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1. Introduction 

How many people join the labor force and how many leave the labor force are important questions 

regarding labor market dynamics. For the US, the Bureau of Labor Statistics (BLS) computes labor 

market statistics based on monthly current population surveys (CPS) of about 60,000 eligible 

households in 2000 geographic sampling units. These monthly data give estimates of labor force 

participation, employment, and unemployment levels. Any two consecutive surveys can be used 

to compute net changes in these statistics. However, these data do not yield information on gross 

flows. As such, they camouflage how many individuals move in and out of the labor force, or how 

many move in and out of unemployment. For these latter statistics one must rely on a smaller CPS 

sample consisting of those households that were interviewed for at least two consecutive months. 

Unfortunately matched household data obtained from these consecutive follow-up surveys are 

subject to a number of biases. These biases led to a literature on techniques to overcome them. 

Essentially the approaches to fix these problems take two forms. One is to correct the data directly 

and the other is to forecast the data via an estimation model. Neither is perfect, which is why we 

propose a novel new strategy based on stochastic frontier estimation to identify labor market flows. 

The beauty of our approach is it alleviates the need to re-survey households, a process which would 

be costly for countries not currently doing so. Further our approach is fitting for this volume 

because it stems from techniques Robert Basmann developed to identify key structural parameters, 

albeit in other economic domains. 

Monthly labor market statistics informs social scientists and policy makers about changes in labor 

force participation, employment, and unemployment, but are completely uninformative regarding 

how many people actually move in and out of these work-related categories. In short, these data 

furnish information on net, but not gross labor flows. However, gross flows can be very important 

especially if one seeks to understand true labor market dynamics. For example, a zero net change 

in the labor force is very different when hundreds of thousands simultaneously join and leave 

compared to when hundreds simultaneously join and leave. Knowing whether it is hundreds, or 

hundreds of thousands is important for policy purposes.  

For the US, the BLS monthly data yields employment and unemployment levels, but one needs 

data on gross flows to get at how many people are shifting back and forth from one employment 

status to another.1 Such US gross flow data on movements in and out of the labor force (and in and 

out of employment) were published from 1948 until 1952 but ceased because of discrepancies 

between employment and unemployment levels derived from the flows, and employment and 

unemployment levels derived from the monthly stock data. For this reason, the BLS had stopped 

publishing the flow data on a continuous basis in 1952. However, to make the flow data more 

useful, the BLS devised techniques to reconcile and adjust the flow and stock data. Thus beginning 

                                                           
1 Other countries have similar data. For example, see Petrongolo and Pissaredes (2008) who use such data for the 

UK, France, and Spain. 
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in May 2008, the BLS extended and released the labor force status flows series to include the 

February 1990 to January 1994 period (http://www.bls.gov/cps/cps_flows.htm).  But even these 

are prone to error. 

The main problem with the CPS (and other) gross flow data is that the resulting net changes derived 

from these data are inconsistent with the stock data. They simply do not produce the same labor 

market changes one sees using aggregate stock data. There are several type errors. First is simple 

misreporting. Such response errors misclassify some respondents into the wrong labor force 

category, for example, working when they are not, or not working when they are. In stock data, 

these errors tend to cancel, but in flow data they are additive. Second, the CPS uses six of eight 

matched panels when computing flows. As such, rotation group errors can creep in if the unused 

panels differ from those panels that are actually used. Third, the CPS does not track individuals 

who do not complete the survey for various reasons including geographic mobility. Here again, 

errors result should attrition be nonrandom. 

A number of studies attempt to address each of these biases.  Fuller and Chua (1985) develop a 

model for the response error probabilities at a single point in time which requires external 

identification restrictions because “the number of possible parameters in the response probability 

matrix exceeds the number of cells available for estimation” (Fuller and Chua, p. 65). Abowd and 

Zellner (1985) develop an adjustment scheme to take account of missing as well as spurious labor 

force classifications in the gross flows CPS data. Poterba and Summers (1986) devise a technique 

to correct for response errors in the CPS gross changes data. Finally, Frazis et al. (2005) describe 

the procedure the BLS uses to rake the flows data. Taking a very different approach, Barnichon 

and Nekarda (2012) and Barnichon and Garda (2016) forecast inflows and outflows which can be 

used to predict net unemployment. Whereas these improvements help, in the end they are 

approximations and each yields different values. In addition, they require flow data which for 

many countries are hard to get. 

We propose a novel alternative approach with roots back to Robert Basmann’s (1985) seminal 

paper dealing with error structure. To do so we decompose year-to-year labor force fluctuations 

into changes in population growth and variations in movements in and out of the labor force. The 

parameterization yields a function with a three component error term. One component is pure 

random noise. Of the other two, one is positive and depicts the proportion entering the labor force; 

the other is negative and depicts the proportion leaving the labor market. Each of the latter two 

components is estimated via a modified version of the two-tiered frontier estimation model 

(Polachek and Yoon, 1987). Unlike the typical iid three-error component two-tier frontier model, 

the equation’s error components are independent but not identically distributed.  This approach 

emanates from Robert Basmann’s (1985) seminal paper which introduces a serial correlation 

structure based on an intertemporal adjustment mechanism. Of course, that paper builds on his 

previous pioneering work on estimation and identifiability in structural equations which led to 

2SLS (Basmann, R.L.  (1957, 1960).  

http://www.bls.gov/cps/cps_flows.htm
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A notable feature of our method, in contrast to other stochastic frontier models, is it embeds 

heterogeneity directly into the error.2 As such, our method lets the structure determine the 

interaction between heterogeneity and the stochastic components. This enables one to identify 

time-variant stochastic shocks from time-invariant heterogeneity through structural restrictions.3 

The composite error leads to a complex nonlinear likelihood function requiring identification 

through a two-step estimation procedure. Unlike previous labor market studies, our approach does 

not require flow data. We rely solely on labor market levels. As such, the method is advantageous 

because of its parsimonious data requirements compared to previous methods. We apply the 

approach to males and females of various age groups in each state within the US population. The 

results track the data well. 

Our approach begins with an identity defining the labor force participation rate.  Then we take a 

first-difference and add a random error along with terms depicting labor market joiners and leavers 

based on a group-specific stochastic process. For tractability, we approximate this characterization 

with a Taylor series expansion. After verifying the approximation using simulation techniques, we 

devise an appropriate likelihood function which we estimate using a two-step procedure. We then 

apply the Mackinnon-Smith approach to check for and correct potential biases introduced by the 

Taylor series approximation. Finally, we apply a modification of the Jondrow-Lovell-Materov-

Schmidt (1982) technique to estimate joiners and leavers for each age-gender-state year group. 

2.  Derivation of an Estimable Equation  

We start with a basic identity to estimate labor market flows that defines the stock of labor. To do 

so, we consider a particular demographic group i who’s working-age population in period t is 𝑃𝑖𝑡
∗ .4 

If 𝜆𝑖𝑡
∗  is the proportion of this working age population in the labor force, then group i’s labor force 

in period t (𝐿𝑖𝑡
∗ ) is  

𝐿𝑖𝑡
∗ =  𝑃𝑖𝑡

∗ 𝜆𝑖𝑡
∗  . (1) 

This expression is a deterministic equation. A rise in either of the right hand side variables (𝑃𝑖𝑡
∗  

and 

𝜆𝑖𝑡
∗ ) increases the size of the labor force. The effect of one variable on labor force size depends on 

the magnitude of the other. The data on working-age population 𝑃𝑖𝑡
∗  

are readily available. However 

the data on 𝜆𝑖𝑡
∗  are not available from any direct sources. For this reason it is often indirectly 

obtained by calculating the ratio of 𝐿𝑖𝑡
∗  and 𝑃𝑖𝑡

∗ .  

However, in many circumstances the true values of 𝐿𝑖𝑡
∗  

and 𝑃𝑖𝑡
∗  are not observed due to 

measurement errors. In such a situation (1) cannot offer an accurate estimate of the labor force 

participation rate (LFPR). For this reason, we present (1) as a stochastic equation  

                                                           
2 For example, in the context of stochastic frontier estimation, Greene (2005) relies on the traditional fixed and random 

effect linear regression framework to separate heterogeneity from inefficiency. 
3 Our approach also contrasts with studies that address heterogeneity solely through model parameters but do not 

explicitly specify the role of heterogeneity in the error structure (e.g. Polachek, Das, Thamma-Aprioam, 2015).  
4 A group can mean an economy, a state, a gender, or a race. Using US data we concentrate on state-gender-age-year 

groups. 



4 
 

 

𝐿𝑖𝑡 = 𝑃𝑖𝑡𝜆𝑖𝑡
∗ 휂𝑖𝑡   (2) 

where Lit and Pit represent the observed values of the labor force and working age population, and 

ηit is a stochastic component assumed to follow a log-normal distribution, arising from the 

measurement errors in 𝐿𝑖𝑡
∗  and 𝑃𝑖𝑡

∗ . 

The purpose of this paper is to decompose changes in the labor force participation rate arising from 

those joining and leaving the labor force between two consecutive time periods.5 Expression (2) is 

inadequate for this purpose because it represents the relationship between levels. To transform (2) 

into a growth equation, divide Lit by Lit−1, and then take the logarithm of both sides:  

𝐿𝑜𝑔 (
𝐿𝑖𝑡

𝐿𝑖𝑡−1
) =  𝐿𝑜𝑔 (

𝑃𝑖𝑡

𝑃𝑖𝑡−1
) +  𝐿𝑜𝑔 (

𝜆𝑖𝑡
∗

𝜆𝑖𝑡−1
∗ ) +  𝑢𝑖𝑡  . (3) 

The left hand side measures the growth in the labor force. The right hand side has three terms. The 

first measures the growth in working-age population. This growth depends on new entrants minus 

deaths between period t-1 and t, and is related to demographic factors. The second term depicts 

the growth in the LFPR.6 This growth is determined by group i’s net increase in participants 

(joiners minus leavers) between the two consecutive periods, and arises from changes in people’s 

willingness to work. A policy intervention that alters incentive to work may affect LFPR by 

bringing some people into the labor market, forcing some people to leave the labor market, or a 

combination of both. For instance an intervention that enhances incentives to work may induce 

more people to participate in the labor market hence raising the LFPR. Similarly, a sudden 

economic downturn may force some people to leave the labor market resulting into a decline in 

the LFPR. We assume that the factors affecting the size of the working age population (WAP) are 

different from the factors that affect the LFPR. Later in the estimation section, we test whether the 

plausibility this assumption causes any bias in the estimates. The third term accounts for errors 

arising from faulty measurement of Lit and Pit. Let this measurement error be uit = log(ηit) − 

log(ηit−1). We assume uit is stochastic and arises from unsystematic errors in measuring the true 

growth in the labor force (LF) and the WAP. Also, for computational convenience, we assume this 

component follows a normal distribution with 𝐸(𝑢𝑖𝑡) = 0 and  𝑉𝑎𝑟(𝑢𝑖𝑡) = 𝜎𝑢
2. 

