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AbstrAct
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Secular Satiation*

Satiation of need is generally ignored by growth theory. I study a model where consumers 

may be satiated in any given good but new goods may be introduced. A social planner 

will never elect a trajectory with long-run satiation. Instead, he will introduce enough new 

goods to avoid such a situation. In contrast, the decentralized equilibrium may involve long 

run satiation. This, despite that the social costs of innovation are second order compared 

to their social benefits. 

Multiple equilibria may arise: depending on expectations, the economy may then converge 

to a satiated steady state or a non satiated one. In the latter equilibrium, capital and the 

number of varieties are larger than in the former, while consumption of each good is lower. 

This multiplicity comes from the following strategic complementary: when people expect 

more varieties to be introduced in the future, this raises their marginal utility of future 

consumption, inducing them to save more. In turn, higher savings reduces interest rates, 

which boosts the rate of innovation.

When TFP grows exogenously and labor supply is endogenized, the satiated equilibrium 

generically survives. For some parameter values, its growth rate is positive while labor 

supply declines over time to zero. Its growth rate is then lower than that of the non 

satiated equilibrium. Hence, the economy may either coordinate on a high leisure, low 

growth, satiated “leisure society” or a low leisure, high growth, non satiated “consumption 

society”.
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1 Introduction

Limits to growth are generally considered to lie on the supply side: limited resources,

running out of good ideas, etc. Yet as societies become more affl uent, the question arises

as to whether consumers will be able to absorb an ever increasing output level. Indeed we

observe that over time growth becomes increasingly qualitative as opposed to quantitative.

Productivity improvements are matched by greater product quality and variety as well as

a secular decline in working time.

This paper analyzes growth dynamics when needs may be subject to satiation. I

assume that utility derived from any individual good reaches a maximum at a finite

consumption level. An immediate implication is that there may be two kinds of long-term

steady states: a non satiated one where the capital stock is determined by the standard

Keynes-Ramsey condition, and a satiated one where the marginal utility of consumption

is zero, and there may be excess capital (in that its net marginal product is negative) in

the long run.

I then allow for new products to be introduced. While each product is subject to

satiation, there is no satiation in the taste for variety: utility can potentially be raised

without bounds if enough new goods are introduced. I show that a social planner will

never elect a trajectory which converges to a satiated steady state. In such a steady

state, the marginal utility of consumption is zero, and so is the opportunity cost of

introducing an additional variety, which in turn has a first order positive effect on utility.

I then consider a decentralized economy where, in a standard fashion, new varieties are

introduced by profit-seeking innovators, who derive subsequent monopoly rents. It is

shown that the economy may converge to satiated steady states. At the margin of those

equilibria, the market does not deliver the required innovation level to lift the economy

out of its satiation trap, despite that the social opportunity cost of innovation is zero.

The associated market failure goes beyond the usual appropriability and business stealing

issues that the literature has identified since Dixit and Stiglitz (1977). Relative prices are

pinned down by the production side, and equal to marginal rates of transformation. But

marginal rates of substitution are not defined since the marginal utility of consuming any

variety is zero. The price system does not convey the information that the marginal utility
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of consumption is zero. A reduction in the consumption of existing goods entails second-

order welfare losses, while affecting these resources to innovation generates first-order

welfare gains. By pricing innovation using prevailing prices, however, markets evaluate

costs and benefits as being of the same order of magnitude; they do not internalize the

facts that new products would eliminate satiation and restore a strictly positive marginal

utility of consumption, while absent innovation opportunity costs remain second order.

The model also highlights an important strategic complementary, which generates

multiple equilibrium trajectories. Unlike vertical innovation, horizontal innovation raises

the marginal utility of aggregate consumption. Consequently, expecting more varieties to

be introduced in the future raises the incentives to save. Higher savings in turn reduces

interest rates, which favors innovation. I show that equilibrium trajectories that converge

to a non satiated equilibrium where the modified golden rule holds coexist with trajectories

that converge to satiated equilibria. In the latter, the capital stock and the number of

varieties are lower than in the former, while interest rates are higher and wages are lower.

The model can be extended in several ways. I discuss the consequences of consumer

heterogeneity in rates of time preference, characterize balanced growth paths when TFP

follows a deterministic trend, and discuss the implications of endogenous labor supply.

In particular, if TFP grows, endogenous labor supply does not rule out balanced growth

paths such that consumers are asymptotically satiated and the economy grows at a positive

rate. It may be that labor supply does not fall to zero because wages grow faster than

the decline in the marginal utility of consumption. It may also be that while labor supply

falls to zero, output nevertheless grows due to technical progress and capital accumulation.

Under endogenous labor supply, a "consumer society" balanced growth trajectory such

that working time remains constant and consumers are not satiated may coexist with a

"leisure society" trajectory such that working time trends downwards, converging to zero,

while consumers are asymptotically satiated. This feature is reminiscent of debates about

the relative merits of the "American model" vs. the "European model", and suggests

that people may have coordinated on different equilibrium paths on different sides of the

Atlantic. It is shown that the leisure society is associated with lower growth in output,

physical capital and the number of varieties than the consumer society, while being more

intensive in innovation relative to physical capital.
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Satiation in the consumption of many category of goods is consistent with the study

of Engel curves. For example, Moneta and Chai (2014) estimate cross-sectional Engel

curves for various range of products in various years and find that they reach an interior

maximum in many instances. Of course, a mode may indicate that the good becomes

inferior beyond some income level. However, this is implausible for some goods (such as

travel services, which has a mode in 1968 and 1988), while for some other goods the Engel

curve flattens out rather than having a strict mode, which is more consistent with satiation

(this is the case for leisure goods or household goods in 1968)1. Interestingly, these curves

shift over time, in such a way that a category of goods which exhibits satiation may no

longer do so, or vice-versa. This may be due to factors that are unrelated to the theme of

this paper, such as shifts in relative prices. For example, energy has a mode in the 1968

Engel curve, but the post oil shock 1978 one is strictly monotonic. But it is plausible that

the mode disappears because innovation lifts the economy out of satiation, as is probably

the case for "leisure services": The range of goods included in this category, as argued

by Gallouj and Weinstein (1997), has presumably widened over time, explaining why the

mode that appears in its 1968 Engel curve has disappeared. Of course, this evidence

does not tell us how this wave of innovation relates to low real interest rates nor whether

another trajectory with less innovation, higher interest rates and converging to satiation

might have existed. Nevertheless it is consistent with the mechanisms highlighted in this

paper.

The present paper is related to several strands of literature. Non homothetic prefer-

ences have been introduced into growth models in order to explain structural change (

Echevarria (1997), Laitner (2000), Ngai and Pissarides (2007), Foellmi and Zweimüller

(2008)) and to study the interplay between income distribution and growth through de-

mand channels (Matsuyama (2002), Foellmi and Zweimüller (2006), Saint-Paul (2006)).

Yet to my knowledge the role of satiation as a limit to growth and its relationship to inno-

vation has been under-researched by the mainstream of economics2. Rather, research has

1If utility is smooth, one cannot be satiated in one good unless one is satiated in all other goods.
This is what occurs in this paper’s model. However, if utility has a kink at the satiation point, this no
longer holds: one may be at the satiation point for some goods but not others. This rationalization is
consistentn with the structuralist literature a la Pasinetti.

2As an example, Gordon (2012) lists six "headwind" factors that will slow down US economic growth,
none of them coming from consumer demand.
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focused on supply-side limits to growth such as complementarities and bottlenecks (Bau-

mol et al., 1985) and whether innovation may endogenously lift those limits (Acemoglu

(2002)).3

Alternative approaches have paid more attention to the possibility of saturation, per-

haps, since at least Veblen (1973), as a by-product of a more general critique of "consumer

society". Hence, saturation of demand for existing goods, and the implied need to real-

locate R and D effort towards new goods, plays an important role in Pasinetti’s (1981)

theory of structural change4. An important theme of this literature is how capitalism

may manipulate preferences and institutions so as to avoid satiation and maintain a large

consumer basis (Galbraith (1958), Scitovsky (1976), Schor (1998), Lee (2000))5. In con-

trast, this paper pursues a standard neo-classical approach: preferences are exogenous

and differ from usual ones only in that they include a bliss point6.

