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Abstract

We show that task-biased technological change is an important driver of the rise in
between-establishment wage inequality in Germany. Using rich administrative social
security data, we document that, within industries, establishments have become more
heterogeneous in terms of their labor productivity, the share of abstract task workers
that they hire, and the wages that they pay to workers in a given task. Moreover, within
industries, more productive workplaces experience larger employment growth, larger
increases in their abstract task share, and larger wage growth for both abstract and
routine workers. We show that, within the context of a heterogeneous firm framework
where firms differ in their technology of production, an aggregate task-biased shock
is able to generate these patterns. In line with the predictions of the model, we find
that industries with more ICT and robot adoption have experienced larger increases in
worker sorting and between-establishment wage inequality within tasks.
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1 Introduction

Income inequality has risen dramatically over the past decades in most developed countries.

Recent evidence has shown that a major part of this rise in inequality can be attributed

to increasing differences in wages paid by different employers to workers who are similar in

terms of their observable characteristics (Card et al., 2013; Song et al., 2018; Barth et al.,

2016; Helpman et al., 2017). These findings imply that it is crucial to understand the role of

firms in driving the increase in wage inequality. But why have firm-level wages become more

unequal? In this paper we show that task-biased technological change is an important driver

of the increase in wage inequality between establishments within industries in Germany.

The pioneering work of Autor et al. (2003) discusses how progress in terms of automation

and digitization technologies can substitute for labor in specific occupations, namely those

that are intensive in routine, easily codifiable tasks. An extensive subsequent literature has

documented the decline of these types of occupations in many developed countries (Autor

et al., 2006; Goos et al., 2014; Jaimovich & Siu, 2020; Green & Sand, 2015). The role

of firms, however, has been absent from this literature. By reducing demand for routine

workers, and increasing the demand for workers in abstract tasks, automation technologies

have been argued to impact wage inequality due to changes in the relative wage between

these two groups. As mentioned, however, the empirical evidence shows that inequality has

primarily risen due to widening differences across workplaces for workers in a given task, i.e.

due to within-group wage inequality. This paper shows that task-biased technological change

can also account for these empirically crucial within-group changes.

Our analysis uses administrative social security data from the Institute for Employment

Research (IAB), covering the universe of private sector workers in West Germany between

1990 and 2010. Given the availability of establishment identifiers, we are able to aggregate the

data to the universe of private-sector establishments with at least one full-time employee.

We supplement the data from the social security records with information from the IAB

Establishment Panel, which provides measures of establishment-level sales and allows us to

construct a measure of labor productivity for the establishments covered by the survey.

We begin by verifying the important role of workplaces in driving wage inequality in

Germany. Between-establishment inequality accounts for about 75% of overall wage inequal-

ity in any given year, and most of the large increase in wage inequality observed between

the mid 1990s and 2010 occurs between establishments. This rise in between-establishment

wage inequality is not primarily a between-industry phenomenon, but rather reflects growing

wage differences across establishments within industries. Importantly, this increased wage

dispersion is observed among workers in the same task group, and hence is driven by in-
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creasing within-task inequality, rather than by between-task changes. In fact, the aggregate

wage differential between workers in abstract and routine tasks in Germany grew only very

slightly over our sample period.

We also document an empirical link between an establishment’s relative productivity

(within its industry-year) and the task input mix of its workforce. In particular, we show

that more productive establishments within an industry employ a systematically higher share

of workers in abstract (rather than routine) tasks.

Motivated by these facts, we set up a theoretical framework that features heterogeneous

firms in order to analyze the impacts of task-biased technological change. In particular,

we consider the model of Helpman et al. (2010), which introduces search and matching

frictions (Diamond, 1982a,b; Mortensen & Pissarides, 1994) and match-specific abilities to

the heterogeneous firm setting of Melitz (2003), thus generating wage differences between

firms for workers who are ex-ante identical.

Guided by our motivating evidence, we allow firms to differ in their technology of pro-

duction, with more productive firms having an incentive to disproportionately hire abstract

workers. The model predicts that, in equilibrium, more productive firms will find it opti-

mal to employ more workers of both types (but particularly abstract workers), and will pay

higher wages to both types of workers.

We then introduce an aggregate task-biased technological shock in the spirit of Autor

et al. (2003), whereby there is an increase in the relative productivity of abstract workers,

motivating a shift away from routine tasks towards abstract tasks. Although this is an ag-

gregate shock that is common across all firms, we show that this shock leads to an increase

in between-firm wage inequality. This occurs through four distinct channels. First, there is

an increase in the productivity threshold for production, which results in the exit of low-

productivity firms. Although this reduces the range of productivities of operating firms, the

assumption of Pareto-distributed productivity implies that this change in selection increases

the variance of productivity among operating firms. The second channel is differential em-

ployment growth, whereby the most productive, highest-paying firms, are predicted to grow

more, thus contributing to an increase in worker-weighted measures of between-firm inequal-

ity. The third channel is increased sorting: As a reaction to the shock, the most productive

firms will disproportionately increase the share of abstract workers that they employ. Since

abstract workers earn higher wages, this will exacerbate the differences in average wages be-

tween firms. Finally, the model also generates endogenous wage changes conditional on task,

with more productive firms disproportionately increasing the wage that they pay to workers

of each type, thus further contributing to the increase in between-firm wage inequality.

Guided by these predictions, we return to the IAB data. We first verify that, as pre-
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dicted by the model, more productive firms within an industry-year pay higher average wages

overall and conditional on worker tasks and worker observable characteristics. We also find

that the correlation between productivity and various establishment characteristics (namely

size, wage and abstract share) has become stronger over time. More productive establish-

ments within an industry-year are found to tend to pull away from other establishments, by

growing more and disproportionately increasing their wages. We also find that, over time,

establishments within industries have become increasingly heterogeneous in terms of their

task mix, rather than converging to more similar technologies of production. We also find

that, in line with the model predictions, the sorting of abstract workers towards the most

productive establishments in an industry has increased.

As a final verification of the importance of task-biased technological change in driving

the patterns that we observe, we exploit variation across industries in the adoption of task-

biased technologies. In particular, we focus on industry-level robot adoption data from the

International Federation of Robotics, and ICT capital usage from the EUKLEMS data. We

find that industries that have adopted more technology have experienced disproportionate

increases in between-establishment wage inequality (overall and conditional on task), in

between-establishment abstract share heterogeneity, and in the sorting of abstract workers

to high-wage firms.

Our findings make important contributions to two strands of the literature. We contribute

to the literature on between-firm wage inequality (Card et al., 2013; Song et al., 2018; Barth

et al., 2016; Helpman et al., 2017) by analyzing technological change as a driving force behind

the important patterns that have been documented. We also contribute to the literature on

task-biased technological change (Autor et al., 2003, 2006; Goos et al., 2014; Michaels et al.,

2014; Acemoglu & Restrepo, 2020) by showing that technological change not only impacts the

relative demand for workers in different tasks (and thus impacts inequality through changing

wage differentials between tasks), but also has important impacts in terms of worker sorting

and firm-level wages for workers in a given task (and thus also impacts inequality through

changing wage differentials between firms conditional on task).

2 Data

2.1 Social Security Records (BEH)

Our main data are drawn from social security records provided by the Institute for Em-

ployment Research in Nuremberg (IAB) – the so-called Beschäftigtenhistorik (BEH). While

social security records are in principle available for the years 1975 to 2014 (1992 to 2014 for
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East Germany), we focus on developments after 1990 when overall wage inequality started

to increase sharply in Germany (see for example Dustmann et al. (2014); Card et al. (2013)).