 

Let 𝐿𝑖𝑡−1
∗𝑁  

be the number of people not in the labor force in period t−1, that is 𝐿𝑖𝑡−1
∗𝑁 =

 𝑃𝑖𝑡−1
∗ (1 − 𝜆𝑖𝑡−1

∗ ). Assume some changes take place (such as, an incentive enhancing intervention 

or a change in economic environment) between period t-1 and t that motivates 
𝜔𝑖𝑡

(1+𝜔𝑖𝑡)
 of those out 

of the labor force to enter the labor market. As such, the number of people entering the labor market 

is  

𝐿𝐹𝐼 =  
𝜔𝑖𝑡

(1 + 𝜔𝑖𝑡)
𝐿𝑖𝑡−1

∗𝑁 =
𝜔𝑖𝑡

(1 + 𝜔𝑖𝑡)
(𝑃𝑖𝑡−1

∗ −  𝐿𝑖𝑡−1
∗ ) (4) 

where ωit ∈ [0, ∞). LFI represents the number of people joining the labor market due to factors 

                                                           
5 We use annual data, but the analysis also can be done with monthly data. 
6 We use BLS’s 16-year old age requirement to define working age population. 
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other than the change in the working-age population. Also, let the same changes or some other 

changes force 
𝑣𝑖𝑡

(1+𝑣𝑖𝑡)
 per cent of labor force to move out of the labor market. This means that the 

number of people exiting the labor market is  

 

𝐿𝐹𝑂 =  
𝑣𝑖𝑡

(1 + 𝑣𝑖𝑡)
𝐿𝑖𝑡−1

∗  . (5) 

 

Based on this flow between period t−1 and t, the net addition to the labor force in period t is  

𝐿𝐹𝐼 − 𝐿𝐹𝑂 =
𝜔𝑖𝑡

(1 + 𝜔𝑖𝑡)
(𝑃𝑖𝑡−1

∗ −  𝐿𝑖𝑡−1
∗ ) −  

𝑣𝑖𝑡

(1 + 𝑣𝑖𝑡)
𝐿𝑖𝑡−1

∗  . (6) 

Holding P
it

∗

−1 
constant, the size of labor force in period t due only to changes in the LFPR is  

𝐿𝑖𝑡
′ =  𝐿𝑖𝑡−1

∗ +
𝜔𝑖𝑡

(1 + 𝜔𝑖𝑡)
(𝑃𝑖𝑡−1

∗ −  𝐿𝑖𝑡−1
∗ ) −  

𝑣𝑖𝑡

(1 + 𝑣𝑖𝑡)
𝐿𝑖𝑡−1

∗  . (7)  

Dividing both sides by P
it

∗

−1 
 yields

 
 

𝜆𝑖𝑡
∗ =  𝜆𝑖𝑡−1

∗ +
𝜔𝑖𝑡

(1 + 𝜔𝑖𝑡)
(1 −  𝜆𝑖𝑡−1

∗ ) −  
𝑣𝑖𝑡

(1 + 𝑣𝑖𝑡)
𝜆𝑖𝑡−1

∗  . (8) 

Dividing both sides by λ
∗ 

it−1 
 yields  

𝜆𝑖𝑡
∗

𝜆𝑖𝑡−1
∗ = 1 +

𝜔𝑖𝑡

(1 + 𝜔𝑖𝑡)

(1 −  𝜆𝑖𝑡−1
∗ )

𝜆𝑖𝑡−1
∗ −

𝑣𝑖𝑡

(1 + 𝑣𝑖𝑡)
 . (9) 

Taking the log on both sides yields  

𝐿𝑜𝑔 (
𝜆𝑖𝑡

∗

𝜆𝑖𝑡−1
∗ ) = 𝐿𝑜𝑔 (1 +

𝜔𝑖𝑡

(1 + 𝜔𝑖𝑡)

(1 −  𝜆𝑖𝑡−1
∗ )

𝜆𝑖𝑡−1
∗ −

𝑣𝑖𝑡

(1 + 𝑣𝑖𝑡)
) . (10) 

For computational convenience let 𝜆𝑖𝑡−1
∗ = 𝑒−𝜃𝑖𝑡−1

∗
  where 휃𝑖𝑡−1

∗ ∈ [0, ∞). This transforms (10) into 

the following equation  

𝐿𝑜𝑔 (
𝜆𝑖𝑡

∗

𝜆𝑖𝑡−1
∗ ) = 𝐿𝑜𝑔 (1 +

𝜔𝑖𝑡

(1 + 𝜔𝑖𝑡)
(𝑒𝜃𝑖𝑡−1

∗
− 1) −

𝑣𝑖𝑡

(1 + 𝑣𝑖𝑡)
) . (11) 

We approximate (11) with a first degree Taylor series expansion around the steady state θ
it

∗

−1 
= 

θ0i, ωit = 0, and vit = 0. A steady state arises when there are no joiners and no leavers, (ωit = 0, and 

vit = 0), hence a constant LFPR. Non-zero values of ωit, and vit may also constitute steady states. 

But generally ωit, and vit are small enough to be approximated by zero values. The only alternative 

is a big ωit, which must be matched with a big vit to maintain the steady state LFPR. This means 

that there are many joiners and leavers simultaneously, an unlikely scenario.  
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The approximation yields  

𝐿𝑜𝑔 (
𝜆𝑖𝑡

∗

𝜆𝑖𝑡−1
∗ ) = 𝜔𝑖𝑡(𝑒𝜃0𝑖 − 1) − 𝑣𝑖𝑡  . (12) 

Substituting the expression in (3) yields  

𝐿𝑜𝑔 (
𝐿𝑖𝑡

𝐿𝑖𝑡−1
) =  𝐿𝑜𝑔 (

𝑃𝑖𝑡

𝑃𝑖𝑡−1
) +  𝜔𝑖𝑡(𝑒𝜃0𝑖 − 1) − 𝑣𝑖𝑡 +  𝑢𝑖𝑡 (13) 

For notational simplicity, let yit=Log(Lit/Lit−1) and xit=Log(Pit/Pit−1)so that  

𝑦𝑖𝑡 =  𝑥𝑖𝑡 +  𝜔𝑖𝑡(𝑒𝜃0𝑖 − 1) − 𝑣𝑖𝑡 +  𝑢𝑖𝑡  . (14) 

We estimate (14), but before doing so we evaluate the validity of the Taylor series approximation 

(12).  

 

 

3.  Evaluating the Approximation  

 

Equation (12) is a first order Taylor series linear approximation of (11). Whereas (12) yields small 

truncation errors when 𝜔, and 𝑣 are near zero, it is useful to evaluate (12)’s empirical validity for 

values of  𝜔, and 𝑣 typically observed in the labor market. Gauging this entails randomly 

generating 𝜔𝑖𝑡, 𝑣𝑖𝑡, and the steady state LFPR (𝑒−𝜃0𝑖), which we use in (11) and (12) to compute 

respective  𝐿𝑜𝑔 (
𝜆𝑖𝑡

∗

𝜆𝑖𝑡−1
∗ ) levels. We then compare the 𝐿𝑜𝑔 (

𝜆𝑖𝑡
∗

𝜆𝑖𝑡−1
∗ ) values obtained from these. First, 

we test whether 𝐿𝑜𝑔 (
𝜆𝑖𝑡

∗

𝜆𝑖𝑡−1
∗ ) values generated from (12) is a linear approximation of those 

generated from (11). Second, we test whether the 𝐿𝑜𝑔 (
𝜆𝑖𝑡

∗

𝜆𝑖𝑡−1
∗ ) values generated by (12) are 

similarly distributed to the values generated by (11). The latter is a crucial requirement in 

estimating labor market joiners and leavers because, as will be explained later, both joiners and 

leavers are identified from distributional assumptions. Thus the 𝐿𝑜𝑔 (
𝜆𝑖𝑡

∗

𝜆𝑖𝑡−1
∗ ) distribution should be 

the same in each equation. 

Based on current literature,7 the maximum proportion of the population joining the labor force is 

around 8%. The maximum proportion leaving the labor force is about 7%. These data imply an 

expected value of 𝜔 (𝜇𝜔) not exceeding 0.08 and an expected value of 𝑣 (𝜇𝑣) not exceeding 0.07. 

Accordingly, for our simulations we select combinations of 𝜇𝜔 and 𝜇𝑣 as follows: 𝜇𝜔 = 0.02, 𝜇𝑣 =

0.01; 𝜇𝜔 = 0.04, 𝜇𝑣 = 0.02; 𝜇𝜔 = 0.05, 𝜇𝑣 = 0.03; 𝜇𝜔 = 0.06, 𝜇𝑣 = 0.05; and 𝜇𝜔 = 0.08, 𝜇𝑣 =

                                                           
7 These include Barnichon and Garda (2016), Calimita and Sabol (2015), Shimer (2012), as well as BLS data 

(https://www.bls.gov/web/empsit/cps_flows_recent.pdf). 
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0.07. Similarly, to illustrate the results do not change,  we vary the sample sizes from 100, to 500, 

1000, 5000, 10000, and finally to 15000. Figures 1a-1e present the simulations. 

3.1 The Linear Approximation 

The first order Taylor series approximation (12) depicts a linearized version of (11).8 If this 

approximation is close, then one must find that the Pearson correlation coefficient (presented as 𝜌 

in the figures) between the values generated by (11) and (12) is close to 1. Our simulation exercises 

confirm this correlation. Figures 1a-1e show that all correlation coefficients are above 0.99 

(ranging between 0.991-0.999). The magnitude of the coefficient rises slightly as 𝜇𝜔 and 𝜇𝑣 

decline, but the qualitative results remain robust across different values of 𝜇𝜔 and 𝜇𝑣, and different 

sample sizes.  

3.2 Comparing Distributions 

We identify labor force joiners and leavers based on the distributions we assume underlie 

𝜔𝑖𝑡(𝑒𝜃0𝑖 − 1) and 𝑣𝑖𝑡 in (11). Given that we estimate (12), we must show that the inherent 

distributions of both (11) and (12) are the same. To do so we employ the Kolmogorov-Smirnov 

distance measure to compare the 𝐿𝑜𝑔 (
𝜆𝑖𝑡

∗

𝜆𝑖𝑡−1
∗ ) values simulated from each equation. As illustrated 

in Figures 1a-1e, we find the Kolmogorov-Smirnov distance statistics range from 0.008 to 0.05. 

The distances are bigger when number of observations are small (e.g. N=100), but show a 

declining trend as N grows. The result is also robust across different values of 𝜇𝜔 and 𝜇𝑣.  

Based on both the Pearson correlation and the Kolmogorov-Smirnov test we conclude the Taylor 

approximation does not alter the magnitude of the distribution of 𝐿𝑜𝑔 (
𝜆𝑖𝑡

∗

𝜆𝑖𝑡−1
∗ ). Thus we go on to 

consider the empirical specification.9 

 

4.  Empirical Specification 

Equation (14) has two known variables (yit,xit), three unobserved components (ωit,vit,uit), and a 

group-specific parameter 휃0𝑖. For the sake of exposition, we rewrite (14) as  

𝑦𝑖𝑡 = 𝑥𝑖𝑡 + 𝜔𝑖𝑡
∗ − 𝜐𝑖𝑡 + 𝑢𝑖𝑡                                                   (15) 

where 𝜔𝑖𝑡
∗ = (𝑒𝜃𝑖0 − 1)𝜔𝑖𝑡. Based on the previously described labor market identities, 𝜔𝑖𝑡

∗  and 

𝜐𝑖𝑡 take on only positive values. As such, 𝜔𝑖𝑡
∗ ∈ [0, ∞) and 𝜐𝑖𝑡∈ [0, ∞). The 𝑢𝑖𝑡 term takes any 

value on the real line so that 𝑢𝑖𝑡∈ (−∞, ∞). The parameters 휃0𝑖∈ [0, ∞) are specific to each group 

                                                           
8 See Appendix I for the derivation. 
9 The eventual estimation of 𝜇𝜔, 𝜇𝑣 , and 𝜎𝑢can be affected even though the magnitudes and distribution of 

𝐿𝑜𝑔 (
𝜆𝑖𝑡

∗

𝜆𝑖𝑡−1
∗ ) is unaffected by our Taylor approximation. Later in the empirical section we test for this by applying 

the Mackinnon-Smith bias correction technique. 
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i. As such, 휃0𝑖 represents a group-specific effect, in our case gender, age, and state.  

We assume measurement error uit follows an i.i.d normal distribution with zero mean and standard 

deviation σu. Given that joiner and leaver deviations from the steady state are most likely skewed, 

we assume ωit, and vit follow i.i.d. exponential distributions with mean µω and µv. As such, 

𝜔𝑖𝑡
∗  also follows an exponential distribution with mean 𝜇𝜔𝑖 = (𝑒𝜃0𝑖 − 1)𝜇𝜔. However, because 

of heterogeneity, the group-specific term, 𝜔𝑖𝑡
∗  is no longer identically distributed, though it 

remains statistically independent. To estimate �̂�𝑖𝑡 and 𝑣𝑖𝑡 requires values for µω, µv, and σu.  

 

Because one residual is positive (𝜔𝑖𝑡
∗ ) and one is negative (𝜐𝑖𝑡), specification (15) is known as a 

two-tiered frontier, but it differs from (Polachek and Yoon, 1987) because 𝜔𝑖𝑡
∗  contains a group-

specific parameter, and thus, as just mentioned, is not identically distributed. This makes 

estimation more complicated. 