The paper is organized as follows. Section 2 lays out the basic model without innova-

tion and analyzes whether the economy’s growth trajectory converges to a satiated steady

state. Section 3 extends the model by allowing for new goods to be introduced. It derives

the paper’s two key results: first, that the decentralized equilibrium may fail to lift the

economy out of satiation through innovation even though a central planner would always

choose to do so; second, that the strategic complementarity between innovation and sav-

ings may lead to multiple equilibrium trajectories associated with multiple steady states.

Section 4 studies how the economy reacts to an increase in TFP and to a fall in the cost of

R and D. In equilibria such that the economy is not satiated in the long run, these shocks

3Aoki and Yoshikawa (2002) study a growth model with "saturation of demand" in each good and
horizontal innovation. However, what they refer to is not satiation, but an S-shaped demand pattern
following the introduction of each good. In their model, which is in the fashion of Young’s (1991)
models of product life cycle, demand for each good is bounded in equilibrium because there is no vertical
innovation, and the S-shape comes from the assumption that the utility derived by consumers from any
individual good, which is logarithmic and therefore has no bliss point, is itself multiplied by a logistic
factor. Furthermore, horizontal innovation is assumed to be entirely exogenous. Accordingly, none of the
results and welfare analysis studied here hold.

4See Andersen (1998) for an evolutionary learning model, based on Pasinetti’s ideas.
5See Benhabib and Bisin (2002) for a formalization of those approaches based on endogenous prefer-

ences.
6At some level of abstraction, however, one can always interpret the introduction of new goods as

implying a change in the consumers’preferences. For horizontal innovation, the formalism of new growth
theory does not allow to distinguish between the preferences for new products being genuine versus
artificially created.
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unambiguously increase output, capital and product variety. Things are more mixed,

however, for equilibria with satiation: In trajectories such that innovation fails to pick

up, an increase in TFP is met by a fall in investment; in a trajectory which converges to a

satiated steady state with innovation, a reduction in the cost of R & D eventually reduces

the number of varieties. In Section 5, I consider what happens if agents differ in their rate

of time preference. If the most patient type is patient enough, the long-term equilibrium

exhibits segmentation: agents below a critical discount rate are all satiated, while those

above it end up with negligible wealth and consumption. While no satiation equilibria

disappear, the strategic complementarity that we have highlighted remains in another

form: a higher interest rate reduces the net present value of innovation, but, as it boosts

incentives to save, raises the long-run proportion of satiated consumers and therefore the

market size for innovation. As a result, multiple equilibrium interest rates may coexist,

if the latter effect dominates over some range. Section 6 shows that if there is a trend of

TFP growth, the steady states that have been constructed can be generalized as balanced

growth paths. Section 7 discusses how the features of those trajectories change when

one allows for endogenous labor supply. I highlight the possibility of a "leisure society"

trajectory with positive growth in output, capital, and product variety, negative growth

in labor supply, and asymptotic satiation. Section 8 concludes.

2 The model without innovation

How does the possibility of satiation affect the analysis of the standard neoclassical growth

model? My starting point is the Ramsey model. A representative consumer, endowed

with one unit of labor, maximizes

max

∫ +∞

0

u(Ct)e
−ρtdt, (1)

where Ct is consumption at date t. Output Yt is produced using labor and capital, and

the representative consumer is endowed with one unit of labor:

Yt = AKα
t L

1−α
t = AKα

t . (2)
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Each unit of output can be converted into one unit of consumption or one unit of capital,

which depreciates at rate δ. Hence the consumer maximizes (1) subject to the law of

motion of capital given by

K̇t = AKα
t − Ct − δKt. (3)

Let us assume that needs may be satiated, by picking a quadratic specification for u() :

u(C) = C − βC
2

2
.

Note that labor supply is assumed exogenous. Consequently, the economy may not es-

cape satiation through working time reduction. This may occur if there exists a minimum

level of working hour for which there is no disutility, or if, as suggested by Schor (1995),

institutional barriers prevent working time from being reduced. In Section 7 I relax the

assumption of exogenous labor supply, and I show that as long as there is productivity

growth, it does not rule out asymptotic satiation.

Clearly the solution to this problem is

Ct = max(
1− λt
β

, 0),

where λt, the marginal value of capital, follows the law of motion

λ̇t = λt(ρ− r(Kt)), (4)

where r(K) = αAKα−1 − δ denotes the net marginal product of capital.
Two types of steady state are possible. In a non satiated steady state, λ > 0, C < 1/β

and the capital stock satisfies the standard modified golden rule: K = r−1(ρ) = KMGR.

Aggregate consumption then is equal to CMGR = AKα
MGR− δKMGR. In a satiated steady

state, λ = 0, C = 1/β and the equilibrium capital stock must solve AKα − δK = 1/β.

Whenever a solution exists, I will denote by KS1 and KS2 the smaller and larger solutions.

Clearly KMGR < KS2. The solution is then described by the following proposition:

Proposition 1 —Let K∗ = argmaxAKα
t − δKt = r−1(0) be the Golden Rule capital

stock and C∗ = AK∗α − δK∗ the corresponding consumption level. Let K0 be the initial

capital stock.
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A. If 1/β > C∗ then the economy converges to a unique, non satiated steady state

K = KMGR.

B. If 1/β < C∗ and KS1 > KMGR then

(i) If KS1 < K0 < KS2 the economy converges to a satiated steady state such that

K = KS2. Throughout the convergence path, the consumer is satiated: Ct = 1/β.

(ii) If K0 < KS1 the economy converges to a non satiated steady state such that

K = KMGR. The consumer is never satiated.

C. If 1/β < C∗ and KMGR > KS1 then

(i) If K0 > KS1 the economy converges to a satiated steady state such that K = KS2.

Throughout the convergence path, the consumer is satiated: Ct = 1/β.

(ii) If K0 < KS1 the economy converges to a satiated steady state such that K =

KS1.Throughout the convergence path, Ct < 1/β.

The Proof is in the Appendix. Figure 1 illustrates Proposition 1. The convergence

path is always unique. In case A the satiation level is too high to be feasible in the

long run: the only steady state is a non satiation one. In cases B and C satiation is

sustainable or not depending on whether the initial capital stock is high enough. In case

B people are impatient enough so that they would never elect to remain satiated in the

long run unless they can do so throughout the entire accumulation path. Consequently

there are two long-run stable steady states. If initial capital is large, setting consumption

at C = 1/β throughout does not deplete the capital stock. The economy ends atK = KS2,

an apparently dynamically ineffi cient steady state (but because of satiation there is no

point in picking a path with higher consumption). Otherwise, the economy converges to

the modified golden rule steady state. In case C people are patient enough so that the

marginal utility of consumption falls to zero asymptotically. For high enough capital they

can afford to be satiated throughout. Otherwise they gradually accumulate capital so as

to reach satiation asymptotically.

3 Innovation

I now introduce the possibility of product innovation. I assume that there is a bliss point

for each good, however one may in principle escape from satiation by consuming a greater
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variety of goods. I first compute the first-best allocation and show that the economy

cannot settle in a satiated steady state. If that were to happen, it would be optimal to

devote some resources to innovation and broaden the range of goods being consumed.

Starting from a satiated situation, it is always optimal to deviate by introducing more

goods and reducing the consumption of each good. The losses from doing so are second

order while the gains are first order.

Next, I consider the case of market-determined innovation. I show that the economy

may converge to a satiated steady state without any innovation despite that in such a

situation the marginal social cost of innovation is zero. Depending on initial condition,

such an equilibrium may be at the margin of innovation (type I), i.e. innovation takes

place along the convergence paths but eventually stops despite satiation, or it may be

such that innovation never occurs (type II).

The reason for this discrepancy between optimal and equilibrium outcomes is that the

set of relative prices that drive production and innovation no longer reflect the consumers’

marginal willingnesses to pay. Producers and innovators fail to internalize the fact that

the marginal productivities of the activities they undertake are multiplied by that of

consumption, which is zero. That is, while relative prices are equal to marginal rates

of transformation, marginal rates of substitution are not defined. Economic choices are

driven by equilibrium prices, that are themselves determined from the production side;

because both marginal costs and marginal benefits, in terms of utility, are equal to zero,

economic decisions by producers and innovators do not internalize the effect of those

decisions on welfare. In particular, they do not internalize the fact that more innovation

has a first-order effect on welfare by just lifting consumers out of the satiation trap.

