (computed using employment), i.e. a 

standard measure of market concentration, with the changes of the �� contribution to the aggregate 

wage across sectors.14 The results suggest that the �� contribution increased more in sectors 

characterized by stronger competition, i.e. sectors more prone to reallocation.  All in all we take our 

results as suggestive of functioning market forces. More productive firms paying higher wages were 

able to withstand the crises and preserve their employment levels better than less productive firms, 

resulting in an improved allocation of resources. 

However, we showed that this improvement was accompanied, during the recessionary 

years, by increasing firm mortality rates and declining entry rates and by the emergence of 

widespread unemployment. We do not claim in this section that this process was optimal; rather, 

that conditional on the occurrence of a large negative shock and provided that the shock was 

unavoidable: 1) the shock impacted prevalently less productive firms; 2) that the process might have 

contributed to enhance the aggregate wage dynamics due to the shift in the relative composition of 

employment towards more productive, high-wage firms; 3) that such composition effect on wages 

might have been accompanied by a corresponding composition effect on aggregate productivity. 

We cannot conclude whether the growth in allocative efficiency recorded during the 

recessionary years was permanent or transitory, i.e. whether with the start of the recovery in 2015 

the employment composition shifted back towards less productive firms, because our data covers 

the period up to 2013 only. However, the regressions in Table 3, columns 5 to 8 show that, over 

time and across sectors, positive changes in the �� contribution to the aggregate wage level are 

associated to less severe changes in demand shocks but also to less severe changes in employment 

conditions. The relationship remains positive even during the recessionary years although it is not 

statistically significant.15 This suggests that the rise in the �� contribution to the aggregate wage 

                                                           
14 An increase in the value of the Herfindahl index indicates an increase in concentration, and therefore a decrease in the 
degree of competition. 
15 These regressions control for unobserved heterogeneity across sectors as well as for year-specific shocks. 
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level was not necessarily the result of layoffs by less productive firms in more affected sectors but 

also of productivity-enhancing reallocation in less affected sectors. Therefore, the recovery may be 

accompanied by a further improvement in the allocative efficiency measures. 

 

6. Conclusions 

Composition effects played an important role in determining the dynamics of aggregate 

wages during the last decade. We argue that part of such composition effects in Italy was the result 

of a shift in the allocation of resources towards more productive firms paying also higher wages. 

Assuming that wages and productivity are positively correlated across firms, we applied a standard 

measure of allocative efficiency, the Olley and Pakes decomposition (1996), to wages and showed 

that such a measure started to increase prior to the recent downturn, at least in manufacturing, and 

kept increasing throughout the crisis – except at the trough of the crisis, due to the ability of larger 

firms to cut wages. We show that such trends are positively correlated with productivity growth 

across sectors and negatively correlated with sectoral concentration, which hinders market forces 

leading to reallocation. We interpret these findings as suggestive evidence that a common factor, 

namely improvements in allocative efficiency, may have been at the root of these patterns and we 

conclude that at least part of aggregate wage increases over the last decade could have resulted from 

positive developments in the underlying economic structure. 

While the downturn produced massive unemployment and led to severe resource 

underutilization, we find that larger, more productive, high-wage firms withstand to the crisis better 

and retained their employment levels, further increasing the �� contribution to the aggregate wage 

level. We also argue that these firms were able to adjust wages to a larger extent than smaller firms. 

