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Abstract

We consider identification and estimation of social network models in a system of simul-
taneous equations. We show that, with or without row-normalization of the social adjacency
matrix, the network model has different equilibrium implications, needs different identification
conditions, and requires different estimation strategies. When the adjacency matrix is not row-
normalized, different positions of the agents in a network captured by the Bonacich centrality
can be used to identify social interaction effects and improve estimation efficiency. We show
that the identification condition for the model with a non-row-normalized adjacency matrix is
weaker than that for the model with a row-normalized adjacency matrix. We suggest 2SLS and
3SLS estimators using instruments based on the Bonacich centrality of each network to improve
estimation efficiency. The number of such instruments depends on the number of networks.
When there are many networks in the data, the proposed estimators may have an asymptotic
bias due to the presence of many instruments. We propose a bias-correction procedure for the
many-instrument bias. Simulation experiments show that the bias-corrected estimators perform

well in finite samples.
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1 Introduction

Since the seminal work by Manski (1993), research on social network models has attracted a lot of
attention (see Blume et al., 2011, for a recent survey). In a social network model, agents interact
with each other through network connections, which are captured by a social adjacency matrix.
According to Manski (1993), an agent’ choice or outcome may be influenced by peer choices or
outcomes (the endogenous effect), by peer exogenous characteristics (the contextual effect), and/or
by the common environment of the network (the correlated effect). It is the main interest of social
network research to separately identify and estimate different social interaction effects.

Manski (1993) considers a linear-in-means model, where the endogenous effect is based on the
rational expectation of the outcomes of all agents in the network. Manski shows that the linear-in-
means specification suffers from the “reflection problem” so that endogenous and contextual effects
cannot be separately identified. Lee (2007) introduces a model with multiple networks where an
agent is equally influenced by all the other agents in the same network. Lee’s social network model
can be identified using the variation in network sizes. The identification, however, can be weak if
all of networks are large. Bramoullé et al. (2009) generalize Lee’s social network model to a general
local-average model, where endogenous and contextual effects are represented, respectively, by the
average outcome and average characteristics of an agent’s connections (or friends). Based on the
important observation that in a social network, an agent’s friend’s friend may not be a friend of
that agent, Bramoullé et al. (2009) use the intransitivity in network connections as an exclusion
restriction to identify different social interaction effects.

Liu and Lee (2010) studies the efficient estimation of the local-aggregate social network model,
where the endogenous effect is given by the aggregate outcome of an agent’s friends. They show
that, for the local-aggregate model, different positions of the agents in a network captured by the
Bonacich (1987) centrality can be used as additional instruments to improve estimation efficiency.
Liu et al. (2012) give the identification condition for the local-aggregate model and show that the
condition is weaker than that for the local-average model derived by Bramoullé et al. (2009). Liu
et al. (2012) also propose a J test for the specification of network models.

The above mentioned papers focus on single-equation network models with only one activity.
However, in real life, an agent’s decision usually involves more than one activity. For example,

a student may need to balance time between study and extracurriculars and a firm may need to



allocate resources between production and RND. In a recent paper, Cohen-Cole et al. (2012) consider
the identification and estimation of local-average network models in the framework of simultaneous
equations. Besides endogenous, contextual, and correlated effects as in single-equation network
models, the simultaneous equations network model also incorporates the simultaneity effect, where
an agent’s outcome in a certain activity may depend on his/her outcome in a related activity, and
the cross-activity peer effect, where an agent’s outcome in a certain activity may depend on peer
outcomes in a related activity. Cohen-Cole et al. (2012) derive the identification conditions for the
various social interaction effects and generalize the spatial 2SLS and 3SLS estimators in Kelejian
and Prucha (2004) to estimate the simultaneous equations network model.

In this paper, we consider the identification and efficient estimation of the local-aggregate network
model in a system of simultaneous equations. We show that, similar to the single-equation network
model, the Bonacich centrality provides additional information to achieve model identification and to
improve estimation efficiency. We derive the identification condition for the local-aggregate simulta-
neous equations network model, and show that the condition is weaker than that for the local-average
model. For efficient estimation, we suggest 2SLS and 3SLS estimators using instruments based on
the Bonacich centrality of each network. As the number of such instruments depends on the num-
ber of networks, the 2SLS and 3SLS estimators would have an asymptotic many-instrument bias
(Bekker, 1994) when there are many networks in the data. Hence, we propose a bias-correction pro-
cedure based on the estimated leading-order term of the asymptotic bias. Monte Carlo experiments
show that the bias-corrected estimators perform well in finite samples.

The rest of the paper is organized as follows. Section 2 introduces a network game which
motivates the specification of the econometric model presented in Section 3. Section 4 derives the
identification conditions and Section 5 proposes 2SLS and 3SLS estimators for the model. The
regularity assumptions and detailed proofs are given in the Appendix. Monte Carlo evidence on
the finite sample performance of the proposed estimators is given in Section 6. Section 7 briefly

concludes.

2 Theoretical Model

2.1 The network game

Suppose there is a finite set of agents N = {1, ...,n} in a network. We keep track of social connections

in the network through its adjacency matrix G' = [g;;], where g;; = 1 if i and j are friends and g;; = 0



otherwise.!

Let G* = [g7;], with g¥; = gij/ Z;;l gij, denote the row-normalized adjacency matrix
such that each row of G* adds up to one. Figure 1 gives an example of G and G* for a star-shaped

network.

01 1 1 0 1/3 1/3 1/3
1 0 0 0 1 0 0 0
G: G* =
\@ 1 0 0 O 1 0 0 0
1 0 0 O 1 0 0 0

Figure 1: an example of G and G* for a star-shaped network.

Given the network structure represented by G, agent i chooses y1; and ys;, the respective efforts

of two related activities, to maximize the following linear quadratic utility function

*

" N 1 1
w(yri,y2i) = WY+ Tl — §¢1y%i - §¢§y§i + ¢ Y1iy2 (1)
AT D00 GiYnayas + Nap D05y Gig¥2ikes T An 05—y GigYrayzs + Ma 227y GigY2iYas-
As in the standard linear-quadratic utility for a single activity model (Ballester et al., 2006), 77,

and 75, capture ex ante individual heterogeneity. The cross-effects between own efforts for different

activities are given by

aQU(yu,ym‘) _ 32“(1/1%1/2:’) _
0Y1:0Y2; 0Y2:0y1;

The cross-effects between own and peer efforts for the same activity are

Pu(yris y2i)
=\ 0., and ——Z2 2= \E s
11945 ay%aij 229ij

32“(&/11, Y2i)
0y1:0y1 j
which may indicate strategic substitutability or complementarity depending on the signs of A]; and
A55. The cross-effects between own and peer efforts for different activities are given by
ou(yui, y2i) .

= A319i and ——"== = A|5¢;j,
219y 8y218y1j 1297

ou(Yri, Y2i)
5’y1i3y2j

which may indicate strategic substitutability or complementarity depending on the signs of \3; and

IFor ease of presentation, we focus on the case where the connections are undirected and no agent is isolated so
that G is symmetric and Z;L:I gij # 0 for all i. The identification result and estimation method of the paper hold
for a directed network with an asymmetric G.



*
)\12.

From the first order conditions of utility maximization, we have the best-response functions as

Yii = QY2 + A1 Z?:l 9ijy15 + A21 22‘;1 9ijY25 + 14, (2)

Y2i Goyri + N2z D5y Gigyas + M2 Doioy GijYis + T2, (3)

where ¢ = ¢"/d1, ¢y = ¢7/¢3, A1 = AN1/P1, Az = Ap/dy, Aar = /o1, M2 = Ay/¢3,
T = /01, Tai = ma;/d5. In (2) and (3), agent i’s best-response effort of a certain activity
depends on the aggregate efforts of his/her friends of that activity and a related activity. Therefore,
we call this model the local-aggregate network game. In matrix form, the best-response functions

are

Y, = ¢1}/2 + A1GY7 + A1 GYs + 114, (4)

Yo = oY1 + AaGYa 4+ A2GY7 + 1o, (5)

where Y = (yr1,- -, Ykn) and Iy = (g1, -+, Tpn)’ for k=1,2.