Finally, I show that the economy may converge to a (type III) more conventional steady

state with positive innovation, no satiation, and a capital stock equal to its modified golden

rule level, and discuss how the same economy with the same initial conditions may, for

some parameter range, follow either a trajectory converging to such a steady state or,

alternatively, a trajectory with long-run satiation.
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3.1 The first best

In this subsection, I introduce the relevant assumptions and notations and I compute the

first best allocation.

At any date t there are Nt goods and the consumer’s total utility is

U({cit}) =
∫ Nt

0

u(cit)di,

where cit denotes consumption of good i and again u(c) ≡ c− βc2/2.
The individual goods are produced using a single good, "output", which is again

produced according to (2) and can also be transformed into capital or new varieties.

Therefore, the capital accumulation equation is:

K̇t = AKα
t − Ct − δKt −Rt, (5)

where Rt denotes the resources devoted to innovation ("R and D") and Ct is equal to the

amount of output devoted to the production of varieties.

The production function for any variety i is

cit = zit,

where zit is the amount of output used in the production of good i. Therefore, by symme-

try, it is optimal to consume the same amount of each good, defined as ct = Ct/Nt. We

can then rewrite utility as

U(Ct, Nt) = Ct − β
C2t
2Nt

. (6)

Clearly, U2 > 0, reflecting the consumers’taste for diversity.

The production process for new goods is as follows: One unit of output in the R and

D sector produces γ new goods per unit of time. Consequently, the law of motion for Nt

is given by

Ṅt = γRt. (7)

The social planner maximizes

max

∫ +∞

0

U(Ct, Nt)e
−ρtdt, (8)
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subject to the law of motions (5) and (7) and the constraint Rt ≥ 0.
Proposition 2 characterizes the optimal solution in a steady state:

Proposition 2 —Let c∗ be the unique solution in the (0, 1/β) range to the following

equation
βγ

2
c2 = ρ(1− βc). (9)

Then in any steady state c ≤ c∗ and N ≥ N∗ = CMGR/c
∗. Furthermore K = KMGR

and C = CMGR.

Proof —See Appendix

Intuitively, c∗ is the minimum consumption level per variety beyond which, in a steady

state, it is socially profitable to innovate. Equation (9) equates the marginal benefit per

unit of time of introducing a new variety, βγ
2
c2, to its annuity cost in terms of utility,

equal to the product of the discount rate ρ and the marginal utility of consumption

1 − βc. Clearly, the solution is always strictly smaller than 1/β. In the long run, the

representative consumer will never elect a consumption level per item c greater than c∗,

because in such a situation it is preferable to sacrifice some consumption units to raise N,

which eventually brings down c below c∗. Consequently, a satiated steady state does not

exist.

3.2 Equilibrium satiation

I now compute the equilibrium level of innovation and I show that if innovation is de-

termined in a decentralized fashion, a satiated steady state is no longer ruled out. This,

despite that, as illustrated by (9), the social marginal cost of innovating in such a situation

is zero.

Following the literature, I assume that innovators get a permanent patent on the

variety they have invented. However, competitive imitators can produce the same good

without authorization, at a marginal cost in terms of output equal to µ > 1. If µ is not

too large, the patent holder will charge at a markup equal to µ. Using output as the

numéraire, µ is also equal to the price of the good. Consequently, the profits generated

by any variety at date t are given by

πt = (µ− 1)ct.
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The market value of a patent at t, Vt, follows the usual law of motion

rtVt = V̇t + πt, (10)

where rt is the real interest rate which, in equilibrium, equates the net marginal product

of capital:

rt = r(Kt).

At date t, the cost of producing a new variety is 1/γ. Therefore the economy can be

in one of two regimes:

A. The no innovation regime: Vt < 1/γ and Rt = 0.

B. The innovation regime: Vt = 1/γ and Rt > 0.

The consumer maximizes (8) with respect to {Ct}, or equivalently {ct}, subject to his
intertemporal budget constraint:∫ +∞

0

µctNte
−
∫ t
0 rududt ≤

∫ +∞

0

wte
−
∫ t
0 rududt+N0V0 +K0, (11)

where wt is the wage, also equal to labor income.7

From this problem, denoting by λ the Lagrange multiplier of (11), we get the optimality

conditions for consumption:

ct = max

(
1− λµeρt−

∫ t
0 rudu

β
, 0

)
. (12)

In particular, as long as c > 0 it satisfies the following Euler equation:

ċt =

(
1

β
− ct

)
(rt − ρ) . (13)

In partial equilibrium, if r > ρ, the consumer converges to satiation regardless of

his income. Satiation only depends on people’s degree of patience: if they are patient

7As will be clear below, because of satiation, the economy may converge to a steady state such that
r ≤ 0. In this case the RHS of (11) is not defined. But Nt is bounded and the intratemporal budget
constraint Ẇt = rtWt + wt − Ntct is stable and the consumer can clearly pick c = 1/β throughout.
Therefore, this special situation does not invalidate (13).
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enough relative to the market interest rates, they will eventually have accumulated enough

resources to reach satiation.

The following Proposition establishes the existence of long-run steady states that are

satiated8. Furthermore, they are stable in the sense that there exist trajectories, starting

from the initial values of the capital stock K0 and of the number of varieties N0, that

converge to these steady states, for sets of initial conditions of positive measure.

Proposition 3 — Let KS = r−1
(
γ(µ−1)

β

)
. Let NS = β(AKα

S − δKS). Assume N0 <

min(βCMGR, NS). Let K̂ < KS such that N0 = β(AK̂α − δK̂).
A. If K̂ < K0 < KS there exists an equilibrium trajectory such that (i) ct = 1/β

throughout, (ii) there exists a critical date T such that K̇ > 0, Ṙ = 0 for t < T and

K̇ = 0, Ṙ > 0 for t > T, (iii) the economy converges to a satiated (type I) steady state

such that N = NS and K = KS

B. If K0 < K̂ there exists an equilibrium trajectory such that (i) ct < 1/β throughout,

(ii) Ṙ = 0 throughout (iii) the economy converges to a satiated (type II) steady state such

that c = 1/β, K = K̂, and N = N0.

Proof —See Appendix.

In the trajectories described in Proposition 3, agents are patient enough to accumulate

enough capital so as to be satiated in the long run. However, there is no point in accu-

mulating wealth to consume beyond the satiation level. In case B, no innovation takes

place and people target an equilibrium level of the capital stock so as to be asymptotically

satiated. At this level, interest rates are too high for innovation to be profitable. In case

A, initial capital is high enough for people to choose a path such that they are satiated

throughout while accumulating capital at a positive rate. At some point the interest

rate falls to a level where innovation becomes profitable. It is then optimal to devote

8In Propositions 3 and 4 I only focus on the regimes that are most relevant. For example, if βCMGR <

N0 < NS , implying in particular KS > K̂ > KMGR, and ρ >
γ(µ−1)
β for K0 < K̂ the economy follows a

standard Ramsey path with no innovation and convergence of the capital stock to KMGR.
Also, I do not analyze paths with falling capital stocks, which may arise if the initial capital stock

is large, because one would then have to either allow for instantaneous conversion of a mass of capital
into new goods, or for a corner regime where no gross investment takes place, and the marginal product
of capital is lower than the interest rate which would be pinned down by the innovation equilibrium
condition V = 1/γ.
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all investment to innovation (any further accumulation of physical capital would make

innovation strictly superior to capital accumulation) while raising aggregate consumption

so as to maintain consumption of each variety equal to its satiation level. As this process

continues, less and less resources remain available for innovation, which eventually dies

out as the economy approaches steady state.9

Figure 2 illustrates Proposition 3 in the (K, c) plane10. The II schedule is the steady

free-entry condition in the R and D sector, i.e. r(K) = γ(µ − 1)c. In steady state, the
economy cannot be above this locus, otherwise one would have V > 1/γ. The horizontal

line SS is the satiation level c = 1/β. The economy’s trajectory cannot be above this

schedule. The KK(N) schedule is the K̇ = 0 locus associated with a stationary mass

of varieties equal to N. Whenever the economy is innovating, this schedule shifts to the

right. In case A, the trajectory is below KK(N0). At date T the economy hits point E

which is the intersection of II and SS. Thereafter both K and c remain constant while

N goes up. The K̇ = 0 schedule gradually shifts right and asymptotically converges to

KK(NS) which intersects II and SS at point E. In case B, the equilibrium trajectory is

an asymptotically satiated saddle path without innovation. Throughout this trajectory

Vt < 1/γ and innovation does not take place. Dynamics are given by the Euler equation

(13) and the KK(N0) schedule.