 

Specify the composite error 휀𝑖𝑡 as   

𝜖𝑖𝑡 = 𝜔𝑖𝑡
∗ − 𝑣𝑖𝑡 + 𝑢𝑖𝑡 (16) 

 

 where the distributions of 𝜔𝑖𝑡
∗ , 𝜐𝑖𝑡, and 𝑢𝑖𝑡 are as defined above. The composite error 𝑓(휀𝑖𝑡)  has 

the density10 

𝑓(𝜖𝑖𝑡) =  
𝐺

𝑎
[Φ(−𝑐) +  𝑒

𝑎(𝑎−2𝑏𝑐)

2𝑏2 Φ (
𝑏𝑐 − 𝑎

𝑏
)] (17) 

where 

𝐺 =
1

𝜇𝑣𝜇𝜔𝑖
𝑒

𝜎𝑢
2

2𝜇𝑣
2
𝑒

𝜖𝑖𝑡
𝜇𝑣 ; 𝑎 = (

1

𝜇𝑣
+

1

𝜇𝜔𝑖
) ; 𝑏 =

1

𝜎𝑢
; 𝑐 = (

𝜖𝑖𝑡

𝜎𝑢
+

𝜎𝑢

𝜇𝑣
) 

 

and Φ(. ) represents the CDF of a standard normal distribution. The likelihood function is  

 

𝐿 = ∏ ∏ 𝑓(𝜇𝜔𝑖, 𝜇𝑣, 𝜎𝑢|𝑦𝑖𝑡, 𝑥𝑖𝑡)
𝑡𝑖

 . (18) 

 

It is computationally impractical to compute all µωi and other parameters simultaneously, 

especially if there are a large number of groups (i). Thus, we adopt a novel approach.  

First, we devise a panel data technique to transform (12) enabling us to identify 휃0𝑖 . Second, we 

rewrite the likelihood function (18) to incorporate the computed 휃0𝑖  estimates. Third, we estimate 

this new likelihood function to obtain �̂�𝜔, �̂�𝑣,  and �̂�𝑢. We then use the Mackinnon-Smith (1998) 

bias correction technique to overcome inherent potential biases in these parameters coming about 

because we estimate a Taylor approximation of (11). Utilizing these estimates, we adopt the 

Jondrow-Lovell- Materov-Schmidt (1982) technique to estimate �̂�∗
𝑖𝑡 and 𝑣𝑖𝑡. The estimates �̂�∗

𝑖𝑡 

allow us to compute �̂�𝑖𝑡. Finally, based on these, we compute the proportion of joiners and leaves. 

 

                                                           
10 Appendix II provides the detailed derivation of f(Ɛit). 
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Begin by defining the deviation of LFPR from its steady state θ0i 

𝑒−𝜃𝑖𝑡
∗

𝑒−𝜃0𝑖
= 1 + (𝑒𝜃0𝑖 − 1)

𝜔𝑖𝑡
′

(1 + 𝜔𝑖𝑡
′ )

−
𝑣𝑖𝑡

′

(1 + 𝑣𝑖𝑡
′ )

 (19) 

 

where ω’
it
, and v’

it 
are the shocks that move the LFPR from its steady state value θ0i. Taking the 

logarithm of both sides and then approximating yields  

 

𝐿𝑜𝑔(𝑒−𝜃𝑖𝑡
∗

) = −휃0𝑖 + (𝑒𝜃0𝑖 − 1) 𝜔𝑖𝑡
′ −  𝑣𝑖𝑡

′  . (20) 

 

Allowing for measurement errors in the LFPR estimate, one can rewrite (20) as  

𝐿𝑜𝑔(𝑒−𝜃𝑖𝑡) = −휃0𝑖 + (𝑒𝜃0𝑖 − 1) 𝜔𝑖𝑡
′ −  𝑣𝑖𝑡

′ +  𝜋𝑖𝑡 (21) 

 

where πit is the random error which is assumed to follow a distribution with E(πit) = 0. Next, we 

rewrite (21) as  

𝐿𝑜𝑔(𝑒−𝜃𝑖𝑡) = −휃0𝑖 + (𝑒𝜃0𝑖 − 1) 𝜇𝜔 −  𝜇𝑣 +  (𝑒𝜃0𝑖 − 1) (𝜔𝑖𝑡
′ − 𝜇𝜔) − (𝑣𝑖𝑡

′ − 𝜇𝑣) + 𝜋𝑖𝑡 

𝐿𝑜𝑔(𝑒−𝜃𝑖𝑡) = 𝛽𝑖 + 휁𝑖𝑡  (22) 

 

where   

𝛽𝑖 = −휃0𝑖 + (𝑒𝜃0𝑖 − 1) 𝜇𝜔 −  𝜇𝑣 and 휁𝑖𝑡 = (𝑒𝜃0𝑖 − 1) (𝜔𝑖𝑡
′ − 𝜇𝜔) − (𝑣𝑖𝑡

′ − 𝜇𝑣) + 𝜋𝑖𝑡 . 

 

In this form E(ζit) = 0, which means 𝛽�̂� can be consistently estimated. To identify 휃0𝑖, we utilize a 

second restriction from (14). It suggests that  

𝐿𝑜𝑔 (
𝐿𝑖𝑡

𝐿𝑖𝑡−1
) = (𝑒𝜃0𝑖 − 1) 𝜇𝜔 −  𝜇𝑣 + 𝐿𝑜𝑔 (

𝑃𝑖𝑡

𝑃𝑖𝑡−1
) + (𝑒𝜃0𝑖 − 1) (𝜔𝑖𝑡 − 𝜇𝜔) − (𝑣𝑖𝑡 − 𝜇𝑣) + 휂𝑖𝑡   

𝐿𝑜𝑔 (
𝐿𝑖𝑡

𝐿𝑖𝑡−1
) = 𝛾𝑖 + 𝐿𝑜𝑔 (

𝑃𝑖𝑡

𝑃𝑖𝑡−1
) +  𝛿𝑖𝑡 (23) 

where  

𝛾𝑖 = (𝑒𝜃0𝑖 − 1) 𝜇𝜔 −  𝜇𝑣 and 𝛿𝑖𝑡 = (𝑒𝜃0𝑖 − 1) (𝜔𝑖𝑡 − 𝜇𝜔) − (𝑣𝑖𝑡 − 𝜇𝑣) + 휂𝑖𝑡 with 𝐸(𝛿𝑖𝑡) = 0 

 

This allows one to estimate   𝛾�̂�. Bringing the estimates of 𝛽�̂� and 𝛾�̂�  together yields  

휃̂0𝑖 = 𝛾𝑖 −  �̂�𝑖 . (24) 

 

Identification of 휃0𝑖 is crucial because it allows the identification of µω. Substituting the value of 

휃0𝑖 implies that 𝜇𝜔𝑖 = (𝑒𝜃0�̂� − 1)𝜇𝜔. This simplifies the maximum likelihood estimation since 

now we only have to estimate three parameters µω, µv, and σu. The heterogeneity adjusted modified 

density and likelihood functions are  
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𝑓(𝜖𝑖𝑡) =  
𝐺

𝑎
[Φ(−𝑐) +  𝑒

𝑎(𝑎−2𝑏𝑐)

2𝑏2 Φ (
𝑏𝑐 − 𝑎

𝑏
)] (25) 

 

where 𝐺 =
1

𝜇𝑣(𝑒�̂�0𝑖−1)𝜇𝜔

𝑒
𝜎𝑢

2

2𝜇𝑣
2
𝑒

𝜖𝑖𝑡
𝜇𝑣 ; 𝑎 = (

1

𝜇𝑣
+

1

(𝑒�̂�0𝑖−1)𝜇𝜔

) ; 𝑏 =
1

𝜎𝑢
; 𝑐 = (

𝜖𝑖𝑡

𝜎𝑢
+

𝜎𝑢

𝜇𝑣
), and  

 

Φ(.) represents the CDF of a standard normal distribution, and   

𝐿 = ∏ ∏ 𝑓(𝜇𝜔 , 𝜇𝑣, 𝜎𝑢|𝑦𝑖𝑡, 𝑥𝑖𝑡, 휃̂0𝑖)
𝑡𝑖

 . (26) 

 

5. Correction of the Potential Bias  

Specification (12) is a Taylor Series approximation of (11). Although above we showed the 

truncation error to be negligible and not likely to alter the statistical properties of the composite 

error, the overall impact on the parameter estimates cannot be predicted a priori. Thus we adopt 

the MacKinnon and Smith (1998) simulation-based bias correction technique.  

Suppose the estimation bias 𝑏(Ω) is a linear function of the parameters, such that 

𝑏(Ω) = 𝛼′ +  𝑏′Ω      (27) 

where Ω = (𝜇𝜔; 𝜇𝑣;  𝜎𝑢) represents the parameters, and 𝛼′ and 𝑏′ depict their respective intercepts 

and slopes. Correcting the bias requires specific estimates of 𝛼′ and 𝑏′ which are difficult to obtain 

via analytical methods. For this reason, we apply a simulation-based method. 

To do so, we draw random samples from the distributions of the three error terms (11). Because 

these random draws require specific parameter values, we initially choose the uncorrected 

parameter estimates. Based on this, we draw 500 samples of random numbers from the ω, v, and 

u distributions based on 𝜇𝜔 , 𝜇𝑣,  and 𝜎𝑢 values obtained by estimating (18). We then use (11) and 

휃̂0𝑖 to generate the data for the composite error (𝜔𝑖𝑡
∗ − 𝑣𝑖𝑡 + 𝑢𝑖𝑡). Next we combine the simulated 

composite error with the population growth data and obtain the growth in labor force (the outcome 

variable). We replicate each of the 500 sets of random draws. This process yields 500 different 

samples of simulated data each with approximately 15,000 observations representing the gender, 

age, state and time data points. From these, we then estimate parameter values for each sample, 

thus yielding 500 sets of estimates. Based on the averages of these we then compute the biases by 

the following formula 

𝑏(Ω̂) = 𝐸(Ω𝑠) −  Ω̂ = Ω̅𝑠 − Ω ̂ (28) 

where Ω𝑠 ≡ (𝜇𝜔
𝑠 ;  𝜇𝑣

𝑠; 𝜎𝑢
𝑠) and 𝑠 = [1, 2, 3, … . , 500];   Ω̅𝑠 =

1

500
∑ Ω𝑠

500
𝑠=1 . 
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Obtaining estimates of  𝑏(Ω̂) alone does not ensure 𝛼′ and 𝑏′ are identified because there are two 

unknowns with one equation. Identification requires another equation with at least another set of 

𝑏(Ω) estimates. This means the simulation exercise must be replicated with a different set of Ω. 

As suggested by MacKinnon and Smith (1998), we take constant bias corrected (CBC) estimates 

of Ω̂ to construct a second set of estimates of the biases. These CBC estimates are defined as  

Ω̃ = 2Ω̂ − Ω̅   (29) 

where Ω̃ depicts the CBC estimates of Ω̂. We use these estimates to replicate the same simulation 

procedure again.  This yields another set of bias estimates 𝑏(Ω̃). Utilizing 𝑏(Ω̂), Ω̂, 𝑏(Ω̃), and Ω̃ 

we compute 𝛼′ and 𝑏′ from the following  

𝛼′ = 𝑏(Ω̂) −
𝑏(Ω̂) − 𝑏(Ω̃)

Ω̂ − Ω̃
Ω̂;   (30) 

   

𝑏′ =  
𝑏(Ω̂) − 𝑏(Ω̃)

Ω̂ − Ω̃
 . (31) 

Based on the estimated intercepts, slopes, and the other estimates above, we compute the linear 

bias corrected estimates using the following 

Ω̌ =  Ω̂ − (𝐼 + �̂�′)
−1

�̂� (32) 

where �̂� ≡ 𝑏(Ω̂) is a (3 × 1) vector; �̂� ≡ 𝐵(Ω̂) is a (3 × 3) matrix of the derivatives of the bias 

function and 𝐼 is an identity matrix. The associated covariance matrix of Ω̌ is 

𝑉(Ω̌) =  (𝐼 + �̂�′)
−1

 𝑉(Ω̂) ((𝐼 + �̂�′)
′
)

−1

. (33) 

The bias correction yields a smaller variance of Ω̌ when the slope of the bias function is positive 

or the variance of Ω̂ is small. As will be shown in the empirical section, our estimates indicate that 

the variances of Ω̂ are indeed small. Because of this small magnitude the standard errors of the 

bias corrected estimates remain small even though the slopes of the bias functions are negative. 