The reduced-form equations of (4) and (5) are

SY:r = (I — 220G + (o1 4+ A1 Gy,

SYy = (I —=A1G)y + (¢ol + Mi2G)1,
where I is a conformable identity matrix and
S = (1= ¢1do)T — (A1 + Mg + D1 A2 + Do Ao1)G + (M1 d2a — A12A21)G2. (6)

If S is nonsingular?, then the local-aggregate network game has a unique Nash equilibrium in pure

strategies with the equilibrium efforts given by

Y= S_l[(f = A2G)IT + (11 + A1 G)Ly), (7)

Yy = ST = AM1G)IDs + (o] + A12G)IY]. (8)

2 A sufficient condition for the nonsingularity of S is |1 ¢s| + [A11 + A22 + P 12 + daA21| - ||Glloo + |[A11A22 —
A12X21] - ||G|12, < 1, where || - ||o is the row-sum matrix norm.



2.2 Local aggregate versus local average: equilibrium comparison

In a recent paper, Cohen-Cole et al. (2012) consider a network game with utility function

« . 1 1
u(yii,y2i) = Y1+ oY — §¢Ty%¢ - §¢§y§¢ + ¢ yriy2i 9)

AT Do Gy + Ase D0 9iY2iYay + A5y D05y iy T A2 Doy 9iiY2iY;-

From the first order conditions of maximizing (9), the best-response functions of the network game

are

Y = G1Yei + A Dot 951y + A1 Dy G52 + T,
Yoi = boyri+ o2 300 05y + M2 2o 95y + T2
or, in matrix form,
i = Y2+ AGY1 + A1 GTYs + 114, (10)
Yo = ¢2Y1 + )\QQG*YQ + )\12G*Y1 + I15. (11)

As G* is row-normalized, in (10) and (11), agent ’s best-response effort of a certain activity depends
on the average efforts of his/her friends of that activity and a related activity. Therefore, we call
this model the local-average network game. Cohen-Cole et al. (2012) show that, if S* is nonsingular,
where

S* = (1= ¢19) ] — (M11 + Aoz + D1 A12 + PoA21)G™ + (A11d22 — Aiada1)G*2,

then the network game with payoffs (9) has a unique Nash equilibrium in pure strategies given by

Vi = ST = MG + (@91 + A G5, (12)

Yy = S*TM(I = AiGH)o + (oI + A12GF)I]. (13)

Although the best-response functions of the local-aggregate and local-average network games
share similar functional forms, they have different implications. As pointed out by Liu et al. (2012),
in the local-aggregate game, even if agents are ex ante identical in terms of individual attributes II;

and Ils, agents with different positions in the network would have different equilibrium payoffs. On



the other hand, the local-average game is based on the mechanism of social conformism.> As the
positions in the network do not matter in the local-average game, the equilibrium efforts and payoffs
would be the same if all agents are ex ante identical.

To illustrate this point, suppose the agents in a network are ex ante identical such that II; = w1,
and IIy = 7al,,, where 7, mo are constant scalars and [,, is an nx 1 vector of ones. As G*l,, = G*?[,, =

Iy, it follows from (12) and (13) that Y;* = ¢1l,, and Y5 = cal,,, where

c1 = [(1—=Xa2)mi 4 (1 + Aar)m2]/[(1 = d109) — (A1 + Aoz + @1 A1z + PaAa1) + (A11 A2z — Ai2A21)],

Co (1= Ai1)m2 + (g + M2)m1]/[(1 — d1hs) — (A1 + Aoz + P A2 + daa1) + (A11A22 — A12A21)].

Thus, for the local-average network game, the equilibrium efforts and payoffs are the same for all

agents. On the other hand, for the local-aggregate network game, it follows from (7) and (8) that

Yl* = Sil[(l - AQQG)T(l + (¢1I + )\QlG)ﬂ'Q]ln,

Yy = STHI = MiG)m2 + (9ol + Ai2G) ]l

Thus, the agents would have different equilibrium efforts and payoffs if Gl,, is not proportional to
I,.A

Therefore, the local-aggregate and local-average network games have different equilibrium and
policy implications. The following sections show that the econometric model for the local-aggregate
network game has some interesting features that requires different identification conditions and

estimation methods from those for the local-average model studied by Cohen-Cole et al. (2012).

3Liu et al. (2012) show that the best-response function of the local-average network game can be derived from a
setting where an agent will be punished if he deviates from the “social norm” (the average behavior of his friends).
Therefore, if the agents are identical ex ante, they would behave the same in equilibrium.

41f Gl,, = cly, for some constant scalar ¢, i.e., all agents have the same number of friends, then it follows from (7)
and (8) that Y7* = c3ly and Y3 = cqlpn, where

s = [(1—A22e)m1+ (¢1 + A21)ma]/[(1 — B1g) — (A11 + Aoz + by 12 + doda1)e + (A11d22 — Arzdo1)c?],
ca = [1=Ane)m+ (do + A20)mi]/[(1 = d1¢a) — (A11 + A2z + ¢1 A2 + dpha1)e + (A1 A2z — Aada1)c?].

Thus, all agents have the same equilibrium payoffs according to (1).



3 Econometric Model

3.1 The local-aggregate simultaneous equations network model

The econometric network model follows the best-response functions (4) and (5). Suppose the n
observations in the data are partitioned into 7 networks, with n, agents in the rth network. For the

rth network, let

M, = X8, +G.X/v + a1, + e,

H2,7‘ = XT‘/BQ + GrXr72 + a2,rln,‘ + €21

where X, is an n, X k; matrix of exogenous variables, G, is the adjacency matrix of network r, I,
is an n, x 1 vector of ones, and € ., €2, are n, x 1 vectors of disturbances. It follows by (4) and (5)
that Y7, and Y5, which are n, x 1 vectors of observed choices/outcomes of two related activities

for the agents in the rth network, are given by

Yi,r ¢1}/2,r + )\llGryl,r + )\21Gr}/2,r + Xrﬁl + G’I‘X’F’Yl + Oél,rln,,v + €1,r,

YQ,T ¢2Y1,r + AQQGTYé,r + )\12GTY1,7’ + Xrﬂ2 + GT‘XT’Y2 + aQ,rlnr + €2 1.