Due to structural breaks in key variables such as occupations (used to classify workers into

routine and abstract ones) and workers’ full-time status after 2010, we end the analysis in

2010. The data source comprises all men and women covered by the social security system,

roughly 80% of the German workforce. Not included are civil servants, the self-employed,

and military personnel.

Our data source offers some key advantages. A first advantage is its large sample size,

allowing us to accurately capture trends in, for example, wage inequality even within detailed

industries. Second, our data contain detailed and accurate information on a number of worker

and establishment characteristics that are not always included in other administrative data

sources, such as, for example, workers’ occupation, education, employment status and wages

(which always refer to a single establishment and are never averaged across establishments)

and establishment’s industry affiliation. Importantly, unique establishment identifiers allow

us not only to decompose overall wage inequality into a within and between establishment

component, but also to study (changes in) establishment heterogeneity within industries

more broadly. Establishment identifiers also allow us to paint an accurate picture of entry

and exit across industries and time.

From this data source, we select all full- and part-time employment spells that refer

to June 30 of each year. We restrict the sample to workers who are currently not in an

apprenticeship, are aged between 16 and 65, and are employed in West Germany. We exclude

industries in the primary sector and some small industries such as private households and

international organizations. We further drop workers with missing occupations, missing

employment status, and implausibly low wages below the limit for which social security

contributions have to be paid, as well as establishments with missing industry affiliation and

establishments employing only part-time workers. These sample restrictions affect less then

1% of all observations.

As is common in administrative data sources, wages are censored at the highest social

security limit, affecting on average about 8% of observations. We follow Dustmann et al.

(2009) and Card et al. (2013) and impute censored wages, assuming that (log) wages are

normally distributed with heterogeneous variances that vary by year, age, education and

sex. We deflate wages using 1995 as the base year. Since we do not observe hours worked,

we restrict the wage analysis to full-time workers. To compute total employment in estab-

lishments and industries (overall or by task), we include part-time workers with a weight of

0.5.

We follow Acemoglu & Autor (2011) to classify individuals as working in routine or
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abstract tasks based on their broad occupation codes. Our industry classification refers to

3-digit NAICS codes.

2.2 The IAB Establishment Panel (IABEP)

Since the social security records do not contain information on establishments’s labor produc-

tivity, we augment the social security records with data from the IAB Establishment Survey

(IABEP). The IABEP survey was first administered in 1993 to 4,265 West German firms,

and was extended to East German firms in 1996. By 2010, the number of surveyed firms had

increased to over 16,000. From this database, we select all West German establishments with

at least one full-time employee that participated in the IABEP at least once. Adopting the

same sample selection criteria as in the social security records (BEH), we drop establishments

with missing industry affiliation as well as establishments in the primary sector and some

smaller sectors such as private households and international organizations. Using the unique

establishment identifiers, we then merge information from the IABEP to the BEH social

security records. We compute an establishment’s labor productivity as total sales (obtained

from the IABEP), divided by the number of full-time equivalent workers (obtained from the

BEH).

2.3 Industry-Level Technology Adoption Measures

We supplement these two main data sources with industry-level data on technology adoption.

First, following Graetz & Michaels (2018) and Acemoglu & Restrepo (2020), we use data on

robot usage from the International Federation of Robotics (IFR).1 We use data prepared by

Dauth et al. (2019), which matches IFR industry codes to the official industrial classification

for the German labor market. The matched data covers 53 manufacturing industries.

Second, we use data on the adoption of capital related to information and communication

technologies (ICT) from the EUKLEMS data set. We use data from the November 2009

release, which uses ISIC revision 3 industry codes which can be matched to the 2-digit

industry codes in the social security data. Our measure of ICT assets is based on the real

fixed capital stock of computing and communication equipment, and computer software.

1A robot is defined as an “automatically controlled, re-programmable, and multipurpose machine” and as
“fully autonomous machines that do not need a human operator and that can be programmed to perform
several manual tasks such as welding, painting, assembling, handling materials, or packaging.”

5



3 Motivating Evidence

Overall and Between-Establishment Wage Inequality. Figure 1 provides a first

overview of the evolution of wage inequality in West Germany between 1990 and 2010.

Panel A shows that the overall standard deviation of individual log-wages rose sharply from

the mid-1990s onwards, from 0.45 in 1995 to 0.53 in 2010, a 25% increase (see also Dust-

mann et al., 2009, 2014). The figure further highlights that, consistent with existing findings

in the literature (e.g. Card et al., 2013), between-establishment wage inequality represents

an important fraction of overall wage inequality in any given year (about 75%). Moreover,

the employment-weighted standard deviation of average establishment log-wages (or alterna-

tively, the log of average establishment wages) rises in tandem with the standard deviation

of individual log-wages, indicating that nearly all of the increase in overall wage inequality

occurs between establishments.

Overall vs Within-Industry Between-Establishment Wage Inequality. Panel

B of Figure 1 contrasts the evolution of overall and within-industry between-establishment

wage inequality, measured as the employment-weighted standard deviation of average estab-

lishment log-wages overall and within 3-digit industries.

Specifically, overall between-establishment wage inequality is measured as√∑
f

Eft
Et

(
lnwft − lnwt

)2
,

where the subscripts f and t index establishments and time, respectively. E represents

employment, lnwft is the average of individual log-wages in establishment f at time t, and

lnwt is the overall employment-weighted mean of average establishment log-wages (which is

equal to the overall mean of individual log wages) at time t.

Within-industry between-establishment wage inequality is measured as√∑
k

Ekt
Et

∑
f∈k

Ef(k)t

Ekt

(
lnwf(k)t − lnwkt

)2
,

where lnwf(k)t is the average of individual log-wages in establishment f belonging to industry

k and lnwkt is the employment-weighted mean of average establishment log-wages in industry

k (which is equal to the overall mean of individual log wages in the industry).

The figure highlights that between-establishment wage inequality also rose within in-

dustries throughout the sample period, albeit at a slightly lower pace than overall between-

establishment wage inequality. The increase in overall between-establishment wage inequality
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is therefore primarily a within-industry phenomenon, and not solely driven by wages in some

industries rising relative to wages in other industries.

Panel B of Figure 1 further plots the evolution of“counterfactual”within-industry between-

establishment wage inequality, where within-industry variances of average establishment log

wages are weighted by the 1990 rather than the current industry employment structure.

That is, counterfactual within-industry between-establishment wage inequality is measured

as √∑
k

Ek1990

E1990

∑
f∈k

Ef(k)t

Ekt

(
lnwf(k)t − lnwkt

)2
.

Counterfactual within-industry between-establishment wage inequality rose only slightly less

than factual within-industry between-establishment wage inequality, implying that the in-

crease in within-industry between-establishment wage inequality is not driven by industries

with high between-establishment wage inequality growing at a disproportionately higher rate.

Within-Industry Between-Establishment Wage vs Productivity Inequality.

Does the increase in within-industry between-establishment wage inequality reflect an in-

crease in the dispersion of establishments’ labor productivities? We investigate this in Panel

C of Figure 1, drawing on the IAB Establishment Panel (IABEP). As expected, the BEH and

the IABEP show a similar trend in within-industry between-establishment wage inequality,

even though the time series based on the IABEP is, due to the much smaller sample size,

more jumpy. The within-industry standard deviation of establishments’ log labor productiv-

ities is, while somewhat jumpy, increasing over the sample period at a roughly similar pace

as the within-industry standard deviation of establishments’ average log wages.

