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The Role of Human Capital with Heterogeneous Skills* 

 
We extend the Lucas’ 1988 model introducing two classes of agents with heterogeneous 
skills, discount factors and initial human capital endowments. We consider two regimes 
according to the planner’s political constraints. In the first regime, that we call meritocracy, 
the planner faces individual constraints. In the second regime the planner faces an aggregate 
constraint, redistributing. We find that heterogeneity matters, particularly with redistribution. In 
the meritocracy regime, the optimal solution coincides with the BGP found by Lucas (1988) 
for the representative agent’s case. In contrast, in the redistribution case, the solution for time 
devoted to capital accumulation is never interior for both agents. Either the less talented 
agents do not accumulate human capital or the more skilled agents do not work. Moreover, 
social welfare under the redistribution regime is always higher than under meritocracy and it 
is optimal to exploit existing differences. Finally, we find that inequality in human capital 
distribution increases in time and that, in the long run, inequality always promotes growth. 
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1 Introduction

Though the consideration of human capital as a source of economic growth
and development goes back at least to Adam Smith (1776),1 for a long time
the concept of human capital was dormant. Interest in the economic role
of human capital was awakened in the late 1950s and early 1960s through
the writings of Mincer (1958, 1962), Schultz (1961, 1962) and Becker (1962,
1964), who rekindled this concept by emphasizing its importance in explain-
ing earnings differentials and its links with economic growth.

Human capital as an engine of growth was incorporated into growth the-
ory by Uzawa (1965). The emergence of a new endogenous growth literature
stimulated the interest of economists in the role of human capital as a deter-
minant of economic growth. In his widely cited paper, Lucas (1988) shows
that the growth rate of per capita income depends on the growth rate of hu-
man capital, which in turn depends on the time individuals use for acquiring
skills.

However, the idea that human capital plays a major role in economic
growth was not accepted by all. Several years ago there seemed to appear
some kind of consensus among growth theorists, based on solid empirical
evidence, that human capital plays a modest role in determining long-run
rates of growth. Several recent papers have undermined this consensus. The
results of Manuelli and Seshadri (2014) “suggest that human capital has a
central role in determining the wealth of nations and that the quality of
human capital varies systematically with the level of development”. Illus-
trative accounting estimates by Jones (2014) “suggest that human capital
variation can be substantially amplified, including to the point where capital
variation could possibly fully account for cross-country income differences”.
Lucas (2015) argues that it rests on a misinterpretation of the evidence. He
proposes “a very simple model of an economy that conforms well to the cen-
sus evidence but in which all growth is driven by schooling and on-the-job
learning”.

Most of endogenous growth models with human capital accumulation as-
sume a representative agent, which is only a fair approximation if income
and wealth inequality play a negligible role in the process of economic de-
velopment. However, it is widely recognized that inequality has a strong

1Adam Smith included in the capital stock of a nation the inhabitants’ acquired and
useful talents, and noticed that human skills increase wealth for society.
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impact on economic growth. The literature on the relationship between in-
equality and growth suggests different channels through which inequality can
impact growth. On the one hand, the accumulation of savings (Stiglitz, 1969;
Bourguignon, 1981), unobservable effort (Rebelo, 1991) and the investment
project size (Barro, 2000) represent the main channels through which in-
equality may enhance growth. On the other hand, in the presence of credit
market imperfections, inequality has a negative impact on investment in hu-
man capital accumulation (Galor and Zeira, 1993) or entrepreneurial activity
(Banerjee and Newman, 1993), and hence on economic growth. Overall, the
impact of inequality on growth depends on which channels dominate. Em-
pirical studies also are generally inconclusive. While analyses by Alesina
and Rodrik (1994), Persson and Tabellini (1994) and Perotti (1996) show a
negative relationship between inequality and growth, more recent works by
Partridge (1997), Forbes (2000) and Frank (2009) find a positive relationship.
Barro (2000) finds that the effect of income inequality on economic growth
may differ between poor and rich economies.

Economists have also paid some attention to the relationship between the
accumulation of human capital and inequality. Becker and Tomes (1979), Vi-
aene and Zilcha (2003) and Galor and Moav (2004) emphasize educational
attainment as one of the causes of greater income inequality. Galor and
Zeira (1993) and Banerjee and Newman (1993) identify credit market con-
straints as the channel relating the accumulation of human capital and in-
equality. Political considerations and education are considered in Saint-Paul
and Verdier (1991), Glomm and Ravikumar (1992) and Eckstein and Zilcha
(1994). Eicher and García-Peñalosa (2001) build a model, which predicts a
non-monotonic relationship between educational attainment and inequality
and explain the lack of a clear relation between inequality and growth. Most
of these papers consider overlapping generations models in which the transfer
of human capital across generations is an important factor of growth.

Turnovsky (2011) and Turnovsky and Mitra (2013) propose two-sector
endogenous growth models2 linking human capital accumulation and income
inequality. In those models agents are infinitely-lived and the heterogeneity of
agents, which is the underlying source of income inequality, stems from their
initial distribution of endowments of human capital. Their results suggest
that an increase in the growth rate resulting from productivity enhancement
in the human capital sector will be accompanied by an increase in inequality

2The sectors considered produce respectively the final output and human capital.
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whereas a productivity boost in the final output sector results in a reduction
in inequality.

In practically all growth models with infinitely-lived agents, patience
plays a key role. In exogenous growth models with physical capital, higher
patience implies a higher propensity to save and hence a higher steady state
stock of physical capital. In the context of endogenous growth models with
human capital accumulation, higher patience implies greater incentives to de-
vote time to the acquisition of skills and hence leads to higher rates of growth.
Recent results of Hübner and Vannoorenberghe (2015) suggest that increas-
ing patience by one standard deviation raises per-capita income by between
34% and 78%. Dohmen et al. (2015) show that average patience explains
a considerable fraction of the variation in growth rates both in the medium
run and in the long run and about 40% of the between-country variation in
income. Their results establish that, within countries, average patience in ge-
ographical regions predicts average years of education and, in individual-level
analyses, that individual patience predicts educational attainment within
countries and regions. Patience varies not only between countries, but also
within countries. According to Falk et al. (2015), between-country variance
accounts for about 13.5 percent of total variation in patience. Respectively,
within-country variation accounts for about 86.5 percent of total variation.

There is a literature on models with infinitely-lived agents heterogeneous
in their discount factor (see a very good survey by Becker (2006)). At the
same time, to the best of our knowledge, all models with human capital
accumulation assume either a representative agent or agents with an iden-
tical discount factor. In fact, the only type of heterogeneity considered in
these models was heterogeneity in initial human capital.3 In this paper, we
propose two endogenous growth models with human capital accumulation
with heterogenous agents that differ in their discount factors, their skills
in accumulating capital and initial human capital endowments. More pre-
cisely, in order to better understand the trade-off between inequalities and
growth, we extend the Lucas’ 1988 model introducing two classes of agents
with heterogenous skills, patience and initial human wealth.4 We consider
two regimes according to the planner’s political constraints. In the first
regime, that we call meritocracy, the planner faces individual constraints. In

3See Turnovsky (2011) and Turnovsky and Mitra (2013) cited above.
4Note that differently from the Ramsey model with physical capital accumulation

(Becker, 1980), our extensions exhibit long-run distributions of capital (heterogenous hu-
man capital) that are non-degenerated.
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the second regime the planner faces an aggregate constraint, redistributing.
We find that heterogeneity matters, specially with redistribution. Indeed,
although in the meritocracy regime the solution coincides with the represen-
tative agent’s Lucas BGP, in the redistribution case the optimal solution for
non-leisure time devoted to capital accumulation is never interior for both
agents. Either the less talented agents do not accumulate human capital
or the more skilled agents do not work. A second important result is that
social welfare under the redistribution regime is always higher than under
meritocracy. Third, the redistribution of consumption is not affected by the
distribution of skills, depending only on differences in patience. In contrast,
the allocation of tasks takes into account skills differences. Finally we find
that inequality in the distribution of human capital increases in time, and
that inequality is associated with higher rates of growth in both regimes.

The rest of the paper is organized as follows. In the next section we
present the fundamentals of the models considered. The "meritocracy" case
and the "redistribution" cases are analyzed in Sections 3 and 4 respectively.
In Section 5 we compare both cases and further discuss our results. Finally,
in Section 6, we provide some concluding remarks. Proofs and computations
are relegated to the Appendix.

2 Fundamentals

The models considered follow closely the Lucas (1988) framework, extending
it to account for agents heterogeneity. Since we want to focus on the role of
heterogeneity in human capital accumulation on inequality and growth, we
ignore technological change and physical capital accumulation.

We consider two classes of agents: patient and impatient households,
labeled respectively by 0 and 1. They have different discount rates, ρi, i = 0, 1
with ρ0 < ρ1.

We denote the individual labor supply by lit and the size of each class by
πi. We normalize the size of the entire population to one so that π0+π1 = 1.
Then, lt, aggregate labor supply is given by

lt =
1∑

i=0

πilit (1)

We consider a linear constant returns technology.
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Assumption 1 Technology is represented by a production function

yt = Alt (2)

where yt denotes aggregate production and A > 0 is a scaling parameter.

Leisure time is exogenous. Non-leisure time is normalized to one and
spent either working or accumulating human capital (education and health).
Individual labor supply is given by the product of human capital, hit, and
working time, uit, i.e.,

lit ≡ hituit (3)

This means that both factors are necessary in order to supply labor. The
remaining non-leisure time, 1−uit, is devoted to human capital accumulation.

The specification chosen for human capital accumulation of each class of
agents is identical to the one considered in Lucas (1988). However we assume
that the two classes have different skills in accumulating human capital.

Assumption 2 The law of human capital accumulation is given by

ḣit/hit = Bi (1− uit) (4)

If an individual does not devote any non-leisure time to human capital
accumulation then there is no accumulation. If an individual devotes all his
non-leisure time to human capital accumulation then his human capital grows
at its maximal rate, Bi, which is specific to each class, denoting different
skills. As in Lucas (1988) we assume that Bi > ρi.

We denote by cit real consumption of an individual of class i, and by ct
aggregate consumption in the economy. Production is entirely consumed so
that ct ≡

∑1
i=0 πicit = yt.