3.3 Equilibrium non-satiation

It is also possible to construct equilibrium trajectories which converge to a modified

golden rule steady state at the margin of the innovation regime. These trajectories are

characterized in Proposition 4:

Proposition 4 —Assume ρ < γ(µ−1)
β

. Let NN = CMGR
γ(µ−1)

ρ
. If N0 ≤ NN and K0 ≤

KMGR then there exists an equilibrium trajectory such that.

(i) Until some date T, K̇ > 0, Ṅ = 0, and ċ = 0

(ii) For any t ≥ T, Kt = KMGR, ct =
ρ

γ(µ−1) = cN < 1
β
, Ṅt > 0

9For simplicity, nonnegativity constraints on investment have been ignored. For K0 > KS , we conjec-
ture that in equilibrium all capital in excess of KS would be immediately converted into new varieties.
10It has been assumed that KS < KMGR, i.e. ρ <

γ(µ−1)
β
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(iii) The economy converges to a (type III) steady state such that K = KMGR > KS,

c = cN < 1
β
, C = CMGR > CS, N = NN > NS.

Proof —See Appendix

Figure 3 illustrates the trajectory elicited in Proposition 4. This trajectory converges

in finite time to the modified Golden rule capital stock, with a consumption level which is

lower. The surplus of savings at K = KMGR after date T is devoted to innovation. As in-

novation proceeds, aggregate consumption gradually goes up as people consume a greater

variety of goods, each in the same quantity. This process continues until, asymptotically,

no resources are left for further innovations.

As long as ρ < γ(µ−1)
β

and N0 < NS, these trajectories coexist with those converging

to satiated steady states and characterized in Proposition 311. Therefore, there exist

multiple self-fulfilling trajectories that converge to different steady states. A trajectory

that converges to a type I satiated steady state is associated with lower innovation and

lower capital accumulation than a trajectory converging to a non satiated steady state.

In a satiated steady state, the market size for innovation is higher than in a non satiated

one, but that is compensated by higher interest rates since such a steady state is less

capitalistic.

This strategic complementarity is based on the following mechanism: Suppose people

expect more goods to be introduced in the future. This raises the marginal utility of

future aggregate consumption C and therefore the incentives to save12. These incremen-

tal savings in turn reduce real interest rates, which makes innovation more profitable13.

Conversely, expecting a lower level of innovation or no innovation at all would lead to

lower savings and higher interest rates, which would deter innovation.

The possibility of satiation is important for this strategic complementarity to lead to

11If ρ < γ(µ−1)
β then KS < KMGR and NS < βCMGR, implying that if N0 < NS then N0 < βCMGR,

so that Proposition 3 applies.
12In that respect, horizontal innovation is very different from vertical innovation. The latter raises

the future physical amount of goods available to the economy, and interest rates must be higher for
consumers to absorb those goods. In contrast, horizontal innovation raises the marginal utility of future
consumption, which makes it more valuable to save at any given interest rate.
13This accumulation process in anticipation of a future wave of innovation is reminiscent of Greenwood

and Yorukoglu’s (1994) analysis of the IT revolution. The convergence path highlighted here has two
phases: a capital accumulation phase and an innovation phase. If the contribution of innovation is
mismeasured, the second phase may be wrongly interpreted as a ‘slump’.
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multiple steady states. Otherwise, there would be a unique long-run equilibrium capital

stock given by the modified golden rule level KMGR. It is easy to check that this is

consistent with a unique value of c and a unique value of N , which may or may not be

in the innovation regime depending on initial conditions.

As in Dixit and Stiglitz (1977), the equilibrium number of varieties in Proposition 4

may be either higher or lower than the social optimum. An appropriability effect which

tends to make innovation too low has to be balanced against a business stealing effect

which tends to make it too high.

4 Some comparative statics

Whenever the economy converges to a satiated equilibrium, the conventional results re-

garding the effects of greater productivity are partially overturned.

In the standard Ramsey model, a permanent increase in TFP raises capital accumu-

lation. In a type II steady state, however, a strong income effect dominates: In the long

run, absent innovation, one can finance the same satiated level of consumption with a

lower capital stock.

In standard models of horizontal innovation, the number of varieties goes up when

the cost of R and D falls. In a type I steady state, however, the number of varieties goes

down, because the economy accumulates less physical capital.

4.1 Effect of productivity shocks

I fist study the effect of productivity shocks. I show that they have different qualitative

effects on the equilibrium depending on whether or not the economy lies at the margin of

the innovation regime in the long-run. This is summarized in Proposition 5:

Proposition 5 —Consider a small increase in A. Then

(i) If the economy converges to a type I steady state, in the long run K, Y, C and N

go up. c is unchanged at c = 1/β.

(ii) If the economy converges to a type II steady state, in the long run K and Y fall.

C,N, and c = 1/β are unchanged.
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(iii) If the economy converges to a type III steady state, in the long run K, Y, C and

N goes up, c is unchanged at c = ρ
γ(µ−1) . Furthermore, if the economy is initially in steady

state and A goes up, then c falls upon impact.

Proof —This follows immediately from Propositions 3 and 4.

The effect of TFP growth is quite different depending on the type of steady state.

If there is no innovation and people are eventually satiated (type II), the capital stock

falls so as to leave aggregate consumption C unchanged in the long run. The extra

output allowed by productivity growth is essentially consumed, allowing to consume more

over the convergence trajectory. Accumulating more capital would have zero value since

people are satiated in the long run and there is no innovation. In a type III steady state,

however, higher productivity makes it worthwhile to accumulate more capital, because this

eventually allows to invent more varieties. Indeed, starting from steady state, consumers

start saving more at the time of the shock, which further speeds up capital accumulation.

The economy transitions from the capital accumulation regime to the innovation regime

with a higher capital stock, which allows to devote more output to innovation14. The

economy ends up with both more capital and more varieties, while consumption of each

variety remains unchanged, since there is only one market size which delivers zero net

profits from innovating at the equilibrium interest rate r = ρ.

To summarize: a positive productivity shock generates an investment boom if innova-

tion is expected to occur, and an investment slump if that is not the case.

4.2 Effects of shocks to the cost of R and D

I now study an increase in the productivity of R and D, i.e. an increase in γ. A shock to

γ also has very different effects on capital and innovation depending on whether or not

the economy converges to a steady state with satiation:

Proposition 6 —Consider a small increase in γ. Then

14Thus, in Regime III, a "vertical" innovation, i.e. an increase in TFP, triggers a phase of capital
accumulation boosted by higher savings, followed by a halt to capital accumulation and a phase of
vertical innovation. This bears some similarities to Schumpeterian long waves such as those analyzed by
Aghion et al. (2014).
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(i) If the economy converges to a type I steady state, in the long run K, Y, C and N

fall. c is unchanged at c = 1/β.

(ii) If the economy converges to a type II steady state, this steady state is unchanged.

(iii) If the economy converges to a type III steady state, in the long run K is unchanged

as is Y. C is unchanged, c falls and N goes up.

Proof —Immediate from Propositions 3 and 4.

To understand these paradoxical results, consider first the most standard case, i.e.

a type III steady state (figure 4a). As the cost of innovation falls, people anticipate

that more varieties will be introduced in the future, which raises their marginal utility of

aggregate consumption in the future compared to the present. For this reason they save

more, reducing their consumption of each individual good c. As capital is accumulated

more quickly, the critical date when innovation kicks in is reached earlier. Furthermore,

agents coordinate their consumption plans so that r andK are still equal to their modified

Golden Rule levels, otherwise the subsequent trajectory would not converge to a steady

state. Thus the equilibrium value of c must be lower: as the cost of innovation is lower

and the interest rate is the same, market size must fall for the free entry condition in

innovation to be satisfied. This in turn frees more resources available for innovation: in

the long run, more varieties have been introduced.