Let diag{As} denote a “generalized” block diagonal matrix with diagonal blocks being n, x mg
matrices Ay’s. For k= 1,2, let Yy, = (V) 1, , Y ), X = (X1, , X0), i = (a1, i),

ek = (€p1r " »€) s L =diag{l,, };_; and G = diag{G,};_;. Then, for all the 7 networks,

i = ¢Y2a+AiGY1 + AnGYa + X3y + GXyy + Lag + e, (14)
Y, = (Z52Y1 4+ Ao GYs + A2 GY7 + Xﬂg + GX’}/Q + Lag + €3. (15)
For €1 = (€11, -+ ,€1,) and ez = (€21, ,€2,)", we assume E(e;) = E(eg;) = 0, E(€2,) = 0%, and

E(e3;) = 03. Furthermore, we allow the disturbances of the same agent to be correlated across

equations by assuming E(ejje2;) = o012 and E(eyzeg) = 0 for ¢ # j. When S given by (6) is



nonsingular, the reduced-form equations of the model are

Vi = S7THX(¢185+ B1) + GX(Aa1By — Aa2By + d17a +71) + GPX (Aa1vs — Az27y)
+L(¢y02 + 1) + GL(Ag1az — Agzonr)] + S~ M, (16)
Yo = STHX(¢yB; + By) + GX(A1281 — M1By + do71 4+ 72) + G2 X (127 — A117s)
+L(¢y01 + a2) + GL(A20q — A1ao)] + S s, (17)
where
up = (I —Xa2G)er + (11 + A1 G)ea, (18)
Uy = (I — )\11G)€2 + (¢21 + )\12G)€1. (19)

In this model, we allow network-specific effects a; , and as , to depend on X and G by treating
ay and g as 7 x 1 vectors of unknown parameters (as in a fixed effect panel data model). When
the number of network 7 is large, we may have the “incidental parameter” problem (Neyman and
Scott, 1948). To avoid this problem, we transform (14) and (15) using a deviation from group mean
projector J = diag{.J.-}"_, where J, = I, — n—lrlnrlilr. This transformation is analogous to the

“within” transformation for fixed effect panel data models. As JL = 0, the transformed equations

are

JY: &1 Y3 + AM1JGY1 + A1 JGYs + JX By + JGX~y + Jei, (20)

JY,

¢2JY1+)\22JGY2+)\12JGY1+JXB2+JGX’}/2+J€2. (21)

Our identification results and estimation methods are based on the transformed model.
3.2 Identification challenges

Analogous to the local-average simultaneous equations network model studied by Cohen-Cole et al.
(2012), the local-aggregate simultaneous equations network model given by (14) and (15) incorpo-
rates (within-activity) endogenous effects, contextual effects, simultaneity effects, cross-activity peer

effects, network correlated effects and cross-activity correlated effects. It is the main purpose of this



paper to establish identification conditions and propose efficient estimation methods for the various

social interaction effects.
¢ Endogenous effect and contextual effect

The endogenous effect, where an agent’s choice/outcome may depend on those of his/her friends
on the same activity, is captured by the coefficients A\1; and A9s. The contextual effect, where an
agent’s choice/outcome may depend on the exogenous characteristics of his/her friends, is captured
by v, and .

The non-identification of a social interaction model caused by the coexistence of those two effects
is known as the “reflection problem” (Manski, 1993). For example, in a linear-in-means model,
where an agent is equally affected by all the other agents in the network and by nobody outside
the network, the mean of endogenous regressor is perfectly collinear with the exogenous regressors.
Hence, endogenous and contextual effects cannot be separately identified.

In reality, an agent may not be evenly influenced by all the other agents in a network. In a
network model, it is usually assumed that an agent is only influenced by his/her friends. Note
that, if individuals 4,j are friends and j,k are friends, it does not necessarily imply that 7, k are
also friends. Thus, the intransitivity in network connections provides an exclusion restriction to
identify the model. Bramoullé et al. (2009) show that if intransitivities exist in a network so that
I,G*,G*? are linearly independent, then the characteristics of an agent’s second-order (indirect)
friends G*?X can be used as instruments to identify the endogenous effect from the contextual effect
in the local-average model.?

On the other hand, when G, does not have constant row sums, the number of friends represented
by G.l,, varies across agents. For a local-aggregate model, Liu and Lee (2010) show that the Bonacich
(1987) centrality, which has G,l,, as the leading-order term, can also be used as an instrument for
the endogenous effect. For the a local-aggregate seemingly unrelated regression (SUR) network model
with fixed network effect, we show in the following section that identification is possible through the

intransitivity in network connections and/or the variation in Bonacich centrality.
e Simultaneity effect and cross-activity peer effect

The simultaneity effect, where an agent’s choice/outcome of an activity may depend on his/her

choice/outcome of a related activity, can be seen in the coefficients ¢; and ¢,. The cross-activity

5A stronger identification condition is needed if the network fixed effect is also included in the model.



peer effect, where an agent’s choice/outcome may depend on those of his/her friends on a related
activity, is represented by the coefficients A2; and Aqs.

For a standard simultaneous equations model without social interaction effects, the simultaneity
problem is a well known problem for the identification and the usual remedy is to impose exclusion
restrictions on the exogenous variables. Cohen-Cole et al. (2012) show that, with the simultane-
ity effect or the cross-activity peer effect (but not both), the local-average network model can be
identified without imposing any exclusion restrictions on X, as long as J, JG*, G*2, G*3 are linearly
independent. In this paper, we show that, by exploiting the variation in Bonacich centrality, the
local-aggregate network model with the simultaneity effect or the cross-activity peer effect can be
identified under weaker conditions.

However, either the intransitivity in G or the variation in Bonacich centrality would not be enough
to identify the simultaneous equations network model with both simultaneity and cross-activity peer
effects. One possible approach to achieve identification is to impose exclusion restrictions on X. We
show that, with exclusion restrictions on X, the local-aggregate network model with both simultaneity

and cross-activity peer effects can be identified under weaker conditions than the local-average model.
e Network correlated effect and cross-activity correlated effect

Furthermore, the structure of the simultaneous equations network model is flexible enough to
allow us to incorporate two types of correlated effects.

First, the network fixed effect given by a;, and s, captures the network correlated effect
where agents in the same network may behave similarly as they have similar unobserved individual
characteristics or they face similar institutional environment. Therefore, the network fixed effect
serves as a (partial) remedy for the selection bias that originates from the possible sorting of agents
with similar unobserved characteristics into a network.

Second, in the simultaneous equations network model, the error terms of the same agent is allowed
to be correlated across equations. The correlation structure of the error term captures the cross-
activity correlated effect so that the choices/outcomes of the same agent on related activities could
be correlated. As our identification results are based on the mean of reduce-form equations, they
are not affected by the correlation structure of the error term. However, for estimation efficiency, it
is important to take into account the correlation in the disturbances. The estimators proposed in

this paper extend the generalized spatial 3SLS estimator in Kelejian and Prucha (2004) to estimate

10



the simultaneous equations network model in the presence of many instruments.

4 Identification Results

Among the regularity assumptions listed in Appendix A, Assumption 4 is a sufficient condition for
identification of the simultaneous equations network model. Let Z; and Z5 denote the matrices of
right-hand-side (RHS) variables of (14) and (15). For Assumption 4 to hold, E(JZ;) and E(JZ2)
need to have full column rank for large enough n. In this section, we provide sufficient conditions
for E(JZ1) to have full column rank. The sufficient conditions for E(JZ3) to have full column rank
can be analogously derived.

In this paper, we focus on the case where (G,. does not have constant row sums for some network
r. When G, has constant column sums for all , the equilibrium implication of the local-aggregate
network game is similar to that of the local-average network game (see footnote 4) and the identi-
fication conditions are analogous to those given in Cohen-Cole et al. (2012). Henceforth, let p and
71 (possibly with subscripts) denote some generic constant scalars that may take different values for

different uses.
4.1 Identification of the SUR network model

First, we consider the seemingly unrelated regression (SUR) network model where ¢y = ¢ = g1 =

A12 = 0. Thus, (4) and (5) become

Y

M1GY1 + X3, + GX~y, + Lay + ey, (22)

Ys Ao GYs + X,BQ =+ GX’}/Q + Loy + €9. (23)

For the SUR network model, an agent’s choice/outcome is still allowed to be correlated with his/her
own choices/outcomes of related activities through the correlation structure of the disturbances.