For simplicity we assume no labor or capital accumulation disutility so
that:

Assumption 3 Preferences are rationalized by a logarithmic felicity

∫ ∞

0

e−ρit ln citdt (5)

with ρ0 < ρ1.
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As in Lucas (1988) we consider a planner who maximizes the weighted
sum of utilities

1∑

i=0

πi

∫ ∞

0

e−ρit ln citdt =

∫ ∞

0

1∑

i=0

πie
−ρit ln citdt (6)

an intertemporal welfare functional, under (4).5

In the following, we consider two regimes according to the planner’s po-
litical constraints. In the first regime, that we denote by "meritocracy", the
planner’s faces individual constraints:

cit ≤ Alit (7)

Remark that when instead of two classes of individuals the subscript i
denotes two countries, the meritocracy regime corresponds to the autarky
situation.

In the second regime, that we call "redistribution", the planner faces an
aggregate constraint:

1∑

i=0

πicit ≤ Alt (8)

When i denotes countries instead of classes of individuals, this regime
corresponds to the case where the two countries are integrated in one union.

3 Meritocracy

In this case the planner maximizes (6) subject to (4) and (7). The Hamil-
tonian writes:

1∑

i=0

πie
−ρit ln (Ahituit) +

1∑

i=0

λithitBi (1− uit)

We have two state variables (hit) and two controls (uit). The strict con-
cavity of the objective function and the concavity of the law of motion with

5The question of time-consistency can be raised in the case of a welfare function max-
imization with heterogenous agents. As noted by Zuber (2011) and Heal and Millner
(2015), stationarity and time-consistency of aggregate preferences hold together only if
agents have the same discount factor.
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respect to (hit, uit) satisfy the Arrow-Mangasarian sufficient condition for
Hamiltonian maximization and imply the uniqueness of the planner’s solu-
tion.

Proposition 1. The optimal solution is the Balanced Growth Path (BGP):

u∗it =
ρi
Bi

and h∗it = hi0e
(Bi−ρi)t (9)

for t ≥ 0. This solution is unique.

Proof. See the Appendix.

This solution coincides with that forwarded by Lucas (1988) in the repre-
sentative agent’s case. In fact, what the planner is doing in the meritocracy
case is simply solving two independent problems, each of them featuring iden-
tical agents. Note that with the functional forms chosen we are able to prove
analytically Lucas (1988) conjecture that the BGP is the optimal solution.

We can see that the equilibrium growth rate of human capital of class i
increases with the class ability in investing in human capital, Bi, and declines
with increases in the class discount rate, ρi. However, what really matters for
human capital growth is the difference between these two parameters. This
means that more skilled but very impatient agents may accumulate human
capital at a lower rate than less skilled but more patient ones. Since this
outcome is not supported by empirical studies, we rule out this possibility,
assuming that the growth rate of human capital accumulation of the patient
consumer, B0 − ρ0, always exceeds the growth case of the impatient one,
B1 − ρ1, i.e. we consider that the patient consumer, i = 0, is the dominant
one. Let δ ≡ (B0− ρ0)− (B1 − ρ1) denote the difference between the growth
rates of patient and impatient consumers. We assume that :

Assumption 4 δ > 0.

3.1 Inequality and growth in the meritocracy case

Let us now discuss the trade-off between social inequalities and growth in the
meritocracy case. The first choice that we have to make is how to measure
these two concepts. Most studies use income inequality data as a proxy
for social inequality and the growth rate of income to measure economic
growth. In this work we chose to measure social inequalities using the Gini
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index of consumption, while economic growth is measured by the growth
rate of aggregate consumption. In the meritocracy case as consumption and
income (output) coincide, both at the individual and aggregate level, this
choice is irrelevant. In contrast, in the redistribution case, although aggregate
consumption is still identical to aggregate output, the real welfare of each
individual is given by consumption and not by output. Therefore, social
inequalities are better proxied using a measure of consumption inequality.
Also, since in this work we focus on the effects of human capital on inequality
and growth we start by presenting the Gini index of human wealth, which
measures inequality in the distribution of human capital.

Proposition 2. If, without loss of generality, h0t > h1t, the period t Gini
index of human wealth is given by

ght = π1 −
π1h1t

π0h0t + π1h1t
(10)

Proof. See the Appendix.

The stock of human capital that a class has accumulated until period t,
hit, depends not only on the class rate of growth of human capital accumula-
tion, Bi− ρi, but also on its initial human capital endowment, hi0. However,
it is easy to see that, in the long run, the growth rate effect will dominate.
We have therefore the following proposition.

Proposition 3 (human wealth inequality). Let Assumption 4 hold.

1. If h00 > h10, then h0t > h1t for every t and

ght = π1 −
π1h10e

−δt

π0h00 + π1h10e−δt
(11)

Thus, gt increases monotonically from gh0 = π1−π1h10/ (π0h00 + π1h10)
to g∞ = π1.

2. If h00 < h10, then there is a critical date

Th =
ln (h10/h00)

δ
(12)
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beyond which the human capital stock of the dominant (patient) class
exceeds the human capital stock of the impatient class. In this case, the
Gini index of human wealth is given by

ght = π0 −
π0h00

π0h00 + π1h10e−δt
for t ≤ Th (13)

ght = π1 −
π1h10e

−δt

π0h00 + π1h10e−δt
for t > Th (14)

Proof. See the Appendix.

Since human capital and consumption of an individual of type i grow at
the same rate along the BGP, the observed differences in the evolution of
the Gini index of human wealth and the Gini index of consumption reflect
mainly differences in initial endowments, being therefore relevant only in the
short run.

Definition 4. If, without loss of generality, c0t > c1t, the Gini index of
consumption is given by

gct = π1 −
π1c1t

π0c0t + π1c1t
(15)

Proposition 5 (consumption inequality). Let Assumption 4 hold.

1. If c00 > c10, then c0t > c1t for every t and

gct = π1 −
π1c10e

−δt

π0c00 + π1c10e−δt
(16)

Thus, gt increases monotonically from g0 = π1 − π1c10/ (π0c00 + π1c10)
to g∞ = π1.

2. If c00 < c10, then there is a critical date

Tc =
ln (c10/c00)

δ
(17)

beyond which consumption of the dominant (patient) class exceeds con-
sumption of the impatient class. In this case, the Gini index of con-
sumption is given by

gct = π0 −
π0c00

π0c00 + π1c10e−δt
for t ≤ Tc (18)

gct = π1 −
π1c10e

−δt

π0c00 + π1c10e−δt
for t > Tc (19)
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Proof. See the Appendix.

Remark that h00 > h10 does not imply c00 > c10. Indeed, using (3), (7)
and (9), we can rewrite this last inequality as

h00 > h10
ρ1
ρ0

B0
B1

where ρ1/ρ0 > 1, so that we have c10 > c00 if B1 is sufficiently low.

We now describe the evolution of the growth rate of aggregate consump-
tion.

Proposition 6 (consumption growth rate). The dynamics of the aggregate
consumption growth rate are given by

γct ≡
ċt
ct
=

π0c00 (B0 − ρ0) e
δt + π1c10 (B1 − ρ1)

π0c00eδt + π1c10
(20)

Proof. See the Appendix.

We can now characterize the trade-off between inequality and growth in
the meritocracy case.

Proposition 7 (trade-off inequality-growth). Let Assumption 4 hold.
In case (1) of Proposition 5 (c00 > c10), the higher the consumption in-

equality, the higher the growth rate:

γc = π0 (B0 − ρ0) + π1 (B1 − ρ1) + δgc (21)

In case (2) of Proposition 5 (c00 < c10), this trade-off holds after Tc and
is reversed before:

γc = π0 (B0 − ρ0) + π1 (B1 − ρ1)− δgc for t ≤ Tc

(22)

γc = π0 (B0 − ρ0) + π1 (B1 − ρ1) + δgc for t > Tc

(23)

Proof. See the Appendix.

We conclude that, in the long run, inequality always promotes growth
in the meritocracy case. However, in the short run, depending on the initial
distribution of skills and endowments, this result may be reversed. Indeed, in
the subcase t ≤ Tc of case (2) where c00 < c10, the lower the social inequality,
the higher the growth rate.
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4 Redistribution

In this case the planner maximizes the same social welfare functional:

1∑

i=0

πi

∫ ∞

0

e−ρit ln citdt =

∫ ∞

0

1∑

i=0

πie
−ρit ln citdt

under the resource constraint

1∑

i=0

πicit ≤ A
1∑

i=0

πihituit (24)

and the law of motion of human capital

ḣit = Bi (1− uit) hit

with 0 ≤ uit ≤ 1.
There are two state variables (hit) and four controls (cit and uit). In

this case, since there is redistribution, the planner can solve its problem in
two stages. In the first stage, given hit and uit, the planner solves a static
problem:

max
c0t,c1t

1∑

i=0

πie
−ρit ln cit

subject to (24). The solution of this static program is given by:

cit = Ae−ρit
∑1

j=0 πjhjtujt∑1
j=0 πje

−ρjt
(25)

Note that the division of consumption among individuals is only deter-
mined by the degree of impatient, ρi, not being influenced by the distribution
of skills, Bi. Since ct = yt, using (24) and (25) we obtain the consumption
share

sit ≡
πicit
ct

=
πie

−ρit

∑1
j=0 πje

−ρjt

Substituting now (25) in the original problem it becomes

max

∫ ∞

0

[
1∑

i=0

πie
−ρit ln

Ae−ρit
∑1

j=0 πje
−ρjt

+

(
1∑

i=0

πie
−ρit

)

ln
1∑

j=0

πjhjtujt

]

dt

13



or, equivalently,

max

∫ ∞

0

(
1∑

i=0

πie
−ρit

)

ln
1∑

j=0

πjhjtujtdt

subject to ḣit = Bi (1− uit)hit with 0 ≤ uit ≤ 1.
We now have to obtain the optimal solution for hit and uit. To better

understand the mechanisms involved we will start by analyzing the case
where B0 = B1, the only difference between the two types of agents being
their degree of patience.

4.1 Redistribution without heterogeneity in skills

In this case B0 = B1 = B, and 0 < ρ0 < ρ1.

Proposition 8. If B0 = B1 = B, and 0 < ρ0 < ρ1 the optimal trajectory
(hit, uit)i=0,1 is given by:

hit = φζi

1∑

j=0

πj
ρj

e(B−ρj)t and uit =
1

B

∑1
j=0 πje

(B−ρj)t

∑1
j=0

πj
ρj
e(B−ρj)t

∈ (0, 1) (26)

for t ≥ 0, where

φ =

∑1
i=0 πihi0∑1
i=0

πi
ρi

and ζi =
hi0∑1

j=0 πjhj0
(27)

Proof. See the Appendix.