 

6. Estimating Joiners and Leavers 

Jondrow, Lovell, Materov, and Schmidt (1982) formulate a method to obtain the conditional mean 

for inefficiency measures in a one-tier stochastic frontier model. Their formulation has been 
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generalized for a two-tiered model.11
 
We apply this technique to estimate 𝜔𝑖�̂� and 𝑣𝑖�̂� based on our  

estimate of the composite error 휀�̂�𝑡, as well as �̂�𝜔, �̂�𝑣, and �̂�𝜇  obtained from maximizing (26). 

These expected values are  

𝐸(𝜔𝑖𝑡
∗ |𝜖�̂�𝑡) =  ∫ 𝜔𝑖𝑡

∗ 𝑓(𝜔𝑖𝑡
∗ |𝜖�̂�𝑡)𝑑𝜔𝑖𝑡

∗
∞

0

 

𝐸(𝑣𝑖𝑡|𝜖�̂�𝑡) =  ∫ 𝑣𝑖𝑡𝑓(𝑣𝑖𝑡|𝜖�̂�𝑡)𝑑𝑣𝑖𝑡

∞

0

 (34) 

 

 where for notational simplicity we drop the subscripts. We provide the derivation of 𝑓(𝜔∗
𝑖𝑡|휀𝑖�̂�) 

and 𝑓(𝜈𝑖𝑡|휀𝑖�̂�) are provided in Appendix III. We compute �̂�𝑖𝑡 from �̂�𝑖𝑡 =
�̂�𝑖𝑡

∗

(𝑒�̂�0𝑖−1)
. Finally, based 

on these, we compute the proportion of joiners and leavers as �̂�𝑖𝑡/(1 + �̂�𝑖𝑡) and the proportion of 

leavers as 𝑣𝑖𝑡/(1 + 𝑣𝑖𝑡).  

 

7. The Data 

The data used to estimate (34) are extracted from the Annual Social and Economic Supplement 

(ASEC) obtained from IPUMS-CPS.12 ASEC is a CPS survey of approximately 60,000 households 

surveyed every month since 1962. We use civilian non-institutional population data from 1977 to 

2015. The extracted information includes each respondent’s labor force status, age, gender, state 

of residence, sampling weights, and a civilian non-institutional population identifier.13  

We first classify respondents into four age (16-30, 30-42, 42-60, 60 and above), gender and state 

groups. This yields 408 (51 × 2 × 4 = 408) groups.  We then use the sampling weight, labor force 

status, and age to compute the labor force (L), and the working-age population (P) for each group 

in every year. This yields a dataset with 15912 observations (408 × 39 = 15912). The variables 

for the regressions are then constructed as follow: 

𝑦𝑖𝑡 = 𝐿𝑜𝑔(
𝐿𝑖𝑡

𝐿𝑖𝑡−1
) 

𝑥𝑖𝑡 = 𝐿𝑜𝑔(
𝑃𝑖𝑡

𝑃𝑖𝑡−1
) 

where 𝑖 represents the (state-gender-ag) group and 𝑡 represents the year. 

                                                           
11 A derivation of this process is provided in Appendix III. An alternative derivation is also available in Kumbhakar 

and Parmeter (2009) 
12 IPUMS-CPS is an integrated set of data collected over 50 years (1962 onward) of the Current Population Survey 

(CPS). 
13 For year 2014, ASEC was redesigned. We only keep the respondents present in original 5/8 sample to keep the data 

comparable across years. 
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8. Estimation 

We utilize the ASEC data on  𝑦𝑖𝑡 = 𝐿𝑜𝑔(
𝐿𝑖𝑡

𝐿𝑖𝑡−1
) and 𝑥𝑖𝑡 = 𝐿𝑜𝑔(

𝑃𝑖𝑡

𝑃𝑖𝑡−1
) in a multistep approach to 

predict the annual number of incoming labor force joiners and outgoing labor force leavers for 

specific gender and age segments of the population. As explained, we first utilize the data in a 

panel setting to estimate group i’s steady state LFPR (𝑒−�̂�0𝑖) from (24). Next, we incorporate 

estimates of 휃0𝑖 into likelihood function (26) to estimate the parameters we use to apply the 

Mackinnon-Smith bias correction technique to yield bias corrected estimates. From this we obtain 

estimates of joiners and leavers by utilizing the modified Jondrow, Lovell, Materov, and Schmidt 

(1982) formulation. Augmenting annual labor force participation rates by the predicted number of 

joiners and leavers year by year yields predicted annual labor force participation rates which we 

track to BLS data.  

8.1 Steady State Labor Force Participation 

Steady state labor force participation rates 𝑒−�̂�0𝑖 are obtained from (24) based on estimating (22) 

and (23). We obtain one coefficient for each group i, in our case 408 coefficients reflecting the 

four age, two gender, and 51 states categories. Table 1 summarizes these steady state estimates.  A 

number of important results emerge. First, on average 64.4 percent of the working age population 

participate in labor market in the steady state. Second, men’s steady state labor force participation 

rate (73.6%) exceeds women’s (55.9%). Third, the steady state labor force participation rate for 

the 30-60 year olds is higher than steady state labor force participation rate for 16-30 year olds. 

The participation rate of the oldest age group (60 and above) is the lowest among all. 

These values make intuitive sense, because typically labor force participation rises and then falls 

over the lifecycle, and men have higher participation rates than women. Similarly, Kiefer and 

Neumann (2006) also find that men’s steady state labor force participation exceeds women’s. 

Kiefer and Neumann estimate for men (22-59 years) is 92% which is close to our estimates of 90% 

percent (for men 30-60 years of age). However, our estimate for women is 70% while theirs is 

30%, but we believe our estimates to be more realistic given current women’s participation.  

8.2 Maximum Likelihood Estimation  

Incorporating 휃̂0𝑖 into (18) yields likelihood function (26), thus providing population-wide 

�̂�𝜔 , �̂�𝑣,  and �̂�𝑢. However, as reported in table 2 (left-most column) this estimation yields biased 

results namely 0.041, 0.034, and 0.035 respectively.14 To employ the MacKinnon-Smith constant 

                                                           
14 This estimate imposes the structural constraint that the 𝑥𝑖𝑡coefficient equals one, meaning that the rate of change in 

population growth equals the rate of change in labor force participation growth, ceteris paribus. Relaxing this 

constraint yields a 1.04 𝑥𝑖𝑡  coefficient, and virtually no change in 𝜇𝜔,  𝜇𝑣 , 𝜎𝜇 which remains at 0.040, 0.034, and 0.035 

respectively. This corroboration substantiates our assumption that factors affecting the size of the working age 
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bias correction approach, we utilize these estimates to draw random values of 𝜔𝑖𝑡,  𝑣𝑖𝑡, and 𝑢𝑖𝑡 for 

each of the 15,504 observations, assuming two exponential and a normal distribution. From these 

we simulate 𝑦𝑖𝑡 and estimate (26) to obtain 𝜇𝜔 ,  𝜇𝑣, and 𝜎𝑢. We replicate this simulation and 

estimation 500 times, after which we pick between 100 and 500 from which we take average 

𝜇𝜔 ,  𝜇𝑣, and 𝜎𝑢 values (columns 2-6, top of table 2). Clearly 500 replications are sufficient given 

that these average values are virtually identical independent of the number of simulations. The 

difference between these values and the original estimates (0.007, 0.0031, -.0008) is an initial 

indication of the bias 𝑏(Ω̂). Following MacKinnon-Smith’s constant bias correction approach, we 

add these biases to the original estimates to obtain the CBC (0.0476, 0.037, and 0.034 in the lower 

left-hand of table 2), which we use to replicate the simulation a second time. The results for the 

new estimates are given in columns 2-6 (bottom of table). These are used in conjunction with the 

CBC estimates to obtain another set of biases 𝑏(Ω̃) which along with 𝑏(Ω̂) are used to solve (30) 

and (31), thus yielding the linear bias corrected and the covariance matrix based on (32) and (33). 

These linear bias corrected estimates Ω̌ along with their standard errors are given in table 3 (bottom 

two rows). Also reported in the original estimates (row 1) and the slope of the bias correction 

function (row 3). The results suggest that the biases in the estimates of 𝜇𝑣, and 𝜎𝑢 are relatively 

small (12 percent and -3 percent respectively), whereas the bias in the estimate of  𝜇𝜔 is more 

significant (approximately 22 percent). The slope of the bias function is negative, which increases 

the variance of the bias corrected estimates. As such, the standard errors of the bias corrected 

estimates are slightly larger than that of the uncorrected ones. Nevertheless, in terms of the 

magnitude these standard errors remain fairly small giving a strong amount of confidence to our 

estimates.  

8.3 Estimating Labor Force Joiners and Leavers 

Applying the modified Jondrow, Lovell, Meterov, and Schmidt (1982) formula (34) along with 

the bias corrected estimates �̂�𝜔 , �̂�𝑣,  and �̂�𝑢 enables us to compute the joiners (as proportion of 

persons not in labor force) and leavers (as proportion of labor force). Table 4 presents summary 

statistics by gender and age group. On average 4.6 percent of those outside the labor market in the 

previous year join the labor market in current year. Also, approximately 3.4 percent of the people 

in labor force in previous year leave the labor market before the current year. Typically males have 

a higher rate of joining than females except during the post child bearing years when women 

reenter the labor market after having left. As expected the proportion of joiners on average exceeds 

the proportions of leavers.  

Table 4 also indicates women are less likely to join the labor market (4.7 percent for men vs. 4.5 

percent for women) and more likely to leave (3.7 percent vs. 3.1 percent for men) than men. In 

addition, older individuals (60 years and above) are less likely to join (2.5 percent) and more likely 

to leave (6.2 percent). Those in 30-42 and 42-60 age groups are very similar in labor market entry 

                                                           
population 𝑥𝑖𝑡  are different than the factors affecting the labor force participation rate, otherwise the coefficient would 

have changed because of endogeneity biases in that 𝑥𝑖𝑡  would be correlated with the composite error.  
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and exit behavior. The youngest group 16-30 has the same likelihood of entering the labor market 

as the 30-60 year olds. However, 16-30 year olds are slightly more likely to leave the labor market 

than 30-60 year olds. 

9. Comparison with actual data 

It is instructive to compare our estimates with actual data. Our sample contains 15,50415 

observations (408 age-gender-sate groups over 38 years). For each observation we can compute 

the labor force participation rate in either of two ways. First, directly from data: The CPS contains 

annual information on the working age population and the number in the labor force. The ratio is 

the labor force participation rate. Second, the labor force participation rate in any one year can be 

computed as the labor force participation rate in the previous year plus the difference in the 

proportions between joiners and leavers in the interim. Given the proportion of joiners and leavers 

just computed, we can augment any one year’s labor force participation rate to obtain estimates of 

the labor force participation in the future. We employ both methods and compared the results. 

Obviously, the closer the latter is to the former, the better our estimates. 