Consider now (Figure 4b) an economy that converges to a type I steady state. A

higher γ shifts the II locus down and to the left, meaning that since innovation is less

costly, the economy will innovate at higher interest rates, i.e. lower capital stocks. Hence

the trajectory hits point E earlier than if γ had remained smaller; people benefit from an

increase in the number of varieties earlier. However that is a mixed blessing because the

economy stops raising its capital stock after this date, investing all savings in innovation.

In the long run, as the capital stock is lower, there are also fewer resources left to innovate,

and this also reduces the equilibrium number of varieties —As the economy follows a self-

fulfilling trajectory with satiation in all varieties, the mechanism allowing for variety to

go up thanks to a reduction in c does not operate.
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5 Heterogeneous agents

I now discuss how the analysis changes if agents are heterogeneous. I assume that people

differ in their rate of time preference ρ. I assume that it is distributed with c.d.f. F and

density F ′ = f. To simplify matters I make two key assumptions:

ASSUMPTION 1 —F has full support over (0,+∞) and no mass point .
ASSUMPTION 2 —f is hump-shaped, implying F is S−shaped.

Let us now consider steady states. For any equilibrium interest rate r > 0, there exists

a positive measure of agents such that ρ < r. According to (12), they are necessarily

satiated. By the same token, agents such that ρ > r have a zero consumption level.

While in the Ramsey model with heterogeneous agents the most patient dynasty own all

the wealth in the long run, while other dynasties have zero consumption, here consumers

for an entire range of values of ρ have positive consumption in the long run, and they are

all satiated.

Given that a fraction F (r) of consumers consume 1/β of each good and the others

zero, the profit level for any variety is equal to

π =
µ− 1
β

F (r).

Let us focus on a steady state where there is innovation at the margin. The free entry

condition V = 1/γ reads
µ− 1
β

F (r) =
r

γ
. (14)

This condition determines the equilibrium interest rate. Interestingly, both sides are

increasing functions of r, so that the equilibrium interest rate may not be unique. This

is due to the following: While a higher interest rate reduces the net present value of

innovating through the usual discount effect, it also induces a greater fraction of the

population to save in order to eventually be satiated, which in turn raises the market size

for innovations and hence the flow of profits it generates15.

Figure 5 depicts the determination of r. Under Assumption A2 there are at most

three equilibrium values for r : 0, r1 and r2. It is easy to see that r = 0 cannot be an
15In some sense, type I and III equilibria in the preceding section are extreme versions of the ones

highlighted here.
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equilibrium16. Intuitively, r1 can be ruled out on economic stability grounds. Consider

a small perturbation, say an increase in r. Then in the neighborhood of equilibrium r1

the LHS of (14) goes up by more than its RHS, meaning that the market size effect on

innovation dominates the effect of the cost of capital. We expect innovators to innovate

more, which raises the demand for loanable funds and should push r further up. That is,

let V (r) ≡ µ−1
β

F (r)
r
. If we define a stable equilibrium as an equilibrium r which satisfies

V ′(r) < 0 in addition to V (r) = 1/γ, then r1 may be ruled out and, since F is S−shaped,
the only stable equilibrium is such that r = r2. From there it is easy to compute the

equilibrium capital stocks and number of varieties17:

K2 = r−1(r2), (15)

N2 =
β

F (r2)
(AKα

2 − δK2) . (16)

As in the analysis of Section 4.2, an increase in γ raises the equilibrium r. Again from

(15)-(16) fewer varieties exist in equilibrium and the capital stock is lower. On the other

hand, the proportion of agents that are satiated, F (r), goes up.

6 Balanced growth paths

This section extends the results of Section 3 by allowing for growth in the TFP parameter

A. Clearly, since the critical capital stock K̂ goes to zero as A goes up, a type II bal-

anced growth path (BGP) is precluded: as consumption of each good is bounded, capital

accumulation would push interest rates down to zero; however innovation would pick up

before such a point is reached. On the other hand, it is easy to construct BGPs of types

I and III. These are characterized by the following propositions.

Proposition 7 —Assume At = A0 exp(gAt). Assume gA < 1−α
α

(
γ(µ−1)

β
+ δ(1− α)

)
.

Then there exists an equilibrium trajectory such that

16At r = 0 (14) does not in fact apply. The RHS of any consumer’s budget constraint becomes infinite.
All consumers therefore choose c = 1/β. Then π = µ−1

β > 0, implying V = +∞, which contradicts the
requirement that V = 1/γ.
17An equilibrium with no innovation can also be computed. Let N0 be the initial number of varieties.

Then the equilibrium capital stock K(N0) is the unique solution to 0 = AKα −N0F (r(K))/β − δK. For
no innovation to indeed take place in equilibrium, K(N0) must be such that r(K) > (µ− 1)F (r(K))/β.
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(i) Kt = kA
1

1−α
t , where k =

(
α

δ+
γ(µ−1)
β

) 1
1−α

,

(ii) ct = 1/β

(iii) rt =
γ(µ−1)

β

(iv) Y,K and N grow at common rate g = gA
1−α = gCS,

(v) Nt = nA
1

1−α
t , where n = k

(
γ(µ−1)
β

+δ)/α−g−δ
1/β+g/γ

> 0.

Proof—See Appendix

Proposition 8 —Assume At = A0 exp(gAt). Assume gA < (1 − α)ρ and ρ < γ(µ−1)
β

.

Then there exists an equilibrium trajectory such that

(i) Kt = k′A
1

1−α
t , where k′ =

(
α
δ+ρ

) 1
1−α

,

(ii) ct =
ρ

γ(µ−1) <
1
β

(iii) rt = ρ

(iv) Y,K and N grow at common rate gCS,

(v) Nt = n′A
1

1−α
t , where n′ = k′ (ρ+δ)/α−g−δρ

γ(µ−1)+g/γ
> 0.

Proof —See Appendix.

The BGPs constructed in Propositions 7 and 8 generalize the type I and type III

steady states, respectively. Again, as the conditions for Proposition 7 and Proposition 8

to hold are not mutually exclusive, the two trajectories may coexist in the same economy18.

Furthermore, it is easy to check that the non satiated BGPs have more innovation and

capital than the satiated ones.19

18The condition gA < (1− α)ρ is the standard one that is needed for a Ramsey MGR BGP to deliver
summable utility. However if 1−αα

(
γ(µ−1)
β + δ(1− α)

)
< (1− α)ρ and ρ > γ(µ−1)

β , then a BGP cannot

be constructed for 1−α
α

(
γ(µ−1)
β + δ(1− α)

)
< gA < (1− α)ρ.

19Since ρ < γ(µ−1)
β , k′ > k. Furthermore, in both BGPs, N = Y−(g+δ)K

g/γ+r/(γ(µ−1)) . Since r is lower in the non
satiated BGP, the numerator is lower. Since K is higher in the non satiated BGP but, since r > g, lower
than the Golden Rule level, the numerator is higher in the non satiated BGP. Therefore, N is higher in
the non satiated BGP than in the satiated one.
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7 Long-term growth, near satiation and the leisure
society

In this section I make labor supply endogenous, while still assuming the existence of a

productivity growth trend. I assume all units of labor have a disutility. Absent growth,

then, satiation would not arise because if it did, labor supply would be equal to zero, and

the economy could not produce enough output for people to be satiated. Under growth,

however, the story is different.

I assume that the consumer’s flow of utility is now given, instead of (6), by

U(Ct, Nt, Lt) = Ct − β
C2t
2Nt

− v(Lt),

where Lt denotes labor supply and v(Lt), the marginal disutility of labor, is given by

v(Lt) = τ
L2t
2
if Lt ≤ 1

= +∞ if Lt > 1.