Observe that in this case (B0 = B1 = B), we have u0t = u1t = ut, which
converges to ρ0/B. The total human capital stock Ht =

∑1
i=0 πihit, satisfies

Ḣt = BHt (1− ut)

4.2 Redistribution with heterogeneity in skills

In this subsection we obtain the optimal trajectory (hit, uit)i=0,1 for B0 �= B1,
and 0 < ρ0 < ρ1.

Our first important result is given in the Lemma below.
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Lemma 9 (no interior solution). Let B0 �= B1. For every t, there exists an
i such that uit ∈ {0, 1}.

Lemma 9 tells us that, in contrast to the meritocracy case and to the
redistribution case without heterogeneity in skills, we never have an interior
solution for working time, uit, of both classes of agents.

Using this lemma, we can find the explicit planner’s solution, which is the
optimal trajectory. To this purpose we introduce the following assumption.

Assumption 5 B0 > B1 > ρ1 > ρ0.

According to Assumption 5 the dominant class is not only more patient
(ρ0 < ρ1), but is also more talented in accumulating human capital (B0 >
B1). Assumption 5 is of course more restrictive than Assumption 4. Indeed,
Assumption 5 implies δ > 0, while the reverse is not true.

Let us define the average discount rate, ρ (t), as a time-dependent har-
monic mean of discount rates

ρ (t) ≡

(
1∑

i=0

1

ρi

πie
−ρit

∑1
j=0 πje

−ρjt

)−1
∈ (ρ0, ρ1) (28)

Of course, under Assumption 5, B0 > B1 > ρ (t). Moreover, ρ (t) decreases
from ρ (0) ∈ (ρ0, ρ1) to ρ (∞) = ρ0. If t = 0, (28) simplifies to:

ρ (0) =

(
1∑

i=0

πi
ρi

)−1

which is a harmonic mean where the weights are the size of each class, πi.
In the following,

Hit ≡ πihit and σit ≡
Hit

H0t +H1t
(29)

will denote respectively the human capital of class i at time t and its aggregate
share. Of course,

∑1
i=0 σit = 1.

To simplify the presentation we will consider separately the following two
cases:

1. σ10 ≤ σ∗10 ≡ ρ (0) /B0,

2. σ10 > σ∗10.

Note that in the first case, since σ10 is sufficiently small, the more patient
and talented class is also relatively well endowed in initial human capital.
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4.2.1 The case where σ10 ≤ σ∗10

The optimal trajectory in this case is given in Proposition 10 below.

Proposition 10. Let Assumption 5 hold and assume that σ10 ≤ σ∗10 ≡
ρ (0) /B0. Then, the optimal trajectory (hit, uit)i=0,1 is given by

h0t =
H10

σ10

ρ (0)

π0

1∑

i=0

πi

[
e(B0−ρi)t

ρi
−

σ10
ρi

]
(30)

u0t =

∑1
i=0 πi

[
e(B0−ρi)t

B0
− σ10

ρi

]

∑1
i=0 πi

[
e(B0−ρi)t

ρi
− σ10

ρi

] ∈ (0, 1) (31)

and

h1t = h10 (32)

u1t = 1 (33)

for every t ≥ 0.

Proof. See the Appendix.

We notice that 0 < u0t < 1 and u1t = 1 for every t ≥ 0. This means that
when the initial human capital endowment of the patient and talented class
is relatively important, the less patient and less talented class never invests
in human capital, devoting all its non-leisure time to work. This result can
be seen as an application of the comparative advantage principle, according
to which agents will specialize in the activity where they are relatively better.
However, the more patient and talented agent also devotes some non-leisure
to work every period. Remember that in order to supply labor, contributing
therefore to production, an agent must devote some time to work. See (3). In
this case, as the initial capital endowment of the skilled class is sufficiently
important, these agents divide each period their non-leisure time between
work and capital accumulation, contributing to the production effort since the
beginning. Also, since, under Assumption 5, B0 > ρ1, we get limt→∞ u0t =
ρ0/B0 < 1.

It is easy to conclude that since only the more talented and patient class
accumulates human capital, its human capital share, σ0t, strictly increases in
time. Replacing (30) and (32) in (29) we obtain the dynamics of the human
capital shares.
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Lemma 11 (shares of human capital). Under Assumption 5 and σ10 ≤ σ∗10 ≡
ρ (0) /B0, the shares of human capital at time t are given by

σ0t = 1− σ1t

σ1t =
σ10∑1

i=0wie
(B0−ρi)t

(34)

for any t, where the denominator is an average with weights

wi ≡
πi
ρi

/
1∑

j=0

πj
ρj

4.2.2 The case where σ10 > σ∗10

We start by introducing four important critical values: T0, T1, T2, with
T1 < T2, and λ10. We define T0 and T2 (λ10) respectively as the solutions of
the two following equalities below

σ1T0 = σ∗1T0 ≡
ρ (T0)

B0

σ1T2 = σ∗1T2 ≡
ρ (T2)

B0

that we can rewrite respectively as:

B0

ρ (T0)
= 1 +

H00

H10
eB0T0 (35)

B0

ρ (T2)
= 1 +

H00

H10

eB0T2

eB1T1

[

1 +

∑1
i=0

πi
ρi

(
1− e−ρiT1

)

∑1
i=0

πi
B1

e−ρiT1

]

(36)

where T1 (λ10) is the smallest solution of

λ10h10 =
1∑

i=0

πi
B1

e−ρiT1 +
1∑

i=0

πi
ρi

(
1− e−ρiT1

)
(37)

Note that at T1 we have u1t = 1. Notice also that T2 equals T0 when T1 = 0.
Finally, let λ10 be the solution of

f (λ10) ≡

1
ρ(T2(λ10))

− 1
B0

1
ρ(T1(λ10))

− 1
B1

−

∑1
i=0 πie

−ρiT1(λ10)

∑1
i=0 πie

−ρiT2(λ10)
= 0 (38)
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λ10 determines in turn T1 (λ10) and T2 (λ10).

The optimal trajectory in this case, where σ10 > σ∗10, i.e., the initial
human capital share of the less patient and less talented class exceeds the
critical threshold σ∗10 ≡ ρ (0) /B0, is given in Proposition 12 below.

Proposition 12. Let Assumption 5 hold and assume that σ10 > σ∗10 ≡
ρ (0) /B0.

1. If

B1 ≤ B∗
1 ≡

1

1
ρ(0)

−
[

1
ρ(T0)

− 1
B0

]∑1
i=0 πie

−ρiT0

(39)

then the optimal trajectory (hit, uit)i=0,1 is given by

h0t = h00e
B0t for 0 ≤ t ≤ T0 (40)

h0t =
H10

π0

[ ∑1
i=0

πi
ρi
e(B0−ρi)t

∑1
i=0

πi
B0

e(B0−ρi)T0
− 1

]

for t > T0 (41)

u0t = 0 for 0 ≤ t ≤ T0 (42)

u0t =

∑1
i=0

πi
B0

e(B0−ρi)t −
∑1

i=0
πi
B0

e(B0−ρi)T0
∑1

i=0
πi
ρi
e(B0−ρi)t −

∑1
i=0

πi
B0

e(B0−ρi)T0
∈ (0, 1) for t > T0(43)

and

h1t = h10 for any t (44)

u1t = 1 for any t (45)

2. If

B1 > B∗
1 ≡

1

1
ρ(0)

−
[

1
ρ(T0)

− 1
B0

]∑1
i=0 πie

−ρiT0

then the optimal trajectory (hit, uit)i=0,1 is given by

h0t = h00e
B0t for 0 ≤ t ≤ T2 (46)

h0t =
H1T2

π0

[∑1
i=0

πi
ρi
e(B0−ρi)t

λ1T2h1T2e
B0T2

− 1

]

for t ≥ T2 (47)

u0t = 0 for 0 ≤ t ≤ T2

u0t =

∑1
i=0

πi
B0

e(B0−ρi)t − λ1T2h1T2e
B0T2

∑1
i=0

πi
ρi
e(B0−ρi)t − λ1T2h1T2e

B0T2
∈ (0, 1) for t ≥ T2 (48)
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and

h1t = h10e
B1t

[

1−
1

λ10h10

1∑

i=0

πi
ρi

(
1− e−ρit

)
]

for 0 ≤ t ≤ T1 (49)

h1t = h1T1 for t ≥ T1

u1t =
1

B1

∑1
i=0 πie

−ρit

λ10h10 +
∑1

i=0
πi
ρi
(e−ρit − 1)

∈ (0, 1) for 0 ≤ t < T1(50)

u1t = 1 for t ≥ T1

where λ10h10 is given by (37),

λ1T2h1T2 =
1∑

i=0

πi
B1

e−ρiT1 +
1∑

i=0

πi
ρi

(
e−ρiT2 − e−ρiT1

)
(51)

and H1T2 = π1h1T1.

Proof. See the Appendix.

In case 1 of Proposition (12), although the initial capital share of the
less talented and less patient individuals is now above the critical threshold
ρ (0) /B0, as they are not sufficiently skilled, B1 ≤ B∗

1 , these individuals
still never accumulate human capital, devoting all their non-leisure time to
work, i.e. we have, as in the previous case, h1t = h10 and u1t = 1 for any t.
However, now the dominant class does not work initially, devoting all their
non-leisure time to capital accumulation, that, until period T0 increases at the
maximal accumulation rate, B0. See (42). Therefore, in this case for t < T0,
specialization is more intense: the less talented agents just work, while the
others only accumulate capital. Nevertheless, once the share of human capital
of the more talented class reaches the critical level 1 − ρ (t) /B0, i.e. when
σ1T0 = σ∗1T0, the dominant class starts working and, since less time is devoted
to capital accumulation, the rate of growth of human capital decreases over
time.

As the less talented agents never accumulate capital H1t = H10 for any t.
Then, we get immediately the following result.
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Lemma 13 (shares of human capital). In case 1 of Proposition (12), the
shares of human capital at time t are given by

σ0t = 1 = σ1t for any t ≥ 0

σ1t =
σ10

σ10 + (1− σ10) eB0t
for 0 ≤ t ≤ T0 (52)

σ1t =
σ1T0∑1

i=0wie
(B0−ρi)(t−T0)

for t > T0 (53)

where the denominator in (52) is an average with weights

wi ≡

πi
ρi
e(B0−ρi)T0

∑1
j=0

πj
ρj
e(B0−ρj)T0

and

σ1T0 =

∑1
i=0

πi
B0

e(B0−ρi)T0
∑1

i=0
πi
ρi
e(B0−ρi)T0

We observe that (34) is a particular case of (53) with T0 = 0.