Task Usage and the Abstract Wage Premium. A second key development in the

German labor market over the past two to three decades, in addition to the rise in wage

inequality, is a substantial shift in the occupational structure towards abstract occupations

– a pattern that has been observed across many countries (see Acemoglu & Autor, 2011;

Goos et al., 2009). Panel A of Figure 2 shows that the employment share of abstract workers

steadily rose from about 18% in 1990 to more than 26% in 2010 – a rise of 44% over two

decades. This increase was in part driven by industries which employ a larger share of

abstract workers growing at a faster rate than industries which employ primarily routine

workers. Yet, even when keeping the industry structure constant at 1990 levels (the grey

dashed line), the employment share of abstract workers rose substantially by about 27%.

The increase in the abstract employment share was accompanied by a small increase in

the abstract wage premium over the same period, as shown in Panel B of Figure 2. To

compute the abstract wage premium, we first obtain the residual from an individual log
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wage regression that controls for a cubic in age, gender and foreign status and is estimated

separately for each year. The actual abstract wage premium (the black circles in Panel B of

Figure 2) is then computed as

∑
k

Ekt
Et

(
l̃nw

A

kt − l̃nw
R

kt

)
,

while the within-industry abstract wage premium holding the industry structure constant at

its 1990 level (the grey diamonds in Panel B of Figure 2) is given by:

∑
k

Ek1990

E1990

(
l̃nw

A

kt − l̃nw
R

kt

)

where l̃nw
A

kt and l̃nw
R

kt denote the averages of the residual for abstract and routine workers

in industry k and year t. Both the actual and counterfactual abstract wage premium evolve

in a similar manner, increasing from about 29.5% to 32%.

Taken together, Panels A and B of Figure 2 indicate that firms’ demand for abstract

workers has increased relative to that for routine workers between 1990 and 2010. However,

large supply shifts from routine to abstract employment over the same period appear to

have prevented substantial increases in the abstract wage premium. The figures further

highlight that the rise in the abstract (or skill) wage premium – the key channel highlighted

in the literature on routine (or skill) biased technological change – plays only a minor role

in accounting for the overall rise in wage inequality in Germany between 1990 and 2010.

As shown in Panels C and D, there have been substantial increases in within-group wage

inequality, conditional on worker tasks.

Establishment Productivity and Task Usage. A final piece of motivating evidence is

related to the link between productivity and task usage at the establishment level. Column

(1) of Table 1 shows the correlation between establishments’ log productivity and their

abstract employment share. The regressions include a set of fully interacted 3-digit industry

and year fixed effects, so that identification is limited to variation within industry-year cells.

The estimated coefficient shows that there is a positive and statistically significant correlation

(at the 5% level) between productivity and abstract employment shares at the establishment

level. In order to analyze this relationship using the much larger social security dataset,

Column (2) shows that there is a significant positive correlation between establishment size

and productivity, such that establishment size can be used as a proxy for productivity. In

Column (3) we confirm, using the social security records data, that larger firms employ a
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higher share of abstract workers. Hence, there is an empirical link between establishment

productivity and task usage, which will guide our modelling choices in the following section.

4 Theoretical Framework

In this section we set up a theoretical framework that helps guide our analysis of the link

between task-biased technological change and between-firm wage inequality. Guided by the

evidence in the previous section, we set up a model that allows for wage heterogeneity

between firms, with a production structure that distinguishes between two tasks, and where

firm productivity and task usage are linked. Specifically, we consider the framework of

Helpman et al. (2010), a rich, yet tractable model of firm heterogeneity that allows for

wage differences across firms within industries. Helpman et al. (2010) introduce standard

Diamond–Mortensen–Pissarides (Diamond, 1982a,b; Mortensen & Pissarides, 1994) search

and matching frictions into a Melitz (2003) model. We focus on the extension of the model

which allows for two types of labor inputs (Section 5.2 of their paper) which, in our setting,

we think of as two different tasks (abstract and routine).2

In what follows, we briefly outline the key components of the model and the equilibrium

conditions, as derived by Helpman et al. (2010).3 We then consider the implications of an

aggregate routine-replacing technological change shock in the spirit of Autor et al. (2003)

and Acemoglu & Autor (2011). We model this as an exogenous aggregate change in the

factor-augmenting parameter associated with abstract workers, and study its implications

for various establishment-level and industry-level outcomes.

4.1 Overview of the Helpman et al. (2010) Framework

Consumption

Within each sector, consumers demand a continuum of differentiated varieties. The aggregate

consumption index is:

2Another framework that generates between-firm wage heterogeneity is the fair wage framework of Egger
& Kreickemeier (2009, 2012). That setting requires assumptions about the way in which workers’ fairness
considerations relate to firm outcomes, which are somewhat ad-hoc. It is worth emphasizing that merely
adding search and matching frictions to the Melitz (2003) model does not generate between-firm wage
heterogeneity. This is because in equilibrium firm wages are equal to the replacement cost of a worker for
the firm, which is common across firms in the presence of common search costs. Match-specific abilities and
screening technologies are therefore crucial elements in order to generate wage heterogeneity in the Helpman
et al. (2010) framework.

3For full details, we refer the reader to the Helpman et al. (2010) paper.
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Q =

[∫
j∈J

q(j)βdj

]1/β

, (1)

where j indexes varieties, J is the set of varieties within the sector, q(j) denotes consumption

of variety j, and 0 < β < 1. The demand function for variety j is given by:

q(j) = A1/(1−β)p(j)−1/(1−β) (2)

where A is a sectoral demand shifter and p(j) is the price of variety j.

Production

There is a competitive fringe of potential firms that can choose to enter the market by paying

an entry cost fe > 0. Once a firm incurs the sunk entry cost, it observes its idiosyncratic value

of θ, a parameter that is related to its productivity and its optimal production structure (as

discussed below). θ is drawn from a Pareto distribution with scale parameter θmin and shape

parameter z, i.e. Gθ(θ) = 1− (θmin/θ)
z for θ ≥ θmin > 0 and z > 2.4 Once firms observe θ,

they decide whether to exit or produce. Production involves a fixed cost of fd > 0 units of

the numeraire. Since in equilibrium all firms with the same value of θ behave symmetrically,

firms can be indexed by θ.

Firms produce using a Constant Elasticity of Substitution (CES) technology using two

types of labor inputs: abstract and routine workers (indexed by s and r, respectively). A

firm’s output depends on its value of θ, as well as its choice of how many workers of each

type to hire (hs and hr), and the average match-specific ability of these workers (as and ar).

Specifically, the production function is given by:

y = [λs (θµsash
γ
s )
ν + λr (µrarh

γ
r )
ν ]

1/ν
(3)

where 0 < ν < β, λs + λr = 1, and µs and µr are aggregate task-augmenting technology

parameters.5 For simplicity, we normalize µr = 1. µs can therefore be interpreted in relative

terms, as the relative aggregate task-bias of technology in favor of abstract tasks. The

firm-specific parameter θ enters into the production function as an abstract task-augmenting

parameter (rather than a total factor productivity term). Firms that draw higher values of

θ will be more productive overall (absolute advantage), but productivity will be particularly

high for their abstract workers (comparative advantage). Hence, θ reflects both productivity

4The assumption that z > 2 ensures that the variance of θ is finite.
5The assumption that ν < β ensures that employment and wages of both types of workers are increasing

in θ, as discussed below.
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and the task-bias of production (in favor of abstract workers) of each firm. The model

therefore assumes a link between firm productivity and firm’s technological task bias, which is

consistent with the empirical pattern documented in Table 1. Given this link, we refer to the

parameter θ interchangeably as both firm-specific technology and firm-specific productivity.