When ¢; = ¢y = Aa1 = A1z = 0, it follows from the reduced-form equation (16) that®

E(Y1) = (I — A\uG) H(X By + GXvy + Lay). (24)

For (22), let Z; = [GY1, X, GX]. Identification of (22) requires E(JZ;) = [E(JGY1), JX, JGX] to
have full column rank. As (I—/\HG)71 = I+)\11G(I—/\HG)71 and (I—)\llG)ilG = G(I—AllG)il,

6For ease of presentation, we assume G, X are nonstochastic. This assumption can be easily relaxed and the results
will be conditional on G, X.

11



it follows from (24) that

E(JGY1) = JGXB, + JG*(I — \1G) ' X (M1, +v,) + JG(I — A\1G) ' La;.

If A1 3, +7; # 0, JG?(I—X11G) "1 X, with the leading order term JG2X, can be used as instruments
for the endogenous regressor JGY;. On the other hand, if G, does not have constant row sums for
all 7 = 1,---,7, then JG(I — A\;1G)" 'L # 0. As pointed out by Liu and Lee (2010), the Bonacich
centrality given by G(I — A\;1G)~ 'L, with the leading order term GL, can be used as additional
instruments for identification. The following proposition gives a sufficient condition for E(JZ;) to

have full column rank.

Proposition 1 Suppose G, has non-constant row sums for some network r. For equation (22),
E(JZy) has full column rank if

(i) a1, #0 or M1y +71 #0, and I,,., G, G? are linearly independent; or

(i) a1, #0 and G} = pyIn, + poGr for 1 — pyAin — pAf; # 0.

The identification condition for the local-aggregate SUR model given in Proposition 1 is weaker
than that for the local-average SUR model. As pointed out by Bramoullé et al. (2009),” identification
of the local-average model requires the linear independence of I, G*, G*?,G*3. Consider a data set
with 7 networks, where all networks in the data are represented by the graph in Figure 1. For the
7 networks, G = diag{G,}"_, where G, is given by the adjacency matrix in Figure 1. For the row
normalized adjacency matrix G*, it is easy to see that G*3 = G*. Therefore, it follows by Proposition
5 of Bramoullé et al. (2009) that the local-average SUR model is not identified. On the other hand,
for the network in Figure 1, G,. has non-constant row sums and Iy, G,., G? are linearly independent.

Hence, the local-aggregate SUR model can be identified by Proposition 1(i).

0 0 O
@@_@ Go={1 01
0 0 O

Figure 2: an example where the local-aggregate model can be identified by Proposition 1(ii).

7 As the identification conditions given in Bramoullé et al. (2009) are based on the mean of reduce-form equations,
they are not affected by the correlation structure of the error term. Hence, they can be applied to the SUR model.

12



Figure 2 gives an example where the local-aggregate SUR model can be identified by Proposition
1(ii). For the directed graph in Figure 2, the adjacency matrix G, = [gi; ], where g;;, = 1 if an
arc is directed from ¢ to j and g;;,, = O otherwise. It is easy to see that G? = p, I3 + pyG, for
p1 = po = 0. As the row sums of G, are not constant, the local-aggregate SUR model is identified.

The following corollary shows that for a network with symmetric adjacency matrix G,., the

local-aggregate SUR model can be identified if G, has non-constant row sums.

Corollary 1 Suppose M1fS; + 71 # 0 or ai, # 0 for some network r. Then, for equation (22),

E(JZy) has full column rank if G, is symmetric and has non-constant row sums.

4.2 Identification of the simultaneous equations network model
4.2.1 Identification under the restrictions Aoy = A2 =0

For the simultaneous equations network model, besides the endogenous, contextual and correlated
effects, first we incorporate the simultaneity effect so that an agent’s choice/outcome is allowed
to depend on his/her own choice/outcome of a related activity. However, we assume that friends’
choices/outcomes of related activities have no influence on an agent’s choice/outcome. Under the

restrictions Ag; = A2 =0, (14) and (15) become

YI = Yo+ AiGY + X3+ GXvyy + Lay + e, (25)

Y2 = ¢2Y1 + )\QQG}/—Q + XﬂQ + GX’)/Q + LOéQ + €9. (26)

For (25), let Z; = [Ya, GY1, X, GX]. For identification of the simultaneous equations model, E(JZ;)
is required to have full column rank for large enough n. The following proposition gives sufficient

conditions for E(JZ;) to have full column rank.

Proposition 2 Suppose G, has non-constant row sums and I,, , G, G* are linearly independent for
some network r. When [l,,, Gyl , G2l has full column rank, E(JZ1) of equation (25) has full
column rank if

() I,,Gr, G?, G2 are linearly independent and Dy given by (43) has full rank; or

(i) G2 = p1 1., + psGr + p3G2 and Dy given by (44) has full rank.
When G21,,, = nyln, + 15Grln,, E(JZ1) of equation (25) has full column rank if

(iii) I, Gy, G2, G are linearly independent and DI given by (45) has full rank; or

(iv) G3 = pi 1., + pyGy + p3G2 and DY given by (46) has full rank.
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Cohen-Cole et al. (2012) show that a sufficient condition to identify the local-average simulta-
neous equations model under the restrictions Ag; = A2 = 0 requires that J, JG*, JG*2, JG*3 are
linearly independent. The sufficient conditions to identify the restricted local-aggregate simultane-
ous equations model given by Proposition 2 is weaker. Consider a data set, where all networks
are given by the graph in Figure 3. It is easy to see that, for the row-normalized adjacency matrix
G* = diag{G;}"_,, where G} is given in Figure 3, G*3 = — 11+ 1G* +G*2. Therefore, the condition
to identify the local-average model does not hold. On the other hand, for the rth network in the
data, G2l5 = 4l5 + Gls. As the row sums of G, are not constant and I5,G,., G2, G? are linearly

independent, the local-aggregate model can be identified by Proposition 2(iii).

(0011 1 1] 0 1/4 1/4 1/4 1/4 ]
o 9 10100 /2 0 1/2 0 0
‘o‘ Gr=111000 Gr=11/2 12 0 0 0
o o 10001 /2 0 0 0 1/2

1.0 0 1 0] ' 1/2 0 0 1/2 0 |

Figure 3: an example where the local-aggregate model can be identified by Proposition 2(iii).

For another example where identification is possible for the local-aggregate model but not for the
local-average model, let us revisit the network given by the graph in Figure 1. For a data set with
7 such networks, as G*3 = G*, the condition to identify the local-average simultaneous equations
model given by Cohen-Cole et al. (2012) does not hold. On the other hand, for the adjacency matrix
without row-normalization, G2 = 3G, and G2l4; = 3l4. As the row sums of G, are not constant
and I, G,,G? are linearly independent, the local-aggregate simultaneous equations model can be
identified by Proposition 2(iv).

Figure 4 provides an example where the conditions of Proposition 2(ii) are satisfied. For the
directed network in Figure 4, G2 = 0. As [l3,G,l3,G?I3] has full column rank and I3, G,., G>
are linearly independent, the local-aggregate simultaneous equations model can be identified by

Proposition 2(ii).
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Figure 4: an example where the local-aggregate model can be identified by Proposition 2(ii).

4.2.2 Identification under the restrictions ¢; = ¢, =0

Next, let us consider the simultaneous equations model where an agent’s choice/outcome is allowed
to depend on his/her friends’ choices/outcomes of the same activity and a related activity. This
specification incorporates the endogenous, contextual, correlated, and cross-activity peer effects,

but excludes the simultaneity effect. Under the restrictions ¢ = ¢4 = 0, (14) and (15) become

YT = AMi1GY7] + A1GYs + Xﬁl + GX’}/I + Loy + €4, (27)

YQ = )\QQG}/Q + )\uGYl + XﬂQ + GX’}’Q + LOZQ + €o. (28)

For (27), let Z; = [GY1,GY3,X,GX]. The following proposition gives sufficient conditions for
E(JZ;) to have full column rank.

