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Abstract

We consider identi�cation and estimation of social network models in a system of simul-

taneous equations. We show that, with or without row-normalization of the social adjacency

matrix, the network model has di¤erent equilibrium implications, needs di¤erent identi�cation

conditions, and requires di¤erent estimation strategies. When the adjacency matrix is not row-

normalized, di¤erent positions of the agents in a network captured by the Bonacich centrality

can be used to identify social interaction e¤ects and improve estimation e¢ ciency. We show

that the identi�cation condition for the model with a non-row-normalized adjacency matrix is

weaker than that for the model with a row-normalized adjacency matrix. We suggest 2SLS and

3SLS estimators using instruments based on the Bonacich centrality of each network to improve

estimation e¢ ciency. The number of such instruments depends on the number of networks.

When there are many networks in the data, the proposed estimators may have an asymptotic

bias due to the presence of many instruments. We propose a bias-correction procedure for the

many-instrument bias. Simulation experiments show that the bias-corrected estimators perform

well in �nite samples.
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1 Introduction

Since the seminal work by Manski (1993), research on social network models has attracted a lot of

attention (see Blume et al., 2011, for a recent survey). In a social network model, agents interact

with each other through network connections, which are captured by a social adjacency matrix.

According to Manski (1993), an agent� choice or outcome may be in�uenced by peer choices or

outcomes (the endogenous e¤ect), by peer exogenous characteristics (the contextual e¤ect), and/or

by the common environment of the network (the correlated e¤ect). It is the main interest of social

network research to separately identify and estimate di¤erent social interaction e¤ects.

Manski (1993) considers a linear-in-means model, where the endogenous e¤ect is based on the

rational expectation of the outcomes of all agents in the network. Manski shows that the linear-in-

means speci�cation su¤ers from the �re�ection problem�so that endogenous and contextual e¤ects

cannot be separately identi�ed. Lee (2007) introduces a model with multiple networks where an

agent is equally in�uenced by all the other agents in the same network. Lee�s social network model

can be identi�ed using the variation in network sizes. The identi�cation, however, can be weak if

all of networks are large. Bramoullé et al. (2009) generalize Lee�s social network model to a general

local-average model, where endogenous and contextual e¤ects are represented, respectively, by the

average outcome and average characteristics of an agent�s connections (or friends). Based on the

important observation that in a social network, an agent�s friend�s friend may not be a friend of

that agent, Bramoullé et al. (2009) use the intransitivity in network connections as an exclusion

restriction to identify di¤erent social interaction e¤ects.

Liu and Lee (2010) studies the e¢ cient estimation of the local-aggregate social network model,

where the endogenous e¤ect is given by the aggregate outcome of an agent�s friends. They show

that, for the local-aggregate model, di¤erent positions of the agents in a network captured by the

Bonacich (1987) centrality can be used as additional instruments to improve estimation e¢ ciency.

Liu et al. (2012) give the identi�cation condition for the local-aggregate model and show that the

condition is weaker than that for the local-average model derived by Bramoullé et al. (2009). Liu

et al. (2012) also propose a J test for the speci�cation of network models.

The above mentioned papers focus on single-equation network models with only one activity.

However, in real life, an agent�s decision usually involves more than one activity. For example,

a student may need to balance time between study and extracurriculars and a �rm may need to
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allocate resources between production and RND. In a recent paper, Cohen-Cole et al. (2012) consider

the identi�cation and estimation of local-average network models in the framework of simultaneous

equations. Besides endogenous, contextual, and correlated e¤ects as in single-equation network

models, the simultaneous equations network model also incorporates the simultaneity e¤ect, where

an agent�s outcome in a certain activity may depend on his/her outcome in a related activity, and

the cross-activity peer e¤ect, where an agent�s outcome in a certain activity may depend on peer

outcomes in a related activity. Cohen-Cole et al. (2012) derive the identi�cation conditions for the

various social interaction e¤ects and generalize the spatial 2SLS and 3SLS estimators in Kelejian

and Prucha (2004) to estimate the simultaneous equations network model.

In this paper, we consider the identi�cation and e¢ cient estimation of the local-aggregate network

model in a system of simultaneous equations. We show that, similar to the single-equation network

model, the Bonacich centrality provides additional information to achieve model identi�cation and to

improve estimation e¢ ciency. We derive the identi�cation condition for the local-aggregate simulta-

neous equations network model, and show that the condition is weaker than that for the local-average

model. For e¢ cient estimation, we suggest 2SLS and 3SLS estimators using instruments based on

the Bonacich centrality of each network. As the number of such instruments depends on the num-

ber of networks, the 2SLS and 3SLS estimators would have an asymptotic many-instrument bias

(Bekker, 1994) when there are many networks in the data. Hence, we propose a bias-correction pro-

cedure based on the estimated leading-order term of the asymptotic bias. Monte Carlo experiments

show that the bias-corrected estimators perform well in �nite samples.

The rest of the paper is organized as follows. Section 2 introduces a network game which

motivates the speci�cation of the econometric model presented in Section 3. Section 4 derives the

identi�cation conditions and Section 5 proposes 2SLS and 3SLS estimators for the model. The

regularity assumptions and detailed proofs are given in the Appendix. Monte Carlo evidence on

the �nite sample performance of the proposed estimators is given in Section 6. Section 7 brie�y

concludes.

2 Theoretical Model

2.1 The network game

Suppose there is a �nite set of agents N = f1; :::; ng in a network. We keep track of social connections

in the network through its adjacency matrix G = [gij ], where gij = 1 if i and j are friends and gij = 0
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otherwise.1 Let G� = [g�ij ], with g
�
ij = gij=

Pn
j=1 gij , denote the row-normalized adjacency matrix

such that each row of G� adds up to one. Figure 1 gives an example of G and G� for a star-shaped

network.

3 4
1

2

G =

266666664

0 1 1 1

1 0 0 0

1 0 0 0

1 0 0 0

377777775
G� =

266666664

0 1=3 1=3 1=3

1 0 0 0

1 0 0 0

1 0 0 0

377777775
Figure 1: an example of G and G� for a star-shaped network.

Given the network structure represented by G, agent i chooses y1i and y2i, the respective e¤orts

of two related activities, to maximize the following linear quadratic utility function

u(y1i; y2i) = ��1iy1i + �
�
2iy2i �

1

2
��1y

2
1i �

1

2
��2y

2
2i + �

�y1iy2i (1)

+��11
Pn

j=1 gijy1iy1j + �
�
22

Pn
j=1 gijy2iy2j + �

�
21

Pn
j=1 gijy1iy2j + �

�
12

Pn
j=1 gijy2iy1j :

As in the standard linear-quadratic utility for a single activity model (Ballester et al., 2006), ��1i

and ��2i capture ex ante individual heterogeneity. The cross-e¤ects between own e¤orts for di¤erent

activities are given by
@2u(y1i; y2i)

@y1i@y2i
=
@2u(y1i; y2i)

@y2i@y1i
= ��:

The cross-e¤ects between own and peer e¤orts for the same activity are

@2u(y1i; y2i)

@y1i@y1j
= ��11gij and

@2u(y1i; y2i)

@y2i@y2j
= ��22gij ;

which may indicate strategic substitutability or complementarity depending on the signs of ��11 and

��22. The cross-e¤ects between own and peer e¤orts for di¤erent activities are given by

@u(y1i; y2i)

@y1i@y2j
= ��21gij and

@u(y1i; y2i)

@y2i@y1j
= ��12gij ;

which may indicate strategic substitutability or complementarity depending on the signs of ��21 and

1For ease of presentation, we focus on the case where the connections are undirected and no agent is isolated so
that G is symmetric and

Pn
j=1 gij 6= 0 for all i. The identi�cation result and estimation method of the paper hold

for a directed network with an asymmetric G.
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��12.

From the �rst order conditions of utility maximization, we have the best-response functions as

y1i = �1y2i + �11
Pn

j=1 gijy1j + �21
Pn

j=1 gijy2j + �1i; (2)

y2i = �2y1i + �22
Pn

j=1 gijy2j + �12
Pn

j=1 gijy1j + �2i; (3)

where �1 = ��=��1, �2 = ��=��2, �11 = ��11=�
�
1, �22 = ��22=�

�
2, �21 = ��21=�

�
1, �12 = ��12=�

�
2,

�1i = ��1i=�
�
1, �2i = ��2i=�

�
2. In (2) and (3), agent i�s best-response e¤ort of a certain activity

depends on the aggregate e¤orts of his/her friends of that activity and a related activity. Therefore,

we call this model the local-aggregate network game. In matrix form, the best-response functions

are

Y1 = �1Y2 + �11GY1 + �21GY2 +�1; (4)

Y2 = �2Y1 + �22GY2 + �12GY1 +�2; (5)

where Yk = (yk1; � � � ; ykn)0 and �k = (�k1; � � � ; �kn)0 for k = 1; 2.

The reduced-form equations of (4) and (5) are

SY1 = (I � �22G)�1 + (�1I + �21G)�2;

SY2 = (I � �11G)�2 + (�2I + �12G)�1;

where I is a conformable identity matrix and

S = (1� �1�2)I � (�11 + �22 + �1�12 + �2�21)G+ (�11�22 � �12�21)G2: (6)

If S is nonsingular2 , then the local-aggregate network game has a unique Nash equilibrium in pure

strategies with the equilibrium e¤orts given by

Y �1 = S�1[(I � �22G)�1 + (�1I + �21G)�2]; (7)

Y �2 = S�1[(I � �11G)�2 + (�2I + �12G)�1]: (8)

2A su¢ cient condition for the nonsingularity of S is j�1�2j + j�11 + �22 + �1�12 + �2�21j � jjGjj1 + j�11�22 �
�12�21j � jjGjj21 < 1, where jj � jj1 is the row-sum matrix norm.
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2.2 Local aggregate versus local average: equilibrium comparison

In a recent paper, Cohen-Cole et al. (2012) consider a network game with utility function

u(y1i; y2i) = ��1iy1i + �
�
2iy2i �

1

2
��1y

2
1i �

1

2
��2y

2
2i + �

�y1iy2i (9)

+��11
Pn

j=1 g
�
ijy1iy1j + �

�
22

Pn
j=1 g

�
ijy2iy2j + �

�
21

Pn
j=1 g

�
ijy1iy2j + �

�
12

Pn
j=1 g

�
ijy2iy1j :

From the �rst order conditions of maximizing (9), the best-response functions of the network game

are

y1i = �1y2i + �11
Pn

j=1 g
�
ijy1j + �21

Pn
j=1 g

�
ijy2j + �1i;

y2i = �2y1i + �22
Pn

j=1 g
�
ijy2j + �12

Pn
j=1 g

�
ijy1j + �2i;

or, in matrix form,

Y1 = �1Y2 + �11G
�Y1 + �21G

�Y2 +�1; (10)

Y2 = �2Y1 + �22G
�Y2 + �12G

�Y1 +�2: (11)

As G� is row-normalized, in (10) and (11), agent i�s best-response e¤ort of a certain activity depends

on the average e¤orts of his/her friends of that activity and a related activity. Therefore, we call

this model the local-average network game. Cohen-Cole et al. (2012) show that, if S� is nonsingular,

where

S� = (1� �1�2)I � (�11 + �22 + �1�12 + �2�21)G� + (�11�22 � �12�21)G�2;

then the network game with payo¤s (9) has a unique Nash equilibrium in pure strategies given by

Y �1 = S��1[(I � �22G�)�1 + (�1I + �21G�)�2]; (12)

Y �2 = S��1[(I � �11G�)�2 + (�2I + �12G�)�1]: (13)

Although the best-response functions of the local-aggregate and local-average network games

share similar functional forms, they have di¤erent implications. As pointed out by Liu et al. (2012),

in the local-aggregate game, even if agents are ex ante identical in terms of individual attributes �1

and �2, agents with di¤erent positions in the network would have di¤erent equilibrium payo¤s. On
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the other hand, the local-average game is based on the mechanism of social conformism.3 As the

positions in the network do not matter in the local-average game, the equilibrium e¤orts and payo¤s

would be the same if all agents are ex ante identical.