Search, Screening and Wage Bargaining

The firm must pay a search cost of b` in order to be matched with n` workers, ` = {s, r}.6

Workers of a given task type are ex-ante identical but, upon matching with a firm, draw

match-specific abilities from a Pareto distribution with shape parameter k and scale param-

eter amin: Ga(a) = 1 − (amin/a)k; a ≥ amin > 0 and k > 1.7 Ability is not observable by

the firm or the worker, but a screening technology is available. By paying a screening cost

cãδ`/δ, firms are able to identify whether a worker’s match-specific ability is above or below

an (endogenously chosen) cutoff ã`, where ` = {s, r}, c > 0, δ > 0.

Wages are determined through Stole & Zwiebel (1996a,b) bargaining, under conditions

of symmetric information. Since the screening technology only reveals whether a worker’s

match-specific ability is above or below ã`, but not the specific ability of any individual

worker, the expected ability of all hired workers of a given type is the same, and equal to a`,

the expected value of a conditional on being above the threshold ã`. Therefore, all workers

of a given type within a given firm receive the same wage.

4.2 Key Equilibrium Properties

As is standard in heterogeneous firm models, the presence of a fixed production cost implies

that there is a zero-profit cutoff for productivity, θd, such that a firm that draws a productivity

below this threshold exits without producing. Appendix A.1.2 shows how this productivity

threshold can be pinned down using the Zero-Cutoff Profit condition, which requires the firm

at the cutoff θd to make zero profits, along with the Free Entry condition, which states that

the expected profits for a potential entrant should equal the fixed entry cost.

Closed-form solutions can be obtained for the equilibrium values of firm-level employment,

wages, revenues, and profits for operating firms. Here we highlight the key properties of

interest for our purposes.

6b` is determined endogenously by labor market tightness.
7This distribution is assumed to be common across both types of workers.
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Firm-level employment for routine workers is given by:

hr(θ) = hdr [1 + ϕ(θ)](
βΛ
νΓ
−1)(1− k

δ ) (4)

where:

ϕ(θ) = µν/Λs

(
λs
λr

)1/Λ(
bs
br

)−γν/Λ
θν/Λ (5)

Here, Λ ≡ 1− νγ − ν(1− γk)/δ > 0, Γ ≡ 1− βγ − β(1− γk)/δ > 0, and Λ > Γ due to the

assumption that ν < β. The derivation of this result and the definition of hdr are detailed

in Appendix A.1.

Employment of abstract workers for a firm with productivity level θ is given by:

hs(θ) =
br
bs
ϕ(θ)1−k/δhr(θ) (6)

And the firm’s abstract share is given by:

hs(θ)

h(θ)
=

brϕ(θ)1−k/δ

bs + brϕ(θ)1−k/δ , (7)

where h(θ) = hs(θ) + hr(θ).

As shown in Appendix A.2, these equilibrium equations imply:

∂hr(θ)

∂θ
> 0,

∂hs(θ)

∂θ
> 0,

∂hs(θ)/h(θ)

∂θ
> 0. (8)

The model therefore predicts that more productive firms will be larger than less produc-

tive firms, and will employ a larger number of both abstract and routine workers. More

productive firms will also have a higher abstract employment share, implying that abstract

workers disproportionately sort towards high-productivity firms.

Firm-level wages for routine workers can be written as:

wr(θ) = wdr [1 + ϕ(θ)](
βΛ
νΓ
−1) kδ (9)

The derivation of this result and the definition of wdr are also detailed in Appendix A.1.
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Wages for abstract workers are given by:

ws(θ) =
bs
br
ϕ(θ)k/δwr(θ) (10)

As shown in Appendix A.2, these equilibrium wage equations imply:

∂wr(θ)

∂θ
> 0,

∂ws(θ)

∂θ
> 0 (11)

The model therefore generates wage differences between firms, with more productive

firms paying higher wages to both types of workers. Intuitively, this arises due to the com-

plementarity between worker abilities and firm productivity, which gives an incentive for

more productive firms to screen more intensively (i.e., choose a higher ability threshold). In

equilibrium, wages are bargained down to the replacement cost of a worker, and given that

more productive firms are only willing to hire workers with higher match-specific abilities,

their workers are costlier to replace, and hence are paid a higher wage. Note that from the

perspective of the worker, the expected wage conditional on being sampled is the same across

all firms.

To summarize, the cross-sectional predictions of the model are that more productive

firms are larger, have a higher abstract share, and pay higher average wages (overall and

conditional on worker task).

4.3 Impacts of Task-Biased Technological Change

We model task-biased technological change (TBTC) as an exogenous increase in µs, the

aggregate task-augmenting parameter for the abstract labor input in the production function

in Equation (3). The literature on task-biased technological change (e.g. Autor et al., 2003;

Acemoglu & Autor, 2011) argues that new automation technologies tend to replace labor in

performing routine tasks, while complementing labor in abstract (or non-routine cognitive)

tasks. Our modeling assumption captures the essence of this idea, given that an increase in

µs increases the relative demand for abstract (relative to routine) workers. Note that this is

an aggregate shock which impacts all firms in the economy. However, as we show below, the

impacts of this common shock are very heterogeneous across firms with different productivity

levels.

The key implications of an increase in µs within the context of the model outlined above
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are the following:8

Prediction 1: Selection – Task-biased technological change increases the productivity

threshold for production θd.

Proof: See Appendix A.3.

Implications: By increasing the productivity threshold θd, TBTC leads to the exit of

firms at the bottom of the productivity distribution. Although this reduces the range of

productivity types among operating firms, the variance of productivity among operating

firms increases. This is because the distribution of productivity among operating firms is a

truncated Pareto distribution with scale parameter θd and shape parameter z. The variance

of productivity among operating firms is increasing in the scale parameter θd.
9 Intuitively,

the increase in θd entails the exit of a mass of relatively homogeneous unproductive firms,

leading to an increased variance of productivity among the firms that remain in operation.

Given the increase in the variance of productivity, wage inequality among operating firms

increases. Moreover, given that low-θ firms have the highest routine-to-abstract ratios, the

firms that will exit will be relatively routine-intensive, and hence their exit would contribute

to the rise in the economy’s overall abstract share.

Prediction 2: Differential Employment Growth – TBTC shifts employment towards more

productive firms.

Proof: As shown in Appendix A.3:

∂2hr(θ)

∂θ∂µs
> 0 and

∂2hs(θ)

∂θ∂µs
> 0. (12)

Implications: This prediction implies that employment grows disproportionately for both

types of workers in more productive firms. Hence, the cross-sectional employment-productivity

relationship becomes stronger as a result of TBTC. This employment shift leads to an in-

crease in (worker-weighted) between-firm wage inequality (by task and overall). Moreover,

8In what follows, we assume that the search costs bs and br are not affected by technological change.
The search costs are proportional to workers’ expected income outside the sector (outside option). Helpman
et al. (2010) discuss conditions under which the outside options can be assumed to be constant, even when
there are shocks with aggregate implications (such as trade opening, in the setting analyzed in their paper).