Table 5 (column 1) presents the overall as well as group specific averages of labor force 

participation rates observed in the data (actual LFPR). Column 2 contains our predicted labor force 

participation rates.16 Comparing the two columns indicates how accurately the two track each 

other. This is true at the aggregate level and across gender and age groups. The correlation 

coefficient between actual and predicted LFPR is 0.997. The distribution of actual and predicted 

LFPR are virtually indistinguishable (Figure 2). The trends in actual and predicted LFPRs (Figure 

3) also confirm this close resemblance, but with one pitfall. The estimates are slightly lower than 

actual, particularly for men. One reason is aggregation. Our approach uses �̂�𝜔 , �̂�𝑣,  and �̂�𝑢 based 

on population-wide estimates of eq (14) using state-year-gender-age observations. However, these 

estimates can be imprecise if labor force participation functions are heterogeneous across specific 

population segments, for example, gender and age. To account for this possibility, we re-estimate 

(14) separately by four age groups and gender. Predictions based on these estimates are given in 

Figure 4. As can be seen, they track the data more accurately. Of course, the lesson is the 

importance of heterogeneity. Whereas we initially used group-specific steady state labor force 

participation rates to account for heterogeneity, we now compute age and gender specific estimates 

to discern ancillary population differences.17 

To assess the predictive power of our model, we construct out-of-sample predictions. To do so, we 

re-estimate the model using 1977-2012 (rather than 1977-2015) data, and predict LFPRs for 2013-

                                                           
15 The number of observations in our sample is 408 fewer than in the initial data because of first-differencing. 
16 The predicted LFPR is calculated by adjusting the lag value of actual LFPR by our estimates of steady state LFPR, 

joiners, and leavers. The formula is given in the (9). 
17 Polachek, Das and Apiroam-Thamma (2015) show the importance of individual-specific heterogeneity by 

illustrating inherent biases in estimating population-wide persistence of permanent and transitory shocks. Studies that 

examine persistent and transitory effects within the context of frontier estimation models are Ahn and Sickles (2000), 

Colombi (2010), Tsionas and Kumbhakar (2014), and Filippini and Greene (2016). 
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2015. This computation first entails estimating bias corrected �̂�𝜔 , �̂�𝑣 and �̂�𝑢 from the 1977-2012 

data. Then, second, it involves combining these estimates with the LFPR growth data (i.e. the 

composite error 𝜖𝑖𝑡 = 𝑦𝑖𝑡 − 𝑥𝑖𝑡) to obtain the estimates of joiners and leavers from 1978-2015. We 

use these to construct both in-sample and out-of-sample predictions of the 2012-2015 LFPRs 

(Figure 5). Both the in-sample and out-of-sample LFPR predictions track actual LFPRs well. 

Further, they closely match the predicted LFPRs in Figure 3. These similarities, especially for 

2013, 2014 and 2015, add further credibility to our approach. 

Using the same data one can plot the net year-to-year changes in the labor force. Figure 6a-6b plot 

these for both men and women. Our predicted labor force measures clearly track the net changes 

in the actual labor force. The similarity is noteworthy because net changes based on CPS stock 

data often do not conform to the net changes computed from the gross flow data (Frazis et. al., 

2005). Thus our approach is noteworthy as a good alternative to using gross flow data. 

10.  Conclusion 

Nowadays no one can get an economics paper published without seriously considering his/her 

identification strategy. Clearly Robert Basmann was an original pioneer in this area. His early 

classic articles (1957, 1960) illustrated how to identify coefficients in multi-equation systems. This 

discovery later paved the way to consider identification designs in other regimes.  In Robert's honor 

this paper deals with identification. The question we address is how can one identify the proportion 

of people annually entering and exiting the labor force when one only has yearly data on population 

size and a measure of the number those in the labor force. First differencing the labor force data 

only yields net changes, but gross changes, that is the number of workers entering the number of 

workers exiting, are often better tools to gauge the economy. For the US, the BLS makes available 

matched panel data, but these are subject to large errors. Now there emerged a small literature on 

how to make corrections, but these corrections are imperfect. Further, even if accurate, many 

countries simply do not and cannot follow a given panel even for short time periods. But 

identifying both the number of labor force joiners and leavers is important. With strong roots to 

the Robert Basmann’s pioneering work, we devise a way to identify these labor market flows from 

purely cross-sectional data. The approach relies on a time-varying unobserved labor market 

variable which follows a nonstandard unit root process. This formulation is in the spirit of Robert 

Basmann (1985) who identifies a covariance structure based on a serially correlated error that 

emerges from consumer theory. Whereas his approach leads to cross-equation restrictions, ours 

involves a panel data methodology in addition to distributional assumptions. Finally, we adopt a 

several step estimation procedure from which we are able to accurately compute gross annual 

flows of joiners and leavers to and from the labor market. From these we build up our estimates to 

compute labor force participation rates for various demographic groups as well as the changes over 

time. We find our estimates track the data particularly well.  

Whereas we concentrate on labor force participation, our approach can equally be used to estimate 

transitions to and from employment to track changes in unemployment rates. The advantage of our 
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approach is it utilizes readily available cross-sectional data, thereby alleviating the need for more 

costly and difficult to obtain panel data which are typically more prone to errors. 
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Table 2: Maximum likelihood simulation based estimates of 𝜇𝜔 , 𝜇𝑣, and 𝜎𝑢 

   Number of replication  

Simulations N=100 N=200 N=300 N=400 N=500 

Based on original estimates                          

Ω̂ ≡ [�̂�𝜔 = 0.041, �̂�𝑣 = 0.034, �̂�𝑢 = 0.035]      
Average of estimates from simulated data      

 𝜇𝜔 0.0336 0.0336 0.0335 0.0335 0.0335 

𝜇𝑣 0.0307 0.0307 0.0307 0.0307 0.0307 

𝜎𝑢 0.0359 0.0359 0.0359 0.0360 0.0359 

      
Based on bias-corrected estimates (CBC)                  

Ω̃ ≡ [�̃�𝜔 = 0.048, �̃�𝑣 = 0.037, �̃�𝑢 = 0.034]      
Average of estimates from simulated data      

 𝜇𝜔 0.0385 0.0385 0.0384 0.0384 0.0385 

𝜇𝑣 0.0333 0.0333 0.0333 0.0333 0.0332 

𝜎𝑢 0.0353 0.0354 0.0354 0.0354 0.0354 

Source: The original estimates are MLE based estimates obtained from IPUMS-CPS ASEC survey data 
(1977-2015). The averages in column 2 to column 6 are based on the results from the simulation 
exercises.  

Notes: The numbers represent the average of the estimates obtained from two simulation exercises. Ω̂ 
represents the vector of original estimates (before bias correction), whereas Ω̃ represents the 
constant biased corrected estimate (MacKinnon and Smith (1998)) based on the original estimates 

of  Ω̂. 
 

Table 1: Average steady state labor force participation rate estimates (𝒆−�̂�𝟎𝒊), by age and gender 
1978-2015 

        

 Age group Men Women Total 

16-30 0.744 0.636 0.690 

30-42 0.932 0.722 0.825 

42-60 0.872 0.681 0.774 

60 and above 0.299 0.172 0.227 

     
Total 0.736 0.559 0.644 

Source: Based on our estimates obtained from IPUMS-CPS ASEC survey data (1977-2015). 
Notes: The numbers represent the steady state proportion of working age population in the 
respective groups. 
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Table 3: Uncorrected and bias corrected estimates and slope of the bias function 

        

  𝜇𝜔 
  

𝜇𝑣 
  

𝜎𝑢 

Estimate, original 0.0406 0.0338 0.0351 

Standard error 0.0014 0.0005 0.0008 

    
Slope of bias function -0.3003 -0.1915 -0.2746 

    
Estimate, bias corrected (LBC) 0.0507 0.0377 0.0341 

Standard error 0.0020 0.0006 0.0011 

Source:  The original estimates are obtained from IPUMS-CPS ASEC survey data (1977-2015). 
Notes: The bias correction is conducted based on MacKinnon and Smith (1998) simulation based 
linear bias correction method. Slope represents the estimated slope of the linear bias function. 

 

 

 

 

Table 4: Estimates of joiners and leavers (averages), by age and gender. 

  Joiners (% of NLF)   Leavers (% of LF) 

 Age group Men Women Total   Men Women Total 

16-30 0.053 0.051 0.052  0.029 0.032 0.031 

30-42 0.050 0.055 0.052  0.021 0.026 0.023 

42-60 0.051 0.052 0.052  0.022 0.027 0.025 

60 and above 0.031 0.020 0.025  0.058 0.065 0.062 

Total 0.047 0.045 0.046   0.031 0.037 0.034 

Source: Based on our estimates obtained from IPUMS-CPS ASEC survey data (1977-
2015). 
Notes: Joiners represents the proportion of people not in the labor force (NLF) in 
previous year who join the labor force in current year. Leavers represents the 
proportion of people in the labor force (LF) in previous year who leave the labor force 
in current year. 
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Table 5: Average actual and predicted labor force participation rate between 1978-2015, by age and 
gender 

  Average LFPR, 1978-2015 

  Actual Predicted 

Men 0.716 0.707 

Women 0.572 0.570 

Total 0.644 0.638 

   
Age group   
16-30 0.701 0.696 

30-42 0.838 0.827 

42-60 0.788 0.780 

60 and above 0.250 0.251 

Total 0.644 0.638 

   
Correlation (actual, 
predicted) 0.9973   

Source: Both actual and predicted values are based on our estimates obtained from IPUMS-CPS ASEC 
survey data (1977-2015). 
Notes:  The numbers represent the proportion of working age population in the respective groups. 
Actual labor force is computed by averaging groups specific LFPRs observed in the data. The predicted 
LFPR is obtained by adjusting previous year’s actual LFPR by our estimates of joiners and leavers.   
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Figure 1a: Comparing the actual and the Taylor’s series approximation of the error (Eq 11 vs. Eq 12) 

 

Source: Based on our simulation exercises. See text for details. 

Notes: The values for 𝜇𝜔 and 𝜇𝑣 are our choices of parameter values for the simulations. N and 𝜌 represent 

the sample size and the correlation coefficient between the actual and the approximated series. D 

represents the Kolmogorov-Smirnov distance statistic between the distribution of actual and the 

approximated series. 
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Figure 1b: Comparing the actual and the Taylor’s series approximation of the error (Eq 11 vs. Eq 12) 

 

Source: Based on our simulation exercises. See text for details. 

Notes: The values for 𝜇𝜔 and 𝜇𝑣 are our choices of parameter values for the simulations. N, 𝜌, represent 

the sample size, and the correlation coefficient between the actual and the approximated series. D 

represents the Kolmogorov-Smirnov distance statistic between the distribution of actual and the 

approximated series. 
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Figure 1c: Comparing the actual and the Taylor’s series approximation of the error (Eq 11 vs. Eq 12) 

 

Source: Based on our simulation exercises. See text for details. 

Notes: The values for 𝜇𝜔 and 𝜇𝑣 are our choices of parameter values for the simulations. N, 𝜌, represent 

the sample size, and the correlation coefficient between the actual and the approximated series. D 

represents the Kolmogorov-Smirnov distance statistic between the distribution of actual and the 

approximated series. 
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Figure 1d: Comparing the actual and the Taylor’s series approximation of the error (Eq 11 vs. Eq 12) 

 

Source: Based on our simulation exercises. See text for details. 

Notes: The values for 𝜇𝜔 and 𝜇𝑣 are our choices of parameter values for the simulations. N, 𝜌, represent 

the sample size, and the correlation coefficient between the actual and the approximated series. D 

represents the Kolmogorov-Smirnov distance statistic between the distribution of actual and the 

approximated series. 
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Figure 1e: Comparing the actual and the Taylor’s series approximation of the error (Eq 11 vs. Eq 12) 

 

Source: Based on our simulation exercises. See text for details. 