To illustrate this point, suppose the agents in a network are ex ante identical such that �1 = �1ln

and �2 = �2ln, where �1; �2 are constant scalars and ln is an n�1 vector of ones. As G�ln = G�2ln =

ln, it follows from (12) and (13) that Y �1 = c1ln and Y
�
2 = c2ln, where

c1 = [(1� �22)�1 + (�1 + �21)�2]=[(1� �1�2)� (�11 + �22 + �1�12 + �2�21) + (�11�22 � �12�21)];

c2 = [(1� �11)�2 + (�2 + �12)�1]=[(1� �1�2)� (�11 + �22 + �1�12 + �2�21) + (�11�22 � �12�21)]:

Thus, for the local-average network game, the equilibrium e¤orts and payo¤s are the same for all

agents. On the other hand, for the local-aggregate network game, it follows from (7) and (8) that

Y �1 = S�1[(I � �22G)�1 + (�1I + �21G)�2]ln;

Y �2 = S�1[(I � �11G)�2 + (�2I + �12G)�1]ln:

Thus, the agents would have di¤erent equilibrium e¤orts and payo¤s if Gln is not proportional to

ln.4

Therefore, the local-aggregate and local-average network games have di¤erent equilibrium and

policy implications. The following sections show that the econometric model for the local-aggregate

network game has some interesting features that requires di¤erent identi�cation conditions and

estimation methods from those for the local-average model studied by Cohen-Cole et al. (2012).

3Liu et al. (2012) show that the best-response function of the local-average network game can be derived from a
setting where an agent will be punished if he deviates from the �social norm� (the average behavior of his friends).
Therefore, if the agents are identical ex ante, they would behave the same in equilibrium.

4 If Gln = cln for some constant scalar c, i.e., all agents have the same number of friends, then it follows from (7)
and (8) that Y �1 = c3ln and Y

�
2 = c4ln, where

c3 = [(1� �22c)�1 + (�1 + �21c)�2]=[(1� �1�2)� (�11 + �22 + �1�12 + �2�21)c+ (�11�22 � �12�21)c2];
c4 = [(1� �11c)�2 + (�2 + �12c)�1]=[(1� �1�2)� (�11 + �22 + �1�12 + �2�21)c+ (�11�22 � �12�21)c2]:

Thus, all agents have the same equilibrium payo¤s according to (1).
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3 Econometric Model

3.1 The local-aggregate simultaneous equations network model

The econometric network model follows the best-response functions (4) and (5). Suppose the n

observations in the data are partitioned into �r networks, with nr agents in the rth network. For the

rth network, let

�1;r = Xr�1 +GrXr
1 + �1;rlnr + �1;r;

�2;r = Xr�2 +GrXr
2 + �2;rlnr + �2;r:

where Xr is an nr � kx matrix of exogenous variables, Gr is the adjacency matrix of network r, lnr
is an nr � 1 vector of ones, and �1;r; �2;r are nr � 1 vectors of disturbances. It follows by (4) and (5)

that Y1;r and Y2;r, which are nr � 1 vectors of observed choices/outcomes of two related activities

for the agents in the rth network, are given by

Y1;r = �1Y2;r + �11GrY1;r + �21GrY2;r +Xr�1 +GrXr
1 + �1;rlnr + �1;r;

Y2;r = �2Y1;r + �22GrY2;r + �12GrY1;r +Xr�2 +GrXr
2 + �2;rlnr + �2;r:

Let diagfAsg denote a �generalized�block diagonal matrix with diagonal blocks being ns �ms

matrices As�s. For k = 1; 2, let Yk = (Y 0k;1; � � � ; Y 0k;�r)0, X = (X 0
1; � � � ; X 0

�r)
0, �k = (�k;1; � � � ; �k;�r)0,

�k = (�
0
k;1; � � � ; �0k;�r)0, L = diagflnrg�rr=1 and G = diagfGrg�rr=1. Then, for all the �r networks,

Y1 = �1Y2 + �11GY1 + �21GY2 +X�1 +GX
1 + L�1 + �1; (14)

Y2 = �2Y1 + �22GY2 + �12GY1 +X�2 +GX
2 + L�2 + �2: (15)

For �1 = (�11; � � � ; �1n)0 and �2 = (�21; � � � ; �2n)0, we assume E(�1i) = E(�2i) = 0, E(�21i) = �21, and

E(�22i) = �22. Furthermore, we allow the disturbances of the same agent to be correlated across

equations by assuming E(�1i�2i) = �12 and E(�1i�2j) = 0 for i 6= j. When S given by (6) is
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nonsingular, the reduced-form equations of the model are

Y1 = S�1[X(�1�2 + �1) +GX(�21�2 � �22�1 + �1
2 + 
1) +G2X(�21
2 � �22
1)

+L(�1�2 + �1) +GL(�21�2 � �22�1)] + S�1u1; (16)

Y2 = S�1[X(�2�1 + �2) +GX(�12�1 � �11�2 + �2
1 + 
2) +G2X(�12
1 � �11
2)

+L(�2�1 + �2) +GL(�12�1 � �11�2)] + S�1u2; (17)

where

u1 = (I � �22G)�1 + (�1I + �21G)�2; (18)

u2 = (I � �11G)�2 + (�2I + �12G)�1: (19)

In this model, we allow network-speci�c e¤ects �1;r and �2;r to depend on X and G by treating

�1 and �2 as �r � 1 vectors of unknown parameters (as in a �xed e¤ect panel data model). When

the number of network �r is large, we may have the �incidental parameter�problem (Neyman and

Scott, 1948). To avoid this problem, we transform (14) and (15) using a deviation from group mean

projector J = diagfJrg�rr=1 where Jr = Inr � 1
nr
lnr l

0
nr . This transformation is analogous to the

�within�transformation for �xed e¤ect panel data models. As JL = 0, the transformed equations

are

JY1 = �1JY2 + �11JGY1 + �21JGY2 + JX�1 + JGX
1 + J�1; (20)

JY2 = �2JY1 + �22JGY2 + �12JGY1 + JX�2 + JGX
2 + J�2: (21)

Our identi�cation results and estimation methods are based on the transformed model.

3.2 Identi�cation challenges

Analogous to the local-average simultaneous equations network model studied by Cohen-Cole et al.

(2012), the local-aggregate simultaneous equations network model given by (14) and (15) incorpo-

rates (within-activity) endogenous e¤ects, contextual e¤ects, simultaneity e¤ects, cross-activity peer

e¤ects, network correlated e¤ects and cross-activity correlated e¤ects. It is the main purpose of this
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paper to establish identi�cation conditions and propose e¢ cient estimation methods for the various

social interaction e¤ects.

� Endogenous e¤ect and contextual e¤ect

The endogenous e¤ect, where an agent�s choice/outcome may depend on those of his/her friends

on the same activity, is captured by the coe¢ cients �11 and �22. The contextual e¤ect, where an

agent�s choice/outcome may depend on the exogenous characteristics of his/her friends, is captured

by 
1 and 
2.

The non-identi�cation of a social interaction model caused by the coexistence of those two e¤ects

is known as the �re�ection problem� (Manski, 1993). For example, in a linear-in-means model,

where an agent is equally a¤ected by all the other agents in the network and by nobody outside

the network, the mean of endogenous regressor is perfectly collinear with the exogenous regressors.

Hence, endogenous and contextual e¤ects cannot be separately identi�ed.

In reality, an agent may not be evenly in�uenced by all the other agents in a network. In a

network model, it is usually assumed that an agent is only in�uenced by his/her friends. Note

that, if individuals i; j are friends and j; k are friends, it does not necessarily imply that i; k are

also friends. Thus, the intransitivity in network connections provides an exclusion restriction to

identify the model. Bramoullé et al. (2009) show that if intransitivities exist in a network so that

I;G�; G�2 are linearly independent, then the characteristics of an agent�s second-order (indirect)

friends G�2X can be used as instruments to identify the endogenous e¤ect from the contextual e¤ect

in the local-average model.5

On the other hand, when Gr does not have constant row sums, the number of friends represented

byGrlnr varies across agents. For a local-aggregate model, Liu and Lee (2010) show that the Bonacich

(1987) centrality, which has Grlnr as the leading-order term, can also be used as an instrument for

the endogenous e¤ect. For the a local-aggregate seemingly unrelated regression (SUR) network model

with �xed network e¤ect, we show in the following section that identi�cation is possible through the

intransitivity in network connections and/or the variation in Bonacich centrality.

� Simultaneity e¤ect and cross-activity peer e¤ect

The simultaneity e¤ect, where an agent�s choice/outcome of an activity may depend on his/her

choice/outcome of a related activity, can be seen in the coe¢ cients �1 and �2. The cross-activity
5A stronger identi�cation condition is needed if the network �xed e¤ect is also included in the model.
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peer e¤ect, where an agent�s choice/outcome may depend on those of his/her friends on a related

activity, is represented by the coe¢ cients �21 and �12.

For a standard simultaneous equations model without social interaction e¤ects, the simultaneity

problem is a well known problem for the identi�cation and the usual remedy is to impose exclusion

restrictions on the exogenous variables. Cohen-Cole et al. (2012) show that, with the simultane-

ity e¤ect or the cross-activity peer e¤ect (but not both), the local-average network model can be

identi�ed without imposing any exclusion restrictions on X, as long as J; JG�; G�2; G�3 are linearly

independent. In this paper, we show that, by exploiting the variation in Bonacich centrality, the

local-aggregate network model with the simultaneity e¤ect or the cross-activity peer e¤ect can be

identi�ed under weaker conditions.

However, either the intransitivity inG or the variation in Bonacich centrality would not be enough

to identify the simultaneous equations network model with both simultaneity and cross-activity peer

e¤ects. One possible approach to achieve identi�cation is to impose exclusion restrictions on X. We

show that, with exclusion restrictions onX, the local-aggregate network model with both simultaneity

and cross-activity peer e¤ects can be identi�ed under weaker conditions than the local-average model.

� Network correlated e¤ect and cross-activity correlated e¤ect

Furthermore, the structure of the simultaneous equations network model is �exible enough to

allow us to incorporate two types of correlated e¤ects.

First, the network �xed e¤ect given by �1;r and �2;r captures the network correlated e¤ect

where agents in the same network may behave similarly as they have similar unobserved individual

characteristics or they face similar institutional environment. Therefore, the network �xed e¤ect

serves as a (partial) remedy for the selection bias that originates from the possible sorting of agents

with similar unobserved characteristics into a network.

Second, in the simultaneous equations network model, the error terms of the same agent is allowed

to be correlated across equations. The correlation structure of the error term captures the cross-

activity correlated e¤ect so that the choices/outcomes of the same agent on related activities could

be correlated. As our identi�cation results are based on the mean of reduce-form equations, they

are not a¤ected by the correlation structure of the error term. However, for estimation e¢ ciency, it

is important to take into account the correlation in the disturbances. The estimators proposed in

this paper extend the generalized spatial 3SLS estimator in Kelejian and Prucha (2004) to estimate
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the simultaneous equations network model in the presence of many instruments.