Finally, we show that during the crises changes in the �� contribution to the average wage level 

across sectors were positively correlated with employment and value added growth, suggesting that 

they might have not been necessarily the result of increasing layoffs by smaller, less productive 

firms. 
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Tables and figures 

Table 1: Descriptive statistics, universe of firms paying contribution at INPS 

Year 
% of 

firms in 
Industry 

% of firms in 
Manufacturing 

Monthly wage per 
employee 

Firm size 
N Firms 

N 
Employees 

(1000) 

mean sd mean sd 

1990 0.49 0.32 1102 457 7.96 182.3 1,116,992 8891 

1991 0.48 0.32 1217 495 7.96 181.0 1,120,621 8920 

1992 0.48 0.31 1288 539 7.86 188.1 1,122,468 8823 

1993 0.47 0.31 1334 556 7.80 184.2 1,084,614 8460 

1994 0.47 0.31 1382 579 7.83 180.2 1,059,329 8295 

1995 0.47 0.30 1441 620 7.87 179.1 1,063,816 8372 

1996 0.47 0.30 1492 646 7.94 172.9 1,069,946 8495 

1997 0.46 0.30 1550 670 7.96 163.1 1,058,116 8423 

1998 0.46 0.29 1580 697 7.97 156.2 1,082,872 8630 

1999 0.45 0.28 1595 711 7.86 138.3 1,136,162 8930 

2000 0.44 0.27 1637 766 7.97 139.1 1,181,332 9415 

2001 0.44 0.27 1675 821 7.98 140.1 1,222,383 9755 

2002 0.44 0.26 1693 788 7.73 133.2 1,293,290 9997 

2003 0.44 0.25 1728 819 7.70 130.0 1,325,115 10203 

2004 0.43 0.24 1765 837 7.59 127.9 1,369,569 10395 

2005 0.42 0.24 1816 892 7.56 128.7 1,380,837 10439 

2006 0.42 0.23 1872 938 7.55 132.0 1,403,806 10599 

2007 0.42 0.22 1898 994 7.53 133.5 1,474,110 11100 

2008 0.41 0.22 1973 1030 7.57 129.0 1,496,808 11331 

2009 0.40 0.22 1975 1006 7.48 146.9 1,478,586 11060 

2010 0.39 0.21 2031 1055 7.43 169.6 1,471,068 10930 

2011 0.38 0.21 2068 1070 7.46 165.1 1,467,732 10949 

2012 0.37 0.21 2073 1086 7.35 167.6 1,468,611 10794 

2013 0.36 0.21 2100 1139 7.44 169.1 1,414,664 10525 
Source: own calculations on INPS data for the universe of firms. Statistics of wages are weighted by the number of 
employees in the firm.  
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Table 2: Descriptive statistics on workers (at the contract level) 