In case 2 of Proposition (12), since the starting value of the capital share
of the more talented class is below 1 − σ∗10, again the dominant class does
not work initially, only accumulating capital, which until period T2, where
σ0T2 reaches the critical value 1 − ρ (T2) /B0, increases at the maximal ac-
cumulation rate, B0. See (46). As in the previous case, after date T2 the
more talented agents start working and accumulate capital at a lower pace.
However, as, in this case, the more impatient agents are more skilled in accu-
mulating capital, they now accumulate capital until period T1, dividing their
non-leisure time between capital accumulation and work. Note however that
the time they devote to capital accumulation decreases continuously from
period 0 to T1, where u1T1 = 1. After period T1 they stop accumulating cap-
ital, devoting all their non-leisure time to work. As T1 ≤ T2 and until T2 the
other class is accumulating capital at the maximal rate, their capital share
declines steadily until period T1. The evolution in time of the capital shares
of both classes is given below in Lemma 14.

20



Lemma 14. In case 2 of Proposition (12), the shares of human capital at
time t are given by

σ0t = 1− σ1t for any t ≥ 0

σ1t =
σ10

σ10 + (1− σ10)
λ10h10e(B0−B1)t

λ10h10−
∑1
i=0

πi
ρi
(1−e−ρit)

for 0 ≤ t ≤ T1

σ1t =
σ1T1

σ1T1 + (1− σ1T1) e
B0(t−T1)

for T1 ≤ t ≤ T2

σ1t =
σ1T2∑1

i=0wie
(B0−ρi)(t−T2)

for t ≥ T2 (54)

where λ10h10 is given by (37) and the denominator in (54) is an average with
weights

wi ≡

πi
ρi
e(B0−ρi)T2

∑1
j=0

πj
ρj
e(B0−ρj)T2

and

σ1T2 =
λ1T2h1T2e

B0T2

∑1
i=0

πi
ρi
e(B0−ρi)T2

4.2.3 Summarizing interpretation

In this section we considered two classes with different skills, different de-
grees of patience and different initial capital stocks. We assumed, in line
with empirical plausibility, that the more talented class is also more patient.
We showed that in this case we never have an interior solution for working
time of both classes of agents. Moreover, several optimal solutions exist, de-
pending on the initial distribution of human capital and on the level of skills
of the less talented class. If the initial human capital share of the less skilled
individuals is not high enough, they will never accumulate human capital, de-
voting all their non-leisure time to work. If their initial human capital share
is sufficiently high two cases are possible. Either they are not sufficiently
skilled and again they only work, never accumulating human capital, or they
are sufficiently skilled and devote initially some of their non-leisure time to
human capital accumulation. However, the time they devote to human cap-
ital accumulation decreases steadily in time, so that in the long run we find
that, as before, the less talented agents never accumulate human capital. In
contrast, the more talented individuals always accumulate human capital.
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When their initial human capital share exceeds a critical value, these indi-
viduals will also work every period. However, if their initial share of human
capital is not high enough, they will not work initially, devoting all their
non-leisure time to capital accumulation, that grows at the maximal possible
rate. This behavior continues until this critical level of their capital share is
reached. After, they will start working and accumulating capital as in the
previous solution. It is interesting to note two things. First, what matters
for the choice of the optimal solution is the distribution of human capital
and not its level.6 Second, in the long run, independently of the initial con-
ditions and of the level of skills, we always get the same result: less talented
individuals never accumulate capital and the more skilled agents work and
accumulate capital.

4.3 Inequality and growth in the redistribution case

Let us now discuss the trade-off between social inequalities and growth in the
redistribution case with heterogenous skills and discounting. From Lemmas
11, 13, and 14, we obtain immediately the dynamics of the Gini index of
wealth in this case.

Proposition 15 (human wealth inequality). If, without loss of generality,
h0t > h1t, the Gini index of human wealth is given by

ght = π1 − σ1t (55)

The dynamics of wealth inequality are the following.
When σ10 ≤ σ∗10:

ght = π1 −
σ10∑1

i=0wie
(B0−ρi)t

for any t ≥ 0

When σ10 > σ∗10 and B1 ≤ B∗
1:

ght = π1 −
σ10

σ10 + (1− σ10) eB0t
for 0 ≤ t ≤ T0

ght = π1 −
σ1T0∑1

i=0wie
(B0−ρi)(t−T0)

for t > T0

6Remark that the critical share of one class is always equal to one minus the critical
share of the other class.
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When σ10 > σ∗10 and B1 > B∗
1 :

ght = π1 −
σ10

σ10 + (1− σ10)
λ10h10e(B0−B1)t

λ10h10−
∑1

i=0
πi
ρi
(1−e−ρit)

for 0 ≤ t ≤ T1

ght = π1 −
σ1T1

σ1T1 + (1− σ1T1) e
B0(t−T1)

for T1 ≤ t ≤ T2

ght = π1 −
σ1T2∑1

i=0wie
(B0−ρi)(t−T2)

for t ≥ T2

In any case, the optimal Gini index of human wealth inequality increases
over time.

Proposition 16 (consumption inequality). The Gini index of consumption
is given by

gct = π1 −
π1c1t

π0c0t + π1c1t
= π1 −

π1
π1 + π0e(ρ1−ρ0)t

(56)

The Gini index of consumption increases over time from 0 to π1.

The dynamics of the aggregate consumption growth rate are complicated
and depend on the regime considered. For simplicity, we focus on the more
plausible situation. i.e. the case considered in subsection 4.2.1, whose dy-
namics are given Proposition 10. In this case, σ10 ≤ σ∗10 meaning that the
more patient and talented class is relatively well endowed in human capital
at the beginning.

Proposition 17 (consumption growth rate). In the case of Proposition 10,
the dynamics of aggregate consumption and its growth rate are given by

ct = AH10
ρ (0)

σ10

1∑

i=0

πi
B0

e(B0−ρi)t (57)

γct ≡
ċt
ct
=

∑1
i=0 πi (B0 − ρi) e

(B0−ρi)t

∑1
i=0 πie

(B0−ρi)t
(58)

Proposition 16 shows that, in the case of redistribution, the Gini index
of consumption converges to π1 or, equivalently, the consumption share of
the impatient class converges to 0. The same happens in the case of mer-
itocracy (Proposition 5). However, in the case of meritocracy, the growth
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rate of consumption of the impatient class is B1 − ρ1, while, in the case of
redistribution considered in Proposition 17, it is equal to B0 − ρ1. Thus, in
this case of redistribution, the consumption of the impatient class grows at
a higher rate.

We can now obtain the trade-off between inequality and growth.

Proposition 18 (trade-off inequality-growth). The (aggregate) consumption
growth rate γc is a function of the Gini index of consumption gc. More
precisely, the growth rate is an average whose weights depend on the Gini
index:

γc (gc) =
1∑

i=0

(B0 − ρi)wi (gc) (59)

with

wi (gc) ≡
πi
(
π1
π0

π0+gc
π1−gc

)B0−ρi
ρ1−ρ0

∑1
j=0 πj

(
π1
π0

π0+gc
π1−gc

)B0−ρj
ρ1−ρ0

γc (gc) is an increasing function, increasing from γc (0) = B0− (π0ρ0 + π1ρ1)
to γc (π1) = B0 − ρ0. Thus, the higher the social inequality, the higher the
economic growth rate.

This proposition means that inequality promotes growth even in the case
of redistribution. These results are consistent with empirical evidence. Many
advanced economies have experienced increasing (income) inequality since
the 1980s, see Atkinson (1999) and Goldin and Katz (2008). Moreover,
according to Turnovski and Mitra (2013), this recent increase in inequality
is explained by the increasing role of human capital as an engine of growth.7

5 Discussion of the results and further com-

ments

Our first important result is that heterogeneity matters. Without hetero-
geneity, redistribution is not an issue and, therefore, the two policy regimes

7Goldin and Katz (1999, 2001) and Abramovitz and David (2000) find that the contri-
bution of human capital to growth almost doubled during the 20th century in the United
States, while the contribution of physical capital decreased.
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considered are indistinguishable. Also the effect of heterogeneity is much
more pronounced in the case of redistribution. Indeed, in the meritocracy
case the optimal solution for each agent is identical to the Lucas (1988) rep-
resentative agent BGP, whereas with redistribution the optimal solution is
never the BGP. The type of heterogeneity also plays an important role.

Although we did not discuss it previously, it is easy to see that, if we only
had considered heterogeneity in the initial capital endowments, the optimal
solution would converge to the Lucas BGP, being identical in the long run
under both the meritocracy and redistribution regimes. When we introduce
also different degrees of patience, the role of heterogeneity becomes more
important and the optimal solutions of the two regimes are no longer asymp-
totically identical. However, they are both interior in what concerns working
time. Finally, when we also consider heterogeneity in skills, in the redis-
tribution case, the optimal solution for non-leisure time devoted to capital
accumulation is never interior for both agents, being therefore dramatically
different both from the meritocracy and from the representative agent so-
lutions. A second important, although trivial result is that social welfare
under the redistribution regime is always higher than under meritocracy.
Indeed, the ability to redistribute cannot reduce overall welfare since one op-
tion available to the planner is to choose to not redistribute. Since we have
seen that this is not the optimal path, the planner must do strictly better
redistributing.

Together, these two results imply that it is optimal to exploit existing
differences. We conjecture that, provided there is redistribution, welfare is
higher (within mean preserving transformations) when we move from the
representative agent case to an unequal distribution of skills. The proof is
left for further works.