4 Identi�cation Results

Among the regularity assumptions listed in Appendix A, Assumption 4 is a su¢ cient condition for

identi�cation of the simultaneous equations network model. Let Z1 and Z2 denote the matrices of

right-hand-side (RHS) variables of (14) and (15). For Assumption 4 to hold, E(JZ1) and E(JZ2)

need to have full column rank for large enough n. In this section, we provide su¢ cient conditions

for E(JZ1) to have full column rank. The su¢ cient conditions for E(JZ2) to have full column rank

can be analogously derived.

In this paper, we focus on the case where Gr does not have constant row sums for some network

r. When Gr has constant column sums for all r, the equilibrium implication of the local-aggregate

network game is similar to that of the local-average network game (see footnote 4) and the identi-

�cation conditions are analogous to those given in Cohen-Cole et al. (2012). Henceforth, let � and

� (possibly with subscripts) denote some generic constant scalars that may take di¤erent values for

di¤erent uses.

4.1 Identi�cation of the SUR network model

First, we consider the seemingly unrelated regression (SUR) network model where �1 = �2 = �21 =

�12 = 0. Thus, (4) and (5) become

Y1 = �11GY1 +X�1 +GX
1 + L�1 + �1; (22)

Y2 = �22GY2 +X�2 +GX
2 + L�2 + �2: (23)

For the SUR network model, an agent�s choice/outcome is still allowed to be correlated with his/her

own choices/outcomes of related activities through the correlation structure of the disturbances.

When �1 = �2 = �21 = �12 = 0, it follows from the reduced-form equation (16) that6

E(Y1) = (I � �11G)�1(X�1 +GX
1 + L�1): (24)

For (22), let Z1 = [GY1; X;GX]. Identi�cation of (22) requires E(JZ1) = [E(JGY1); JX; JGX] to

have full column rank. As (I��11G)�1 = I+�11G(I��11G)�1 and (I��11G)�1G = G(I��11G)�1,
6For ease of presentation, we assume G;X are nonstochastic. This assumption can be easily relaxed and the results

will be conditional on G;X.
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it follows from (24) that

E(JGY1) = JGX�1 + JG
2(I � �11G)�1X(�11�1 + 
1) + JG(I � �11G)�1L�1:

If �11�1+
1 6= 0, JG2(I��11G)�1X, with the leading order term JG2X, can be used as instruments

for the endogenous regressor JGY1. On the other hand, if Gr does not have constant row sums for

all r = 1; � � � ; �r, then JG(I � �11G)�1L 6= 0. As pointed out by Liu and Lee (2010), the Bonacich

centrality given by G(I � �11G)�1L, with the leading order term GL, can be used as additional

instruments for identi�cation. The following proposition gives a su¢ cient condition for E(JZ1) to

have full column rank.

Proposition 1 Suppose Gr has non-constant row sums for some network r. For equation (22),

E(JZ1) has full column rank if

(i) �1;r 6= 0 or �11�1 + 
1 6= 0, and Inr ; Gr; G2r are linearly independent; or

(ii) �1;r 6= 0 and G2r = �1Inr + �2Gr for 1� �2�11 � �1�211 6= 0.

The identi�cation condition for the local-aggregate SUR model given in Proposition 1 is weaker

than that for the local-average SUR model. As pointed out by Bramoullé et al. (2009),7 identi�cation

of the local-average model requires the linear independence of I;G�; G�2; G�3. Consider a data set

with �r networks, where all networks in the data are represented by the graph in Figure 1. For the

�r networks, G = diagfGrg�rr=1 where Gr is given by the adjacency matrix in Figure 1. For the row

normalized adjacency matrix G�, it is easy to see that G�3 = G�. Therefore, it follows by Proposition

5 of Bramoullé et al. (2009) that the local-average SUR model is not identi�ed. On the other hand,

for the network in Figure 1, Gr has non-constant row sums and I4; Gr; G2r are linearly independent.

Hence, the local-aggregate SUR model can be identi�ed by Proposition 1(i).

1 2 3 Gr =

266664
0 0 0

1 0 1

0 0 0

377775
Figure 2: an example where the local-aggregate model can be identi�ed by Proposition 1(ii).

7As the identi�cation conditions given in Bramoullé et al. (2009) are based on the mean of reduce-form equations,
they are not a¤ected by the correlation structure of the error term. Hence, they can be applied to the SUR model.
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Figure 2 gives an example where the local-aggregate SUR model can be identi�ed by Proposition

1(ii). For the directed graph in Figure 2, the adjacency matrix Gr = [gij;r], where gij;r = 1 if an

arc is directed from i to j and gij;r = 0 otherwise. It is easy to see that G2r = �1I3 + �2Gr for

�1 = �2 = 0. As the row sums of Gr are not constant, the local-aggregate SUR model is identi�ed.

The following corollary shows that for a network with symmetric adjacency matrix Gr, the

local-aggregate SUR model can be identi�ed if Gr has non-constant row sums.

Corollary 1 Suppose �11�1 + 
1 6= 0 or �1;r 6= 0 for some network r. Then, for equation (22),

E(JZ1) has full column rank if Gr is symmetric and has non-constant row sums.

4.2 Identi�cation of the simultaneous equations network model

4.2.1 Identi�cation under the restrictions �21 = �12 = 0

For the simultaneous equations network model, besides the endogenous, contextual and correlated

e¤ects, �rst we incorporate the simultaneity e¤ect so that an agent�s choice/outcome is allowed

to depend on his/her own choice/outcome of a related activity. However, we assume that friends�

choices/outcomes of related activities have no in�uence on an agent�s choice/outcome. Under the

restrictions �21 = �12 = 0, (14) and (15) become

Y1 = �1Y2 + �11GY1 +X�1 +GX
1 + L�1 + �1; (25)

Y2 = �2Y1 + �22GY2 +X�2 +GX
2 + L�2 + �2: (26)

For (25), let Z1 = [Y2; GY1; X;GX]. For identi�cation of the simultaneous equations model, E(JZ1)

is required to have full column rank for large enough n. The following proposition gives su¢ cient

conditions for E(JZ1) to have full column rank.

Proposition 2 Suppose Gr has non-constant row sums and Inr ; Gr; G
2
r are linearly independent for

some network r. When [lnr ; Grlnr ; G
2
rlnr ] has full column rank, E(JZ1) of equation (25) has full

column rank if

(i) Inr ; Gr; G
2
r; G

3
r are linearly independent and D1 given by (43) has full rank; or

(ii) G3r = �1Inr + �2Gr + �3G
2
r and D

�
1 given by (44) has full rank.

When G2rlnr = �1lnr + �2Grlnr , E(JZ1) of equation (25) has full column rank if

(iii) Inr ; Gr; G
2
r; G

3
r are linearly independent and D

y
1 given by (45) has full rank; or

(iv) G3r = �1Inr + �2Gr + �3G
2
r and D

z
1 given by (46) has full rank.
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Cohen-Cole et al. (2012) show that a su¢ cient condition to identify the local-average simulta-

neous equations model under the restrictions �21 = �12 = 0 requires that J; JG�; JG�2; JG�3 are

linearly independent. The su¢ cient conditions to identify the restricted local-aggregate simultane-

ous equations model given by Proposition 2 is weaker. Consider a data set, where all networks

are given by the graph in Figure 3. It is easy to see that, for the row-normalized adjacency matrix

G� = diagfG�rg�rr=1, where G�r is given in Figure 3, G�3 = � 1
4I+

1
4G

�+G�2. Therefore, the condition

to identify the local-average model does not hold. On the other hand, for the rth network in the

data, G2rl5 = 4l5 + Gl5. As the row sums of Gr are not constant and I5; Gr; G2r; G
3
r are linearly

independent, the local-aggregate model can be identi�ed by Proposition 2(iii).

3

52

4
1 Gr =

266666666664

0 1 1 1 1

1 0 1 0 0

1 1 0 0 0

1 0 0 0 1

1 0 0 1 0

377777777775
G�r =

266666666664

0 1=4 1=4 1=4 1=4

1=2 0 1=2 0 0

1=2 1=2 0 0 0

1=2 0 0 0 1=2

1=2 0 0 1=2 0

377777777775
Figure 3: an example where the local-aggregate model can be identi�ed by Proposition 2(iii).

For another example where identi�cation is possible for the local-aggregate model but not for the

local-average model, let us revisit the network given by the graph in Figure 1. For a data set with

�r such networks, as G�3 = G�, the condition to identify the local-average simultaneous equations

model given by Cohen-Cole et al. (2012) does not hold. On the other hand, for the adjacency matrix

without row-normalization, G3r = 3Gr and G2rl4 = 3l4. As the row sums of Gr are not constant

and I4; Gr; G2r are linearly independent, the local-aggregate simultaneous equations model can be

identi�ed by Proposition 2(iv).

Figure 4 provides an example where the conditions of Proposition 2(ii) are satis�ed. For the

directed network in Figure 4, G3r = 0. As [l3; Grl3; G2rl3] has full column rank and I3; Gr; G
2
r

are linearly independent, the local-aggregate simultaneous equations model can be identi�ed by

Proposition 2(ii).
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1 2 3 Gr =

266664
0 1 0

0 0 1

0 0 0

377775
Figure 4: an example where the local-aggregate model can be identi�ed by Proposition 2(ii).

4.2.2 Identi�cation under the restrictions �1 = �2 = 0

Next, let us consider the simultaneous equations model where an agent�s choice/outcome is allowed

to depend on his/her friends�choices/outcomes of the same activity and a related activity. This

speci�cation incorporates the endogenous, contextual, correlated, and cross-activity peer e¤ects,

but excludes the simultaneity e¤ect. Under the restrictions �1 = �2 = 0, (14) and (15) become

Y1 = �11GY1 + �21GY2 +X�1 +GX
1 + L�1 + �1; (27)

Y2 = �22GY2 + �12GY1 +X�2 +GX
2 + L�2 + �2: (28)

For (27), let Z1 = [GY1; GY2; X;GX]. The following proposition gives su¢ cient conditions for

E(JZ1) to have full column rank.

Proposition 3 Suppose Gr has non-constant row sums and Inr ; Gr; G
2
r are linearly independent for

some network r. When [lnr ; Grlnr ; G
2
rlnr ] has full column rank, E(JZ1) of equation (27) has full

column rank if

(i) Inr ; Gr; G
2
r; G

3
r are linearly independent and D2 given by (47) has full rank; or

(ii) G3r = �1Inr + �2Gr + �3G
2
r and D

�
2 given by (48) has full rank.

When G2rlnr = �1lnr + �2Grlnr , E(JZ1) of equation (27) has full column rank if

(iii) Inr ; Gr; G
2
r; G

3
r are linearly independent and D

y
2 given by (49) has full rank; or

(iv) G3r = �1Inr + �2Gr + �3G
2
r and D

z
2 given by (50) has full rank.

For the local-average simultaneous equations model under the restrictions �1 = �2 = 0, Cohen-

Cole et al. (2012) give a su¢ cient identi�cation condition that requires J; JG�; JG�2; JG�3 to be

linearly independent. The su¢ cient identi�cation condition for the local-aggregate model given by

Proposition 3 is weaker. As explained in the preceding subsection, for the network given by the

graph in Figure 1 or Figure 3, the identi�cation condition for the local-average model does not

15



hold. On the other hand, if Gr is given by Figure 3, the local-aggregate model can be identi�ed by

Proposition 3(iii) since the row sums of Gr are not constant, G2rl5 = 4l5 + Gl5, and I5; Gr; G
2
r; G

3
r

are linearly independent. Similarly, if Gr is given by Figure 1, the local-aggregate model can be

identi�ed by Proposition 3(iv) since the row sums of Gr are not constant, G2rl4 = 3l4, G3r = 3Gr,

and I4; Gr; G2r are linearly independent.