Daily wage Age % 
Female 

% 
Full 
time  

% Blue 
collars 

% 
White 
collars 

% 
Middle 

managers 

% 
Industry 

N 
Employees 

N Firms 
Year mean sd mean sd 

1990 47.98 41.56 36.32 11.00 0.30 0.96 0.64 0.32 0.64 674,323 275,097 

1991 52.72 46.07 36.38 10.97 0.30 0.95 0.64 0.33 0.63 683,562 279,240 

1992 57.04 101.73 36.52 10.92 0.30 0.95 0.63 0.33 0.63 683,054 281,303 

1993 58.82 82.45 36.70 10.79 0.31 0.94 0.63 0.34 0.61 656,780 273,051 

1994 62.52 155.91 36.74 10.69 0.31 0.93 0.62 0.34 0.60 648,790 269,532 

1995 62.32 501.87 36.60 10.57 0.32 0.92 0.63 0.34 0.60 654,213 271,591 

1996 63.44 50.98 36.62 10.52 0.32 0.91 0.63 0.32 0.02 0.59 665,874 277,402 

1997 65.83 57.88 36.64 10.42 0.32 0.91 0.63 0.32 0.02 0.58 665,189 275,443 

1998 68.43 267.70 36.78 10.41 0.33 0.90 0.62 0.32 0.02 0.58 677,313 278,839 

1999 69.44 209.62 36.75 10.37 0.33 0.89 0.62 0.31 0.02 0.56 702,667 289,796 

2000 69.93 127.29 36.87 10.34 0.33 0.89 0.61 0.31 0.02 0.55 747,452 305,346 

2001 71.46 114.35 37.04 10.32 0.34 0.88 0.61 0.31 0.03 0.54 774,441 317,081 

2002 72.92 84.91 37.04 10.28 0.33 0.87 0.62 0.30 0.03 0.53 810,656 338,477 

2003 74.20 76.96 37.30 10.26 0.34 0.86 0.62 0.30 0.03 0.52 818,386 343,671 

2004 77.19 145.20 37.56 10.22 0.34 0.85 0.61 0.30 0.03 0.51 826,728 349,247 

2005 78.72 110.82 37.93 10.24 0.34 0.84 0.60 0.31 0.03 0.50 822,301 349,395 

2006 81.03 88.65 38.24 10.27 0.35 0.83 0.60 0.31 0.03 0.49 836,545 354,814 

2007 82.50 75.67 38.34 10.35 0.35 0.82 0.60 0.30 0.03 0.49 880,269 376,583 

2008 86.52 92.70 38.56 10.39 0.35 0.81 0.60 0.30 0.03 0.48 897,100 383,582 

2009 88.04 105.54 39.11 10.43 0.36 0.80 0.59 0.31 0.03 0.46 884,268 379,699 

2010 90.12 223.53 39.40 10.47 0.36 0.79 0.59 0.31 0.03 0.45 879,297 377,338 

2011 91.55 93.72 39.69 10.52 0.36 0.79 0.60 0.31 0.03 0.44 882,700 377,665 

2012 92.99 91.31 40.04 10.57 0.37 0.77 0.60 0.31 0.03 0.43 873,231 375,006 

2013 95.12 101.79 40.48 10.58 0.37 0.75 0.59 0.32 0.03 0.42 845,808 358,291 

2014 95.36 92.66 40.86 10.67 0.37 0.74 0.59 0.32 0.03 0.42 840,787 351,484 
Source: own calculations on INPS data, data are summarized at the contract level and refer to all employees born on the 
1st and 9th day of each month. Note: Data on middle managers and white collars are reported together before 1997. 
Number of firms where at least one worker in the sample transited in the considered year. 
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Table 3: Regressions at the sectoral level 
 

Notes: “Delta OP contribution” is the difference between the static OP contribution to the aggregate wage between year 
t and t-1 (from INPS data); “%∆(productivity)” is the percentage variation in the sectoral average value added per 
worker between year t and t-1 (from CERVED data); “Herfindahl index” is the Herfindahl index computed using firm 
employment data in each sector (from INPS data); “%∆(demand)” is the percentage variation in the sectoral average 
value added between year t and t-1 (from CERVED data); “%∆(employment)” is the percentage variation in the sectoral 
employment between year t and t-1 (from INPS data). Robust standard errors clustered by sector in parenthesis. 
Columns 1, 2, 5 and 6 include only years from 1994 onward, when the value added data are available from CERVED. 
Columns 3, 4, 7 and 8 include years from 1990 onwards. Sectors: food(DA), textile(DB), leather(DC), wood(DD), 
paper(DE), chemical (DG), rubber & plastic (DH), other non-metallic mineral products (DI), metal products (DJ), M&E 
(DK),  electric and optical equip. (DL), transport equip. (DM), manufacturing (DN), construction (F), trade (G),  hotels 
& restaurants (H), transport storage (I), real estate and business activities (K). 

Dep var: Delta OP contribution 
 (1) (2) (3) (4) (5) (6) (7) (8) 
%∆(productivity) 
 

0.014 
(0.010) 

0.007 
(0.006) 

      

%∆(productivity)
*post2006 

 

 0.049** 
(0.024) 

      

Herfindahl index 
 

  -0.022*** 
(0.008) 

-0.039* 
(0.023) 

    

Herfindahl index 
*post2006 

 

   -0.137 
(0.124) 

    

%∆(demand)     0.014* 
(0.007) 

0.011* 
(0.006) 

  

%∆(demand) 
*post2006 

 

     0.017 
(0.022) 

  

%∆(employment) 
 
%∆(employment) 