It is also interesting to note that, in the redistribution regime, the dis-
tribution of consumption is not affected by skills heterogeneity. Indeed only
differences in patience, i.e. in preferences, are taken into account by the plan-
ner when she allocates consumption to each agent. However, skills differences
are determinant for the allocation of tasks between agents. We found that, in
the long run, the less talented class never invests in human capital, regardless
of the initial distribution of human capital and of the efficiency of the less
skilled agents in accumulating human capital. Also, whenever the human
capital share of the more skilled class is below a certain critical threshold,
these agents do not supply labor, devoting all their non-leisure time to capi-
tal accumulation at the beginning. We conclude that selection in the access

25



to education and specialization are optimal.
We also find that, in both regimes, the inequality in the distribution of

human capital increases in time. In the meritocracy regime this is due to
differences in skills and in patience, which have therefore permanent effects,
while with redistribution specialization is also an important driver of this
result. Discussing now the relation between inequality and growth we find
that in both regimes, in the long run, inequality promotes growth. It is
easy to see that, within our framework, human capital accumulation is the
channel through which inequality is associated with higher rates of growth.
This happens, even with redistribution, suggesting that although redistribu-
tion increases utility and growth, it does not prevent a deterioration in the
distribution of consumption during the growth process.

6 Concluding remarks

In this paper we extended the Lucas (1988) framework, introducing simulta-
neously heterogeneity in patience, in skills and in initial capital endowments.
We considered two policy regimes: "meritocracy" and "redistribution". Our
main conclusions are the following. First, heterogeneity changes significantly
the optimal solution, specially in the presence of redistribution. Second,
cooperation is always better, i.e. utility under the redistribution regime is
always higher than under meritocracy. We conjecture that welfare is higher
(within mean preserving transformations) when we move from a represen-
tative agent economy to an economy with an unequal distribution of skills.
This means that it is optimal to exploit existing differences. Third, the re-
distribution of consumption only depends on preferences. In contrast, the
distribution of tasks takes into account skills differences. Finally, we find
that inequality is associated with higher rates of growth.

These results are novel, showing that heterogeneity really matters, which
implies of course that the representative agent approach may be misleading.
Another point of our contribution we want to stress, is that heterogeneity,
instead of being considered a problem, should be optimally exploited in order
to increase welfare. However, for this outcome redistribution is essential. In
particular, we found that with redistribution, differences in skills should be
translated into specialization in tasks and in a differential access to education.
Note however that these results were obtained using a very stylized model.
Therefore they should not be seen as policy recommendations. Nevertheless,
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in spite of the simplicity of the framework considered, the message that het-
erogeneity implies choices that are not only radically different from the ones
associated with a representative agent economy, but which also dominate
them in terms of welfare, should still be true in more general settings. Fi-
nally, in this work we have only considered the first best (planner’s solution).
Future work on the decentralized market solution is therefore welcome.

7 Appendix

Proof of Proposition 1. The Hamiltonian writes:

1∑

i=0

πie
−ρit ln (Ahituit) +

1∑

i=0

λithitBi (1− uit)

We have two state variables (hit) and two controls (uit).
We derive the first-order conditions: ∂Ht/∂λit = ḣit, ∂Ht/∂hit = −λ̇it,

∂Ht/∂uit = 0 and the transversality condition limt→∞ (λithit) = 0. The
first-order conditions write

u̇it = (Biuit − ρi)uit (60)

ḣit = Bi (1− uit) hit

jointly with the transversality condition limt→∞ (e
−ρit/uit) = 0.

Focus on the solution of ODE (60).
There are three cases.
(1) If ui0 < ρi/Bi,

uit =
1

Bi

ρi
1 + eρi(ci+t)

with

ci =
1

ρi
ln

(
ρi/Bi
ui0

− 1

)

(2) If ui0 = ρi/Bi,

uit =
ρi
Bi

(3) If ui0 > ρi/Bi,

uit =
1

Bi

ρi
1− eρi(ci+t)

≤ 1 for t ≤ t∗

uit = 1 for t > t∗
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with

ci =
1

ρi
ln

Biui0 − ρi
Bui0

< 0

t∗ ≡
1

ρi
ln

(
1−

ρi
Bi

)
− ci > 0

(1) Focus on the case ui0 < ρi/Bi.
We evaluate the utility along this trajectory:

∫ ∞

0

e−ρit ln (Ahituit) dt =
1

ρi

[
ln (Ahi0ui0) +

Bi
ρi
− 1

]

(2) Consider the second case: ui0 = ρi/Bi.
The economy is at the steady state from the beginning.
We evaluate the utility at the steady state.

∫ ∞

0

e−ρit ln (Ahituit) dt =
1

ρi

[
ln (Ahi0ui0) +

Bi
ρi
− 1

]

Therefore, in the cases (1) and (2), we find:

arg max
ui0≤ρi/Bi

∫ ∞

0

e−ρit ln (Ahituit) dt

= arg max
ui0≤ρi/Bi

1

ρi

[
ln (Ahi0ui0) +

Bi
ρi
− 1

]
=

ρi
Bi

and

max
ui0≤ρi/Bi

∫ ∞

0

e−ρit ln (Ahituit) dt =
1

ρi

[
ln

(
Ahi0

ρi
Bi

)
+

Bi
ρi
− 1

]

(3) Focus on the case ui0 > ρi/Bi.
The solution becomes

uit =
1

Bi

ρi
1− eρi(ci+t)

≤ 1 for t ≤ t∗

uit = 1 for t > t∗

where

ci =
1

ρi
ln

Biui0 − ρi
Bui0

< 0

t∗ ≡
1

ρi
ln

(
1−

ρi
Bi

)
− ci > 0
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We evaluate the utility along this trajectory.

∫ ∞

0

e−ρit ln (Ahituit) dt =

∫ t∗

0

e−ρit ln (Ahituit) dt+

∫ ∞

t∗
e−ρit ln (Ahit∗) dt

=
1

ρi

[
1− ui0
ui0

+ ln (Ahi0ui0)

]

Let us maximize
∫ ∞

0

e−ρit ln (Ahituit) dt =
1

ρi

[
1− ui0
ui0

+ ln (Ahi0ui0)

]

with respect to ui0. Notice that

d

dui0

[
ln (Ahi0ui0) +

1− ui0
ui0

]
=
1

ui0
−
1

u2i0
< 0

for ui0 ∈ [ρi/Bi, 1). Then,
∫∞
0

e−ρit ln (Ahituit) dt decreases in [ρi/Bi, 1) and
attains its maximum at u∗i0 = ρi/Bi.

The value at u∗i0 = ρi/Bi is

∫ ∞

0

e−ρit ln (Ahituit) dt =
1

ρi

(
ln

Ahi0ρi
Bi

+
Bi
ρi
− 1

)

We conclude that u∗i0 = ρi/Bi maximizes the utility whatever the case we
consider. Since u∗i0 = ρi/Bi is also the steady state, we find that the BGP
(9) is the planner’s solution.

Proof of Proposition 2. Under the assumption h0t > h1t, the Gini index of
wealth is given by:

ght =
π0h0t+π1h1t

2
−
(
π1π1h1t

2
+ π0π1h1t +

π0π0h0t
2

)

π0h0t+π1h1t
2

that is by (10).

Proof of Proposition 3. In order to compute the dynamics of the wealth Gini
index, we consider the optimal individual wealth dynamics (9): hit = hi0e

(Bi−ρi)t.
Under Assumption 4, B0 − ρ0 > B1 − ρ1. There are two cases: (1)

h00 > h10 and (2) h00 < h10.
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(1) In the first case, h0t > h1t for every t and, then,

ght = π1 −
π1h10e

(B1−ρ1)t

π0h00e(B0−ρ0)t + π1h10e(B1−ρ1)t

that is (11). It is easy to check that ght increases in time.
(2) In the second case, h00 < h10. Beyond the critical date Th, the

dominant consumer earns the higher revenue. Hence, Th is solution of h0T =
h1T , that is of h00e

(B0−ρ0)T = h10e
(B1−ρ1)T . We get (12).

Therefore, the Gini index of wealth is given by

ght = π0 −
π0h0t

π0h0t + π1h1t
for t ≤ Th

ght = π1 −
π1h1t

π0h0t + π1h1t
for t > Th

Replacing the expressions hit = hi0e
(Bi−ρi)t, we obtain (13) and (14).

Proof of Proposition 5. Under the assumption c0t > c1t, the Gini index of
consumption is given by:

gct =
π0c0t+π1c1t

2
−
(
π1π1c1t

2
+ π0π1c1t +

π0π0c0t
2

)

π0c0t+π1c1t
2

that is by (15).
In order to compute the dynamics of the consumption Gini index, we con-

sider the individual income dynamics: cit = Ahituit = Ahi0ρie
(Bi−ρi)t/Bi =

ci0e
(Bi−ρi)t.
Under Assumption 4, B0−ρ0 > B1−ρ1. There are two cases: (1) c00 > c10

and (2) c00 < c10.
(1) In the first case, c0t > c1t for every t and, then,

gct = π1 −
π1c10e

(B1−ρ1)t

π0c00e(B0−ρ0)t + π1c10e(B1−ρ1)t

that is (16). It is easy to check that gct increases in time.
(2) In the second case, c00 < c10. Beyond the critical date Tc, the domi-

nant consumer earns the higher revenue. Hence, Tc is solution of c0T = c1T ,
that is of c00e

(B0−ρ0)T = c10e
(B1−ρ1)T . We get (17).
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Therefore, the Gini index is given by

gct = π0 −
π0c0t

π0c0t + π1c1t
for t ≤ Tc

gct = π1 −
π1c1t

π0c0t + π1c1t
for t > Tc

Replacing the expressions cit = ci0e
(Bi−ρi)t, we obtain (18) and (19).

Proof of Proposition 6. The aggregate consumption growth rate is given by

γt ≡
ċt
ct
=

[∑1
i=0 πici0e

(Bi−ρi)t
]′

∑1
i=0 πici0e

(Bi−ρi)t
=

∑1
i=0 πici0 (Bi − ρi) e

(Bi−ρi)t

∑1
i=0 πici0e

(Bi−ρi)t

that is by (20).

Proof of Proposition 7. Focus on case (1): c00 > c10. From (16), we find

e−δt =
π0c00
π1c10

π1 − gt
π0 + gt

Replacing this in (20), we obtain the trade-off (21) between inequality
and growth.

Focus on case (2): c00 < c10. In the case t ≤ T , we have

e−δt =
π0c00
π1c10

π1 + gt
π0 − gt

Replacing this in (20), we find the trade-off between the inequality and
growth (22). Similarly, we obtain (23).