4.2.3 Non-identi�cation of the general simultaneous equations model

For the general simultaneous equations model given by (14) and (15), the various social interaction

e¤ects cannot be separately identi�ed through the mean of the RHS variables without imposing any

exclusion restrictions. This is because E( �Z1) and E( �Z2), where �Z1 = [Y2; GY1; GY2; X;GX;L] and

�Z2 = [Y2; GY1; GY2; X;GX;L], do not have full column rank as shown in the following proposition.

Proposition 4 For (14) and (15), E( �Z1) and E( �Z2) do not have full column rank.

Proposition 4 shows that, for the general simultaneous equations model with both simultaneity

and cross-activity peer e¤ects, exploiting the intransitivities in social connections and/or variations

in Bonacich centrality does not provide enough exclusion restrictions for identi�cation. One way to

achieve identi�cation is to impose exclusion restrictions on the coe¢ cients of exogenous variables.

Consider the following model

Y1 = �1Y2 + �11GY1 + �21GY2 +X1�1 +GX1
1 + L�1 + �1; (29)

Y2 = �2Y1 + �22GY2 + �12GY1 +X2�2 +GX2
2 + L�2 + �2; (30)

where, for ease of presentation, we assume X1; X2 are vectors and [X1; X2] has full column rank.8

From the reduced-form equations (16) and (17), we have

E(Y1) = S�1[X1�1 +GX1(
1 � �22�1)�G2X1�22
1 +X2�1�2 +GX2(�21�2 + �1
2) +G2X2�21
2

+L(�1 + �1�2) +GL(�21�2 � �22�1)]; (31)

E(Y2) = S�1[X2�2 +GX2(
2 � �11�2)�G2X2�11
2 +X1�2�1 +GX1(�12�1 + �2
1) +G2X1�12
1

+L(�2 + �2�1) +GL(�12�1 � �11�2)]; (32)

8When X1; X2 are matrices, we need [X1; X2] to have higher column rank than both X1 and X2.
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where S given by (6). For (29), let Z1 = [Y2; GY1; GY2; X1; GX1]. The following proposition gives

su¢ cient conditions for E(JZ1) to have full column rank.

Proposition 5 Suppose Gr has non-constant row sums for some network r. When [lnr ; Grlnr ; G
2
rlnr ]

has full column rank, E(JZ1) of equation (29) has full column rank if

(i) Inr ; Gr; G
2
r; G

3
r are linearly independent and D3 given by (51) has full rank; or

(ii) Inr ; Gr; G
2
r are linearly independent, G

3
r = �1Inr + �2Gr + �3G

2
r and D

�
3 given by (52) has

full rank.

When G2rlnr = �1lnr + �2Grlnr , E(JZ1) of equation (29) has full column rank if

(iii) Inr ; Gr; G
2
r; G

3
r are linearly independent and D

y
3 given by (53) has full rank;

(iv) Inr ; Gr; G
2
r are linearly independent, G

3
r = �1Inr + �2Gr + �3G

2
r and D

z
3 given by (54) has

full rank; or

(v) G2r = �1Inr + �2Gr and D
]
3 given by (55) has full rank.

For the general local-average simultaneous equations model, Cohen-Cole et al. (2012) provide a

su¢ cient identi�cation condition that requires J; JG�; JG�2 to be linearly independent. Suppose

G� = diagfG�rg�rr=1 where G�r is given by Figure 1. It is easy to see that JG�2 = �JG�. Therefore,

the identi�cation condition for the local-average model does not hold. On the other hand, as Gr given

by Figure 1 has non-constant row sums and I4; Gr; G2r are linearly independent, the local-aggregate

model given by (29) and (30) can be identi�ed by Proposition 5(iv).

5 Estimation

5.1 The 2SLS estimator with many instruments

The general simultaneous equations model given by (29) and (30) can be written more compactly as

Y1 = Z1�1 + L�1 + �1 and Y2 = Z2�2 + L�2 + �2; (33)

where Z1 = [Y2; GY1; GY2; X1; GX1], Z2 = [Y1; GY2; GY1; X2; GX2], �1 = (�1; �11; �21; �
0
1; 


0
1)
0, and

�2 = (�2; �22; �12; �
0
2; 


0
2)
0. As JL = 0, the within transformation with projector J gives JY1 =

JZ1�1 + J�1 and JY2 = JZ2�2 + J�2. From the reduced-form equations (16) and (17), we have

JZ1 = E(JZ1) + U1 = F1 + U1; and JZ2 = E(JZ2) + U2 = F2 + U2; (34)
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where F1 = J [E(Y2); GE(Y1); GE(Y2); X1; GX1], F2 = J [E(Y1); GE(Y2); GE(Y1); X2; GX2], U1 =

J [S�1u2; GS
�1u1; GS

�1u2; 0], and U2 = J [S�1u1; GS�1u2; GS�1u1; 0], with E(Y1);E(Y2) given by

(31) and (32), S given by (6), and u1; u2 given by (18) and (19).

Based on (34), the best instruments for JZ1 and JZ2 are F1 and F2 respectively (Lee, 2003).

However, both F1 and F2 are infeasible as they involve unknown parameters. Hence, we use linear

combinations of feasible instruments to approximate F1 and F2 as in Kelejian and Prucha (2004) and

Liu and Lee (2010). Let �G = �1�2I+(�11+�22+�1�12+�2�21)G�(�11�22��12�21)G2. Under some

regularity conditions (see footnote 2), we have jj �Gjj1 < 1. Then, S�1 = (I � �G)�1 =
P1

j=0
�Gj =Pp

j=0
�Gj + �Gp+1S�1. It follows that jjS�1 �

Pp
j=0

�Gj jj1 � jj �Gjjp+11 jjS�1jj1. As jj �Gjj1 < 1, the

approximation error of
Pp

j=0
�Gj diminishes in a geometric rate as p ! 1. Since

Pp
j=0

�Gj can

be considered as a linear combination of [I;G; � � � ; G2p], the best instruments F1 and F2 can be

approximated by a linear combination of n�K IV matrix

QK = J [X1; GX1; � � � ; G2p+3X1; X2; GX2; � � � ; G2p+3X2; GL; � � � ; G2p+2L] (35)

with an approximation error diminishing very fast when K (or p) goes to in�nity, as required

by Assumption 5 in Appendix A. Let PK = QK(Q
0
KQK)

�Q0K . The many-instrument two-stage

least-squares (2SLS) estimators for �1 and �2 are �̂1;2sls = (Z 01PKZ1)
�1Z 01PKY1 and �̂2;2sls =

(Z 02PKZ2)
�1Z 02PKY2.

Let H11 = limn!1
1
nF

0
1F1 and H22 = limn!1

1
nF

0
2F2. The following proposition establishes the

consistency and asymptotic normality of the many-instrument 2SLS estimator.

Proposition 6 Under Assumptions 1-5, if K !1 and K=n! 0, then
p
n(�̂1;2sls� �1� b1;2sls)

d!

N(0; �21H
�1
11 ) and

p
n(�̂2;2sls��2�b2;2sls)

d! N(0; �22H
�1
22 ), where b1;2sls = (Z

0
1PKZ1)

�1E(U 01PK�1) =

Op(K=n) and b2;2sls = (Z 02PKZ2)
�1E(U 02PK�2) = Op(K=n).

From Proposition 6, when the number of instruments K grows at a rate slower than the sample

size n, the 2SLS estimators are consistent and asymptotically normal. However, the asymptotic

distribution of the 2SLS estimator may not center around the true parameter value due to the

presence of many-instrument bias of order Op(K=n) (see, e.g., Bekker, 1994). If K2=n ! 0, then
p
nb1;2sls

p! 0,
p
nb2;2sls

p! 0 and the 2SLS estimators are properly centered.

The condition that K=n ! 0 is crucial for the 2SLS estimator to be consistent. To see this,

we look at the �rst-order conditions of the 2SLS, 1
nZ

0
1PK(Y1 � Z1�̂1;2sls) = 0 and 1

nZ
0
2PK(Y2 �
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Z2�̂2;2sls) = 0. At the true parameter values, E[ 1nZ
0
1PK(Y1�Z1�1)] = 1

nE(U
0
1PK�1) and E[

1
nZ

0
2PK(Y2�

Z2�2)] =
1
nE(U

0
2PK�2), where

E(U 01PK�1) =

266666664

(�12 + �2�
2
1)tr(PKS

�1) + (�12�
2
1 � �11�12)tr(PKS�1G)

(�21 + �1�12)tr(PKGS
�1) + (�21�12 � �22�21)tr(PKGS�1G)

(�12 + �2�
2
1)tr(PKGS

�1) + (�12�
2
1 � �11�12)tr(PKGS�1G)

02kx�1

377777775
= O(K) (36)

E(U 02PK�2) =

266666664

(�12 + �1�
2
2)tr(PKS

�1) + (�21�
2
2 � �22�12)tr(PKS�1G)

(�22 + �2�12)tr(PKGS
�1) + (�12�12 � �11�22)tr(PKGS�1G)

(�12 + �1�
2
2)tr(PKGS

�1) + (�21�
2
2 � �22�12)tr(PKGS�1G)

02kx�1

377777775
= O(K) (37)

by Lemma C.2 in the Appendix. Therefore, E[ 1nZ
0
1PK(Y1�Z1�1)] and E[ 1nZ

0
2PK(Y2�Z2�2)]may not

converge to zero and, thus, the 2SLS estimators may not be consistent, if the number of instruments

grows at the same or a faster rate than the sample size.

Note that the submatrix GL in the IV matrix QK given by (35) has �r columns, where �r is the

number of networks. Hence, K=n! 0 implies �r=n = 1= �m! 0, where �m is the average network size.

So for the 2SLS estimator with the IV matrix QK to be consistent, the average network size needs

to be large. On the other hand, K2=n! 0 implies �r2=n = �r= �m! 0. So for the 2SLS estimator to

be properly centered, the average network size needs to be large relative to the number of networks.

The many-instrument bias of the 2SLS estimator can be corrected by the estimated leading-

order biases b1;2sls and b2;2sls given in Proposition 6. Let ~�1 = (~�1;
~�11; ~�21; ~�

0
1; ~


0
1)
0 and ~�2 =

(~�2;
~�22; ~�12; ~�

0
2; ~


0
2)
0 be

p
n-consistent preliminary 2SLS estimators based on a �xed number of

instruments (e.g., Q = J [X1; GX1; G2X1; X2; GX2; G2X2]). Let ~�1 = J(Y1�Z1~�1) and ~�2 = J(Y2�

Z2~�2). The leading-order biases can be estimated by b̂1;2sls = (Z 01PKZ1)
�1Ê(U 01PK�1) and b̂2;2sls =

(Z 02PKZ2)
�1Ê(U 02PK�2), where Ê(U

0
1PK�1) and Ê(U

0
2PK�2) are obtained by replacing the unknown

parameters in (36) and (37) by ~�1; ~�2 and

~�21 = ~�
0
1~�1=(n� �r); ~�21 = ~�

0
2~�2=(n� �r); �̂12 = ~�01~�2=(n� �r): (38)

The bias-corrected 2SLS (BC2SLS) estimators are given by �̂1;bc2sls = �̂1;2sls� b̂1;2sls and �̂2;bc2sls =
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�̂2;2sls � b̂2;2sls.

Proposition 7 Under Assumptions 1-5, if K ! 1 and K=n ! 0, then
p
n(�̂1;bc2sls � �1)

d!