*post2006 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 

 
 

0.034 
(0.031) 

0.031 
(0.039) 

 
0.008 

(0.041) 
No obs. 360 360 414 414 360 360 414 414 
Sector FE Yes Yes Yes Yes Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes Yes Yes Yes Yes 
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Figure 1: Descriptives by class size, focusing on the great recession 

By Size Class By Size Class in 2007 By Size Class 2010 

   

   

   

  
Source: Our calculation based on INPS-Cerved data. Note: A firm is assigned to a particular size class according to one of three procedures, each corresponding to one of three 
columns. To construct the sets of plots in the last two columns, we classify firms by their size in the year preceding each recessionary episode – i.e. 2007 and 2010 – and follow 
them over time. This introduces a severe survivor bias, particularly for micro firms, which account for 97% of exits on average and face a mortality rate five times larger than 
small firms and ten times than medium-size and large firms. Thus, with regard to small firms (and only for small firms) we comment results also for entry and exit. 
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Figure 2: Entry and exit rates (ppt deviation from pre-crises levels, 2007) 

 

 

 
Source: Our calculation based on INPS data. 
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Figure 3: Contribution of composition effects to the wage growth, distinguishing between 
firms’ and workers’ characteristics. 

Figure 4: The contribution of some firms’ and workers’ characteristics to the composition 
effect of aggregate wages 

 

Source: own calculations on INPS data. Note: this figure plots the results on the contribution over time of the 
composition effects by workers’ and firms’ characteristics as obtained from the Oaxaca decomposition. 
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Source: own calculations on INPS data. Note: this figure plots the results on composition effects obtained from the 
Oaxaca decomposition. The blue line refers to the share of the yearly change in wage levels explained by changes 
in workers’ characteristics, the red line refers to the share of the yearly change in wage levels explained by 
changes in firms’ characteristics. 
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Figure 5:  Static OP Contributions 

 

  

 

 
Source: our calculations based on INPS data (black dashed line). Note: The figure shows the ratio of the static OP term 
over the average wage. The points in blue report the static OP term over the average productivity taken from Linarello 
and Petrella (2017). The static OP is based on levels. 
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Figure 6: dynamic OP decomposition (percentage points) 

 
 
Source: own calculation on INPS data. Note: The figure reports the evolution over time of each term of the dynamic 
OP. The dynamic OP is based on wage growth. 
 

Figure 7: Components of OP term (percentage points) 

 
 
Source: our calculation based on INPS. Note: The figure decomposes the evolution of the OP growth into a quantity 
(adjustment in size) and a price component (adjustment in wages). 
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DATA APPENDIX  

This section assesses the quality of the INPS data against official statistics from Eurostat 

National Accounts (ENA; ESA 2010) and Eurostat Structural Business Statistics (ESBS), available 

at the aggregate level. The top panel of Figure A1 displays the ratio of the number of firms in the 

INPS database to the number of employer businesses reported in ESBS. ESBS reports data for the 

period 2005-2014 and breaks down employer businesses in three size categories: 1-4, 5-9 and 10 

employees or more. The number of firms in INPS is larger than in ESBS, because INPS includes all 

firms with at least one employee at some point during the year, while ESBS includes only firms 

with at least one employee for at least 6 months during the year.16 Next, Figure A2 displays the 

entry and exit rates constructed from INPS data and those from ESBS. We consider a firm as 

entering or exiting when all reporting units with the same tax identification number enter or exit.17 

Both the entry rate and the exit rate in the INPS data are somewhat smaller and smoother than in the 

ESBS. The entry rate across the two registers displays a similar declining pattern over the crises. 

Instead, the exit rate is significantly lower than the entry rate in the first years of the sample, 

consistently with an expanding pool of firms (Table 1). 