Proof of Proposition 8. In this case B0 = B1 = B, and 0 < ρ0 < ρ1. By
supposing that we have interior solution, the Hamiltonian writes:

Ht =

(
1∑

i=0

πie
−ρit

)

ln
1∑

i=0

πihituit +B
1∑

i=0

λit (1− uit) hit

Since hit maximizes Ht, ∂Ht/∂uit = 0, which implies:

Bλit = πi

∑1
j=0 πje

−ρjt

∑1
j=0 πjhjtujt

(61)
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Replacing (61) in ∂Ht/∂hit = −λ̇it, we find

−λ̇it = λitBuit + λitB (1− uit) = Bλit

Which implies λit = λi0e
−Bt. We have also for any t,

λ0t
λ1t

=
Bλ0t
Bλ1t

=
π0
π1

Define
φ =

π0
λ00

=
π1
λ10

From (61), we get
1∑

i=0

πihituit =
φ

B

1∑

i=0

πie
(B−ρi)t

Define Ht ≡
∑1

i=0Hit =
∑1

i=0 πihit. We have

Ḣt =
1∑

i=0

πtḣit =
1∑

i=0

πiBhit (1− uit) = BHt − φ
1∑

i=0

πie
(B−ρi)t

Define

zt = Ht − φ
1∑

i=0

πi
ρi

e(B−ρi)t

We get

żt = Ḣt − φ
1∑

i=0

πi
ρi
(B − ρi)e

(B−ρi)t

= BHt − φ
1∑

i=0

πte
(B−ρi)t − φ

1∑

i=0

πi
ρi
(B − ρi)e

(B−ρi)t

= Bzt

This implies zt = z0e
Bt and

Ht = z0e
Bt + φ

1∑

i=0

πi
ρi

e(B−ρi)t
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From the tranversality condition, we have

lim
t→∞

(λithit) =
λi0
πi
lim
t→∞

(
e−Btπihit

)
= 0

Then, limt→∞
(
e−Btπihit

)
= 0 and

0 = lim
t→∞

(

e−Bt
1∑

i=0

πihit

)

= lim
t→∞

(
e−BtHt

)
= lim

t→∞

(

z0 + φ
1∑

i=0

πi
ρi

e−ρit

)

= z0

which implies zt = 0 for any t. Thus,

1∑

i=0

πihit = Ht = φ
1∑

i=0

πi
ρi

e(B−ρi)t (62)

We can guess that the solution must satisfies, for i = 0, 1, equation (26)
where ζ0 and ζ1 satisfy

∑1
i=0 πiζ i = 1. We observe that ζi in (27) satisfies

this condition.
We can also guess that

hituit =
φ

B
ζi

1∑

j=0

πje(
B−ρj)t (63)

We observe that (63) satisfies (26).
This is equivalent to

uit =
φ
B
ζi
∑1

j=0 πje
(B−ρj)t

φζi
∑1

j=0
πj
ρj
e(B−ρj)t

that is (26).
We can now construct the solution. Considering (62) with t = 0, we get

φ in (26).
Considering (63) with t = 0, we get

ζi =
hi0

φ
∑1

i=0 πj/ρj

that is ζi in (26). We observe that
∑1

i=0 πiζi = 1.
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Define λi0 = πi/φ yielding λit = e−Btπi/φ.
Observe that 0 < uit < 1 and ḣit = Bhit −Bhituit = Bhit(1− uit).
We can verify easily that (hit, uit, λit) satisfies Pontryagin conditions.

Observe that in this case (B0 = B1 = B), we have u0t = u1t = ut, which
converges to ρ0/B. The total human capital stock Ht =

∑1
i=0 πihit, satisfies

Ḣt = BHt(1− ut).

Proof of Lemma 9. Suppose the contrary: there exists t such that, for every
i, 0 < uit < 1. This implies the existence of t1 < t2 such that 0 < uit < 1 for
every t1 < t < t2. On the interval (t1, t2) the Hamiltonian writes:

Ht =

(
1∑

i=0

πie
−ρit

)

ln
1∑

i=0

πihituit +
1∑

i=0

λitBi (1− uit)hit

For every t1 < t < t2, we have ∂Ht/∂uit = 0, ∂Ht/∂λit = ḣit and
∂Ht/∂hit = −λ̇it. The first equation implies that, for every i:

Biλit = πi

∑1
j=0 πje

−ρjt

∑1
j=0 πjhjtujt

(64)

Replacing (64) in ∂Ht/∂hit = −λ̇it, we find

−λ̇it = λitBiuit + λitBi (1− uit) = λitBi

Integrating from t1 to t, we obtain λit = λit1e
−Bi(t−t1) for any t1 < t <

t2. From (64), we have also B0λ0t/ (B1λ1t) = π0/π1. This implies that
e−(B0−B1)(t−t1) = π0B1λ1t1/ (π1B0λ0t1) for any t1 < t < t2. This leads to a
contradiction with B0 �= B1 since, in this case, the left-hand side changes
over time.

Proof of Proposition 10. The Hamiltonian writes

Ht =

(
1∑

i=0

πie
−ρit

)

ln
1∑

i=0

πihituit +
1∑

i=0

λitBi (1− uit)hit

Lemma 9 allows us to focus on a candidate solution which is a corner
solution for one agent: there exists T ≥ 0 such that

0 < u0t < 1 and u1t = 1 (65)
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for every t ≥ T . We will show that T = 0 and the Pontryagin’s optimal
conditions are satisfied.

If (65) is solution, we have

∂Ht

∂u0t

∣∣∣∣
0<u0t<1

= π0h0t

∑1
i=0 πie

−ρit

∑1
i=0 πihituit

−B0λ0th0t = 0 (66)

∂Ht

∂u1t

∣∣∣∣
u1t=1

= π1h1t

∑1
i=0 πie

−ρit

∑1
i=0 πihituit

−B1λ1th1t ≥ 0 (67)

Therefore,

B0λ0t = π0

∑1
i=0 πie

−ρit

∑1
i=0 πihituit

(68)

0 < u0t < 1 implies

λ̇0t = −
∂Ht

∂h0t
= −π0u0t

∑1
i=0 πie

−ρit

∑1
i=0 πihituit

−B0λ0t (1− u0t) = −B0λ0t (69)

(69) entails
λ0t = λ0Te

−B0(t−T ) (70)

for any t ≥ T .
u1t = 1 implies

λ̇1t = −
∂Ht

∂h1t
= −π1u1t

∑1
i=0 πie

−ρit

∑1
i=0 πihituit

−B1λ1t (1− u1t) = −
π1
π0

B0λ0t

Moreover,

λ̇1t = −
π1
π0

B0λ0t =
π1
π0

λ̇0t

that is

λ1t =
π1
π0
(λ0t − λ0T ) + λ1T =

π1
π0

λ0Te
−B0(t−T ) + λ1T −

π1
π0

λ0T (71)

A candidate solution satisfies the transversality condition, that is

lim
t→∞

(λ1th1t) = lim
t→∞

[
π1
π0

λ0Te
−B0(t−T )h1t

]
+ lim
t→∞

[(
λ1T −

π1
π0

λ0T

)
h1t

]
= 0
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which holds only if λ1T − λ0Tπ1/π0 = 0. According to (71), we find

λ1t =
π1
π0

λ0t

Replacing (70) in equation (68), we get

1∑

i=0

πihituit =
π0

B0λ0TeB0T

1∑

i=0

πie
(B0−ρi)t

and, noticing that u1t = 1 and h1t = h1T for every t ≥ T , we obtain

h0tu0t =
1

B0λ0TeB0T

1∑

i=0

πie
(B0−ρi)t −

π1
π0

h1T (72)

Therefore,

ḣ0t = B0h0t −B0u0th0t = B0h0t +B0
π1
π0

h1T −

∑1
i=0 πie

(B0−ρi)t

λ0TeB0T

This differential equation is equivalent to żt = B0zt, where

zt ≡ h0t +
π1
π0

h1T −

∑1
i=0

πi
ρi
e(B0−ρi)t

λ0TeB0T

The solution of żt = B0zt is zt = zTe
B0(t−T ) for t ≥ T . Thus

h0t = zTe
B0(t−T ) −

π1
π0

h1T +

∑1
i=0

πi
ρi
e(B0−ρi)t

λ0TeB0T
(73)

A candidate solution satisfies the transversality condition, that is, accord-
ing to (70),

lim
t→∞

(λ0th0t) = lim
t→∞

(λ0TzT ) + lim
t→∞

(

λ0t

[∑1
i=0

πi
ρi
e(B0−ρi)t

λ0TeB0T
−

π1
π0

h1T

])

= 0

which holds only if zT = 0, that is only if

π1h1T + π0h0T = π0

∑1
i=0

πi
ρi
e(B0−ρi)T

λ0TeB0T
=

π0
λ0T

1∑

i=0

πi
ρi

e−ρiT (74)
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(68) and (74) imply

B0
ρ (T )

=
π0h0T + π1h1T

π1h1T + π0h0Tu0T
(75)

where ρ (T ) is given by (28).
We compute u0T from (75) and we impose the economic restriction 0 ≤

u0T ≤ 1 or, equivalently,

1 ≤
B0

ρ (T )
≤

1

σ1T
(76)

(0 ≤ u0T is equivalent to the RHS, while u0T ≤ 1 to the LHS).
Inequality in the LHS of (76) is satisfied by Assumption 5: B0 > ρ1 >

ρ (T ).
Thus, the candidate solution holds for every t ≥ 0 only if the RHS holds

at T = 0. It is the case because (76) with T = 0 is equivalent to the initial
condition σ10 ≤ σ∗10.

Let us now provide the explicit trajectory for hit and uit and show that
the optimal conditions are verified.

From (75) with T = 0, we have

u00 =
ρ (0)

B0
−

[
1−

ρ (0)

B0

]
H10

H00

As seen above, 0 ≤ u00 ≤ 1 under Assumption 5 and inequality σ10 ≤
ρ (0) /B0.