N(0; �21H
�1
11 ) and

p
n(�̂2;bc2sls � �2)

d! N(0; �22H
�1
22 ).

As K=n! 0 implies 1= �m! 0 for the IV matrix QK , it follows that the BC2SLS estimators have

properly centered asymptotic normal distributions as long as the average network size �m is large.

5.2 The 3SLS estimator with many instruments

The 2SLS and BC2SLS estimators consider equation-by-equation estimation and are ine¢ cient as

they do not make use of the cross-equation correlation in the disturbances. To fully utilize the

information in the system, we consider the three-stage least-squares (3SLS) estimator proposed by

Kelejian and Prucha (2004) in the presence of many instruments.

We stack the equations in the system (33) as

Y = Z� + (I2 
 L)�+ �;

where Y = (Y 01 ; Y
0
2)
0, Z = diagfZ1; Z2g, � = (�01; �

0
2)
0, � = (�01; �

0
2)
0, and � = (�01; �

0
2)
0. As (I2 


J)(I2
L) = 0, the within transformation with projector J gives (I2
J)Y = (I2
J)Z�+(I2
J)�.

Let

� =

264 �21 �12

�12 �22

375 and ~� =

264 ~�21 ~�12

~�12 ~�22

375 ; (39)

where ~�21; ~�
2
1; ~�12 are estimated by (38). As E(��

0) = �
 I, the 3SLS estimator with the IV matrix

QK is given by �̂3sls = [Z 0(~��1 
 PK)Z]�1Z 0(~��1 
 PK)Y .

Let F = diagfF1; F2g, U = diagfU1; U2g, and H = limn!1
1
nF

0(��1 
 I)F . The following

proposition gives the asymptotic distribution of the many-instrument 3SLS estimator.

Proposition 8 Under Assumptions 1-5, if K !1 and K=n! 0, then

p
n(�̂3sls � � � b3sls)

d! N(0;H�1)
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where b3sls = [Z 0(��1 
 PK)Z]�1E[U 0(��1 
 PK)�] = Op(K=n) and

E[U 0(��1 
 PK)�] =

2666666666666666666664

�2tr(PKS
�1) + �12tr(PKS

�1G)

tr(PKGS
�1)� �22tr(PKGS�1G)

�2tr(PKGS
�1) + �12tr(PKGS

�1G)

02kx�1

�1tr(PKS
�1) + �21tr(PKS

�1G)

tr(PKGS
�1)� �11tr(PKGS�1G)

�1tr(PKGS
�1) + �21tr(PKGS

�1G)

02kx�1

3777777777777777777775

: (40)

Similar to the 2SLS estimator, when the number of instruments goes to in�nity at a rate slower

than the sample size, the 3SLS estimator is consistent and asymptotically normal with an asymptotic

bias of order Op(K=n). If K2=n! 0, then
p
nb3sls

p! 0 and the 3SLS estimator is properly centered

and e¢ cient as the covariance matrix H�1 attains the e¢ ciency lower bound for the class of IV

estimators.

The leading-order asymptotic bias of the 3SLS estimator given in Proposition 8 can be estimated

to correct the many-instrument bias. Let the estimated bias be

b̂3sls = [Z
0(~��1 
 PK)Z]�1bE[U 0(��1 
 PK)�];

where ~� is given by (39) and bE[U 0(��1
PK)�] is obtained by replacing the unknown parameters in
(40) by

p
n-consistent preliminary 2SLS estimators ~�1 and ~�2. The bias-corrected 3SLS (BC3SLS)

estimator is given by �̂bc3sls = �̂3sls � b̂3sls. The following proposition shows that the BC3SLS

estimator is properly centered and asymptotically e¢ cient if the number of instruments increases

slower than the sample size.

Proposition 9 Under Assumptions 1-5, if K !1 and K=n! 0, then

p
n(�̂bc3sls � �)

d! N(0;H�1):
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6 Monte Carlo Experiments

To investigate the �nite sample performance of the 2SLS and 3SLS estimators, we conduct a limited

simulation study based on the following model

Y1 = �1Y2 + �11GY1 + �21GY2 +X1�1 +GX1
1 + L�1 + �1; (41)

Y2 = �2Y1 + �22GY2 + �12GY1 +X2�2 +GX2
2 + L�2 + �2: (42)

For the experiment, we consider three samples with di¤erent numbers of networks �r and network

sizes mr. The �rst sample contains 30 networks with equal sizes of mr = 10. To study the e¤ect of

a larger network size, the second sample contains 30 networks with equal sizes of mr = 15. To study

the e¤ect of more networks, the third sample contains 60 networks with equal sizes of mr = 15.

For each network, the adjacency matrix Gr is generated as follows. First, for the ith row of Gr

(i = 1; � � � ;mr), we generate an integer pri uniformly at random from the set of integers f1; 2; 3g.

Then, if i + pri � mr, we set the (i + 1)th; � � � ; (i + pri)th entries of the ith row of Gr to be ones

and the other entries in that row to be zeros; otherwise, the entries of ones will be wrapped around

such that the �rst (pri �mr) entries of the ith row will be ones.9

We conduct 500 repetitions for each speci�cation in this Monte Carlo experiment. In each

repetition, for j = 1; 2, the n � 1 vector of exogenous variables Xj is generated from N(0; I), and

the �r � 1 vector of network �xed e¤ect coe¢ cients �j is generated from N(0; I�r). The error terms

� = (�01; �
0
2)
0 is generated from N(0;�
 I), where � is given by (39). In the data generating process

(DGP), we set �21 = �22 = 1 and let �12 vary in the experiment. For the other parameters in the

model, we set �1 = �2 = 0:2, �11 = �22 = 0:1, and �12 = �21 = 0:2.
10 We let ��s and 
�s vary in

the experiment.

We consider the following estimators in the simulation experiment: (i) 2SLS-1 and 3SLS-1 with

the IV matrix Q1 = J [X1; GX1; G2X1; X2; GX2; G2X2]; (ii) 2SLS-2 and 3SLS-2 with the IV matrix

Q2 = [Q1; JGL]; and (iii) BC2SLS and BC3SLS. The IV matrix Q1 is based on the exogenous

attributes of direct and indirect friends. The IV matrix Q2 also uses the number of friends given by

GL as additional instruments to improve estimation e¢ ciency. Note that GL has �r columns. So the

9Note that the parameter space of ��s and ��s depends on jjGjj1 (see footnote 2). If jjGjj1 varies in the experiment,
so does the parameter space. To facilitate comparison, we keep jjGjj1 = 3 in the experiments. We have tried di¤erent
values for jjGjj1. The simulation results are similar to those reported here.
10We choose ��s and ��s so that the S is invertible according to footnote 2.
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number of instruments in Q2 increases with the number of networks.

The estimation results of equation (41) are reported in Tables 1-6. We report the mean and

standard deviation (SD) of the empirical distributions of the estimates. To facilitate the comparison

of di¤erent estimators, we also report their root mean square errors (RMSE). The main observations

from the experiment are summarized as follows.

[Tables 1-6 approximately here]

(a) The additional instruments based on the number of friends in Q2 reduce SDs of 2SLS and

3SLS estimators. When the IVs in Q1 are strong (i.e., �1 = �2 = 
1 = 
2 = 0:8 as in Tables

1-3) and the correlation across equations is weak (�12 = 0:1), for the sample with mr = 10 and

�r = 30 in Table 1, SD reductions of 2SLS-2 estimators of �1; �11; �21; �1; 
1 (relative to 2SLS-1)

are, respectively, about 5.9%, 14.3%, 9.7%, 3.0%, and 5.5%. As the correlation across equations

increases, the SD reduction also increases. When �12 = 0:9 (see the bottom panel of Table 1), SD

reductions of 2SLS-2 estimators of �1; �11; �21; �1; 
1 are, respectively, about 15.7%, 20.6%, 16.1%,

9.2%, and 11.1%. Furthermore, the SD reduction is more signi�cant when the IVs in Q1 are less

informative (i.e., �1 = �2 = 
1 = 
2 = 0:4 as in Tables 4-6). When �12 = 0:1 (see the top panel of

Table 4), SD reductions of 2SLS-2 estimators of �1; �11; �21; �1; 
1 are, respectively, about 20.8%,

43.2%, 36.4%, 7.5%, and 13.6%. The SD reduction of the 3SLS estimator with Q2 follows a similar

pattern.

(b) The additional instruments in Q2 introduce biases into 2SLS and 3SLS estimators. The size

of the bias increases as the correlation across equations �12 increases and as the IVs in Q1 becomes

less informative (i.e., �1; �2; 
1; 
2 become smaller). The size of the bias reduces as the network size

increases. The impact of the number of networks on the bias is less obvious.

(c) The proposed bias-correction procedure substantially reduces the many-instrument bias for

both the 2SLS and 3SLS estimators. For example, in Table 4, bias reductions of BC3SLS estimators

of �1; �11; �21 are, respectively, 100.0%, 86.7%, and 66.7%, when �12 = 0:1.

(d) The 3SLS estimator improves the e¢ ciency upon the 2SLS estimator. The improvement is

most prominent when the correlation across equations is strong. In Table 1, when �12 = 0:9, SD

reductions of BC3SLS estimators of �1; �11; �21; �1; 
1 (relative to BC2SLS) are, respectively, about

8.8%, 6.5%, 3.3%, 21.2%, and 11.1%.
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7 Conclusion

In this paper, we consider speci�cation, identi�cation and estimation of network models in a system

of simultaneous equations. We show that, with or without row-normalization of the network adja-

cency matrix, the network model has di¤erent equilibrium implications, needs di¤erent identi�cation

conditions, and requires di¤erent estimation strategies. When the network adjacency matrix is not

row-normalized, the Bonacich (1987) centrality based on the number of direct and indirect friends

of agents in a network can be used to identify social interaction e¤ects and improve estimation

e¢ ciency. We derive the identi�cation conditions for some speci�cations of the simultaneous equa-

tions network model with a non-row-normalized adjacency matrix, and show that the identi�cation

conditions are weaker than those for the model with a row-normalized adjacency matrix derived by

Cohen-Cole et al. (2012).

For e¢ cient estimation, we propose 2SLS and 3SLS estimators for the simultaneous equations

network model using a set of feasible instruments to approximate the best (infeasible) instruments

given by the reduced-form equations of the model. When the network adjacency matrix is not

row-normalized, the set of feasible instruments includes the leading order terms of the Bonacich

centrality for each network, and thus the number of instruments depends on the number of networks.

When there are many networks in the data, we would have many instruments. We show that the

proposed 2SLS and 3SLS estimators are consistent and asymptotically normally distributed (with

an asymptotic bias) when the number of instruments increases at a rate slower than the sample

size. We also propose a bias-correction procedure based on the estimated leading-order term of the

many-instrument bias. The bias-corrected 2SLS and 3SLS estimators have an properly centered

asymptotic normal distribution when the number of instruments grows slower than the sample size

(or, when the average network size is large). Monte Carlo experiments show that the instruments

based on the Bonacich centrality reduce the standard errors of the 2SLS and 3SLS estimators and

the bias-corrected estimators perform well with a moderate network size (say, �mr = 10).
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APPENDIX

A Assumptions

In this appendix, we list regularity conditions for the asymptotic properties of the proposed estima-

tors. Henceforth, uniformly bounded in row (column) sums in absolute value of a sequence of square

matrices fAg will be abbreviated as UBR (UBC), and uniformly bounded in both row and column

sums in absolute value as UB.11

Assumption 1 The vector of disturbances is given by � = (�01; �
0
2)
0 = (�0� 
 In)v, where �0� is a

nonsingular matrix such that �0��� = � and the elements of v are i.i.d. with zero mean, unit

variance and �nite fourth moments. Furthermore, the diagonal elements of � are bounded by

some �nite constant.