At any date t, the real consumption wage us wt/µ and the marginal utility of con-

sumption is 1− βct. Therefore, labor supply is given by

Lt = 1 if wt(1− βct)/µ > τ,

=
wt(1− βct)

τµ
if wt(1− βct)/µ ≤ τ

Since, along a non satiated BGP, w grows over time while c is constant and lower

than 1/β, the equilibria described in Proposition 8 still exist, provided the initial level

of wages satisfies w0(1 − βc)/µ > τ. In those equilibria, labor supply is at its maximum

level. In contrast, equilibria with satiation no longer exist. Interestingly, however, we can

construct trajectories that converge to satiation while output does not go to zero, either

because labor supply is at its maximum, or because TFP growth more than offsets the

effect of shrinking labor supply in the long run. These trajectories are characterized in

the following two propositions, again proved in the Appendix:

Proposition 9 —Assume that

gA > (1− α)
(
γ(µ− 1)

β
− ρ
)
. (17)
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Then there exists η, ε > 0 and a decreasing function A(), such that for all k0 ∈ (k, k+η)
and n0 ∈ (n − ε, n + ε), and for A0 > A(k0) and At = A0 exp(gAt), there exists an

equilibrium trajectory (Kt, ct, Nt, Lt) such that

(i) K0 = k0A
1

1−α
0

(ii) N0 = n0A
1

1−α
0

(iii) ċt > 0 and limt→∞ ct = 1/β

(iv) Lt = 1, ∀t
(v) Ṅt > 0 and limt→∞

Nt

A
1

1−α
0

= n

(vi) limt→∞
Kt

A
1

1−α
0

= k

(vii) The economy is in the innovation regime throughout. In particular, rt = γ(µ −
1)ct = αAtK

α−1
t − δ.

Proposition 9 has constructed a trajectory which is near the BGP of Proposition 7

and therefore near satiation. Furthermore this trajectory converges to that BGP and

consumers are asymptotically satiated. Nevertheless, it is rational for them to supply one

unit of labor forever, because wage growth overtakes the decline in the marginal utility of

consumption.

If (17) is violated, but growth is not too low, we can construct a trajectory such that

labor supply shrinks over time, and converges to zero, while consumers are asymptotically

satiated. Growth is strictly positive because technical progress and capital accumulation

more than offset the attrition in labor supply.

Proposition 10 (Leisure society) —Assume that ρ < γ(µ−1)
β

, that At = A0 exp(gAt),

and that
1

2

(
γ(µ− 1)

β
− ρ
)
<

gA
1− α <

γ(µ− 1)
β

− ρ. (18)

Let

g =
2

1− αgA − (
γ(µ− 1)

β
− ρ) = gLS > 0

and

z =

1
α
(γ(µ−1)

β
+ δ)− g − δ

1/β + g/γ
> 0.
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Then there exists η, ζ, ε > 0 such that for any initial conditions (K0, N0) such that

K0 < min(ηA
2

1−α
0 , ζA

1
1−α
0 ) and N0 ∈ (K0z(1− ε), K0z(1 + ε)), there exists an equilibrium

trajectory (Kt, ct, Nt, Lt) from those initial conditions such that

(i) ċt > 0 and limt→∞ ct = 1/β

(ii) Lt < 1, and limt→∞
L̇t
Lt
= 1

1−αgA− (
γ(µ−1)

β
−ρ) = gL < 0. Therefore, limt→∞ Lt = 0

(iii) limt→∞
K̇t
Kt
= limt→∞

Ẏt
Yt
= limt→∞

Ṅt
Nt
= g.

(iv) limt→∞
Nt
Kt
= z

(v) The economy is in the innovation regime throughout. In particular, rt = γ(µ −
1)ct = αAtK

α−1
t − δ.

Proposition 10 constructs a leisure society where, despite innovation, capital accumu-

lation proceeds at a faster pace than the introduction of new goods, eventually leading

to satiation. Over time, labor supply falls to zero, but at a lower rate than the contri-

bution of TFP growth and capital accumulation to GDP, thus making room for long-run

satiation.

As long as ρ < γ(µ−1)
β

< 3ρ, there exists an interval of values of gA for which a

leisure society trajectory characterized by Proposition 10 coexists with a consumer society

characterized by Proposition 8. Since for the leisure society to exist it must be that

gA < (1 − α)
(
γ(µ−1)

β
− ρ
)
, one clearly has gLS < gCS : the leisure society grows less

fast than the consumer society. By comparing the expression for z to its counterpart for

the consumer society, which may be obtained from (v) in Proposition 2, we find that the

leisure society has a greater range of goods, relative to K, than the consumer society. This

is due to several factors: first, the market size for new goods is larger in the leisure society,

because people are satiated in those goods. Second, as the economy grows less fast, it

invests less in physical capital, which leaves more resources for innovation. Nevertheless,

over time, the consumer society will widen its gap relative to the leisure society both in

terms of capital and number of varieties.

The above analysis also suggests that, contrary to the claims by Schor (1995), the

persistence of high labor supply despite satiation may well be an equilibrium phenom-

enon rather than the outcome of institutional constraints. Not only the economy may

never approach satiation because it will endogenously introduce new goods, but in the

configuration of Proposition 9 near satiation does not preclude labor supply from being
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in its maximum. It is also interesting to note that differences between European-style

"leisure societies" and American-style "consumer societies" may be explained by multiple

equilibria instead of different exogenous institutions.

8 Conclusion

The possibility of satiation of needs substantially changes our analysis of growth models.

The market may fail to introduce new goods so as to lift the economy out of a satiation

trap. As expectations of introducing new goods generate a strategic complementarity

between savings and innovation, there are multiple equilibria. When one allows for en-

dogenous labor supply, satiated ("Leisure Society") equilibria may involve a lower growth

rate, and an ever decreasing labor supply, compared with non-satiated ("Consumer Soci-

ety") equilibria.

There is no overproduction in the economy analyzed here, since it is always at a

full employment equilibrium. Nevertheless, I have shown that because of satiation, an

increase in total factor productivity may lead to a reduction in the long-term capital

stock, thus triggering an investment slump. Furthermore, for this slump to occur it must

be that the economy remains in the (type II) no innovation regime. This is reminiscent of

both Schumpeter’s (1939) analysis of long waves and recent New Keynesian analyses of

contractionary technical progress20. Indeed, a natural direction for further research would

be to analyze the short and medium term implications of satiation, in models where sticky

prices may generate overproduction and underemployment.

20Gali (1999), Basu et al. (2006)..
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9 Appendix

9.1 Proof of Proposition 1

A. Remember that C∗ = maxK AKα − δK. Therefore if 1/β > C∗ the equation AKα −
δK = 1/β has no solution and the only steady states are non satiated. Consequently,

K = KMGR in steady state.

B. (i). Assume Ct = 1/β throughout. Then K̇t = AKα − δK − 1/β. Over (KS1, KS2],

K clearly converges to KS2. Furthermore, this trajectory is optimal as it delivers the

maximum possible utility level.

(ii) By (4), the consumer is either always satiated or never satiated. Since K would

become equal to zero in finite time if he were always satiated, the consumer is never

satiated. Assume the economy converges to a satiated steady state, implying limt⇀∞K =

KS,i. Since KS2 > KS1 > KMGR, for some T and t > T, K > KMGR. Then Ċ < 0 for

t > T, which contradicts the fact that limt→∞C = 1/β. Therefore the economy converges

to a non satiated steady state, implying limK = KMGR.

C. (i) Same proof as B (i)

(ii) Again the consumer is never satiated. Assume the economy converges to a non

satiated steady state. Then limt⇀∞K = KMGR. Since KMGR > KS1, for some T and

t > T, KS2 > K > KS1. Let t0 > T. Consider the following deviation C̃t from the actual

trajectory: C̃t = Ct, t < t0, C̃t = 1/β, t ≥ t0. Then the corresponding capital stock K̃t is

such that K̃t = Kt, t < t0. Therefore KS2 > Kt0 > KS1. Clearly, then lim K̃ = KS2. Hence

the deviation is feasible. Furthermore, as Ct < 1/β throughout, C̃t > Ct for t ≥ t0. It

follows that the deviation delivers a strictly higher utility level than the initial trajectory,

which therefore cannot be optimal. Consequently, the economy necessarily converges to

a satiated steady state.

QED

9.2 Proof of Proposition 2

The Hamiltonian is given by

H = (Ct − β
C2t
2Nt

)e−ρt + λte
−ρt(AKα

t − Ct − δKt −Rt) + µte
−ρtγRt
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The representative consumer maximizes H subject to Rt ≥ 0 and Ct ≥ 0. Let ct =
Ct/Nt, r(K) = αAKα−1 − δ. The first order conditions are

ct = max(0,
1− λt
β

)

−λ̇t + ρλt = λtr(Kt);

λt ≥ γµt and (λt − γµt)Rt = 0;

−µ̇t + ρµt =
βc2t
2
.