Proposition 3 Suppose G, has non-constant row sums and I,, , G, G* are linearly independent for
some network r. When [l,,, Gl , G2l has full column rank, E(JZ1) of equation (27) has full
column rank if

() I.,,Gr,G?, G2 are linearly independent and Dy given by (47) has full rank; or

(ii) G2 = p1 1, + poGr + p3G?% and D3 given by (48) has full rank.
When G21,,, = nyln, + 15Grln,, E(JZ1) of equation (27) has full column rank if

(iii) I, Gy, G2, G are linearly independent and D; given by (49) has full rank; or

(iv) G2 = py 1, + poGy + p3G2 and D} given by (50) has full rank.

For the local-average simultaneous equations model under the restrictions ¢, = ¢, = 0, Cohen-
Cole et al. (2012) give a sufficient identification condition that requires J, JG*, JG*2, JG*3 to be
linearly independent. The sufficient identification condition for the local-aggregate model given by
Proposition 3 is weaker. As explained in the preceding subsection, for the network given by the

graph in Figure 1 or Figure 3, the identification condition for the local-average model does not
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hold. On the other hand, if G, is given by Figure 3, the local-aggregate model can be identified by
Proposition 3(iii) since the row sums of G, are not constant, G%l5 = 4l5 + Gls, and I, G,, G?,G?
are linearly independent. Similarly, if G, is given by Figure 1, the local-aggregate model can be
identified by Proposition 3(iv) since the row sums of G, are not constant, G2l; = 3l4, G2 = 3G,

and Iy, G, G? are linearly independent.
4.2.3 Non-identification of the general simultaneous equations model

For the general simultaneous equations model given by (14) and (15), the various social interaction
effects cannot be separately identified through the mean of the RHS variables without imposing any
exclusion restrictions. This is because E(Z1) and E(Z,), where Z; = [Y2,GY1,GYs, X,GX, L] and

Zy = [Ya,GY1,GY5, X,GX, L], do not have full column rank as shown in the following proposition.
Proposition 4 For (14) and (15), E(Z,) and E(Z3) do not have full column rank.

Proposition 4 shows that, for the general simultaneous equations model with both simultaneity
and cross-activity peer effects, exploiting the intransitivities in social connections and/or variations
in Bonacich centrality does not provide enough exclusion restrictions for identification. One way to
achieve identification is to impose exclusion restrictions on the coefficients of exogenous variables.

Consider the following model

Y: = (2315/2 + A1GY] + A1 GYs + Xlﬁl =+ GXl"yl + Loy + €4, (29)

Yo = ¢2Y1 + A22GYs + A\2GY7 + XQﬂQ + GXQ’)/Q + Las + €9, (30)

where, for ease of presentation, we assume X;, X are vectors and [X1, X»] has full column rank.®

From the reduced-form equations (16) and (17), we have

E(Y1) = S7X18; 4+ GX1(y; — A22B1) — G X1 daovy + Xo6, By + GXo(Aa1By + 6172) + G?Xodo17,
+L(C¥1 + ¢10l2) + GL()\Qlag — )\220[1)], (3].)
E(Y2) = S7'[XofBy 4+ GXa(yy — A1B) — GPXoA117, + X1698; + GX1(M2fy + 1) + G2 X1h127,

+L(2 + dppa1) + GL(A12a1 — A1),

8When X1, X2 are matrices, we need [X1, X2] to have higher column rank than both X3 and Xo.
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where S given by (6). For (29), let Z; = [Ya, GY1,GY%, X1, GX;]. The following proposition gives

sufficient conditions for E(JZ;) to have full column rank.

Proposition 5 Suppose G, has non-constant row sums for some networkr. When [l ,Gl,,,G?1y,]
has full column rank, E(JZ1) of equation (29) has full column rank if

() I, Gy, G?,G3 are linearly independent and D3 given by (51) has full rank; or

(i) I,,,Gy, G? are linearly independent, G = p,I,, + psG, + psG? and D} given by (52) has
full rank.
When G21,,, = nqln, + 15Grln, , E(JZ1) of equation (29) has full column rank if

(iii) I, , Gy, G2, G3 are linearly independent and DY given by (53) has full rank;

(iv) I, , Gy, G2 are linearly independent, G3 = p,1,, + poGr + p3G2 and DY given by (54) has
full rank; or

(v) G2 =, 1,,, +1yG, and D% given by (55) has full rank.

For the general local-average simultaneous equations model, Cohen-Cole et al. (2012) provide a
sufficient identification condition that requires J, JG*, JG*2 to be linearly independent. Suppose
G* = diag{G;}7_, where G} is given by Figure 1. It is easy to see that JG*? = —JG*. Therefore,
the identification condition for the local-average model does not hold. On the other hand, as G,. given
by Figure 1 has non-constant row sums and I, G,., G2 are linearly independent, the local-aggregate

model given by (29) and (30) can be identified by Proposition 5(iv).
5 Estimation

5.1 The 2SLS estimator with many instruments

The general simultaneous equations model given by (29) and (30) can be written more compactly as
Y1 =711+ Lay +e¢; and Yo = Z50o + Las + €, (33)

where Zl = [Y27GYI7G}/27X17GX1]7 Z2 = [Y17GY27GY17X27GX2]7 61 = (¢17)\117>\2175/177/1)17 and
82 = (¢g, A22, 12, 85,75)". As JL = 0, the within transformation with projector J gives JY; =
JZ101 + Jer and JYs = JZ302 + Jea. From the reduced-form equations (16) and (17), we have

JZliE(J21)+U1:F1+U1, and JZQZE(JZQ)+U2:F2+UQ, (34)
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where Iy = J[E(Y2), GE(Y1), GE(Y2), X1,GX1], I> = J[E(Y1),GE(Y2), GE(Y1), X2, GX5], Un =
J[SYug, GS™ uy, GStus, 0], and Uy = J[S™1uy, GS~tug, GS™1uy, 0], with E(Y;), E(Y2) given by
(31) and (32), S given by (6), and uq, us given by (18) and (19).

Based on (34), the best instruments for JZ; and JZy are Fy and Fs respectively (Lee, 2003).
However, both F; and F, are infeasible as they involve unknown parameters. Hence, we use linear
combinations of feasible instruments to approximate F; and F as in Kelejian and Prucha (2004) and
Liu and Lee (2010). Let G = ¢1 oI+ (A11+ 22+ 01 A2+ PaA21 )G — (A11A22 — A12A21 )G2. Under some
regularity conditions (see footnote 2), we have ||G|| < 1. Then, ™1 = (I - G)~! = Z(;io Gl =
Z?:o G7 + GPH1S—1 Tt follows that |[S™! — ?:0 GIloo < |IGIPFHIS ™ ]oo- As ||Gl|ee < 1, the
approximation error of Z?:o G7 diminishes in a geometric rate as p — oco. Since Zé'):o G can
be considered as a linear combination of [I,G,---,G?], the best instruments F; and F» can be

approximated by a linear combination of n x K IV matrix
QK = J[X17 GX17 e aG2p+3X1a X27 GX27 e 7G2p+3X2a GL7 e 7G2P+2L] (35)

with an approximation error diminishing very fast when K (or p) goes to infinity, as required
by Assumption 5 in Appendix A. Let Px = Qr(QxQk)™ Q%. The many-instrument two-stage
least-squares (2SLS) estimators for §; and &y are 81,2515 = (Z|PxZ,)"'Z, PkY: and 32,2515 =
(ZL Py Z) "\ Z}, P Y.

Let Hi; = lim,,_, o %F{Fl and Hoy = lim,, o0 %FQIFQ The following proposition establishes the
consistency and asymptotic normality of the many-instrument 2SLS estimator.