9The variance of productivity among operating firms is given by
zθ2d

(z−1)2(z−2) . Note that scale-invariant

measures of inequality, such as the coefficient of variation, the Gini coefficient, or the Theil index, are
decreasing in the shape parameter and are independent of the scale parameter, and hence would not be
predicted to be affected by the change in θd.
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given that more productive firms have a higher abstract employment share, this shift also

contributes to the rise in the economy’s overall abstract share.

Prediction 3: Increased Sorting – TBTC increases the abstract employment share within

all firms, and particularly so within more productive firms (as long as the baseline number

of routine workers within firms exceeds the baseline number of routine workers, which is the

empirically relevant case).

Proof: As shown in Appendix A.3:

∂ [hs(θ)/h(θ)]

∂µs
> 0, and

∂2 [hs(θ)/h(θ)]

∂θ∂µs
> 0 if hs(θ) < hr(θ). (13)

Implications: By increasing the share of abstract workers for all firms, task-biased techno-

logical change contributes to an increase in the share of abstract employment in the economy.

In addition, firms become more heterogeneous in their task input mix: Since more productive

firms disproportionately increase their abstract employment share, the dispersion of abstract

shares across firms within industries will increase. This differential change also implies that

the sorting of abstract workers towards high-wage firms will become stronger. Average wages

in high-paying firms will increase relative to lower-paying firms (because of the disproportion-

ate increase in their asbtract employment share), contributing to the increase in between-firm

wage inequality.

Prediction 4: Task-biased technological change increases wage differentials by task across

firms.

Proof: As shown in Appendix A.3:

∂2wr(θ)

∂θ∂µs
> 0 and

∂2ws(θ)

∂θ∂µs
> 0. (14)

Implications: Wages for both types of workers disproportionately increase within more

productive firms, therefore leading to an increase in both weighted and unweighted wage

inequality by task across firms within industries.

To summarize, the model predicts that task-biased technological change unambiguously
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leads to an increase in between-firm wage inequality. This operates through various distinct

forces: selection, differential employment growth, sorting, and differential wage growth, all

of which contribute to the rise in between-firm wage inequality. Intuitively, aggregate task-

biased technological change exacerbates the comparative advantage of firms that are more

productive in abstract tasks, which are initially the more productive firms overall. This

leads to an increase in their relative size and relative wages. The model also predicts that

selection, differential employment growth and sorting all contribute to the rise in the overall

industry share of abstract employment.

5 Empirical Evidence

5.1 Cross-Sectional Correlations

We begin by verifying the empirical relevance of the cross-sectional equilibrium predictions

discussed in Section 4.2. The model predicts that more productive firms are larger and

employ a higher share of abstract workers. These predictions were verified in Table 1 and

motivated our model setup. The model also predicts that more productive firms pay higher

average wages, overall, and conditional on worker task. We verify these predictions in Table

2. As before, all regressions include 3-digit industry x year fixed effects, hence exploit-

ing only variation across establishments within 3-digit industries at a given point in time.

Observations are weighted by establishment size, and standard errors are clustered at the

establishment level. The top panel draws on data from the IAB Establishment Survey linked

to social security records, and uses log productivity (revenue per worker) as the key regres-

sor of interest. The bottom panel draws on the full social security records, and uses log

establishment size (which as shown above is positively and significantly correlated with es-

tablishment productivity) as the key regressor of interest. The dependent variable is the

average establishment log wage in Column (1) and the establishment wage premium (condi-

tional on observable worker characteristics, namely age, gender and nationality) in Column

(2). The remaining columns show analogous wage measures separately for routine and ab-

stract workers, respectively. The results consistently show that, within industries, more

productive firms on average pay higher wages, both overall and conditional on task and/or

worker characteristics.
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5.2 Correlations over Time and Longitudinal Changes within Es-

tablishments

Predictions 2, 3, and 4 imply that the relationship between establishment productivity and

establishment size, abstract share, and wage should become stronger over time if there is

ongoing task-biased technological change. To test this, we estimate the correlations from

Tables 1 and 2 separately for each year, controlling for 3-digit industry fixed effects. Figure

3 plots the coefficients from these yearly regressions. Coefficients have more than tripled

in size throughout the sample period. For example, while in the early 1990s a 1% increase

in the firm’s labor productivity was associated with an increase in firm size of about 0.1%,

the association had increased to nearly 0.4% by 2010. Similarly, the coefficient of log labor

productivity on average firm log wages increased from about 0.05 in the early 1990s to 0.15

by 2010.

In line with this evidence, Table 3 shows a set of regressions that consider longitudinal

changes within-establishments in various outcomes over 5-year windows, and their relation-

ship with establishments’ baseline productivity or size. As before, the regressions include

interacted 3-digit industry and time fixed effects. The results show that, within industries,

establishments that were more productive at baseline grew faster and experienced higher

overall and residual wage growth, for both routine and abstract workers. This is not driven

by selection, given that these more productive establishments are also less likely to exit the

market. Similarly, drawing on data from the larger BEH rather than the IAB Establish-

ment Survey, firms that are larger at baseline exhibit a larger increase in labor productivity,

a larger increase in the employment share of abstract workers, higher overall and residual

wage growth for both routine and abstract workers, and are less likely to exit the market.

Thus, establishments that perform “better” at baseline—in terms of their labor productivity

or size—pull away even further from other establishments in their industry. This is in line

with the predictions of the model.

5.3 Abstract Share Heterogeneity and Sorting

Prediction 3 from the theoretical framework implies that workplaces within industries become

more heterogeneous in terms of their abstract employment shares, with disproportionate

sorting of abstract workers towards high-wage establishments.

As shown in Panel A of Figure 4, and in line with the prediction of the model, the within-

industry standard deviation of establishments’ abstract employment share, averaged across

industries using either the contemporaneous or the 1990 industry structure, has increased

over time. Hence, rather than having converged towards a single mode of production over
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time, establishments within the same industry have become increasingly heterogeneous in

terms of the production technology that they use.

Panel B of Figure 4 shows that the co-variance between establishments’ abstract em-

ployment share and their wage premium has increased over time. That is, abstract workers

increasingly sort into establishments that pay higher wage premia even within detailed in-

dustries, a pattern that is in line with the prediction of the model and is consistent with the

finding by Card et al. (2013) and Song et al. (2018) that high-wage workers increasingly sort

into high-wage firms and that high-wage workers are increasingly likely to work with each

other.

5.4 Technology Adoption: Industry-Level Analysis

We now test the implications of the model using more direct measures of technology adoption

by exploiting variation at the industry level. In particular, we analyze whether industries

with more technology adoption have experienced larger increases in between-establishment

wage inequality, the standard deviation of abstract employment shares across establishments,

and the sorting of abstract workers to high-wage establishments.

We first consider industry-level variation in the overall change in the employment share

of abstract workers between 1990 and 2010. Since our focus is on task-biased technological

change, we can think of industries that experience larger changes in their abstract employ-

ment share as being more exposed to this type of technological innovation. For simplicity,

we divide industries into two groups, based on whether they experience above-median or

below-median changes in the abstract employment share over the entire period.

Panel A of Figure 5 shows the evolution over time of the standard deviation of estab-

lishment wages for these two groups of industries. In line with our prediction, we find that

industries that experience larger changes in their abstract employment share also experi-

ence a stronger increase in wage inequality between establishments. As shown in Panel B,

these industries also experience a stronger increase in the between-establishment standard

deviation of the employment share of abstract workers. Hence, in industries that experi-

ence an increased prevalence of abstract tasks among their workers, we do not observe that

low-abstract establishments are catching up or disappearing from the industry. Instead, we

observe increased heterogeneity in the labor input mix across establishments.