Consider any steady state. Then either λ > γµ or λ = γµ.

Assume λ > γµ. Since µ ≥ 0, λ > 0. Therefore, the steady state is non satiated. Then
clearly ρ = r(K), implying K = KMGR. Since K̇ = Ṅ = 0, it must be that C = CMGR.

In particular, c = C/N > 0, so that λ = 1− βc. Since ρµ = βc2

2
, λ = 1− βc and λ > γµ,

it must be that ρ(1−βc) > γβc2

2
, or equivalently c < c∗. Therefore N = C/c = CMGR/c >

CMGR/c
∗ = N∗.

Assume λ = γµ. Since ρµ = βc2/2, one cannot have c = 0. Otherwise one would have

λ = µ = 0, implying c = 1/β, a contradiction. Therefore c > 0, implying µ > 0 and

therefore λ > 0 and satiation cannot hold. Again ρ = r(K), K = KN and C = CN . Since

λ = 1− βc = γµ = γβc2/(2ρ), c = c∗ and N = C/c = CN/c
∗ = N∗.

QED

9.3 Proof of Proposition 3

A. We first construct a trajectory such that R = 0, N = N0, and c = 1/β. Along this

trajectory, the law of motion for K is

K̇t = AKα
t −

N0
β
− δKt.

Since K0 > K̂, one has K̇ > 0 throughout and the trajectory converges to K̃, which

is the larger solution to N0 = β(AKα − δK). In particular, r(K̃) < 0, implying K̃ > KS.

Let T be the date at which, along this trajectory, Kt = KS.
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Our equilibrium trajectory coincides with that trajectory for t ≤ T. Thereafter, we

assume that ct = 1/β, Kt = KS, and therefore

Ṅt = γ

(
AKα

S −
Nt

β
− δKS

)
.

Clearly, N converges monotonically to NS > N0.

We now show that this trajectory satisfies all the equilibrium conditions.

First, the Euler condition (13) is always satisfied since ċ = 0 and c = 1/β. The

law of motion (5) is also satisfied. For t ≥ T, we have that rt = r(KS) =
γ(µ−1)

β
and

πt = (µ− 1)/β. Therefore, from (10), Vt = 1/γ. The economy is in the innovation regime,
consistent with our assumption that Ṅ > 0. For t < T, integrating (10) yields

Vt =

∫ T

t

µ− 1
β

e−
∫ s
t rududs+

1

γ
e−

∫ T
t rudu.

Since Kt < KS, rs >
γ(µ−1)

β
. Straightforward algebra then implies that Vt < 1/γ.

Consequently, the economy is in the no innovation regime for t < T, consistent with

Ṅ = 0.

Thus, the constructed trajectory satisfies all the equilibrium conditions.

B. Assume now that K0 < K̂ and consider the following system

K̇t = AKα
t −N0ct − δKt. (19)

ċt =

(
1

β
− ct

)
(r(Kt)− ρ) . (20)

This is a standard system and there exists a unique saddle-path converging to its steady

state such that c = 1/β andK = K̂.Note that sinceN0 < βCMGR, K̂ < KMGR. Therefore,

along this saddle-path trajectory, K̇ > 0 and ċ > 0, since r(Kt) > r(K̂) > r(KMGR) = ρ.

We can express this trajectory as c = cSP (K), where c′SP > 0.

Assume cSP (K) < 0 for 0 < K < Kc. Then for any K < KC we replace cSP (K)

by a zero value. It is then straightforward to check that the trajectory defined by ct =

cSP (K) and K̇t = AKα
t −N0cSP (K)− δKt satisfies the consumer’s optimality conditions

throughout.
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Assume that the trajectory followed by the economy is such that (c,K) are along this

saddle-path and N = N0. To prove that this is an equilibrium trajectory, we only need to

show that V ≤ 1/γ throughout. From (10) we have that

Vt =

∫ +∞

t

(µ− 1)cte−
∫ s
t rududs.

Since N0 < NS, K̂ < KS. Therefore rt = r(Kt) > r(K̂) > γ(µ−1)
β

and ct < 1/β. Clearly,

then, Vt < 1/γ.

QED.

9.4 Proof of Proposition 4

First, we can construct a unique saddle path (Kt, ct) such that (i) (Kt, ct) satisfies the

system (19-20), (ii) K = K0 initially and (iii) c =
ρ

γ(µ−1) at K = KMGR. Given our

assumption that K0 < KMGR and N0 < NN , along this trajectory ċ > 0 and K̇ > 0. If

the mathematical solution is such that c < 0, we replace it by c = 0 as in the proof of

Proposition 3, B. Furthermore, at c = ρ
γ(µ−1) , K̇ = (NN − N0) ρ

γ(µ−1) > 0, implying that

the point (KMGR, c) is reached at a finite date T.

For t ≤ T we assume the economy follows this trajectory.

For t ≥ T we assume that c and K remain constant at c = ρ
γ(µ−1) , K = KMGR, while

Ṅ = CMGR −N
ρ

γ(µ− 1) .

Since r = ρ and c is constant, the consumer’s optimality conditions are clearly satisfied

for t ≥ T. Since c is C1 as a function t, they are also satisfied locally around T.

Since the point c = ρ
γ(µ−1) , K = KMGR lies on II, i.e. r(KMGR) = ρ = γ(µ − 1)cN ,

we clearly have, for t ≥ T, V = (µ−1)cN
r

= 1
γ
, consistent with the free entry condition for

innovation.

Last, we need to prove that V < 1/γ for t < T. As in the proof of Proposition 3, A,

we have that for t < T

Vt =

∫ T

t

(µ− 1)cte−
∫ s
t rududs+

1

γ
e−

∫ T
t rudu.
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SinceKt < KT = KMGR, rt > ρ. Furthermore, ct <
ρ

γ(µ−1) . Therefore Vt <
∫ T
t

ρ
γ
e−ρ(s−t)ds+

1
γ
e−ρ(T−t) = 1/γ.

Finally, the property that NN > NS is straightforward, since NN = CMGR
γ(µ−1)

ρ
>

βCMGR > βCS = NS.

QED

9.5 Proof of Proposition 7

Consider a trajectory such that (i), (ii) and (v) hold. It follows from (i) that the net

marginal product of capital satisfies (iii). It is also true from (ii) that the consumption

Euler equation (13) holds. Property (iv) holds by construction and from the production

function Yt = AtK
α
t . In particular Y is proportional to K, Y = r+δ

α
K = yA. From (iii)

and (ii) we get that the equilibrium condition for innovation V = π/r = 1/γ holds.

Given the equilibrium values of r and g, the property n > 0 follows from the assumption

that gA < 1−α
α

(
γ(µ−1)

β
+ δ(1− α)

)
. To complete the proof, just substitute the values of

N = nA, K = kA, Y = yA into the capital accumulation equation (5), which can be

rewritten as

K̇t = AtK
α
t − Ct − δKt − Ṅt/γ, (21)

and check that it is satisfied. QED.

9.6 Proof of Proposition 8

The proof is similar to that of Proposition 8, with the following differences. The Euler

equation now holds because r = ρ. The equilibrium consumption level is the one which

guarantees equilibrium innovation at r = ρ. The assumption ρ < γ(µ−1)
β

guarantees that

this level is below satiation. In addition, the consumer’s transversality condition has

to hold (it always holds under satiation). For this to be the case we need that r > g,

which is implied by the assumption that gA < (1 − α)ρ. This in turn guarantees that

(ρ+ δ)/α− g − δ > 0.
QED.
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9.7 Proof of Proposition 9

We construct a trajectory based on a path {ct}. From the Euler equation, provided its

initial value is between ρ/(γ(µ−1)) and 1/β, ct −→ 1/β. Furthermore, let us impose that

the economy is in the innovation regime throughout. Then rt = γ(µ− 1)ct, implying that

Kt =

(
αAt

γ(µ− 1)ct + δ

) 1
1−α

. (22)

Since K is a state variable, this pins down the initial c, c0. Furthermore, for k0 =

K0/A
1

1−α
0 above and close enough to k, c0 will be below and close to 1/β, and therefore

above ρ/(γ(µ− 1)), implying indeed that ct −→ 1/β.