Proposition 6 Under Assumptions 1-5, if K — oo and K/n — 0, then \/5(5172515 — 01— b1,2s15) -,

N(0,03HY) and /n(0.245—02—b2.2615) < N(0, 03Hy,'), where by g5 = (Z3 P Z1) " 'E(U{ Pxey) =
OP(K/TL) and bg,gsls = (ZéPKZ2)_1E(U2/PK€2) = OP(K/’H,)

From Proposition 6, when the number of instruments K grows at a rate slower than the sample
size n, the 2SLS estimators are consistent and asymptotically normal. However, the asymptotic
distribution of the 2SLS estimator may not center around the true parameter value due to the
presence of many-instrument bias of order O,(K/n) (see, e.g., Bekker, 1994). If K?/n — 0, then
/b1 2sis 20, /b2 251 2.0 and the 2SLS estimators are properly centered.

The condition that K/n — 0 is crucial for the 2SLS estimator to be consistent. To see this,

we look at the first-order conditions of the 2SLS, 1 Z{ Pk (Y — 7161 .245) = 0 and L7, P (Ys —
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ZQ(ASQ’QSIS) = 0. At the true parameter values, E[%Z{PK(Yl—Zlél)] = =E(U{ Pke1) and E[%ZQPK(YQ—

1
n

ZQ(SQ)] = %E(UéPKEQ), where

(0’12 + qbQO'%)tI‘(PKS_l) + ()\120’% — )\110’12)tI‘(PKS_1G)
0% 4+ ¢ 012)tr(PxGS™1) 4+ (Ao1012 — Ao ?)tr(PrGS™IG
(U Preey) = (01 + d1012)tr( Pk )+ (A21012 — Ag20f)tr(Prc ) _ oK) (36)
(0'12 + (bQO'%)tI“(PKGS_l) + ()\120’% — )\110’12)U‘(PKGS_1G)

02k, x1

(012 —+ (ZSlO'%)tr(PKSil) -+ ()\210'% — )\anlg)tr(PKS’lG)

2 + tr(PxGS™1) + (A — A1)t (PkGS™1@G
B0 Precy) = (05 + ¢a012)tr(Px ) + (M2012 — A103)tr(Px ) _ox)  (37)

(012 + ¢105)tr(PgGS™1) + (Aa105 — Aa2012)tr(Pk GS™'G)

02k, x1

by Lemma C.2 in the Appendix. Therefore, E[1 Z{ Px (Y1 — Z161)] and B[ Z} P (Y2 — Z262)] may not
converge to zero and, thus, the 2SLS estimators may not be consistent, if the number of instruments
grows at the same or a faster rate than the sample size.

Note that the submatrix GL in the IV matrix Q given by (35) has 7 columns, where 7 is the
number of networks. Hence, K/n — 0 implies 7/n = 1/m — 0, where m is the average network size.
So for the 2SLS estimator with the IV matrix Qi to be consistent, the average network size needs
to be large. On the other hand, K?/n — 0 implies #2/n = 7/m — 0. So for the 2SLS estimator to
be properly centered, the average network size needs to be large relative to the number of networks.

The many-instrument bias of the 2SLS estimator can be corrected by the estimated leading-
order biases by 245 and bs 24 given in Proposition 6. Let 5 = (&51, 5\11, 5\21, Bll,’y'l)’ and dy =
(&2,5\22,5\12,/@;,%)' be y/n-consistent preliminary 2SLS estimators based on a fixed number of
instruments (e.g., Q = J[X1,GX1,G2X1, Xy, GXy,G?X;3]). Let & = J(Y1 — Z104) and & = J(Vs —
ZQSQ). The leading-order biases can be estimated by 151,2513 = (Z{PKZl)_lﬁJ(U{PKel) and 132723;8 =
(Z5 Py Z5) " YE(U} Py €3), where E(U{ Pge1) and E(UjPxes) are obtained by replacing the unknown

parameters in (36) and (37) by 01,8, and

-9
01

=&a/(n—7), 67 =e&e/(n—7), 612 =¢EE/(n—T7). (38)

The bias-corrected 2SLS (BC2SLS) estimators are given by 81,1)62515 = 31,2515 — 31’2515 and 32,;,023;5 =
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02,2515 — b2,251s-

Proposition 7 Under Assumptions 1-5, if K — oo and K/n — 0, then \/77(317;,02318 —41) -,

N(0,03HY) and /n(02 peasis — 02) 4 N(0,03H5,1).

As K/n — 0 implies 1/m — 0 for the IV matrix Q g, it follows that the BC2SLS estimators have

properly centered asymptotic normal distributions as long as the average network size m is large.
5.2 The 3SLS estimator with many instruments

The 2SLS and BC2SLS estimators consider equation-by-equation estimation and are inefficient as
they do not make use of the cross-equation correlation in the disturbances. To fully utilize the
information in the system, we consider the three-stage least-squares (3SLS) estimator proposed by
Kelejian and Prucha (2004) in the presence of many instruments.

We stack the equations in the system (33) as
Y =75+ (I,®L)a+e,

where Y = (Y{,Y3), Z = diag{Z, Zo}, § = (61,05), a = (a},ab)’, and € = (€],¢5). As (I, ®

J)(Iz ® L) = 0, the within transformation with projector J gives (Io®J)Y = (1o ®@ J)Z6+ (12 ® J)e.

Let
2 ~2 ~
0'1 g12 ~ 0'1 J12
Y= and X = , (39)
2 ~ ~2
012 Oy 012 05

where 57,573,512 are estimated by (38). As E(ee’) = ¥ ® I, the 3SLS estimator with the TV matrix
Qx is given by dsqs = [Z/(571 @ Px)Z) 7' Z/ (271 @ Pk)Y.
Let F = diag{F, Fb}, U = diag{U1,U>}, and H = lim, oo 2F'(X7! @ I)F. The following

proposition gives the asymptotic distribution of the many-instrument 3SLS estimator.

Proposition 8 Under Assumptions 1-5, if K — oo and K/n — 0, then

\/E(S3Sls - 6 - b3SlS) i’ N(O7 H_l)
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where bygs = [Z'(X7' @ Pr)Z]'E[U' (27! @ Pk)e] = O,(K/n) and

Gotr(PrS™1) + Aiatr (P S™1G)
tr(PxGS™1) — Aaotr(PkGS™1G)
Gotr(PxkGS™Y) + Aiatr(PkGS™IG)
E[U'(27Y @ Py )e] = O2ke1 . (40)
G1tr(PxS™) + Aartr(Pxk ST G)
tr(PxGS™) — A\1tr(PcGS™1G)

¢, tr(PxGS™L) + Ay tr(PkGS~1G)

02/% x1

Similar to the 2SLS estimator, when the number of instruments goes to infinity at a rate slower
than the sample size, the 3SLS estimator is consistent and asymptotically normal with an asymptotic
bias of order O, (K /n). If K%/n — 0, then \/nbsss 2, 0 and the 3SLS estimator is properly centered
and efficient as the covariance matrix H ' attains the efficiency lower bound for the class of IV
estimators.

The leading-order asymptotic bias of the 3SLS estimator given in Proposition 8 can be estimated

to correct the many-instrument bias. Let the estimated bias be
bssis = [Z2'(57' ® Px)Z)'E[U' (S @ Pr)el,

where 3. is given by (39) and E[U’(S7! @ Px)e] is obtained by replacing the unknown parameters in
(40) by \/n-consistent preliminary 2SLS estimators 6, and ds. The bias-corrected 3SLS (BC3SLS)
estimator is given by Sbcgsls = 33313 — 133313. The following proposition shows that the BC3SLS
estimator is properly centered and asymptotically efficient if the number of instruments increases

slower than the sample size.