Figure 6 uses a more direct measure of technology exposure based on the change in robots

per worker within industries over the 1993-2010 time period. Once again we divide industries

into two groups, according to whether they experience above or below median changes during

this time period.
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Panel A first confirms that we can think of robot adoption as a task-biased technological

change: Industries with above-median robot adoption experience a much larger increase in

their abstract employment shares. The remaining panels show that these industries expe-

rience larger increases in between-establishment wage inequality, in the standard deviation

of abstract shares across establishments, and in the covariance between establishment wage

premia and establishment abstract shares.

Finally, Figure 7 shows that we obtain consistent results is we use a measure of technology

adoption based on the industry’s change in ICT capital stock per worker between 1991 and

2007 from the EUKLEMS data. Industries with more technology adoption experience larger

increases in their abstract share, larger increases in wage inequality, and more sorting of

abstract workers towards high wage establishments.

6 Conclusions

Establishments have become increasingly heterogeneous in terms of the wages that they pay

to workers with similar observable characteristics. In this paper we contribute to our under-

standing of the driving forces behind this pattern by showing the important role played by

task-biased technological change. While a large literature has considered the role of this type

of technological change for wage inequality, it has focused on its implications in terms of wage

differentials between workers in different task groups. Empirically, however, the increase in

wage inequality is primarily driven by increased wage differentials within task groups, across

establishments. Our paper is the first to show that an aggregate task-biased shock has

differential impacts across workplaces, with more productive abstract-intensive establish-

ments disproportionately benefiting from this shock. Rather than leading to a catching-up

of routine-intensive establishments, an aggregate shock in favor of abstract workers increases

the heterogeneity in task usage across establishments within industries, with more sorting of

abstract workers to high wage establishments, and larger increases in inequality, overall and

conditional on worker task. Understanding what type of policies can mitigate the increase

in inequality remains a promising avenue for future work.
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Figure 1: Wage Inequality, 1990-2010
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Figure 2: Task Usage and the Abstract Wage Premium
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Figure 3: Year-by-Year Correlations with Establishment Productivity
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Figure 4: Abstract Share Heterogeneity and Sorting

Panel A: Evolution of the Standard Deviation Panel C: Co-variance between Abstract Share
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Figure 5: Technology Adoption: Changes in Abstract Share, 1990-2010
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Figure 6: Technology Adoption: Changes in Robot Adoption, 1993-2010

Panel A: Change in Establishment Panel B: Change in Standard Deviation
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Figure 7: Technology Adoption: Changes in ICT Capital Adoption, 1991-2007
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Table 1: Cross-Sectional Correlations Between Establishment Productivity and Abstract
Share (Within Industry)

Abstract Abstract
Share Productivity Share

(1) (2) (3)

Log Productivity 0.0065∗∗ Log Estab Size 0.047∗∗∗ 0.0043∗∗∗

(Rev. p. Worker) (0.003) (# of employees) (0.006) (0.001)

N 86,883 86,883 26,814,744

Note: All regressions include a set of fully interacted 3-digit industry and year fixed effects. Observations
are weighted by establishment size, and standard errors are clustered at the establishment level.
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Table 3: Within-Establishment Changes

∆ Estab ∆ Abstract ∆ Avg. ∆ Avg. Log ∆ Avg. Log
Size Share Log Wage Rout. Wage Abs. Wage

(1) (2) (3) (4) (5)

Estab prod. 0.027∗∗ 0.00047 0.0032∗ 0.0045∗∗ -0.000044
at baseline (0.011) (0.0013) (0.0017) (0.0020) (0.0037)

N 13,191 13,191 13,191 12,242 8,935

∆ Estab ∆ Estab Routine ∆ Estab Abstract
Wage Premium Wage Premium Wage Premium P(exit)

(1) (2) (3) (4)

Estab prod. 0.0050∗∗∗ 0.0048∗∗ 0.0049 -0.012∗∗∗

at baseline (0.0017) (0.0020) (0.0033) (0.0047)

N 13,191 12,242 8,935 20,899

∆ Estab ∆ Abstract ∆ Avg. ∆ Avg. Log ∆ Avg. Log
Productivity Share Log Wage Rout. Wage Abs. Wage

(1) (2) (3) (4) (5)

Estab size 0.032∗∗∗ 0.0030∗∗∗ 0.0086∗∗∗ 0.0079∗∗∗ 0.0067∗∗∗

at baseline (0.0096) (0.00025) (0.00035) (0.00036) (0.00037)

N 5,460 3,452,385 3,452,385 2,827,173 1,284,459

∆ Estab ∆ Estab Routine ∆ Estab Abstract
Wage Premium Wage Premium Wage Premium P(exit)

(1) (2) (3) (4)

Estab size 0.0089∗∗∗ 0.0083∗∗∗ 0.0077∗∗∗ -0.042∗∗∗

at baseline (0.00032) (0.00034) (0.00036) (0.00058)

N 3,452,385 2,827,173 1,284,459 6,349,800
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Appendix A Model Appendix

This section contains details of the model and of derivations that were omitted in the main

text. The presentation is not necessarily self-contained but rather complementary with

Section 4 of the paper. We refer to Section 5.4 of the technical appendix of Helpman et al.

(2010) for more details on the model with a CES production function and two types of

workers. Note that in Helpman et al. (2010) the production function takes the form

y = [λ1(θ1a1h
γ
1)ν + λ2(θ2a2h

γ
2)ν ]1/ν , (A.1)

where the subscripts 1 and 2 denote two types of labor. In this paper, we assume

y = [λs(θsµsash
γ
s )
ν + λr(arh

γ
r )
ν ]1/ν , (A.2)

where the subscripts s and r denote abstract and routine labor, respectively, and where µs

is an abstract-augmenting technology parameter common to all firms. Hence, in this paper

λ1 = λsµ
ν
s , λ2 = λr and θ2 = 1.

In addition, for the derivations below, it is useful to note that ϕ(θ) and φ`, where ` ∈ {s, r}
are defined as follows:

ϕ ≡ λsµ
ν
s (θash

γ
s )
ν

λr (arh
γ
r )
ν , φs ≡

ϕ

1 + ϕ
, φr ≡

1

1 + ϕ
. (A.3)

Appendix A.1 Derivations of the Key Equilibrium Relationships

This section derives the equilibrium relationships for the variables which play a crucial role

when examining the impact of task-biased technological change on wage inequality.