From (68) and (74) with T = 0, we find λ00.
Moreover, (73) with zT = 0 and T = 0 implies

h0t =
1

λ00

1∑

i=0

πi
ρi

e(B0−ρi)t −
π1
π0

h10 (77)

Replacing (77) in (72) with T = 0 and solving for u0t, we get (31).
Let us show that

λ0t =
π0e

−B0t

H00 +H10

1∑

i=0

πi
ρi

(78)

λ1t =
π1
π0

λ0t (79)
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and (32) to (31) satisfy the Maximum Principle by Pontryagin.
First, replacing (78), (30) and (31) in (66), we find

∂Ht

∂u0t

∣∣∣∣
0<u0t<1

= 0

Assumption 5 (B0 > B1) implies

B1λ1t < B0λ1t = B0λ0t
π1
π0
=

π1
∑1

i=0 πie
−ρit

π0h0tu0t + π1h10

and, so, according to (67), also

∂Ht

∂u1t

∣∣∣∣
u1t=1

≥ 0

Moreover,

λ̇0t = −λ0tB0 = −
∂Ht

∂h0t

λ̇1t = −
π1
∑

i πie
−ρit

π1h10 + π0h0tu0t
= −

π1
π0

λ0tB0 = −
∂Ht

∂h1t

Finally, we check the transversality conditions. Since

lim
t→∞

(λithit) = lim
t→∞

(
λi0e

−Bithit
)
= λi0 lim

t→∞

(
e−Bithit

)

= λi0 lim
t→∞

[
e−Bithi0e

∫ t
0 Bi(1−uis)ds

]
= λi0e

−Bi
∫
∞

0 uisds

the transversality conditions are equivalent to
∫∞
0

uisds = ∞. These equal-
ities are satisfied because limt→∞ u0t = ρ0/B0 > 0 and u1t = 1 for every t.

Proof of Proposition 12. (1) Focus first on the case B1 ≤ B∗
1 .

Lemma 9 allows us to focus on a candidate solution which is a corner
solution for one agent. We prove the first subcase by considering a potential
solution such that

u0t = 0 for 0 ≤ t ≤ T

0 < u0t < 1 for t > T (80)

u1t = 1 for any t
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by deriving its explicit trajectory and checking that this trajectory satisfies
the Pontryagin’s Maximum Principle.

According to the Maximum Principle, we need

∂Ht

∂u0t

∣∣∣∣
u0t=0

= π0h0t

∑1
i=0 πie

−ρit

∑1
i=0 πihituit

−B0λ0th0t ≤ 0 (81)

∂Ht

∂u1t

∣∣∣∣
u1t=1

= π1h1t

∑1
i=0 πie

−ρit

∑1
i=0 πihituit

−B1λ1th1t ≥ 0 (82)

for any t ∈ [0, T ], that is

B0λ0t ≥
π0
π1

∑1
i=0 πie

−ρit

h10
and B1λ1t ≤

∑1
i=0 πie

−ρit

h10

Moreover, for any t ∈ [0, T ],

λ̇0t = −
∂Ht

∂h0t
= −π0u0t

∑1
i=0 πie

−ρit

∑1
i=0 πihituit

−B0λ0t (1− u0t)

λ̇1t = −
∂Ht

∂h1t
= −π1u1t

∑1
i=0 πie

−ρit

∑1
i=0 πihituit

−B1λ1t (1− u1t)

that is

λ̇0t = −B0λ0t and λ̇1t = −

∑1
i=0 πie

−ρit

h10

with solutions

λ0t = λ00e
−B0t and λ1t = λ10 −

1

h10

1∑

i=0

πi
ρi

(
1− e−tρi

)

If t > T , according to the Maximum Principle, we require

∂Ht

∂u0t

∣∣∣∣
0<u0t<1

= π0h0t

∑1
i=0 πie

−ρit

∑1
i=0 πihituit

−B0λ0th0t = 0

that is

B0λ0t = π0

∑1
i=0 πie

−ρit

∑1
i=0 πihituit

(83)
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which implies in turn

λ̇0t = −u0t

(

π0

∑1
i=0 πie

−ρit

∑1
i=0 πihituit

)

−B0λ0t (1− u0t) = −B0λ0t

with explicit solution λ0t = λ00e
−B1t. Thus, this trajectory holds for every t.

If 0 ≤ t ≤ T , we obtain ḣ0t = B0h0t from ḣ0t = B0 (1− u0t) h0t, that is
h0t = h00e

B0t.
If t ≥ T , (83) and u1t = 1 entail

λ̇1t = −π1u1t

∑1
i=0 πie

−ρit

∑1
i=0 πihituit

−B1λ1t (1− u1t) = −
π1
π0

B0λ0t =
π1
π0

λ̇0t

and

λ1t =
π1
π0
(λ0t − λ0T ) + λ1T =

π1
π0

λ0Te
−B0(t−T ) + λ1T −

π1
π0

λ0T (84)

According to the Maximum Principle, a candidate trajectory satisfies also
the transversality condition:

lim
t→∞

(λ1th1t) = lim
t→∞

[
π1
π0

λ0Te
−B0(t−T )h1t

]
+ lim
t→∞

[(
λ1T −

π1
π2

λ2T

)
h1t

]
= 0

which holds only if λ1T − λ0Tπ1/π0 = 0. Therefore, (84) implies λ1t =
λ0tπ1/π0, for any t ≥ T . In particular, we get λ1T = λ0Tπ1/π0. Replacing
λ0t = λ00e

−B0t in equation (83), we get

1∑

i=0

πihituit =
π0
∑1

i=0 πie
−ρit

B0λ00e−B0t
=

π0
∑1

i=0 πie
(B0−ρi)t

B0λ0TeB0T

and, noticing that u1t = 1 and h1t = h1T for every t ≥ T , we obtain

h0tu0t =

∑1
i=0 πie

(B0−ρi)t

B0λ0TeB0T
−

π1
π0

h1T

Therefore, for t ≥ T ,

ḣ0t = B0h0t −B0h0tu0t = B0h0t +B0
π1
π0

h1T −

∑1
i=0 πie

(B0−ρi)t

λ0TeB0T
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or, equivalently, żt = B0zt with

zt ≡ h0t +
π1
π0

h1T −

∑1
i=0

πi
ρi
e(B0−ρi)t

λ0TeB0T

whose solution is zt = zTe
B0(t−T ). Thus,

h0t = zTe
B0(t−T ) −

π1
π0

h1T +

∑1
i=0

πi
ρi
e(B0−ρi)t

λ0TeB0T

for t ≥ T .
As above, a candidate solution satisfies also the transversality condition:

lim
t→∞

(λ0th0t) = lim
t→∞

(λ0TzT ) + lim
t→∞

(

λ0t

[∑1
i=0

πi
ρi
e(B0−ρi)t

λ0TeB0T
−

π1
π0

h1T

])

= 0

which holds only if zT = 0 or, equivalently,

π1h1T + π0h0T = π0

∑1
i=0

πi
ρi
e(B0−ρi)T

λ0TeB0T
=

π0
λ0T

1∑

i=0

πi
ρi

e−ρiT (85)

(83) and (85) imply

B0
ρ (T )

=
π0h0T + π1h1T

π0h0Tu0T + π1h1T
(86)

Since u0T = 0, h1T = h10, h0T = h00e
B0T and Hi0 ≡ πihi0, (86) is equivalent

to (35).
The critical time T of the candidate trajectory (80) is precisely the so-

lution T0 of equation (35). This solution exists and is positive. Indeed, we
know that ρ (T ) ∈ [ρ0, ρ (0)], a bounded interval. Moreover, (35) is equiv-
alent to eB0TH00/H10 = B0/ρ (T ) − 1, whose RHS is positive according to
Assumption 5 (B0 > ρ1 > ρ (T )) and bounded from above. The LHS goes
from H00/H10 to ∞. If H00/H10 < B0/max ρ (T ) − 1 = B0/ρ (0) − 1, then
a solution T0 exists. But this inequality is precisely equivalent to inequality
σ10 > σ∗10, precisely the case we are considering in Proposition (12).

From (85), we get

λ0T0 =
π0
∑1

i=0
πi
ρi
e−ρiT0

H00eB0T0 +H10
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and, from (35),

λ0T0 =
π0
∑1

i=0 πie
−ρiT0

B0H10

(87)

We want to prove that the trajectory defined by equations

λ0t = λ0T0e
B0(T0−t) for any t (88)

λ1t =
π1
π0

λ0T0 +
1

h10

1∑

i=0

πi
ρi

(
e−ρit − e−ρiT0

)
for 0 ≤ t ≤ T0 (89)

λ1t =
π1
π0

λ0T0e
B0(T0−t) for t > T0 (90)

and (44) to (43) satisfies the Pontryagin’s Maximum Principle.
It is easy to check that λ0t and λ1t are differentiable functions with respect

to t in [0,+∞) with λ̇it = −∂Ht/∂hit and that, for any t, we have ḣ0t =
B0 (1− u0t)h0t.

Let us show that u0t and u1t maximize the Hamiltonian. For t > T0,
apply the proof of Proposition 10. Focus now on 0 ≤ t ≤ T0.

We want to prove that ∂Ht/∂u0t|u0t=0 ≤ 0.

Since
∑1

i=0 πie
(B0−ρi)t is strictly increasing and

B0

∑1
i=0

πi
ρi
e(B0−ρi)T0

1 + eB0T0H00/H10
=

1∑

i=0

πie
(B0−ρi)T0

then, for any t ∈ [0, T0], we have

B0
∑1

i=0
πi
ρi
e(B0−ρi)T0

1 + eB0T0H00/H10

≥
1∑

i=0

πie
(B0−ρi)T0

or, equivalently,

B0λ0t = B0λ0T0e
B0(T0−t) ≥ π0

∑1
i=0 πie

−ρit

∑1
i=0 πihituit

because u0t = 0 for 0 ≤ t ≤ T0 and u1t = 1 for any t. Then, (81) is verified.
This means that u0t = 0 maximizes the Hamiltonian.

We want to prove that ∂Ht/∂u1t|u1t=1 ≥ 0.
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(39) is equivalent to

1∑

i=0

(
1

ρi
−
1

B1

)
πie

−ρi0 ≤
1∑

i=0

(
1

ρi
−
1

B0

)
πie

−ρiT0

which implies

1∑

i=0

(
1

ρi
−
1

B1

)
πie

−ρit ≤
1∑

i=0

(
1

ρi
−
1

B0

)
πie

−ρiT0 (91)

for any t ∈ [0, T0], because the LHS of (91), under Assumption 5, is a de-
creasing function of t. By definition of T0,

1∑

i=0

(
1

ρi
−
1

B0

)
πie

−ρiT0 =
1

B0

H00

H10

1∑

i=0

πie
(B0−ρi)T0

Inequality (91) becomes

1∑

i=0

(
1

ρi
−
1

B1

)
πie

−ρit ≤
1

B0

H00

H10

1∑

i=0

πie
(B0−ρi)T0 =

1∑

i=0

(
1

ρi
−
1

B0

)
πie

−ρiT0

(92)
for any t ∈ [0, T0]. (89) and (87) imply

1∑

i=0

(
1

ρi
−
1

B0

)
πie

−ρiT0 =
1∑

i=0

πi
ρi

e−ρit − λ1th10

Therefore, (92) becomes

B1λ1t ≤

∑1
i=0 πie

−ρit

h10
= π1

∑1
i=0 πie

−ρit

∑1
i=0 πihituit

(because u0t = 0 for 0 ≤ t ≤ T0 and u1t = 1 for any t), that is, accord-
ing to (82), ∂Ht/∂u1t|u1t=1 ≥ 0. This means that u1t = 1 maximizes the
Hamiltonian.