Proposition 9 Under Assumptions 1-5, if K — oo and K/n — 0, then

\/77'(3bc3sls - 6) i) N(Ov Hil)'
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6 Monte Carlo Experiments

To investigate the finite sample performance of the 2SLS and 3SLS estimators, we conduct a limited

simulation study based on the following model

Y: = ¢1Y2+/\11GY1 +>\21GY2+X1,61 —|—GX1")/1 + Loy + €1, (41)

Yo = 0¥ + A2GYo 4+ AoGY7 + XofBy + GXoyy + Lao + €. (42)

For the experiment, we consider three samples with different numbers of networks 7 and network
sizes m,.. The first sample contains 30 networks with equal sizes of m,. = 10. To study the effect of
a larger network size, the second sample contains 30 networks with equal sizes of m,. = 15. To study
the effect of more networks, the third sample contains 60 networks with equal sizes of m, = 15.
For each network, the adjacency matrix G, is generated as follows. First, for the i¢th row of G,
(i=1,---,m,), we generate an integer p,; uniformly at random from the set of integers {1, 2, 3}.
Then, if i + p; < m,, we set the (¢ + 1)th,--- , (i + p,;)th entries of the ith row of G, to be ones
and the other entries in that row to be zeros; otherwise, the entries of ones will be wrapped around
such that the first (p,; —m,) entries of the ith row will be ones.”

We conduct 500 repetitions for each specification in this Monte Carlo experiment. In each
repetition, for j = 1,2, the n x 1 vector of exogenous variables X is generated from N(0,I), and
the 7 x 1 vector of network fixed effect coefficients a; is generated from N(0,I7). The error terms
e = (€}, €5) is generated from N(0,X ® I'), where X is given by (39). In the data generating process
(DGP), we set 07 = 03 = 1 and let 015 vary in the experiment. For the other parameters in the
model, we set ¢; = ¢y = 0.2, A\;1 = Aoz = 0.1, and A\j2 = Aoy = 0.2.1° We let 8’s and ~’s vary in
the experiment.

We consider the following estimators in the simulation experiment: (i) 2SLS-1 and 3SLS-1 with
the IV matrix Q = J[X1,GX1,G?X1, X2, GXo, G?X5]; (ii) 2SLS-2 and 3SLS-2 with the IV matrix
Q2 = [Q1,JGL]; and (iii) BC2SLS and BC3SLS. The IV matrix @; is based on the exogenous
attributes of direct and indirect friends. The IV matrix Q) also uses the number of friends given by

GL as additional instruments to improve estimation efficiency. Note that GL has 7 columns. So the

9Note that the parameter space of ¢’s and X’s depends on ||G||eo (see footnote 2). If ||G||co varies in the experiment,
so does the parameter space. To facilitate comparison, we keep ||G||oo = 3 in the experiments. We have tried different
values for ||G||oo. The simulation results are similar to those reported here.

10We choose ¢’s and \’s so that the S is invertible according to footnote 2.
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number of instruments in ()5 increases with the number of networks.

The estimation results of equation (41) are reported in Tables 1-6. We report the mean and
standard deviation (SD) of the empirical distributions of the estimates. To facilitate the comparison
of different estimators, we also report their root mean square errors (RMSE). The main observations

from the experiment are summarized as follows.
[Tables 1-6 approximately here]

(a) The additional instruments based on the number of friends in Q2 reduce SDs of 2SLS and
3SLS estimators. When the IVs in @ are strong (i.e., 8, = Sy = 7; = 7, = 0.8 as in Tables
1-3) and the correlation across equations is weak (012 = 0.1), for the sample with m, = 10 and
7 = 30 in Table 1, SD reductions of 2SLS-2 estimators of ¢;, A11, Aa1, 81,7, (relative to 2SLS-1)
are, respectively, about 5.9%, 14.3%, 9.7%, 3.0%, and 5.5%. As the correlation across equations
increases, the SD reduction also increases. When o153 = 0.9 (see the bottom panel of Table 1), SD
reductions of 2SLS-2 estimators of ¢, A11, A21, 81,7, are, respectively, about 15.7%, 20.6%, 16.1%,
9.2%, and 11.1%. Furthermore, the SD reduction is more significant when the IVs in Q1 are less
informative (i.e., 81 = 83 = v, = 75 = 0.4 as in Tables 4-6). When 012 = 0.1 (see the top panel of
Table 4), SD reductions of 2SLS-2 estimators of ¢, A11, A21, 81,7, are, respectively, about 20.8%,
43.2%, 36.4%, 7.5%, and 13.6%. The SD reduction of the 3SLS estimator with Qs follows a similar
pattern.

(b) The additional instruments in ()2 introduce biases into 2SLS and 3SLS estimators. The size
of the bias increases as the correlation across equations o5 increases and as the IVs in ()1 becomes
less informative (i.e., 81, 84,71, Y2 become smaller). The size of the bias reduces as the network size
increases. The impact of the number of networks on the bias is less obvious.

(¢) The proposed bias-correction procedure substantially reduces the many-instrument bias for
both the 2SLS and 3SLS estimators. For example, in Table 4, bias reductions of BC3SLS estimators
of ¢, A\11, A21 are, respectively, 100.0%, 86.7%, and 66.7%, when 015 = 0.1.

(d) The 3SLS estimator improves the efficiency upon the 2SLS estimator. The improvement is
most prominent when the correlation across equations is strong. In Table 1, when 015 = 0.9, SD
reductions of BC3SLS estimators of ¢q, A11, A21, 81,7 (relative to BC2SLS) are, respectively, about
8.8%, 6.5%, 3.3%, 21.2%, and 11.1%.
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7 Conclusion

In this paper, we consider specification, identification and estimation of network models in a system
of simultaneous equations. We show that, with or without row-normalization of the network adja-
cency matrix, the network model has different equilibrium implications, needs different identification
conditions, and requires different estimation strategies. When the network adjacency matrix is not
row-normalized, the Bonacich (1987) centrality based on the number of direct and indirect friends
of agents in a network can be used to identify social interaction effects and improve estimation
efficiency. We derive the identification conditions for some specifications of the simultaneous equa-
tions network model with a non-row-normalized adjacency matrix, and show that the identification
conditions are weaker than those for the model with a row-normalized adjacency matrix derived by
Cohen-Cole et al. (2012).

For efficient estimation, we propose 2SLS and 3SLS estimators for the simultaneous equations
network model using a set of feasible instruments to approximate the best (infeasible) instruments
given by the reduced-form equations of the model. When the network adjacency matrix is not
row-normalized, the set of feasible instruments includes the leading order terms of the Bonacich
centrality for each network, and thus the number of instruments depends on the number of networks.
When there are many networks in the data, we would have many instruments. We show that the
proposed 2SLS and 3SLS estimators are consistent and asymptotically normally distributed (with
an asymptotic bias) when the number of instruments increases at a rate slower than the sample
size. We also propose a bias-correction procedure based on the estimated leading-order term of the
many-instrument bias. The bias-corrected 2SLS and 3SLS estimators have an properly centered
asymptotic normal distribution when the number of instruments grows slower than the sample size
(or, when the average network size is large). Monte Carlo experiments show that the instruments
based on the Bonacich centrality reduce the standard errors of the 2SLS and 3SLS estimators and

the bias-corrected estimators perform well with a moderate network size (say, m, = 10).
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APPENDIX

A Assumptions

In this appendix, we list regularity conditions for the asymptotic properties of the proposed estima-
tors. Henceforth, uniformly bounded in row (column) sums in absolute value of a sequence of square
matrices {A} will be abbreviated as UBR (UBC), and uniformly bounded in both row and column

sums in absolute value as UB.!!