Appendix A.1.1 Firm-level Equilibrium Variables

Below we use the following first-order conditions from the profit maximization problem to

derive firm-level equilibrium revenues, employment and wages by tasks:

βγ

1 + βγ
φ`r(θ) = b`n`(θ) (A.4)

β(1− γk)

1 + βγ
φ`r(θ) = cã`(θ)

δ, (A.5)

where φr = [1 + ϕ(θ)]−1.
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Revenues As Helpman et al. (2010) mention in Appendix 5.4 footnote 1, revenues can be

expressed as:

r(θ) = κβyA [1 + ϕ(θ)]β/ν
[
λ1/ν
r ãr(θ)

1−kγnr(θ)
γ
]β
, (A.6)

where κy ≡ kaγkmin
k−1

. Using the first-order conditions along with equation (A.6) and the defini-

tion of φr, one obtains the revenue equation:

r(θ) = κr [1 + ϕ(θ)]
βΛ
νΓ , (A.7)

where κr is equivalent to:

κr ≡ A1/Γ

[
κy

(
β

1 + βγ

) 1−kγ
δ

+γ

λ1/ν
r

(
1− γk
c

) 1−kγ
δ
(
γ

br

)γ]β/Γ
. (A.8)

Employment by task and abstract employment share To obtain firm-level employ-

ment, note that from equation (A.4):

nr(θ) =
βγ

1 + βγ
[1 + ϕ(θ)]−1 b−1

r r(θ)

=

(
βγ

1 + βγ

)
b−1
r κr [1 + ϕ(θ)]

β−ν
νΓ , (A.9)

where β−ν
νΓ

= βΛ
νΓ
− 1 > 0, and from equation (A.5):

ãr(θ) =

{
β(1− γk)

1 + βγ
[1 + ϕ(θ)]−1 c−1r(θ)

}1/δ

=

[
β(1− γk)

1 + βγ

]1/δ

c−1/δκ1/δ
r [1 + ϕ(θ)]

β−ν
δνΓ . (A.10)

Using expression h`(θ) = n`(θ)
(
amin
ã`(θ)

)k
, along with (A.9) and (A.10), we have that:

hr(θ) = nr(θ)

(
amin
ãr(θ)

)k
=

(
βκr

1 + βγ

)1−k/δ (
c

1− γk

)k/δ
b−1
r akmin [1 + ϕ(θ)](

β−ν
νΓ )(1− k

δ ) (A.11)

= hdr [1 + ϕ(θ)](
β−ν
νΓ )(1− k

δ ) , (A.12)
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where:

hdr ≡
(

βκr
1 + βγ

)1−k/δ (
c

1− γk

)k/δ
b−1
r akmin. (A.13)

Proceeding in a similar way for firm-level employment of abstract workers, we obtain:

hs(θ) =
br
bs
ϕ(θ)1−k/δhr(θ), (A.14)

and it follows that the firm’s employment share of abstract workers is given by:

hs(θ)

h(θ)
=

brϕ(θ)1−k/δ

bs + brϕ(θ)1−k/δ , (A.15)

where h(θ) = hs(θ) + hr(θ).

Wages by task To derive equilibrium firm-level wages by task, it is useful to note that

the solution of the Stole and Zwiebel bargaining game takes the following form:

w` =
βγ

1 + βγ

φ`r

h`
(A.16)

Using (A.16) along with (A.6) and (A.12), we have that firm wages of routine workers

are given by:

wr(θ) =
βγ

1 + βγ
φr(θ)

r(θ)

hr(θ)

=

(
βγ

1 + βγ

)(
κr
hdr

)
[1 + ϕ(θ)](

β−ν
νΓ ) kδ (A.17)

= wdr [1 + ϕ(θ)](
β−ν
νΓ ) kδ , (A.18)

where:

wdr ≡
(

βγ

1 + βγ

)(
κr
hdr

)
. (A.19)

Proceeding in a similar way for firm-level wages of abstract workers, we obtain:

ws(θ) =
bs
br
ϕ(θ)k/δwr(θ). (A.20)

Finally, combining the definition of ϕ(θ) together with the first-order conditions of the

profit maximization problem, we obtain:
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ϕ(θ) = µν/Λs

(
λs
λr

)1/Λ(
bs
br

)−γν/Λ
θν/Λ. (A.21)

Appendix A.1.2 Determination of the Productivity Threshold

As is standard in Melitz-type heterogeneous firm models, the productivity threshold for

production, θd, is pined down by both the Zero-Cutoff Profit (ZCP) and the Free Entry (FE)

conditions.

The ZCP condition, which requires that the firm at the cutoff θd makes zero profits,

implies:10

Γ

1 + βγ
r(θd) = fd. (A.22)

Moreover, given equation (A.7), relative revenues across two firms with productivities θ1 and

θ2 can be written as:

r(θ1)

r(θ2)
=

[
1 + ϕ(θ1)

1 + ϕ(θ2)

]βΛ
νΓ

. (A.23)

Combining equation (A.23) along with the ZCP condition (A.22) we obtain:

r(θ) = fd

(
Γ

1 + βγ

)−1 [
1 + ϕ(θ)

1 + ϕ(θd)

]βΛ
νΓ

. (A.24)

The FE condition states that the expected profits for a potential entrant should equal

the fixed entry cost: ∫ ∞
θd

π(θ)dG(θ) = fe. (A.25)

Therefore, combining equations (A.24) and (A.25) implies:

fd

∫ ∞
θd

([
1 + ϕ(θ)

1 + ϕ(θd)

]βΛ
νΓ

− 1

)
dG(θ) = fe. (A.26)

Equation (A.26) pins down the equilibrium threshold θd as a function of the parameters

of the model and the search costs bs and br.

10This is obtained by noting that profits can be written as:

π(θ) =
Γ

1 + βγ
r(θ)− fd.
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Appendix A.2 The Relationship between Firm-specific Equilib-

rium Outcomes and Productivity

This section presents the proofs for the results in Equations (8) and (11) on the relationship

between firm-level employment and wages and firm productivity.

First, note that:

∂ϕ(θ)

∂θ
=
ν

Λ
µ
ν
Λ
s

(
λs
λr

) 1
Λ
(
bs
br

)− γν
Λ

θ
ν
Λ
−1 > 0, (A.27)

and recall that β > ν, Λ > Γ and δ > k such that β−ν
νΓ

> 0 and 1− k
δ
> 0.

Prediction 1: More productive firms are larger, employing more of both types of workers.

Proof: Taking the derivative of equations (A.12) and (A.14), we obtain:

∂hr(θ)

∂θ
= hdr

(
β − ν
νΓ

)(
1− k

δ

)
[1 + ϕ(θ)](

β−ν
νΓ )(1− k

δ )−1 · ∂ϕ(θ)

∂θ
> 0

∂hs(θ)

∂θ
=
br
bs

[(
1− k

δ

)
ϕ(θ)−

k
δ · ∂ϕ(θ)

∂θ
· hr(θ) + ϕ(θ)1− k

δ · ∂hr(θ)
∂θ

]
> 0 (A.28)

Prediction 2: More productive firms have a higher employment share of abstract workers.

Proof: Taking the derivative of equation (A.15), we have that:

∂

∂θ

[
hs(θ)

h(θ)

]
=
bsbr

(
1− k

δ

)
ϕ(θ)−

k
δ · ∂ϕ(θ)

∂θ[
bs + brϕ(θ)1− k

δ

]2 > 0 (A.29)

Prediction 3: More productive firms pay higher wages to both types of workers.

Proof: Taking the derivative of equations (A.18) and (A.20), we obtain:

∂wr(θ)

∂θ
= wdr

(
β − ν
νΓ

)
k

δ
[1 + ϕ(θ)](

β−ν
νΓ ) kδ−1 · ∂ϕ(θ)

∂θ
> 0

∂ws(θ)

∂θ
=
bs
br

[
k

δ
ϕ(θ)

k
δ
−1 · ∂ϕ(θ)

∂θ
· wr(θ) + ϕ(θ)

k
δ · ∂wr(θ)

∂θ

]
> 0 (A.30)

This result, combined with the prediction that more productive firms employ a higher share

of abstract workers, unambiguously imply that firm average wages are increasing in firm

productivity.
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Appendix A.3 Impact of Task-Biased Technological Change

We model task-biased technological change (TBTC) as an increase in the parameter µs, i.e.

as a factor-augmenting shock favoring abstract workers.

In order to evaluate how this task shock affects firms differentially across the productivity

distribution we examine the second-order derivative of firm outcome variables, with respect

to both the common abstract-augmenting technology parameter µs and firm productivity.