Notes: The values for 𝜇𝜔 and 𝜇𝑣 are our choices of parameter values for the simulations. N, 𝜌, represent 

the sample size, and the correlation coefficient between the actual and the approximated series. D 

represents the Kolmogorov-Smirnov distance statistic between the distribution of actual and the 

approximated series. 
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Figure 2: Comparing the distribution of actual and predicted labor force participation rate 

 

Source: Both actual and predicted values are based on our estimates obtained from IPUMS-CPS ASEC 
survey data (1977-2015). 
Note:  Actual labor force values are the observed LFPRs. The predicted LFPR is obtained by adjusting 
previous year’s actual LFPR by our estimates of joiners and leavers.   
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Figure 3: Comparing the actual and predicted labor force participation rate (1978-2015) by gender 

  

Source: Both actual and predicted values are based on our estimates obtained from IPUMS-CPS ASEC 
survey data (1977-2015). 
Notes:  The numbers represent the proportion of working age population. Actual LFPR is computed by 
averaging the group-specific observed LFPR in the data. The predicted LFPR is obtained by adjusting 
previous year’s actual LFPR by our estimates of joiners and leavers.   
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Figure 4: Comparing the actual and predicted labor force participation rate (1978-2015) by gender and 

age 

 

Source: Both actual and predicted values are based on our estimates obtained from IPUMS-CPS ASEC 
survey data (1977-2015). 
Notes:  The numbers represent the proportion of working age population. Actual LFPR is computed by 
averaging the group-specific observed LFPR in the data. The predicted LFPR is obtained by adjusting 
previous year’s actual LFPR by our estimates of the proportion of joiners and leavers.   
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Figure 5: Out of sample predictions 

 

Source: Both actual and predicted values are based on the data from IPUMS-CPS ASEC survey data (1977-
2015). 
Note: The parameter estimates are based on 1977-2012 data. The predicted LFPRs for 2013, 2014, 2015 

are out-of-sample estimates. These values are calculated by applying a modified Jondrow et. al. (1982) 

formula described in the text. 
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Figure 6a: Comparing net change in actual and predicted labor force, 1978-2015 (Men)  
 

 

Source: Both actual and predicted values are based on our estimates obtained from IPUMS-CPS ASEC 
survey data (1977-2015). 
Note: The net change in actual labor force is computed by subtracting previous year’s labor force from 
the current year’s labor force. The change in predicted labor force is computed by subtracting the previous 
year’s predicted labor force from the current year’s predicted labor force. The predicted labor force is 
obtained by multiplying the average predicted LFPR by the total working age population in the same year. 
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Figure 6b: Comparing net change in actual and predicted labor force, 1978-2015 (Women)  

 

Source: Both actual and predicted values are based on our estimates obtained from IPUMS-CPS ASEC 
survey data (1977-2015). 
Note: The net change in actual labor force is computed by subtracting previous year’s labor force from 
the current year’s labor force. The change in predicted labor force is computed by subtracting the previous 
year’s predicted labor force from the current year’s predicted labor force. The predicted labor force is 
obtained by multiplying the average predicted LFPR by the total working age population in the same year. 
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Appendix I 

The function to be approximated is 

𝑓(휃𝑖𝑡−1
∗ , 𝜔𝑖𝑡, 𝑣𝑖𝑡) = 𝐿𝑜𝑔 (1 +

𝜔𝑖𝑡

(1 + 𝜔𝑖𝑡)
(𝑒𝜃𝑖𝑡−1

∗
− 1) −

𝑣𝑖𝑡

(1 + 𝑣𝑖𝑡)
) 

A first order Taylor’s series approximation of 𝑓(. ) around 휃𝑖𝑡−1
∗ = 휃0𝑖 , , 𝜔𝑖𝑡 = 0, 𝑣𝑖𝑡 = 0 is  

𝑓(휃𝑖𝑡−1
∗ , 𝜔𝑖𝑡, 𝑣𝑖𝑡)

= 𝑓(휃𝑖𝑡−1
∗ = 휃0𝑖 , , 𝜔𝑖𝑡 = 0, 𝑣𝑖𝑡 = 0)

+  𝑓𝜃𝑖𝑡−1
∗ (휃𝑖𝑡−1

∗ = 휃0𝑖 , , 𝜔𝑖𝑡 = 0, 𝑣𝑖𝑡 = 0)(휃𝑖𝑡−1
∗ − 휃0𝑖)

+  𝑓𝜔𝑖𝑡
(휃𝑖𝑡−1

∗ = 휃0𝑖 , , 𝜔𝑖𝑡 = 0, 𝑣𝑖𝑡 = 0)(𝜔𝑖𝑡 − 0)                                          

+  𝑓𝑣𝑖𝑡
(휃𝑖𝑡−1

∗ = 휃0𝑖 , , 𝜔𝑖𝑡 = 0, 𝑣𝑖𝑡 = 0)(𝑣𝑖𝑡 − 0)                                       (𝐴1.2) 

The value of  𝑓(휃𝑖𝑡−1
∗ = 휃0𝑖 , , 𝜔𝑖𝑡 = 0, 𝑣𝑖𝑡 = 0) = 𝐿𝑜𝑔(1) = 0 

The individual derivatives are   

𝑓𝜃𝑖𝑡−1
∗ (휃𝑖𝑡−1

∗ = 휃0𝑖 , , 𝜔𝑖𝑡 = 0, 𝑣𝑖𝑡 = 0)

=  
1

(1 +
𝜔𝑖𝑡

(1 + 𝜔𝑖𝑡)
(𝑒𝜃𝑖𝑡−1

∗
− 1) −

𝑣𝑖𝑡

(1 + 𝑣𝑖𝑡)
)

𝑒𝜃𝑖𝑡−1
∗ 𝜔𝑖𝑡

(1 + 𝜔𝑖𝑡)
= 0  [∵  𝜔𝑖𝑡 = 0 ] 

𝑓𝜔𝑖𝑡
(휃𝑖𝑡−1

∗ = 휃0𝑖 , , 𝜔𝑖𝑡 = 0, 𝑣𝑖𝑡 = 0)

=
1

(1 +
𝜔𝑖𝑡

(1 + 𝜔𝑖𝑡)
(𝑒𝜃𝑖𝑡−1

∗
− 1) −

𝑣𝑖𝑡

(1 + 𝑣𝑖𝑡)
)

 (𝑒𝜃𝑖𝑡−1
∗

− 1) [
1

(1 + 𝜔𝑖𝑡)

−
𝜔𝑖𝑡

(1 + 𝜔𝑖𝑡)2
] =  (𝑒𝜃0𝑖 − 1)  

𝑓𝑣𝑖𝑡
(휃𝑖𝑡−1

∗ = 휃0𝑖 , , 𝜔𝑖𝑡 = 0, 𝑣𝑖𝑡 = 0)

=  −
1

(1 +
𝜔𝑖𝑡

(1 + 𝜔𝑖𝑡)
(𝑒𝜃𝑖𝑡−1

∗
− 1) −

𝑣𝑖𝑡

(1 + 𝑣𝑖𝑡)
)

[
1

(1 + 𝑣𝑖𝑡)
−

𝑣𝑖𝑡

(1 + 𝑣𝑖𝑡)2
] =  −1 

Substituting these values in (𝐴1.2) yields 

𝑓(휃𝑖𝑡−1
∗ , 𝜔𝑖𝑡, 𝑣𝑖𝑡) ≈ 0 + 0 × (휃𝑖𝑡−1

∗ − 휃0𝑖) +  (𝑒𝜃0𝑖 − 1)(𝜔𝑖𝑡 − 0) − 1 × (𝑣𝑖𝑡 − 0) 

After simplifying we obtain the following approximated function 

𝑓(휃𝑖𝑡−1
∗ , 𝜔𝑖𝑡, 𝑣𝑖𝑡) ≈  (𝑒𝜃0𝑖 − 1)𝜔𝑖𝑡 −  𝑣𝑖𝑡 
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Appendix II 

Consider three statistically independent random variables 𝜔𝑖𝑡, 𝑣𝑖𝑡 , 𝑢𝑖𝑡. Suppose they follow the 

following probability distributions (suppressing the subscripts): 

 

𝜔~𝐸𝑥𝑝(𝜇𝜔); 𝑓(𝜔) =  
1

𝜇𝜔
𝑒

−
𝜔

𝜇𝜔 , 𝑤ℎ𝑒𝑟𝑒 𝜔 ∈ [0, ∞) (𝐴2.1𝑎) 

𝑣~𝐸𝑥𝑝(𝜇𝑣); 𝑓(𝑣) =  
1

𝜇𝑣
𝑒

−
𝑣

𝜇𝑣 , 𝑤ℎ𝑒𝑟𝑒 𝑣 ∈ [0, ∞) (𝐴2.1𝑏) 

𝑢~𝑁(0, 𝜎𝑢);  𝑓(𝑢) =  
1

𝜎𝑢√2𝜋
𝑒

−
𝑢2

2𝜎𝑢
2
, 𝑤ℎ𝑒𝑟𝑒 𝑢 ∈ (−∞, ∞) (𝐴2.1𝑐) 

 

Define the composite error 𝜖 as 

𝜖 = 𝑢 +  𝜔 − 𝑣 (𝐴2.2) 

 

The goal is to obtain the density of the composite error 𝜖 i.e. 𝑓(𝜖). It is the combination of the 

three random variables. We derive this density in two steps. In the first we define another 

random variable 𝑧 such that 

𝑧 = 𝑢 − 𝑣 (𝐴2.3) 

First we will find the density of 𝑧 i.e. 𝑓(𝑧). An algebraic manipulation of yields  

𝑢 = 𝑧 + 𝑣 (𝐴2.4) 

Since 𝑢 and 𝑣 are statistically independent, their joint density is the product of their marginal 

densities 

𝑓(𝑧 + 𝑣, 𝑣) = 𝑓(𝑢)𝑓(𝑣) = 𝑓𝑢(𝑧 + 𝑣)𝑓𝑣(𝑣) (𝐴2.5) 

To obtain the density of 𝑧, one needs to integrate out 𝑣, i.e.  

𝑓𝑧(𝑧) =  ∫ 𝑓𝑢(𝑧 + 𝑣)𝑓𝑣(𝑣)𝑑𝑣
∞

0

=  
1

𝜇𝑣𝜎𝑢√2𝜋
∫ 𝑒

−
𝑣

𝜇𝑣𝑒
−

(𝑧+𝑣)2

2𝜎𝑢
2

𝑑𝑣
∞

0

 (𝐴2.6) 

The indefinite integral is 

  

𝑓𝑧(𝑧) =  ∫ 𝑓𝑢(𝑧 + 𝑣)𝑓𝑣(𝑣)𝑑𝑣
∞

0

=  
1

𝜇𝑣𝜎𝑢√2𝜋
√

𝜋

2
𝜎𝑢𝑒

𝜎𝑢
2

2𝜇𝑣
2+

𝑧
𝜇𝑣erf (

𝜇𝑣(𝑣 + 𝑧) + 𝜎𝑢
2 

𝜇𝑣𝜎𝑢√2
) (𝐴2.7) 

where erf (. ) represents the error function. Evaluating (A2.7) for 𝑣 = 0, ∞ yields 
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𝑓(𝑧) =  
1

2𝜇𝑣
𝑒

𝜎𝑢
2

2𝜇𝑣
2+

𝑧
𝜇𝑣 {1 − erf [

1

√2
(

𝑧

𝜎𝑢
+

𝜎𝑢

𝜇𝑣
)]} 

𝑓(𝑧) =  
1

2𝜇𝑣
𝑒

𝜎𝑢
2

2𝜇𝑣
2+

𝑧
𝜇𝑣 [2 − 2Φ (

𝑧

𝜎𝑢
+

𝜎𝑢

𝜇𝑣
)] 

𝑓(𝑧) =  
1

𝜇𝑣
𝑒

𝜎𝑢
2

2𝜇𝑣
2+

𝑧
𝜇𝑣Φ [− (

𝑧

𝜎𝑢
+

𝜎𝑢

𝜇𝑣
)] (𝐴2.8) 

Now derive 𝑓(𝜖) based on 𝜖 = 𝑧 + 𝜔. Since 𝑢 and 𝑣 are statistically independent to 𝜔, the sum 

of 𝑢 + 𝑣 = 𝑧 is also independent of 𝜔. Thus 

𝑓(𝑧, 𝜔) = 𝑓(𝑧)𝑓(𝜔) =  𝑓𝑧(𝜖 − 𝜔)𝑓𝜔(𝜔) (𝐴2.9) 

Integrating out 𝜔 from (A2.9) yields the density if 𝜖, i.e. 