To have Lt = 1, throughout, we need that wt(1− βct) > µτ. Note that

wt = (1− α)AtKα
t

=

(
α

γ(µ− 1)ct + δ

) α
1−α

(1− α)A
1

1−α
t .

A suffi cient condition for the quantity A
1

1−α
t (γ(µ− 1)ct + δ)−

α
1−α (1 − βct) to grow over

time is

1

1− αgA −
α

1− α

(
1

β
− ct

)
(γ(µ− 1)− ρ/ct)− (γ(µ− 1)ct − ρ) > 0.

Clearly, since we have assumed that gA > (1−α)
[
γ(µ−1)

β
− ρ
]
, this holds if c close enough

to 1/β, i.e. again K/A
1

1−α close enough to k. Along our trajectory c goes up and K/A
1

1−α

falls. Therefore, we can always pick initial conditions so that these two quantities are

arbitrarily close to 1/β and k, respectively. In such a case, the inequality wt(1−βct) > µτ

will hold for all t, provided it holds initially, that is(
α

γ(µ− 1)c0 + δ

) α
1−α

(1− α)A
1

1−α
0 (1− βc0) > 0.

Clearly, given the initial value of k0 and hence of c0, the preceding inequality holds for A0

large enough.

To summarize, there exists η such that we can choose k0 ∈ (k, k + η) and A0 > A(k0)

in such a way that for K0 = k0A
1

1−α
0 , the trajectory for Kt defined by (22), with {ct}
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the unique solution to (13) such that (22) holds at t = 0, is such that the representative

consumer would pick L = 1 throughout. Furthermore, by construction the economy is in

the innovation regime throughout, and since ct −→ 1/β, kt = Kt/A
1

1−α
t −→ k.

To complete our construction, we have to check the feasibility of the implied trajectory

for Nt. Let g = gA/(1− α) and nt = Nt/A
1

1−α
t . Using (21) we get that

ṅt/γ = kαt − δkt − k̇t − gkt − ctnt − gnt/γ.

Note that n = kα−(g+δ)k
1/β+g/γ

Clearly, then, as ct → 1/β and kt → k, nt → n. For the

trajectory for N to be feasible, we need that Ṅt ≥ 0 throughout. Note that we can

always choose η small enough such that the quantity kαt − (g + δ)kt is arbitrarily close to
(1/β + g/γ)n and ct is arbitrarily close to 1/β. Then

ṅt
γnt

= − k̇t
nt
+

(
kαt − (g + δ)kt

nt
− (1/β + g/γ)n

nt

)
+

(
(1/β + g/γ)n

nt
− (ct +

g

γ
)

)
.

If nt is suffi ciently close to n, the two terms in brackets are arbitrarily small. Since

the first term is > 0, this can be made larger than any negative number. In particular,

larger than −g/γ. Thus we can pick k0 and n0 simultaneously close enough to k and n to
make sure that Ṅ/N = ṅ/n+ g > 0.

QED

9.8 Proof of Proposition 10

We construct our trajectory in a similar fashion as for Proposition 9. Given a path for ct,

we make sure that we are in the innovation regime and that there is an interior solution

for labor supply. That is

rt = αAtK
α−1
t L1−αt − δ

= γ(µ− 1)ct

and

Lt =
wt
τµ
(1− βct)

=

[
(1− α)At

τµ

] 1
1+α

K
α

1+α

t (1− βct)
1

1+α ,
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where the marginal productivity condition wt = (1−α)AtKα
t L
−α
t has been used to derive

this last expression. In turn, we can solve for K and L as a function of c :

Kt = ϕA
2

1−α
t (1− βct)(γ(µ− 1)ct + δ)−

1+α
1−α , (23)

Lt = ψA
1

1−α
t (1− βct)(γ(µ− 1)ct + δ)−

α
1−α . (24)

The composite parameters ϕ and ψ are defined as follows:

ϕ = α
1+α
1−α

(
1− α
τµ

)
,

ψ =

(
1− α
τµ

) 1
1+α

ϕ
α

1+α .

We note that (23) defines K as a decreasing function of c which maps (0, 1/β) onto

(0,+∞). Therefore, there exists a unique c0 associated with the initial capital stock K0.

Furthermore, if κ0 = K0/A
2

1−α
0 is not too large, then c0 > ρ/(γ(µ − 1)). Also, from (23),

for κ0 c0 is arbitrarily close to 1/β.

Since (13) here is equivalent to

ċt =

(
1

β
− ct

)
(γ(µ− 1)ct − ρ) , (25)

we clearly have that ċ > 0 throughout and ct → 1/β. Then, using (25) and (23, we have

that

K̇t

Kt

=
2

1− αgA − (γ(µ− 1)ct − ρ)−
1 + α

1− α
(γ(µ− 1)ct − ρ) (1/β − ct)

γ(µ− 1)ct + δ
. (26)

Therefore

lim
t→∞

K̇t

Kt

=
2

1− αgA − (
γ(µ− 1)

β
− ρ) = g > 0,

where the inequality comes from the assumption that gA > 1−α
2
(γ(µ − 1)/β − ρ). A

corollary is that for 0 < g′ < g, if ct is close enough to 1/β, the RHS of (26) is > g′.

Therefore, we can always pick κ0 small enough so that K̇t
Kt
> g′ > 0 throughout our entire

constructed trajectory.
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It is also possible to compute Yt = AtK
α
t L

1−α
t , and we get

Yt = χA
2

1−α
t (1− βct)(γ(µ− 1)ct + δ)−

2α
1−α ,

where χ = ϕαψ1−α. Again limt→∞
Ẏt
Yt
= g.

Turning now to labor supply, we have to make sure that Lt as defined by (24) remains

< 1 throughout. We have that

L̇t
Lt
=

1

1− αgA − (γ(µ− 1)ct − ρ)−
α

1− α
(γ(µ− 1)ct − ρ) (1/β − ct)

γ(µ− 1)ct + δ
. (27)

Consequently,

lim
t→∞

L̇t
Lt
=

1

1− αgA − (
γ(µ− 1)

β
− ρ) = gL < 0,

where the inequality comes from the assumption that gA < (1− α)(γ(µ− 1)/β − ρ).
Clearly, then, if ct is close enough to 1/β, the RHS of (27) is negative. Since ct grows

over time, all we need for this to be the case for all t is that c0 is close enough to 1/β,

or equivalently, again, that κ0 is not too large. Then, for Lt to be lower than 1, we just

need it to be lower than 1 initially. Substituting (23), into (24), we get that

Lt =
ψ

ϕ
A
− 1
1−α

t Kt(γ(µ− 1)ct + δ)
1

1−α .

Thus we have L0 < 1 provided K0A
− 1
1−α

0 is small enough.

To conclude the proof, we need to check that the implied trajectory for Nt is feasible.

Let zt = Nt/Kt. The law of motion (21) can be rewritten as

żt
γ
=
χ

ϕ
(γ(µ− 1)ct + δ)− zt(ct +

1

γ

K̇t

Kt

)− δ − K̇t

Kt

.

Clearly, then zt →
χ
ϕ
(
γ(µ−1)
β

+δ)−g−δ
1/β+g/γ

= z. Since χ/ϕ = 1/α, this expression is positive iff

gA <
1− α
2

[
1 + α

α

γ(µ− 1)
β

+
1− α
α

δ − ρ
]
.

The expression on the RHS is always larger than (1− α)
(
γ(µ−1)

β
− ρ
)
, which is > gA

by (18).
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Recall that by picking κ0 small enough, we can have ct arbitrarily close to 1/β and
K̇t
Kt
arbitrarily close to g throughout the entire trajectory. If in addition to that, we pick

z0 close enough to z, żt/zt will be arbitrarily close to zero. Consequently, Nt = ztKt

will grow at a strictly positive rate throughout. This proves that the trajectory for N is

feasible.

QED
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Figure 2 – long run satiation 
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Figure 3 – No satiation, innovation 
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Figure 5 – Interest rate determination under heterogeneous agents 