Assumption 2 The matrix of exogenous (nonstochastic) regressors X has full column rank (for n

su¢ cient large). The elements of X are uniformly bounded in absolute value.

Assumption 3 The matrix S is nonsingular. The sequences of matrices fGg and fS�1g are UB.

Assumption 4 Let Fi = E(JZi) for i = 1; 2, and F = diagfF1; F2g. Then, Hij = limn!1
1
nF

0
iFj ,

for i; j = 1; 2, and H = limn!1
1
nF

0(��1 
 I)F are �nite nonsingular matrices.

Assumption 5 There exist matrices �1 and �2 such that, for i = 1; 2, jjFi � QK�ijj1 ! 0 as

n;K !1.

Assumption 1-3 originate in Kelejian and Prucha (2004). The matrix of exogenous regressors

X is assumed to be nonstochastic for ease of presentation. If X is allowed to be stochastic, then

appropriate moment conditions need to be imposed, and the results presented in this paper can

be considered as conditional on X instead. Assumption 4 is for the identi�cation of the network

model. It also implies the concentration parameter grows at the same rate as the sample size (Liu

and Lee, 2010). Assumption 5 requires the (infeasible) best IV matrix Fi (for i = 1; 2) can be

well approximated by a certain linear combination of the feasible IV matrix QK as the number

of instruments increases with the sample size. This condition is commonly assumed in the many-

instruments literature (see, eg., Donald and Newey, 2001; Hansen et al., 2008; Hausman et al., 2008).

11A sequence of square matrices fAg, where A = [Aij ], is said to be UBR (UBC) if the sequence of row sum matrix
norm jjAjj1 = maxi=1;��� ;n

Pn
j=1 jAij j (column sum matrix norm jjAjj1 = maxj=1;��� ;n

Pn
i=1 jAij j) is bounded.

(Horn and Johnson, 1985)
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B Rank Conditions

In this appendix, we list the matrices whose rank conditions are used for the identi�cation of the

simultaneous equations model.

Let

A1 =

266666664

a1;1

a2;1

a3;1

a4;1

377777775
=

266666664

�2�1 + �2 0 1� �1�2 0 0

�2
1 + 
2 � �11�2 �1 + �1�2 �(�11 + �22) 1� �1�2 0

��11
2 
1 + �1
2 � �22�1 �11�22 �(�11 + �22) 0

0 ��22
1 0 �11�22 0

377777775
;

C1 =

266664
c1;1

c2;1

c3;1

377775 =
266664
�2�1 + �2 0 0 0 1� �1�2
��11�2 �1 + �1�2 0 0 �(�11 + �22)

0 ��22�1 0 0 �11�22

377775 :
Let A�1 = [(a1;1+�1a4;1)

0; (a2;1+�2a4;1)
0; (a3;1+�3a4;1)

0]0 and C�1 = [(c1;1+�1c3;1)
0; (c2;1+�2c3;1)

0]0.

Then,

D1 = [A01; C
0
1]
0 (43)

D�
1 = [A�01 ; C

0
1]
0 (44)

Dy
1 = [A01; C

�0
1 ]
0 (45)

Dz
1 = [A�01 ; C

�0
1 ]
0: (46)

Let

A2 =

266666664

a1;2

a2;2

a3;2

a4;2

377777775
=

266666664

0 0 1 0 0

�1 �2 �(�11 + �22) 1 0

�21�2 � �22�1 + 
1 �12�1 � �11�2 + 
2 �11�22 � �12�21 �(�11 + �22) 0

�21
2 � �22
1 �12
1 � �11
2 0 �11�22 � �12�21 0

377777775
;

C2 =

266664
c1;2

c2;2

c3;2

377775 =
266664

0 0 0 0 1

�1 �2 0 0 �(�11 + �22)

�21�2 � �22�1 �12�1 � �11�2 0 0 �11�22 � �12�21

377775 :
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Let A�2 = [(a1;2+�1a4;2)
0; (a2;2+�2a4;2)

0; (a3;2+�3a4;2)
0]0 and C�2 = [(c1;2+�1c3;2)

0; (c2;2+�2c3;2)
0]0.

Then,

D2 = [A02; C
0
2]
0 (47)

D�
2 = [A�02 ; C

0
2]
0 (48)

Dy
2 = [A02; C

�0
2 ]
0 (49)

Dz
2 = [A�02 ; C

�0
2 ]
0: (50)

Let

A3 =

266666664

a1;3

a2;3

a3;3

a4;3

377777775
=

266666664

�2�1 0 0 1� �1�2 0 0

�12�1 + �2
1 �1 �2�1 ! 1� �1�2 0

�12
1 
1 � �22�1 �12�1 + �2
1 �11�22 � �12�21 ! 0

0 ��22
1 �12
1 0 �11�22 � �12�21 0

377777775
;

B3 =

266666664

b1;3

b2;3

b3;3

b4;3

377777775
=

266666664

�2 0 0 0 0 0


2 � �11�2 �1�2 �2 0 0 0

��11
2 �21�2 + �1
2 
2 � �11�2 0 0 0

0 �21
2 ��11
2 0 0 0

377777775
;

C3 =

266664
c1;3

c2;3

c3;3

377775 =
266664

�2;r + �2�1;r 0 0 0 0 1� �1�2
�12�1;r � �11�2;r �1;r + �1�2;r �2;r + �2�1;r 0 0 !

0 �21�2;r � �22�1;r �12�1;r � �11�2;r 0 0 �11�22 � �12�21

377775 ;
where ! = �(�11+�22+�1�12+�2�21). Let A�3 = [(a1;3+�1a4;3)0; (a2;3+�2a4;3)0; (a3;3+�3a4;3)0]0,

B�3 = [(b1;3 + �1b4;3)
0; (b2;3 + �2b4;3)

0; (b3;3 + �3b4;3)
0]0, and C�3 = [(c1;3 + �1c3;3)

0; (c2;3 + �2c3;3)
0]0.

Let A��3 = [(a1;3 + �1a3;3 + �1�2a4;3)
0; (a2;3 + �2a3;3 + �1a4;3 + �

2
2a4;3)

0]0 and B��3 = [(b1;3 + �1b3;3 +
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�1�2b4;3)
0; (b2;3 + �2b3;3 + �1b4;3 + �

2
2b4;3)

0]0. Then,

D3 = [A03; B
0
3; C

0
3]
0 (51)

D�
3 = [A�03 ; B

�0
3 ; C

0
3]
0 (52)

Dy
3 = [A03; B

0
3; C

�0
3 ]
0 (53)

Dz
3 = [A�03 ; B

�0
3 ; C

�0
3 ]
0 (54)

D]
3 = [A��03 ; B��03 ; C�03 ]

0: (55)

C Lemmas

In this appendix, we provide some useful lemmas for the proofs of the asymptotic properties of

the proposed estimators. To simplify notations, we drop the K subscript on QK and PK . Let

kAk =
p
tr(A0A) denote the Frobenius (Euclidean) norm for an m � n matrix A unless noted

otherwise.

Lemma C.1 Under Assumption 5, there exist matrices �1 and �2 such that, for i = 1; 2, 1
n jjFi �

QK�ijj2 ! 0 as n;K !1.

Proof. See Liu and Lee (2010).

Lemma C.2 (i) tr(P ) = K. (ii) Suppose that fAg is a sequence of n�n UB matrices. For B = PA,

tr(B) = O(K), tr(B2) = O(K), and
P

iB
2
ii = O(K), where Bii�s are diagonal elements of B.

Proof. See Liu and Lee (2010).

Lemma C.3 Let fAg and fBg be sequences of n � n UB matrices. For i; j = 1; 2, (i) �ij =

1
n tr(F

0
i (I � P )Fj) = o(1); (ii) 1

nF
0
iPA�j = Op(

p
K=n); (iii) 1

n�
0
iB

0PA�j = Op(K=n); (iv) 1p
n
F 0i (I �

P )A�j = Op(
p
�ii); and (v) 1p

n
[�0iPA�j � E(�0iPA�j)] = Op(

p
K=n):

Proof. For (i), 1n tr(F
0
i (I � P )Fj) = 1

n tr((Fi � Q�i)
0(I � P )(Fj � Q�j)) � [ 1n tr((Fi � Q�i)

0(Fi �

Q�i))]
1=2[ 1n tr((Fj � Q�j)

0(I � P )(Fj � Q�j))]
1=2 � [ 1n tr((Fi � Q�i)

0(Fi � Q�i))]
1=2[ 1n tr((Fj �

Q�j)
0(Fj � Q�j))]1=2 = [ 1n jjFi � Q�ijj

2]1=2[ 1n jjFj � Q�j jj
2]1=2 ! 0, by Assumption 5 and Lemma

C.1. For (ii) and (iii), see Liu and Lee (2010). For (iv), as Var[ 1p
n
F 0i (I � P )A�j ] =

�2j
n F

0
i (I �
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P )AA(I � P )Fi �
�2j
n F

0
i (I � P )FijjAAjj1 = O(�ii), we have 1p

n
F 0i (I � P )A�j = Op(

p
�ii) by

Markov�s inequality. For (v), let M = PA. E(�0jM
0�i�

0
iM�j) � E(�0jM 0�i)E(�

0
iM�j) = c1

P
sM

2
ss +

c2tr(M
2) + c3tr(M

0M), where c1; c2; c3 are functions of moments of �i; �j and they are bounded by

�nite constants by Assumption 1. As
P

sM
2
ss; tr(M

2); tr(M 0M) are O(K) by Lemma C.2, we have

1p
n
[�0iPA�j � E(�0iPA�j)] = Op(

p
K=n) by Markov�s inequality.

D Proofs

Proof of Proposition 1. E(JZ1) = J [E(GY1); X;GX] has full column rank if, for some r,

Jr[E(GrY1;r)d1 +Xrd2 +GrXrd3] = 0 (56)

implies d1 = d2 = d3 = 0. As Jr = Inr � 1
nr
lnr l

0
nr , (56) can be rewritten as

E(GrY1;r)d1 +Xrd2 +GrXrd3 + lnr� = 0; (57)

where � = � 1
nr
l0nr [E(GrY1;r)d1 +Xrd2 +GrXrd3]. Premultiply (57) by (Inr � �11Gr). As

(Inr � �11Gr)E(GrY1;r) = GrXr�1 +G2rXr
1 +Grlnr�1;r

from the reduced-form equation, we have

Xrd2 +GrXr(�1d1 � �11d2 + d3) +G2rXr(
1d1 � �11d3) + lnr�+Grlnr (�1;rd1 � �11�) = 0:

SupposeGr has non-constant row sums. We consider 2 cases. (i) Inr ; Gr; G
2
r are linearly independent.

In this case, d2 = �1d1 � �11d2 + d3 = 
1d1 � �11d3 = � = �1;rd1 � �11� = 0, which implies

d1 = d2 = d3 = � = 0 if �1;r 6= 0 or �11�1 + 
1 6= 0. (ii) G2r = �1Inr + �2Gr. In this case,

d2+�1(
1d1��11d3) = �1d1��11d2+d3+�2(
1d1��11d3) = � = �1;rd1��11� = 0, which implies

d1 = d2 = d3 = � = 0 if �1;r 6= 0 and 1� �2�11 � �1�211 6= 0.