To this end note that:

∂ϕ(θ)

∂µs
=
ν

Λ
µ−1
s ϕ(θ) > 0 ,

∂2ϕ(θ)

∂µs∂θ
=
( ν

Λ

)2

µ−1
s θ−1ϕ(θ) > 0 , (A.31)

and

∂ϕ(θ)

∂µs

∂ϕ(θ)

∂θ
= ϕ(θ) · ∂

2ϕ(θ)

∂µs∂θ
> 0 . (A.32)

Prediction 1: Selection – TBTC increases the productivity threshold for production θd.

Proof: We prove Prediction 1 by contradiction. Consider equation (A.26), which pins down

the equilibrium threshold as a function of parameters of the model:

fd

∫ ∞
θd

([
1 + ϕ(θ)

1 + ϕ(θd)

]βΛ
νΓ

− 1

)
dG(θ) = fe (A.33)

Suppose first that TBTC has no effect on θd. Holding θd fixed, the increase in [1 +

ϕ(θ)]/[1 + ϕ(θd)] induced by the increase in µs would imply an increase in the term in the

square brackets for all relevant values of θ evaluated in the integral. Hence, with a fixed θd

the LHS of equation (A.33) would increase while the RHS would remain fixed. This implies

that θd cannot remain constant if µs increases.

Suppose now that θd falls as a reaction to the increase in µs. This would lead to a further

increase in the value of the term in the square brackets for all relevant values of θ (as there

would now be a larger gap between θ and θd). At the same time, a fall of θd would increase the

range of values of θ that are integrated over. Hence, a decrease in θd would unambiguously

increase the LHS of equation (A.33) while the RHS would remain fixed. This implies that

θd cannot decrease either.

This proves that the only change in θd consistent with condition (A.33) is an increase in
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θd when µs increases. Therefore:

∂θd
∂µs

> 0 (A.34)

leading to the exit of the least productive firms.

Recall that productivity among operating firms follows a Pareto distribution with scale

parameter θd. Thus, even if the range of productivity of operating firms decreases, TBTC

increases the variance of productivity among operating firms. Given the dependence of firm

wages on productivity, this results in an increase in the variance of firm wages and therefore

wage inequality. In addition, since low-productivity firms have a lower share of abstract

workers, their exit contributes to the increase in the economy’s overall abstract share.

Prediction 2: Differential Employment Growth – TBTC shifts employment by task towards

more productive firms.

Proof: Taking the first- and second-order derivatives of (A.12), we obtain:

∂hr(θ)

∂µs
=

(
β − ν
νΓ

)(
1− k

δ

)
hr(θ) [1 + ϕ(θ)]−1 ν

Λ
µ−1
s ϕ(θ) > 0

∂2hr(θ)

∂µs∂θ
=

(
β − ν
νΓ

)(
1− k

δ

)
hr(θ) [1 + ϕ(θ)]−2 · ∂

2ϕ(θ)

∂µs∂θ

[
1 + ϕ(θ)

(
β − ν
νΓ

)(
1− k

δ

)]
> 0

Hence, TBTC increases routine employment for all firms, but more so for more productive

firms. Similarly, taking the derivatives of (A.14):

∂hs(θ)

∂µs
=

ν

Λ
µ−1
s

(
1− k

δ

)[
1 +

(
β − ν
νΓ

)
· ϕ(θ)

1 + ϕ(θ)

]
hs(θ) > 0

∂2hs(θ)

∂µs∂θ
=

ν

Λ
µ−1
s

(
1− k

δ

){
β − ν
νΓ

[1 + ϕ(θ)]−2 ∂ϕ(θ)

∂θ
hs(θ) +

[
1 +

(
β − ν
νΓ

)
· ϕ(θ)

1 + ϕ(θ)

]
∂hs(θ)

∂θ

}
> 0

Hence, TBTC also increases abstract employment for all firms, but more so for more pro-

ductive firms.

Prediction 3: Increased Sorting – Following TBTC, the increase in firm abstract employ-

ment share is relatively larger for more productive firms if the number of routine workers

exceeds that of abstract workers at baseline. In such a case, abstract workers become dis-

proportionately concentrated in more productive firms.

Proof: Taking the first-order derivative of (A.15) we get:
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∂

∂µs

[
hs(θ)

h(θ)

]
= bs

(
1− k

δ

)
ν

Λ
µ−1
s ·

1

bs + brϕ(θ)1− k
δ

· hs(θ)
h(θ)

> 0

Hence, TBTC increases the share of abstract workers for all firms. Taking the second-order

derivative of firm abstract employment share yields:

∂2

∂µs∂θ

[
hs(θ)

h(θ)

]
=

1[
bs + brϕ(θ)1− k

δ

]3

(
1− k

δ

)
ϕ(θ)−

k
δ
∂ϕ(θ)

∂θ

[
bs − brϕ(θ)1− k

δ

]

Given that the ratio of abstract to routine workers is hs(θ)/hr(θ) = br
bs
ϕ(θ)1− k

δ , the term[
bs − brϕ(θ)1− k

δ

]
is positive if hs(θ)/hr(θ) < 1 and negative if hs(θ)/hr(θ) > 1. Therefore,

∂2

∂µs∂θ

[
hs(θ)

h(θ)

]
> 0 if

hs(θ)

hr(θ)
< 1, (A.35)

implying that the increase in the share of abstract workers will be larger for more productive

firms if the number of abstract workers outweighs the number of routine workers at baseline.

Starting from a situation with relatively more routine workers, TBTC will therefore increase

sorting of abstract workers into firms with relatively higher productivity levels.

Prediction 4: Differential Wage Growth – Following TBTC, more productive firms increase

their wages for workers of both types relative to less productive firms.

Proof: Taking the first- and second-order derivatives of (A.18) we obtain:

∂wr(θ)

∂µs
=

(
β − ν
νΓ

)
kν

δΛ
µ−1
s wr(θ)

ϕ(θ)

1 + ϕ(θ)
> 0

∂2wr(θ)

∂µs∂θ
=

(
β − ν
νΓ

)
kν

δΛ
µ−1
s

1

1 + ϕ(θ)

[
ϕ(θ)

∂wr(θ)

∂θ
+

wr(θ)

1 + ϕ(θ)
· ∂ϕ(θ)

∂θ

]
> 0

Hence, TBTC increases firm wages of routine workers, and more so for more productive

firms. Similarly, taking the derivatives of (A.20):

∂ws(θ)

∂µs
=

kν

δΛ
µ−1
s ws(θ)

[
1 +

(
β − ν
νΓ

)
ϕ(θ)

1 + ϕ(θ)

]
> 0

∂2ws(θ)

∂µs∂θ
=

kν

δΛ
µ−1
s

{
∂ws(θ)

∂θ

[
1 +

(
β − ν
νΓ

)
ϕ(θ)

1 + ϕ(θ)

]
+ ws(θ)

(
β − ν
νΓ

)
[1 + ϕ(θ)]−2 ∂ϕ(θ)

∂θ

}
> 0

Thus, the increase in firm wages of abstract workers is disproportionately larger for more
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productive firms. Given the rise in firm abstract share and wages for both types of workers,

TBTC also leads to an increase in firm average wages for all firms. In addition, if TBTC

increases sorting, then [∂2w`(θ)/∂µs∂θ] > 0, where ` = {s, r}, unambiguously implies that

the rise of firm average wages is monotonically increasing in firm productivity.
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