𝑓(𝜖) =  ∫ 𝑓𝑧(𝜖 − 𝜔)𝑓𝜔(𝜔)𝑑𝜔
∞

0

 

𝑓(𝜖) =  
1

𝜇𝜔𝜇𝑣
𝑒

𝜎𝑢
2

2𝜇𝑣
2

∫ 𝑒
(𝜖−𝜔)

𝜇𝑣 𝑒
−

𝜔
𝜇𝜔Φ [− {

(𝜖 − 𝜔)

𝜎𝑢
+

𝜎𝑢

𝜇𝑣
}] 𝑑𝜔

∞

0

 

𝑓(𝜖) =  
1

𝜇𝜔𝜇𝑣
𝑒

𝜎𝑢
2

2𝜇𝑣
2
𝑒

𝜖
𝜇𝑣 ∫ 𝑒

−𝜔(
1

𝜇𝑣
+

1
𝜇𝜔

)
Φ [− {

(𝜖 − 𝜔)

𝜎𝑢
+

𝜎𝑢

𝜇𝑣
}] 𝑑𝜔

∞

0

 

𝑓(𝜖) =  
1

𝜇𝜔𝜇𝑣
𝑒

𝜎𝑢
2

2𝜇𝑣
2
𝑒

𝜖
𝜇𝑣 ∫ 𝑒

−𝜔(
1

𝜇𝑣
+

1
𝜇𝜔

)
Φ [

𝜔

𝜎𝑢
− (

𝜖

𝜎𝑢
+

𝜎𝑢

𝜇𝑣
)] 𝑑𝜔

∞

0

 (𝐴2.10) 

Let 𝐺 =
1

𝜇𝜔𝜇𝑣
𝑒

𝜎𝑢
2

2𝜇𝑣
2
𝑒

𝜖

𝜇𝑣; 𝑎 = (
1

𝜇𝜔
+

1

𝜇𝑣
); 𝑏 =

1

𝜎𝑢
; 𝑐 = (

𝜖

𝜎𝑢
+

𝜎𝑢

𝜇𝑣
). Substituting these in (A2.10) 

yields the integrand as 

𝐺 ∫ 𝑒−𝑎𝜔Φ(𝑏𝜔 − 𝑐)𝑑𝜔
∞

0

 (𝐴2.11) 

One way to solve this is by integration by parts. For that, let 𝑥 = Φ(𝑏𝜔 − 𝑐) and 𝑑𝑦 =  𝑒−𝑎𝜔𝑑𝜔. 

These relationships imply that 𝑑𝑥 = 𝑏𝜙(𝑏𝜔 − 𝑐) and 𝑦 = −
1

𝑎
𝑒−𝑎𝜔. Thus the integrand  

∫ 𝑥𝑑𝑦
∞

0

= 𝑥𝑦|0
∞ −  ∫ 𝑦𝑑𝑥

∞

0

 (𝐴2.12) 

𝑥𝑦|0
∞ =  −

1

𝑎
𝑒−𝑎𝜔Φ(𝑏𝜔 − 𝑐)|0

∞ =
1

𝑎
Φ(−𝑐) (𝐴2.13) 
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∫ 𝑦𝑑𝑥
∞

0

=  ∫ −
𝑏

𝑎
𝑒−𝑎𝜔𝜙(𝑏𝜔 − 𝑐)𝑑𝜔

∞

0

= −
𝑏

𝑎
∫ 𝑒−𝑎𝜔𝜙(𝑏𝜔 − 𝑐)𝑑𝜔

∞

0

= −
𝑏

𝑎√2𝜋
∫ 𝑒−𝑎𝜔𝑒−

(𝑏𝜔−𝑐)2

2 𝑑𝜔
∞

0

 

= −
𝑏

𝑎√2𝜋
× (−

1

𝑏
) × √

𝜋

2
𝑒

𝑎(𝑎−2𝑏𝑐)

2𝑏2 × erf (
𝑏(𝑐 − 𝑏𝜔) − 𝑎

𝑏√2
)|

0

∞

  

=
1

2𝑎
𝑒

𝑎(𝑎−2𝑏𝑐)

2𝑏2 [−1 − erf (
𝑏𝑐 − 𝑎

𝑏√2
)] = −

1

2𝑎
𝑒

𝑎(𝑎−2𝑏𝑐)

2𝑏2 [1 + erf (
𝑏𝑐 − 𝑎

𝑏√2
)] 

= −
1

2𝑎
𝑒

𝑎(𝑎−2𝑏𝑐)

2𝑏2 [1 + 2Φ (
𝑏𝑐 − 𝑎

𝑏
) − 1] = −

1

𝑎
𝑒

𝑎(𝑎−2𝑏𝑐)

2𝑏2 Φ (
𝑏𝑐 − 𝑎

𝑏
) (𝐴2.14) 

Combining (A2.13) and (A2.14) yields the marginal density of 𝜖 as 

𝑓(𝜖) =
𝐺

𝑎
[Φ(−𝑐) +  𝑒

𝑎(𝑎−2𝑏𝑐)

2𝑏2 Φ (
𝑏𝑐 − 𝑎

𝑏
)] 

where 𝐺, 𝑎, 𝑏, 𝑐 are defined above. 
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Appendix III: Estimating �̂�∗ and �̂� 

The first step to obtain joiners and leavers is to calculate �̂�∗ and 𝑣. Unfortunately, none of the 

three error components can be computed directly. The only available estimates are the estimates 

of the composite residual i.e. 𝜖̂, �̂�𝜔∗, �̂�𝑣 and �̂�𝑢. However one can still compute estimates of �̂�∗ 

and 𝑣 as their expected values conditioned on the value of 𝜖̂. Mathematically these can be 

represented as  

 

�̂�∗ = 𝐸(𝜔∗|𝜖̂) =  ∫ 𝜔∗
∞

0

𝑓(𝜔∗|𝜖̂)𝑑𝜔∗ (𝐴3.1𝑎) 

𝑣 = 𝐸(𝑣|𝜖̂) =  ∫ 𝑣
∞

0

𝑓(𝑣|𝜖̂)𝑑𝑣 (𝐴3.1𝑏) 

As suggested in Johndrow et. al. (1982) these conditional means serves as individual specific 

estimates of the two one-sided errors. Statistically they are best linear unbiased predictor of �̂�∗ 

and 𝑣. 

 

Solving the integral requires expression for the 𝑓(𝜔∗|𝜖̂) and 𝑓(𝑣|𝜖̂) which are unknown. 

However, using Bayes’ theorem one can write these conditional densities as 

𝑓(𝜔∗|𝜖̂) =  
𝑓(𝜔∗, 𝜖̂)

𝑓(𝜖̂)
 (𝐴3.2𝑎) 

𝑓(𝑣|𝜖̂) =  
𝑓(𝑣, 𝜖̂)

𝑓(𝜖̂)
 (𝐴3.2𝑏) 

Substituting these into A2.1a-1b, we obtain 

𝐸(𝜔∗|𝜖̂) =  
1

𝑓(𝜖̂)
∫ 𝜔∗

∞

0

𝑓(𝜔∗, 𝜖̂)𝑑𝜔∗ (𝐴3.3𝑎) 

𝐸(𝑣|𝜖̂) =  
1

𝑓(𝜖̂)
∫ 𝑣

∞

0

𝑓(𝑣, 𝜖̂)𝑑𝑣 (𝐴3.3𝑏) 

 

 

Appendix II derives the formula for 𝑓(𝜖) which allows one to obtain 𝑓(𝜖̂) by substituting 𝜖 by 𝜖̂. 

The joint densities 𝑓(𝜔∗, 𝜖̂) and 𝑓(𝑣, 𝜖̂) however are not directly available but can be derived 

from the statistical independence assumption and the density of each of the error components.  

Derivation of 𝐸(𝜔∗|𝜖̂):  

For notational convenience we first derive 𝐸(𝜔∗|𝜖) and then substitute 𝜖 by 𝜖̂ to obtain 𝐸(𝜔∗|𝜖̂). 
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𝑓(𝜔∗) =
1

𝜇𝜔∗
𝑒

−
𝜔∗

𝜇𝜔∗  (𝐴3.4𝑎) 

𝑓(𝑣) =
1

𝜇𝑣
𝑒

−
𝑣

𝜇𝑣  (𝐴3.4𝑏) 

𝑓(𝑢) =
1

𝜎𝑢√2𝜋
𝑒

−
𝑢2

2𝜎𝑢
2
 (𝐴3.4𝑐) 

All of the random variables above are statistically independent. This means that if we define 𝑧 =

𝑢 − 𝑣, the 𝑧 and 𝜔 will be statistically independent. Using this property one can therefore write  

𝑓(𝜔∗, 𝑧) = 𝑓(𝜔∗)𝑓(𝑧) 

The density 𝑓(𝜔) is already known and 𝑓(𝑧) is already derived in Appendix II. Thus one can 

write 

𝑓(𝜔∗, 𝑧) =   
1

𝜇𝜔∗
𝑒

−
𝜔∗

𝜇𝜔∗
1

𝜇𝑣
𝑒

𝜎𝑢
2

2𝜇𝑣
2+

𝑧
𝜇𝑣Φ [− (

𝑧

𝜎𝑢
+

𝜎𝑢

𝜇𝑣
)]  

Making the transformation 𝜖 = 𝜔∗ + 𝑧, the joint density of 𝜔∗ and 𝜖 is 

𝑓(𝜔∗, 𝜖) =  
1

𝜇𝜔∗
𝑒

−
𝜔∗

𝜇𝜔∗
1

𝜇𝑣
𝑒

𝜎𝑢
2

2𝜇𝑣
2+

(𝜖−𝜔)
𝜇𝑣 Φ [− (

𝜖 − 𝜔∗

𝜎𝑢
+

𝜎𝑢

𝜇𝑣
)]  

Let 𝑎′ = (
1

𝜇𝑣
+

1

𝜇𝜔∗
) ; 𝑏′ = 𝜎𝑢; 𝑐′ = (

𝜖

𝜎𝑢
+

𝜎𝑢

𝜇𝑣
) ; 휃1

′ =
1

𝜇𝑣𝜇𝜔∗
𝑒

𝜖

𝜇𝑣
+

𝜎𝑢
2

2𝜇𝑣
2
. Utilizing these re-

parameterizations 

𝑓(𝜔∗, 𝜖) = 휃1
′  𝑒−𝑎′𝜔∗

Φ (
𝜔∗

𝑏′
− 𝑐′) (𝐴3.5) 

Thus the expression for 𝐸(𝜔∗|𝜖) can be written as 

𝐸(𝜔∗|𝜖) =  ∫ 𝜔∗
𝑓(𝜔∗, 𝜖)

𝑓(𝜖)
𝑑𝜔∗

∞

0

= =  
1

𝑓(𝜖)
∫ 𝜔∗𝑓(𝜔∗, 𝜖)𝑑𝜔

∞

0

=  
휃1

′

𝑓(𝜖)
∫ 𝜔∗𝑒−𝑎′𝜔∗

Φ (
𝜔∗

𝑏′
− 𝑐′) 𝑑𝜔∗

∞

0

 (𝐴3.6) 

The right hand side of (A3.6) can be integrated by using integration by parts formula 

Suppose 𝑥′ = Φ (
𝜔∗

𝑏′
− 𝑐′) ; 𝑑𝑦′ = 𝜔∗𝑒−𝑎′𝜔∗

𝑑𝜔∗. This means 𝑑𝑥′ =
1

𝑏′
𝜙 (

𝜔∗

𝑏′
− 𝑐′) 𝑑𝜔 and 𝑦′ =

−
(1+𝑎′𝜔∗)

𝑎′2
𝑒−𝑎′𝜔∗

 

Therefore the integral ∫ 𝜔∗𝑒−𝑎′𝜔∗
Φ(

𝜔∗

𝑏′ − 𝑐′) 𝑑𝜔∗∞

0
 can be written as 

∫ 𝑥′𝑑𝑦′
∞

0

= 𝑥′𝑦′|0
∞ −  ∫ 𝑦′𝑑𝑥′

∞

0

 (𝐴3.7) 
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As already defined 

𝑥′𝑦′ = = −
(1 + 𝑎′𝜔∗)

𝑎′2
𝑒−𝑎′𝜔∗

Φ (
𝜔∗

𝑏′
− 𝑐′) 

Evaluating at (0 𝑎𝑛𝑑 ∞) yields 

𝑥′𝑦′ =  
1

𝑎′2 Φ(−𝑐′) (𝐴3.8) 