Proof of Corollary 1. For a symmetric adjacency matrix G, I;G;G2 are linearly independent if

G has non-constant row sums. This can be shown by contradiction. As elements of G are either one

or zero, the ith diagonal element of G2 equals
P

j gijgji =
P

j g
2
ij =

P
j gij . Therefore, if I;G;G

2

are linearly dependent such that G2 = �1I+�2G, then all the diagonal elements of G
2 equal �1, i.e.,
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P
j gij = �1 for all i. This is a contradiction as G has non-constant row sums. The desired result

follows from Proposition 1(i).

Proof of Proposition 2. E(JZ1) = J [E(Y2);E(GY1); X;GX] has full column rank if, for some r,

Jr[E(Y2;r)d1 + E(GrY1;r)d2 +Xrd3 +GrXrd4] = 0 (58)

implies d1 = d2 = d3 = d4 = 0. As Jr = Inr � 1
nr
lnr l

0
nr , (58) can be rewritten as

E(Y2;r)d1 + E(GrY1;r)d2 +Xrd3 +GrXrd4 + lnr� = 0; (59)

where � = � 1
nr
l0nr [E(Y2;r)d1 + E(GrY1;r)d2 + Xrd3 + GrXrd4]. Under the exclusion restrictions

�21 = �12 = 0, the reduced-form equations (16) and (17) become

S�;rE(Y1;r) = Xr(�1�2 + �1) +GrXr(
1 + �1
2 � �22�1)�G2rXr�22
1

+lnr (�1�2;r + �1;r)�Grlnr�22�1;r (60)

S�;rE(Y2;r) = Xr(�2�1 + �2) +GrXr(
2 + �2
1 � �11�2)�G2rXr�11
2

+lnr (�2�1;r + �2;r)�Grlnr�11�2;r (61)

where S�;r = (1 � �1�2)Inr � (�11 + �22)Gr + �11�22G2r. Premultiply (59) by S�;r. As GrS�;r =

S�;rGr, it follows from (60) and (61) that

Xra1 +GrXra2 +G
2
rXra3 +G

3
rXra4 + lnrc1 +Grlnrc2 +G

2
rlnrc3 = 0;

where

a1 = (�2�1 + �2)d1 + (1� �1�2)d3

a2 = (�2
1 + 
2 � �11�2)d1 + (�1 + �1�2)d2 � (�11 + �22)d3 + (1� �1�2)d4

a3 = ��11
2d1 + (
1 + �1
2 � �22�1)d2 + �11�22d3 � (�11 + �22)d4

a4 = ��22
1d2 + �11�22d4
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and

c1 = (�2�1;r + �2;r)d1 + (1� �1�2)�

c2 = ��11�2;rd1 + (�1;r + �1�2;r)d2 � (�11 + �22)�

c3 = ��22�1;rd2 + �11�22�:

Suppose Gr has non-constant row sums and Inr ; Gr; G
2
r are linearly independent. First, we

consider the case that [lnr ; Grlnr ; G
2
rlnr ] has full column rank. In this case, if Inr ; Gr; G

2
r; G

3
r are

linearly independent, then a1 = a2 = a3 = a4 = c1 = c2 = c3 = 0, which implies d1 = d2 = d3 =

d4 = � = 0 if D1 given by (43) has full rank. If G3r = �1Inr + �2Gr + �3G
2
r, then a1 + �1a4 =

a2 + �2a4 = a3 + �3a4 = c1 = c2 = c3 = 0, which implies d1 = d2 = d3 = d4 = � = 0 if D
�
1 given by

(44) has full rank.

Next, we consider the case that G2rlnr = �1lnr + �2Grlnr . In this case, if Inr ; Gr; G
2
r; G

3
r are

linearly independent, then a1 = a2 = a3 = a4 = c1 + �1c3 = c2 + �2c3 = 0, which implies

d1 = d2 = d3 = d4 = � = 0 if D
y
1 given by (45) has full rank. If G

3
r = �1Inr + �2Gr + �3G

2
r, then

a1 + �1a4 = a2 + �2a4 = a3 + �3a4 = c1 + �1c3 = c2 + �2c3 = 0, which implies d1 = d2 = d3 = d4 =

� = 0 if Dz
1 given by (46) has full rank.

Proof of Proposition 3. E(JZ1) = J [E(GY1);E(GY2); X;GX] has full column rank if, for some

r,

Jr[E(GrY1;r)d1 + E(GrY2;r)d2 +Xrd3 +GrXrd4] = 0 (62)

implies d1 = d2 = d3 = d4 = 0. As Jr = Inr � 1
nr
lnr l

0
nr , (62) can be rewritten as

E(GrY1;r)d1 + E(GrY2;r)d2 +Xrd3 +GrXrd4 + lnr� = 0; (63)

where � = � 1
nr
l0nr [E(GrY1;r)d1 + E(GrY2;r)d2 +Xrd3 +GrXrd4]. Under the exclusion restrictions

�1 = �2 = 0, the reduced-form equations (16) and (17) become

S�;rE(Y1;r) = Xr�1 +GrXr(�21�2 � �22�1 + 
1) +G2rXr(�21
2 � �22
1)

+lnr�1;r +Grlnr (�21�2;r � �22�1;r) (64)
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S�;rE(Y2;r) = Xr�2 +GrXr(�12�1 � �11�2 + 
2) +G2rXr(�12
1 � �11
2)

+lnr�2;r +Grlnr (�12�1;r � �11�2;r) (65)

where S�;r = Inr � (�11 + �22)Gr + (�11�22 � �12�21)G2r. Premultiply (63) by S�;r. As GrS�;r =

S�;rGr, it follows from (64) and (65) that

Xra1 +GrXra2 +G
2
rXra3 +G

3
rXra4 + lnrc1 +Grlnrc2 +G

2
rlnrc3 = 0;

where

a1 = d3

a2 = �1d1 + �2d2 � (�11 + �22)d3 + d4

a3 = (�21�2 � �22�1 + 
1)d1 + (�12�1 � �11�2 + 
2)d2 + (�11�22 � �12�21)d3 � (�11 + �22)d4

a4 = (�21
2 � �22
1)d1 + (�12
1 � �11
2)d2 + (�11�22 � �12�21)d4

and

c1 = �

c2 = �1;rd1 + �2;rd2 � (�11 + �22)�

c3 = (�21�2;r � �22�1;r)d1 + (�12�1;r � �11�2;r)d2 + (�11�22 � �12�21)�:

Suppose Gr has non-constant row sums and Inr ; Gr; G
2
r are linearly independent. First, we

consider the case that [lnr ; Grlnr ; G
2
rlnr ] has full column rank. In this case, if Inr ; Gr; G

2
r; G

3
r are

linearly independent, then a1 = a2 = a3 = a4 = c1 = c2 = c3 = 0, which implies d1 = d2 = d3 =

d4 = � = 0 if D2 given by (47) has full rank. If G3r = �1Inr + �2Gr + �3G
2
r, then a1 + �1a4 =

a2 + �2a4 = a3 + �3a4 = c1 = c2 = c3 = 0, which implies d1 = d2 = d3 = d4 = � = 0 if D
�
2 given by

(48) has full rank.

Next, we consider the case that G2rlnr = �1lnr + �2Grlnr . In this case, if Inr ; Gr; G
2
r; G

3
r are

linearly independent, then a1 = a2 = a3 = a4 = c1 + �1c3 = c2 + �2c3 = 0, which implies

d1 = d2 = d3 = d4 = � = 0 if D
y
2 given by (49) has full rank. If G

3
r = �1Inr + �2Gr + �3G

2
r, then

a1 + �1a4 = a2 + �2a4 = a3 + �3a4 = c1 + �1c3 = c2 + �2c3 = 0, which implies d1 = d2 = d3 = d4 =
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� = 0 if Dz
2 given by (50) has full rank.

Proof of Proposition 4. E( �Z1) = [E(Y2);E(GY1);E(GY2); X;GX;L] has full column rank if and

only if

E(Y2)d1 + E(GY1)d2 + E(GY2)d3 +Xd4 +GXd5 + Ld6 = 0 (66)

implies d1 = d2 = d3 = d4 = d5 = d6 = 0. Premultiply (66) by S. As GS = SG, it follows from (16)

and (17) that

Xa1 +GXa2 +G
2Xa3 +G

3Xa4 + Lc1 +GLc2 +G
2Lc3 = 0;

where

a1 = (�2�1 + �2)d1 + (1� �1�2)d4

a2 = (�12�1 � �11�2 + �2
1 + 
2)d1 + (�1�2 + �1)d2 + (�2�1 + �2)d3

�(�11 + �22 + �1�12 + �2�21)d4 + (1� �1�2)d5

a3 = (�12
1 � �11
2)d1 + (�21�2 � �22�1 + �1
2 + 
1)d2 + (�12�1 � �11�2 + �2
1 + 
2)d3

+(�11�22 � �12�21)d4 � (�11 + �22 + �1�12 + �2�21)d5

a4 = (�21
2 � �22
1)d2 + (�12
1 � �11
2)d3 + (�11�22 � �12�21)d5

and

c1 = (�2�1 + �2)d1 + (1� �1�2)d6

c2 = (�12�1 � �11�2)d1 + (�1�2 + �1)d2 + (�2�1 + �2)d3 � (�11 + �22 + �1�12 + �2�21)d6

c3 = (�21�2 � �22�1)d2 + (�12�1 � �11�2)d3 + (�11�22 � �12�21)d6:

Then, if [X;GX;G2X;G3X;L;GL;G2L] has full column rank, we have a1 = a2 = a3 = a4 = c1 =

c2 = c3 = 0, which implies d2 = (�12 + �2�11)d1=(�1�2 � 1), d3 = (�22 + �2�21)d1=(�1�2 � 1),

d4 = (�2 + �2�1)d1=(�1�2 � 1), d5 = (
2 + �2
1)d1=(�1�2 � 1) and d6 = (�2 + �2�1)d1=(�1�2 � 1).

Therefore, E( �Z1) does not have full column rank. We can show that E( �Z2) does not have full column

rank by the same token.

Proof of Proposition 5. E(JZ1) = J [E(Y2);E(GY1);E(GY2); X1; GX1] has full column rank if,
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for some r,

Jr[E(Y2;r)d1 + E(GrY1;r)d2 + E(GrY2;r)d3 +X1;rd4 +GrX1;rd5] = 0 (67)

implies d1 = d2 = d3 = d4 = d5 = 0. As Jr = Inr � 1
nr
lnr l

0
nr , (67) can be rewritten as

E(Y2;r)d1 + E(GrY1;r)d2 + E(GrY2;r)d3 +X1;rd4 +GrX1;rd5 + lnr� = 0; (68)

where � = � 1
nr
l0nr [E(Y2;r)d1 + E(GrY1;r)d2 + E(GrY2;r)d3 +X1;rd4 +GrX1;rd5]. Premultiply (68)

by Sr. As GrSr = SrGr, it follows from (31) and (32) that

0 = X1;ra1 +GrX1;ra2 +G
2
rX1;ra3 +G

3
rX1;ra4 +X2;rb1 +GrX2;rb2 +G

2
rX2;rb3 +G

3
rX2;rb4

+lnrc1 +Grlnrc2 +G
2
rlnrc3;

where

a1 = �2�1d1 + (1� �1�2)d4

a2 = (�12�1 + �2
1)d1 + �1d2 + �2�1d3 � (�11 + �22 + �1�12 + �2�21)d4 + (1� �1�2)d5

a3 = �12
1d1 + (
1 � �22�1)d2 + (�12�1 + �2
1)d3 + (�11�22 � �12�21)d4 � (�11 + �22 + �1�12 + �2�21)d5

a4 = ��22
1d2 + �12
1d3 + (�11�22 � �12�21)d5

b1 = �2d1

b2 = (
2 � �11�2)d1 + �1�2d2 + �2d3

b3 = ��11
2d1 + (�21�2 + �1
2)d2 + (
2 � �11�2)d3

b4 = �21
2d2 � �11
2d3
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and

c1 = (�2;r + �2�1;r)d1 + (1� �1�2)�

c2 = (�12�1;r � �11�2;r)d1 + (�1;r + �1�2;r)d2 + (�2;r + �2�1;r)d3 � (�11 + �22 + �1�12 + �2�21)�

c3 = (�21�2;r � �22�1;r)d2 + (�12�1;r � �11�2;r)d3 + (�11�22 � �12�21)�:

Suppose Gr has non-constant row sums, X1;r; X2;r are vectors and [X1;r; X2;r] has full column

rank. First, we consider the case that [lnr ; Grlnr ; G
2
rlnr ] has full column rank. In this case, if

Inr ; Gr; G
2
r; G

3
r are linearly independent, then a1 = a2 = a3 = a4 = b1 = b2 = b3 = b4 = c1 = c2 =

c3 = 0, which implies d1 = d2 = d3 = d4 = d5 = � = 0 ifD3 given by (51) has full rank. If Inr ; Gr; G
2
r

are linearly independent and G3r = �1Inr + �2Gr + �3G
2
r, then a1 + �1a4 = a2 + �2a4 = a3 + �3a4 =

b1+ �1b4 = b2+ �2b4 = b3+ �3b4 = c1 = c2 = c3 = 0, which implies d1 = d2 = d3 = d4 = d5 = � = 0

if D�
3 given by (52) has full rank.