(2) Focus now on the case B1 > B∗
1 .

Lemma 9 allows us to focus on a candidate solution which is corner solu-
tion for one agent. We prove the second subcase by considering a potential
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solution such that

u0t = 0 for 0 ≤ t ≤ T2

0 < u0t < 1 for t > T2

0 < u1t < 1 for 0 ≤ t < T1

u1t = 1 for t ≥ T1

with T1 < T2, by deriving its explicit trajectory and checking that this tra-
jectory satisfies the Pontryagin’s Maximum Principle.

Applying the arguments of point (2.1) to determine T0 (namely, the
transversality condition), we find T2 as solution of

B0
ρ (T2)

= 1 +
H0T2

H1T2

= 1 +
H00

H10

eB0T2

eB1T1
[
1 + 1

λ10h10

∑1
i=0

πi
ρi
(e−ρiT1 − 1)

]

that is of (36).
For 0 ≤ t ≤ T1 we have

∂Ht

∂u1t

∣∣∣∣
0<u1t<1

= π1h1t

∑1
i=0 πie

−ρit

∑1
i=0 πihituit

−B1λ1th1t = 0

that is

B1λ1t =

∑1
i=0 πie

−ρit

h1tu1t
(93)

since u0t = 0 and 0 < u1t < 1 (because T1 < T2).
Moreover, using (93), we find

λ̇1t = −
∂Ht

∂h1t
= −π1u1t

∑1
i=0 πie

−ρit

∑1
i=0 πihituit

−B1λ1t (1− u1t) = −B1λ1t

Therefore, for 0 ≤ t ≤ T1, λ1t = λ10e
−B1t and, from (93),

h1tu1t =

∑1
i=0 πie

−ρit

B1λ1t
=

1

B1λ10

1∑

i=0

πie
(B1−ρi)t (94)
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The law of motion ḣ1t = B1 (1− u1t)h1t and (94) imply

ḣ1t = B1h1t −
1

λ10

1∑

i=0

πie
(B1−ρi)t (95)

We define

zt ≡ h1t −
1

λ10

1∑

i=0

πi
ρi

e(B1−ρi)t (96)

Using (95), it is easy to verify that żt = B1zt. Thus, zt = z1e
B1t. From

(96), we obtain

h1t = z1e
B1t +

1

λ10

1∑

i=0

πi
ρi

e(B1−ρi)t with z1 = h10 −
1

λ10

1∑

i=0

πi
ρi

(97)

(95) and (97) imply ḣ1t = eB1tφ (t) where

φ (t) ≡ B1h10 −
1

λ10

1∑

i=0

πi

[
B1
ρi
+

(
1−

B1
ρi

)
e−ρit

]

Assume that
1

B1h10
< λ10 <

1

h10

1∑

i=0

πi
ρi

Therefore,

φ (0) = B1h10 −
1

λ10
> 0 > B1h10 −

B1
λ10

1∑

i=0

πi
ρi
= φ (∞)

Thus, φ (t) = 0 (that is ḣ1t = 0) has solution. Let T1 > 0 be the smallest
solution. This solution depends on λ10. φ (T1) = 0 is equivalent to (37).
Function T1 (λ10) behaves as follows.

λ10 →
1

B1h10
⇔ T1 (λ10)→ 0

λ10 →
1

h10

1∑

i=0

πi
ρi
⇔ T1 (λ10)→∞
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There exists a constant C such that h1t < CeB1t for any t ≥ 0. Hence for
T1 big enough we have

h0T1
h1T1

>
eB0T1

CeB1T1
=

e(B0−B1)T1

C
>

π1
π0

[
B0

ρ (T1)
− 1

]

or, equivalently, B0/ρ (T1) < 1 +H0T1/H1T1. Since B0/ρ (0) > 1 +H00/H10,

there exists λ̂ such that for T1 = T1

(
λ̂
)
:

B0
ρ (T1)

= 1 +
H0T1

H1T1

We observe that T1 (λ10) < T2 (λ10) for 1/ (B1h10) < λ10 < λ̂. Differenti-
ating φ (t) = 0 with respect to t and λ10, we find at t = T2:

T ′1 (λ10) =
B1h10/

∑1
j=0 πje

−ρjT1

B1 −
∑1

i=0 ρi
πie−ρiT1∑1
j=0 πje

−ρjT1

> 0

Moreover, T1(λ̂) = T2(λ̂).
Therefore,

λ̇1t = −
∂Ht

∂h1t
= −π1u1t

∑1
i=0 πie

−ρit

∑1
i=0 πihituit

−B1λ1t (1− u1t) = −

∑1
i=0 πie

−ρit

h1T1
(98)

At t = T1, we have ∂Ht/∂u1t = 0, that is

λ1T1 =

∑1
i=0 πie

−ρiT1

B1h1T1
(99)

Integrating (98) from T1 to t ≤ T2, we get

λ1t = λ1T1 +
1

h1T1

1∑

i=0

πi
ρi

(
e−ρit − e−ρiT1

)

Replacing (99), we obtain

λ1t =
1

h1T1

1∑

i=0

πi
ρi

[
e−ρit +

(
ρi
B1
− 1

)
e−ρiT1

]
for T1 ≤ t ≤ T2 (100)
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and, in particular, (51).
At time T2, the optimal solution satisfies ∂Ht/∂u0t = 0 or, equivalently,

B0λ0t = π0

∑1
i=0 πie

−ρit

∑1
i=0 πihituit

(101)

that is

λ0T2 =
π0

B0H1T1

1∑

i=0

πie
−ρiT2 (102)

Using (101), we find

λ̇1t = −
∂Ht

∂h1t
= −π1u1t

∑1
i=0 πie

−ρit

∑1
i=0 πihituit

−B1λ1t (1− u1t) = −
π1
π0

B0λ0t =
π1
π0

λ̇0t

Integrating (98) from T1 to t ≤ T2, we get

λ1t =
π1
π0
(λ0t − λ0T1) + λ1T1 =

π1
π0

λ0T1e
−B0(t−T1) + λ1T1 −

π1
π0

λ0T1

A candidate solution satisfies the transversality condition, that is

lim
t→∞

(λ1th1t) = lim
t→∞

[
π1
π0

λ0T1e
−B0(t−T1)h1t

]
+ lim
t→∞

[(
λ1T1 −

π1
π0

λ0T1

)
h1t

]
= 0

which holds only if λ1T1 − λ0T1π1/π0 = 0. This implies λ1t = λ0tπ1/π0. In
particular, at the point T2 > T1, we have λ1T2 = λ0T2π1/π0 and, according to
(102),

λ1T2 =
π1
π0

λ0T2 =
1

B0h1T1

1∑

i=0

πie
−ρiT2

Using (51), we obtain (38). To conclude, we must prove that there exists
λ10 with

1

h10

1∑

i=0

πi
ρi

< λ10 < λ̂

such that the equation (38) is verified. Indeed, for

λ10 =
1

h10

1∑

i=0

πi
ρi
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we have T1 (λ10) = 0 and T2 (λ10) = T0 and, so,

f (λ10) ≡

1
ρ(T0)

− 1
B0

1
ρ(0)

− 1
B1

−
1

∑1
i=0 πie

−ρiT0
< 0

because of (??). For λ = λ̂, we have T1 (λ10) = T2 (λ10) and, so,

f (λ10) ≡

1
ρ(T1(λ10))

− 1
B0

1
ρ(T1(λ10))

− 1
B1

− 1 > 0

since B0 > B1. f is a continuous function. Then, there exists λ10 such that
f (λ10) = 0, that is (38) is satisfied.

Finally, we can construct the explicit solution with λ10 solution of (38).
We have λ0t = λ00e

−B0t for any t with λ00 = λ1T2e
B0T2π0/π1. Moreover,

h0t = h00e
B0t for 0 ≤ t ≤ T2, while for t ≥ T2, we obtain (47) similarly to

(41). We have also u0t = 0 for 0 ≤ t ≤ T2, while, for t ≥ T2, we obtain (48)
similarly to (43).

For 0 ≤ t ≤ T1, from (94) and (97), we obtain (50). We observe that
h1t = h1T1 for t ≥ T1.

For 0 ≤ t ≤ T1, it is easy to see that λ1t = λ10e
−B0t, while, for T1 ≤ t ≤ T2,

λ1t is given by (100). For t ≥ T2, we find λ1t = λ1T2e
−B0(t−T2).

Proof of Proposition 15. Under the assumption h0 > h1, the Gini index of
wealth is given by:

ght =
π0h0t+π1h1t

2
−
(
π1π1h1t

2
+ π0π1h1t +

π0π0h0t
2

)

π0h0t+π1h1t
2

that is by

ght = π1 −
π1h1t

π0h0t + π1h1t
= π1 −

H1t

H0t +H1t

or, equivalently, by (55).

Proof of Proposition 16. According to (25), ρ0 < ρ1 implies c0t > c1t. Thus,
the Gini index of consumption is given by

gct = π1 −
π1c1t

π0c0t + π1c1t
(103)

Replacing (25) in (103) we get (56).
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Proof of Proposition 17. Focus on Proposition 10. According to (25), we
obtain the aggregate consumption:

ct =
1∑

i=0

πiAe−ρit
∑1

j=0 πjhjtujt∑1
j=0 πje

−ρjt
= A (π0h0tu0t + π1h1tu1t)

and, so, replacing expressions (30) to (33), we find (57). Computing the time
derivative of (57), we obtain the aggregate consumption growth rate (58).

Proof of Proposition 18. From equation (56), we find

e(B0−ρi)t =

(
π1
π0

π0 + gct
π1 − gct

)B0−ρi
ρ1−ρ0

(104)

Replacing (104) in (58) we find (59). Finally, it is easy to show that γc is an
increasing function of gc.
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