In Figure A3 we report the year to year percentage change of total employment and the wage 

per employee from INPS, comparing these quantities with the corresponding statistics from ENA 

(Eurostat National Accounts). In principle, the labour input measure in INPS should correspond to 

the number of positions from ENA, which however are corrected, among other things, to account 

for the non-observed economy – approximately 15% of full time equivalent employees on average 

between 2011 and 2013 according to the Italian National Statistical Institute, ISTAT (2015). Indeed, 

the number of positions accounted for in INPS is somewhat smaller than in ENA (the ratio between 

these two quantities rises from 0.82 in 1995, the first year for which ESA 2010 data is available, to 

0.90 in 2013), but the two series display a remarkably similar cyclical pattern, especially during the 

financial and sovereign debt recessions – top panel. As for the wage, we compare the average 

monthly wage from INPS with the annual gross wage per position from ENA, rescaled by 1/12. The 

                                                           
16 INPS reports the average number of employees which is generally not an integer. A firm that has average size 
between 4 and 5 employees can be assigned either to the 1-4 size class or to the 5-9 size class. We choose to assign 
firms with employment ≤ 4 to the 1-4 size class and firms with employment > 4 and ≤ 9 to the 5-9 size class. As a result 
the number of firms in the 1-4 size class is understated, while  the number of firms in the 5-9 size class is overstated 
relative to the ESBS methodology, explaining why the discrepancy with respect to ESBS is smaller for the former size 
class than for the latter (the blue and red bars in Figure A1). 
17

 Several entry and exit dates can be associated with a same reporting unit. We consider entry to be the earliest such 
date and check that there are no earlier records for that entity. As for exit, we follow a two-step procedure. First, we 
consider only candidate dates which are reported in the same year as the event is supposed to occur – for example, if the 
2009 record reports an exit date equal to 2011, then this information is ignored. Second, we consider only the maximum 
among candidate exit dates. Following this procedure guards us against inconsistencies in the data (firms that exit and 
reenter) while limiting biases in the final years of the sample (skipping step one would produce significant larger biases, 
as more spurious exits would be left undetected in the last few years of the sample). 
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ratio between the two quantities oscillates between 0.92 and 0.97 over the entire 24 years of the 

sample. The two percentage change series display similar long term trends and move closely 

together at least during the crises period. 

Finally, Figure A4 evaluates the representativeness of the INPS sample, when matched to 

balance sheet data for limited liability companies (using Cerved). The figure reports the fraction of 

firms in INPS which can be traced back to Cerved, by class size. The fraction of employers which 

are incorporated in Cerved has grown over time to approximately 0.25 and 0.70 for size classes 1-9 

and 10-49 employees and to 0.85 for size classes 50-249 and 250+ employees. However, even if the 

aggregate value added per employee from INPS-Cerved is much lower than the corresponding 

measure from the ENA (the ratio between the two quantities being approximately constant at 0.62 

between 2005 and 2013), the two series display a remarkably similar cyclical pattern during the 

recessionary period, less so prior to the recession (See Figure A3, lowest panel).18 

 

Figure A1: representativeness of INPS and ESBS databases, class size 

 
Source: our calculation based on INPS and Eurostat, Structural Business Statistics data 

 

                                                           
18 We also compare wages from INPS-Cerved using the wage measure from Cerved. The wage measure from Cerved is 
approximately 1.5 times that from INPS and corresponds to the labour cost, defined as the gross wage plus social 
security contributions paid by the employer. Interestingly, the percentage change series of the aggregate wage computed 
from INPS and the labour cost computed from INPS-Cerved move remarkably close with one another, the correlation 
being 0.85. 
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Figure A2: representativeness of various INPS and ESBS, entry and exit rates 

 

 
Source: our calculation based on INPS and Eurostat, Structural Business Statistics data 
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Figure A3: Firm level evolution of employment, average wages and value added per employee 
over time 

 

 

 
Source: Our calculation based on INPS and Istat, Eurostat National Accounts data. 
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Figure A4: Firm level evolution of employment, average wages and value added per employee 
over time 

 

Source: our calculation based on INPS and Cerved data. 
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