Next, we consider the case that G2rlnr = �1lnr + �2Grlnr . In this case, if Inr ; Gr; G
2
r; G

3
r are

linearly independent, then a1 = a2 = a3 = a4 = b1 = b2 = b3 = b4 = c1+�1c3 = c2+�2c3 = 0, which

implies d1 = d2 = d3 = d4 = d5 = � = 0 if D
y
3 given by (53) has full rank. If Inr ; Gr; G

2
r are linearly

independent and G3r = �1Inr + �2Gr + �3G
2
r, then a1 + �1a4 = a2 + �2a4 = a3 + �3a4 = b1 + �1b4 =

b2 + �2b4 = b3 + �3b4 = c1 + �1c3 = c2 + �2c3 = 0, which implies d1 = d2 = d3 = d4 = d5 = � = 0

if Dz
3 given by (54) has full rank. Finally, if G

2
r = �1Inr + �2Gr, then G

3
r = �1�2Inr + (�1 + �

2
2)Gr,

then a1 + �1a3 + �1�2a4 = a2 + �2a3 + (�1 + �
2
2)a4 = b1 + �1b3 + �1�2b4 = b2 + �2b3 + (�1 + �

2
2)b4 =

c1 + �1c3 = c2 + �2c3 = 0, which implies d1 = d2 = d3 = d4 = d5 = � = 0 if D
]
3 given by (55) has

full rank.

Proof of Proposition 6. In this proof, we focus on �̂1;2sls. The results for �̂2;2sls can be

derived by the same argument.
p
n(�̂1;2sls � �1 � b1;2sls) = ( 1nZ

0
1PZ1)

�1 1p
n
[Z 01P�1 � E(U 01P�1)].

As JZ1 = F1 + U1, we have 1
nZ

0
1PZ1 =

1
nF

0
1F1 � 1

nF
0
1(I � P )F1 + 1

nF
0
1PU1 +

1
nU

0

1PF1 +
1
nU

0

1PU1

and 1p
n
[Z 01P�1 � E(U 01P�1)] = 1p

n
F 01�1 � 1p

n
F 01(I � P )�1 + 1p

n
[U 01P�1 � E(U 01P�1)]. As K=n ! 0

and U1 = J [S�1u2; GS
�1u1; GS

�1u2; 0], where u1 = (I � �22G)�1 + (�1I + �21G)�2 and u2 =

(I��11G)�2+(�2I+�12G)�1, it follows by Lemma C.3 that 1nZ
0
1PZ1 = H11+O(�11)+Op(

p
K=n) =

H11+ op(1) and 1p
n
[Z 01P�1�E(U 01P�1)] = 1p

n
F 01�1+Op(

p
�11)+Op(

p
K=n) = 1p

n
F 01�1+ op(1). As

1p
n
F 01�1

d! N(0; �21H11) by Theorem A in Kelejian and Prucha (1999), the asymptotic distribution
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of �̂1;2sls follows by Slutsky�s theorem. Furthermore, as 1
nE(U

0
1P�1) given by (36) is O(K=n) by

Lemma C.2, b1;2sls = Op(K=n).

Proof of Proposition 7. From the proof of Proposition 6, it is su¢ cient to show that 1p
n
[Ê(U 01P�1)�

E(U 01P�1)] = op(1) and 1p
n
[Ê(U 02P�2) � E(U 02P�2)] = op(1). Here, we show the �rst element of

1p
n
[Ê(U 01P�1) � E(U 01P�1)], i.e. 1p

n
[(~�12 + ~�2~�

2
1)tr(P ~S

�1)� (�12 + �2�21)tr(PS�1)] + 1p
n
[(~�12~�

2
1 �

~�11~�12)tr(P ~S
�1G) � (�12�21 � �11�12)tr(PS�1G)], is op(1), where ~S = (1 � ~�1~�2)I � (~�11 + ~�22 +

~�1
~�12 + ~�2

~�21)G+ (~�11~�22 � ~�12~�21)G2. Convergence of other terms in 1p
n
[Ê(U 01P�1)� E(U 01P�1)]

and 1p
n
[Ê(U 02P�2) � E(U 02P�2)] follows a similar argument. As ~�1; ~�2; ~�21; ~�22; ~�12 are

p
n-consistent

estimators and
p
n( ~S�1 � S�1) =

p
nS�1(S � ~S) ~S�1 =

p
n(~�1

~�2 � �1�2)S�1 ~S�1 + [
p
n(~�11 �

�11)+
p
n(~�22��22)+

p
n(~�1

~�12��1�12)+
p
n(~�2

~�21��2�21)]S�1G ~S�1+[
p
n(~�12~�21��12�21)�

p
n(~�11~�22��11�22)]S�1G2 ~S�1, it follows that 1p

n
[(~�12+~�2~�

2
1)tr(P ~S

�1)�(�12+�2�21)tr(PS�1)] =

[
p
n(~�12��12)+

p
n(~�2~�

2
1��2�21)] 1n tr(P ~S

�1)+(�12+�2�
2
1)
1
n tr(P

p
n( ~S�1�S�1)) = Op(K=n) and

1p
n
[(~�12~�

2
1� ~�11~�12)tr(P ~S�1G)�(�12�21��11�12)tr(PS�1G)] = [

p
n(~�12~�

2
1��12�21)�

p
n(~�11~�12�

�11�12)]
1
n tr(P

~S�1G) + (�12�
2
1 � �11�12) 1n tr(GP

p
n( ~S�1 � S�1)) = Op(K=n). The desired result

follows as K=n! 0.

Proof of Proposition 8. First, we consider the infeasible 3SLS estimator ~�3sls = [Z 0(��1 


P )Z]�1Z 0(��1 
 P )Y such that
p
n(~�3sls � � � b3sls) = [ 1nZ

0(��1 
 P )Z]�1 1p
n
fZ 0(��1 
 P )� �

E[U 0(��1
P )�]g. As (I2
J)Z = F +U , we have 1
nZ

0(��1
P )Z = 1
nF

0(��1
 I)F � 1
nF

0[��1


(I � P )]F + 1
nF

0(��1 
 P )U + 1
nU

0(��1 
 P )F + 1
nU

0(��1 
 P )U and 1p
n
fZ 0(��1 
 P )� �

E[U 0(��1
P )�]g = 1p
n
F 0(��1
I)�� 1p

n
F 0[��1
(I�P )]�+ 1p

n
fU 0(��1
P )��E[U 0(��1
P )�]g.

As F = diagfF1; F2g and U = diagfU1; U2g, where U1 = J [S�1u2; GS
�1u1; GS

�1u2; 0], U2 =

J [S�1u1; GS
�1u2; GS

�1u1; 0], u1 = (I � �22G)�1 + (�1I + �21G)�2, and u2 = (I � �11G)�2 +

(�2I + �12G)�1, it follows by Lemma C.3 and K=n! 0 that 1
nZ

0(��1 
 P )Z = 1
nF

0(��1 
 I)F +

O(maxi;jf�ijg)+Op(
p
K=n) = H+op(1) and 1p

n
fZ 0(��1
P )��E[U 0(��1
P )�]g = 1p

n
F 0(��1


I)�+Op(maxi;jf
p
�ijg)+Op(

p
K=n) = 1p

n
F 0(��1
I)�+op(1). As 1p

n
F 0(��1
I)� d! N(0;H) by

Theorem A in Kelejian and Prucha (1999), it follows by Slutsky�s theorem that
p
n(~�3sls���b3sls)

d!

N(0;H�1). As 1
nE[U

0(��1 
 P )�] given by (40) is O(K=n) by Lemma C.2, b3sls = Op(K=n).

Then, to obtain the asymptotic distribution of the feasible 3SLS �̂3sls, it is su¢ cient to show

that
p
n(�̂3sls� ~�3sls) = op(1).

p
n(�̂3sls� ~�3sls) = [ 1nZ

0(~��1
P )Z]�1 1nZ
0[
p
n(~��1���1)
P ]��

[ 1nZ
0(~��1
P )Z]�1f 1nZ

0[
p
n(~��1���1)
P ]Zg[ 1nZ

0(��1
P )Z]�1 1nZ
0(��1
P )�. As

p
n(~��1�
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��1) = Op(1), it follows by a similar argument as above that 1
nZ

0(��1 
P )Z = Op(1), 1nZ
0(~��1 


P )Z = Op(1), and 1
nZ

0[
p
n(~��1���1)
P ]Z = Op(1). On the other hand, 1nZ

0[
p
n(~��1���1)


P ]� = 1
nF

0[
p
n(~��1���1)
P ]�+ 1

nU
0[
p
n(~��1���1)
P ]� = Op(

p
K=n) = op(1) and 1

nZ
0(��1


P )� = 1
nF

0(��1
P )�+ 1
nU

0(��1
P )� = Op(
p
K=n) = op(1). Therefore,

p
n(�̂3sls�~�3sls) = op(1)

and the desired result follows.

Proof of Proposition 9. From the proof of Proposition 8, it is su¢ cient to show that
p
n(b̂3sls�

b3sls) = R1 �R2 = op(1), where R1 = [ 1nZ
0(~��1 
P )Z]�1 1p

n
fÊ[U 0(��1 
P )�]�E[U 0(��1 
P )�]g

and R2 = [ 1nZ
0(~��1 
 P )Z]�1f 1nZ

0[
p
n(~��1 � ��1)
 P ]Zg[ 1nZ

0(��1 
 P )Z]�1 1nE[U
0(��1 
 P )�].

By a similar argument as in the proof of Proposition 7, 1p
n
fÊ[U 0(��1 
P )�]�E[U 0(��1 
P )�]g =

Op(K=n). By a similar argument as in the proof of Proposition 8, 1
nZ

0(��1 
 P )Z = Op(1),

1
nZ

0(~��1 
 P )Z = Op(1), and 1
nZ

0[
p
n(~��1 � ��1)
 P ]Z = Op(1). By Lemma C.2, 1nE[U

0(��1 


P )�] = O(K=n) = o(1). Therefore, R1 = op(1) and R2 = op(1) as K=n! 0.
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