The second part of (A3.7) is 

∫ 𝑦′𝑑𝑥′
∞

0

=
1

𝑏′𝑎′2
∫ −(1 + 𝑎′𝜔∗)𝑒−𝑎′𝜔∗

𝜙 (
𝜔∗

𝑏′
− 𝑐′) 𝑑𝜔∗

∞

0

 

Expressing 𝜙(. ) in explicit form yields 

=
1

𝑏′𝑎′2√2𝜋
∫ −(1 + 𝑎′𝜔∗)𝑒−𝑎′𝜔∗

𝑒
−

1
2

(
𝜔∗2

𝑏′2 +𝑐′2−2
𝜔∗𝑐′

𝑏′
)

2

𝑑𝜔∗
∞

0

 

= −
𝑒−

𝑐′2

2

𝑏′𝑎′2√2𝜋
∫ (1 + 𝜔∗𝑎′)𝑒−𝑎′𝜔∗+

𝜔∗𝑐′
𝑏′

∞

0

𝑒
−

𝜔∗2

2𝑏′2𝑑𝜔∗ 

The definite integral of the above expression is 

=
𝑒−

𝑐′2

2

𝑏′𝑎′2√2𝜋
[√

𝜋

2
𝑏

′(𝑎′2
𝑏′2

−𝑎′𝑏′𝑐′−1)𝑒
(𝑐′−𝑎′𝑏′)

2

2
− √

𝜋

2
𝑏

′(𝑎′2
𝑏′2

−𝑎′𝑏′𝑐′−1)𝑒
(𝑐′−𝑎′𝑏′)

2

2 erf(
𝑎′𝑏′−𝑐′

√2
)

− 𝑎′𝑏′2

] (𝐴3.9) 

 

Simplifying (A3.9) we obtain 

∫ 𝑦′𝑑𝑥′
∞

0

=
𝑒−

𝑐′2

2

𝑎′2 [(𝑎′2
𝑏′2

− 𝑎′𝑏′𝑐′ − 1)𝑒
(𝑐′−𝑎′𝑏′)

2

2 Φ(𝑐′ − 𝑎′𝑏′) −
𝑎𝑏

√2𝜋
] (𝐴3.10) 

 

Combining (A3.8) and (A3.10) we obtain 

𝑥′𝑦′|0
∞ −  ∫ 𝑦′𝑑𝑥′

∞

0

=
Φ(−𝑐′)

𝑎′2 −  
𝑒−

𝑐′2

2

𝑎′2 [(𝑎′2
𝑏′2

− 𝑎′𝑏′𝑐′ − 1)𝑒
(𝑐′−𝑎′𝑏′)

2

2 Φ(𝑐′ − 𝑎′𝑏′) −
𝑎𝑏

√2𝜋
] 

By substituting 𝜖 by 𝜖̂, 𝜇𝑣 by �̂�𝑣, 𝜇𝜔∗ by �̂�𝜔∗, 𝜎𝑢 by �̂�𝑢 in the following expression and in 

𝑎′, 𝑏′, 𝑐′, now the conditional expectation can be written as 
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𝐸(𝜔∗|𝜖̂) =
1

𝑓(𝜖̂)�̂�𝑣�̂�𝜔∗
𝑒

�̂�
�̂�𝑣

+
𝜎𝑢

2

2�̂�𝑣
2

{
Φ(−𝑐′)

𝑎′2

− 
𝑒−

𝑐′2

2

𝑎′2 [(𝑎′2
𝑏′2

− 𝑎′𝑏′𝑐′ − 1)𝑒
(𝑐′−𝑎′𝑏′)

2

2 Φ(𝑐′ − 𝑎′𝑏′) −
𝑎𝑏

√2𝜋
]} 

 Derivation of 𝐸(𝑣|𝜖̂):  

For notational convenience we first derive 𝐸(𝑣|𝜖) and then substitute 𝜖 by 𝜖̂ to obtain 𝐸(𝑣|𝜖̂). 

The first step to derive 𝐸(𝑣|𝜖̂) is to find the conditional density 𝑓(𝑣, 𝜖̂). Since 𝜔∗, 𝑣 and 𝑢 are 

statistically independent 

𝑓(𝜔∗, 𝑣, 𝑢) = 𝑓(𝜔∗)𝑓(𝑣)𝑓(𝑢) (𝐴3.11) 

 

Substituting 𝑢 = 𝜖 + 𝑣 −  𝜔∗ in (A3.11) yields 

𝑓(𝜔∗, 𝑣, 𝜖) =
1

𝜇𝑣𝜇𝜔∗𝜎𝑢√2𝜋
𝑒

−
𝑣

𝜇𝑣
−

(𝜖+𝑣)2

2𝜎𝑢
2

𝑒
−

𝜔∗

𝜇𝜔∗
−

[𝜔∗2
−2𝜔∗(𝜖+𝑣)]

2𝜎𝑢
2

 

𝑓(𝑣, 𝜖) =
1

𝜇𝑣𝜇𝜔∗𝜎𝑢√2𝜋
𝑒

−
𝑣

𝜇𝑣
−

(𝜖+𝑣)2

2𝜎𝑢
2

∫ 𝑒
−

𝜔∗

𝜇𝜔∗
−

[𝜔∗2
−2𝜔∗(𝜖+𝑣)]

2𝜎𝑢
2

∞

0

𝑑𝜔∗ 

Let 𝑘 =
1

𝜇𝜔∗
−

(𝜖+𝑣)

𝜎𝑢
2 , 𝑙 =  

1

2𝜎𝑢
2 

𝑓(𝑣, 𝜖) =
1

𝜇𝑣𝜇𝜔∗𝜎𝑢√2𝜋
𝑒

−
𝑣

𝜇𝑣
−

(𝜖+𝑣)2

2𝜎𝑢
2

∫ 𝑒−𝑘𝜔∗
∞

0

𝑒−
𝜔∗2

𝑏 𝑑𝜔∗ 

=
1

𝜇𝑣𝜇𝜔∗𝜎𝑢√2𝜋
𝑒

−
𝑣

𝜇𝑣
−

(𝜖+𝑣)2

2𝜎𝑢
2

 
1

2
√𝜋√𝑙𝑒

𝑘2𝑙
4 erf (

𝑘𝑙 + 2𝜔∗

2√𝑙
) |0

∞ 

=
1

𝜇𝑣𝜇𝜔∗𝜎𝑢√2𝜋
𝑒

−
𝑣

𝜇𝑣
−

(𝜖+𝑣)2

2𝜎𝑢
2

 
1

2
√𝜋√𝑙𝑒

𝑘2𝑙
4 (1 − erf (

𝑘√𝑙

2
)) (𝐴3.12) 

 

Simplifying (A3.12) yields 

𝑓(𝑣, 𝜖) ==
1

𝜇𝑣𝜇𝜔∗
𝑒

−𝑣(
1

𝜇𝑣
+

1
𝜇𝜔∗

)
𝑒

𝜎𝑢
2

2𝜇𝜔∗2−
𝜖

𝜇𝜔∗  Φ (
𝑣

𝜎𝑢
+ (

𝜖

𝜎𝑢
−

𝜎𝑢

𝜇𝜔∗
)) 

Now one can define the conditional expectation of 𝑣 as 
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𝐸(𝑣|𝜖) =  
1

𝑓(𝜖)
∫ 𝑣

∞

0

𝑓(𝑣, 𝜖)𝑑𝑣 

→ 𝐸(𝑣|𝜖) =  
1

𝑓(𝜖)
∫ 𝑣

∞

0

1

𝜇𝑣𝜇𝜔∗
𝑒

−𝑣(
1

𝜇𝑣
+

1
𝜇𝜔∗

)
𝑒

𝜎𝑢
2

2𝜇𝜔∗2−
𝜖

𝜇𝜔∗  Φ (
𝑣

𝜎𝑢
+ (

𝜖

𝜎𝑢
−

𝜎𝑢

𝜇𝜔∗
)) 𝑑𝑣 

→  𝐸(𝑣|𝜖) =  
1

𝑓(𝜖)

1

𝜇𝑣𝜇𝜔∗
𝑒

𝜎𝑢
2

2𝜇𝜔∗2−
𝜖

𝜇𝜔∗ ∫ 𝑣
∞

0

𝑒
−𝑣(

1
𝜇𝑣

+
1

𝜇𝜔∗
)
 Φ (

𝑣

𝜎𝑢
+ (

𝜖

𝜎𝑢
−

𝜎𝑢

𝜇𝜔∗
)) 𝑑𝑣 (𝐴3.13) 

 

Let 𝑎′ = (
1

𝜇𝑣
+

1

𝜇𝜔∗
) ; 𝑏′ = 𝜎𝑢; 𝑑′ = (

𝜖

𝜎𝑢
−

𝜎𝑢

𝜇𝜔∗
) ; 휃2

′ =
1

𝑓(𝜖)

1

𝜇𝑣𝜇𝜔∗
𝑒

𝜎𝑢
2

2𝜇𝜔∗2−
𝜖

𝜇𝜔∗  Utilizing these re-

parameterizations in (A3.13) yields 

 

𝐸(𝑣|𝜖) =  휃2
′ ∫ 𝑣

∞

0

𝑒−𝑎′𝑣 Φ (
𝑣

𝑏′
+ 𝑑′) 𝑑𝑣 (𝐴3.14) 

 

The above integral can be solved by integration by parts 

Let 𝑥′′ = Φ (
𝑣

𝑏′
+ 𝑑′)  ⇒ 𝑑𝑥′′ =

1

𝑏′
𝜙 (

𝑣

𝑏′
+ 𝑑′) 𝑑𝑣; 𝑑𝑦′′ = 𝑣𝑒−𝑎′𝑣𝑑𝑣 ⇒ 𝑦′′ = −

(1+𝑎′𝑣)

𝑎′2 𝑒−𝑎′𝑣 

∫ 𝑥′′𝑑𝑦′′ = 𝑥′′𝑦′′|0
∞ −  ∫ 𝑦′′𝑑𝑥′′

∞

0

∞

0

 

Evaluating the first term on the R.H.S. 

𝑥′′𝑦′′|0
∞ =

Φ(𝑑′)

2𝑎′2  

The second term 

∫ 𝑦′′𝑑𝑥′′
∞

0

= ∫ −
(1 + 𝑎′𝑣)

𝑎′2
𝑒−𝑎′𝑣

1

𝑏′
𝜙 (

𝑣

𝑏′
+ 𝑑′) 𝑑𝑣

∞

0

 

=
𝑒−

𝑑′2

2

𝑎′2𝑏′
∫ −(1 + 𝑎′𝑣)𝑒−𝑣(𝑎′+

𝑑′
𝑏′

)𝑒
2

𝑣2

2𝑏′2𝑑𝑣
∞

0

 

Integrating yields 

∫ 𝑦′′𝑑𝑥′′
∞

0

 =
𝑒−

𝑑′2

2

𝑎′2
[(𝑎′2𝑏′2 + 𝑎′𝑏′𝑑′ − 1)𝑒

(𝑎′𝑏′+𝑑′)2

2 Φ(−𝑎′𝑏′ − 𝑑′)] −
𝑎′𝑏′

√2𝜋
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By substituting 𝜖 by 𝜖̂, 𝜇𝑣 by �̂�𝑣, 𝜇𝜔∗ by �̂�𝜔∗, 𝜎𝑢 by �̂�𝑢 in the following expression and in 

𝑎′, 𝑏′, 𝑑′, the conditional expectation can be written as 

𝐸(𝑣|𝜖̂) =  휃2
′ [𝑥′′𝑦′′ − ∫ 𝑦′′𝑑𝑥′′

∞

0

 ] 

→  𝐸(𝑣|𝜖̂) =  
1

𝑓(𝜖̂)

1

�̂�𝑣𝜇𝜔∗
𝑒

𝜎𝑢
2

2�̂�𝜔∗
2−

�̂�
�̂�𝜔∗ [

Φ(𝑑′)

𝑎′2

−
𝑒−

𝑑′2

2

𝑎′2
{(𝑎′2

𝑏′2
+ 𝑎′𝑏′𝑑′ − 1)𝑒

(𝑎′𝑏′+𝑑′)
2

2 Φ(−𝑎′𝑏′ − 𝑑′) −
𝑎′𝑏′

√2𝜋
} ]   

 