Assumption 1 The vector of disturbances is given by € = (€},¢€5) = (X! ® I,,)v, where X, is a
nonsingular matrix such that .Y, = ¥ and the elements of v are i.i.d. with zero mean, unit
variance and finite fourth moments. Furthermore, the diagonal elements of 3 are bounded by

some finite constant.

Assumption 2 The matrix of exogenous (nonstochastic) regressors X has full column rank (for n

sufficient large). The elements of X are uniformly bounded in absolute value.

Assumption 3 The matrix S is nonsingular. The sequences of matrices {G} and {S~!'} are UB.

K2

Assumption 4 Let F; = E(JZ;) for i = 1,2, and F' = diag{Fy, F>}. Then, H;; = lim,,_. %F-’Fj,

for 4,7 = 1,2, and H = lim,,_, %F’(E_l ® I)F are finite nonsingular matrices.

Assumption 5 There exist matrices 71 and 7o such that, for i = 1,2, ||F; — Qkmillcoc — 0 as

n, K — oo.

Assumption 1-3 originate in Kelejian and Prucha (2004). The matrix of exogenous regressors
X is assumed to be nonstochastic for ease of presentation. If X is allowed to be stochastic, then
appropriate moment conditions need to be imposed, and the results presented in this paper can
be considered as conditional on X instead. Assumption 4 is for the identification of the network
model. Tt also implies the concentration parameter grows at the same rate as the sample size (Liu
and Lee, 2010). Assumption 5 requires the (infeasible) best IV matrix F; (for ¢ = 1,2) can be
well approximated by a certain linear combination of the feasible IV matrix QQx as the number
of instruments increases with the sample size. This condition is commonly assumed in the many-

instruments literature (see, eg., Donald and Newey, 2001; Hansen et al., 2008; Hausman et al., 2008).

1A sequence of square matrices {A}, where A = [A;;], is said to be UBR (UBC) if the sequence of row sum matrix
norm |[|Alloc = maxi=1,...,n 3.7 [As;| (column sum matrix norm [[A[l1 = max;=1,....n 3j—; |Asj|) is bounded.
(Horn and Johnson, 1985)
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B Rank Conditions

In this appendix, we list the matrices whose rank conditions are used for the identification of the

simultaneous equations model.

Let
aii $281 + By 0 L — 10, 0 0
A = g | Pv1 72 — A1y B1+ 18, (A1 t+A2)  1-¢10y 0 ’
as,1 —A1172 Y1+ @172 — A22By A1 22 —(M1+A22) O
| a4 | i 0 —A2271 0 A11A22 0 |
€11 Py + Q2 0 0 0 1— 010,
Ci=1| ¢ | = Ao g+ a0 0 —(Aig + Aa2)

€31 0 —Axpa; 0 0 A11A22

Let AT = [(a11+pyas1)’s (ag1+pgaan)’, (a3 1 +pgaqs)] and CF = [(c11+m1¢31), (c2.1 +n2c31)"]"-

Then,
D, = [A},C) (43)
Dy = [AY, ¢ (44)
Dl = [A},CyY (45)
D = [A}.Cy7. (46)
Let
ai,2 0 0 1 0
A a2 B Ba —(M1 + Aa2) 1
2 pr— =
as 2 A2189 — X22B1 + 71 A28 — AiBa 72 Aide2 — Ai2Ao —(A11 + A22)
| a4 | | A2y — A A1271 — A1172 0 A11A22 — A2 a1
C1,2 0 0 0 0 1
CQ = C2.2 = [e%1 (6%} 0 0 —()\11 + )\22)
3,2 A210g — Aga1 Appar —Aiae 00 0 Aqpdag — Ao
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Let A5 = [(a1,2+pya4,2)’, (a22+ ppa4,2)’, (as 2+ pgas2)’) and C3
Then,

[(cr2+mc32), (c22+mac32)]"

Dy = [A5,Cy) (47)
Dy = [AY,Cy) (48)
DI = [45,C5 (49)
Dy = [A},C3. (50)
Let
ai,3 ¢251 0 0 1- ¢1¢2 0 0
4 a3 A1231 + Poq B4 G231 w 1— @10 0
3= = ’
as,3 A1271 Y1 — A2y A2+ @y AriAoe — A2 w 0
| 43 | i 0 —A227; A2 0 A11A22 — A12A21 O |
b B, 0 0 00 0
B bo3 Yo — A1152 $185 Ba 0 00
3 = = 5
b33 —A1Ys ABat @17 Y2 —AufBy 0 0 0
L b4’3 ] L 0 )\21’72 —>\11’72 0 0 O ]
1,3 Qo + Qo1 0 0 0 0 1 — 919,
C3=| ca3 | = | A2c1,r — A102, a1+ o, Qo+ Py, 00 w )
3,3 0 A210g p — A2t A1201, — Ar1a2, 00 0 Ajpdoo — Aoy

where w = —(/\11 + Ao + ¢1)‘12 + ¢2)\21). Let A% = [(0,1,3 +p1a4,3

)'s (2,3 +paaa3)’, (a3 3+ p3as3)],

By = [(b1,3 + p1ba3)’s (b23 + pobaz)’, (b33 + p3ba3)’l’, and CF = [(c13 +n1c33)’, (ca,3 + mac33)]

Let A5* = [(a1,3 + 1033 +117m904,3), (a2,3 + 12033 + 11043 + 15
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M172ba3)'s (ba,s + Nobss + 101bas + n3bas)’]’. Then,

Dy = [A},BS,Cylf (51)
D; = [A3,B3.Cy) (52)
DY = (A}, B, CyY (53)
DY = (A3, By, G5 (54)
Di = [A37,B3Y,C5) (55)

C Lemmas

In this appendix, we provide some useful lemmas for the proofs of the asymptotic properties of
the proposed estimators. To simplify notations, we drop the K subscript on Qx and Pg. Let
|A|l = +/tr(A’A) denote the Frobenius (Euclidean) norm for an m x n matrix A unless noted

otherwise.

Lemma C.1 Under Assumption 5, there exist matrices w1 and 7o such that, fori=1,2, %HFZ —

Qxmil> — 0 as n, K — oc.

Proof. See Liu and Lee (2010). m

Lemma C.2 (i) tr(P) = K. (ii) Suppose that { A} is a sequence of nxn UB matrices. For B = PA,
tr(B) = O(K), tr(B?) = O(K), and Y, B = O(K), where B;;’s are diagonal elements of B.

Proof. See Liu and Lee (2010). m

Lemma C.3 Let {A} and {B} be sequences of n x n UB matrices. For i,5 = 1,2, (i) A;; =

A
Ltr(F/(I — P)F;) = o(1); (ii) 1F/PAe; = Op(y/K/n); (iii) Le;B'PAe; = Op(K/n); (iv) ﬁFi’(I —
P)Ae; = Op(vVAy); and (v) \%[EQPAEJ» —E(;PAe;)] = Op(/K/n).

Proof. For (i), Ltr(F/(I — P)F}) = ttx((Fy — Qm)'(I - P)(F) — Qr;)) < [Ltx(Fi — Q) (F; —
Q26 ((Fy — Q) (I = P)(F; — Qu))? < [2te((F — Qm) (Fy — Qma)) Y2 [2ta((F) —
Qn)) (Fy — Qu))M2 = [L||F; — QmilPJV2[L||Fy — Qny|[/2 — 0, by Assumption 5 and Lemma
C.1. For (ii) and (iii), see Liu and Lee (2010). For (iv), as Var[J=F/(I — P)A¢,] = %?Fi’(l -
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P)AA(I — P)F; < %fFZ’(I — P)F;||AA||c = O(Aj;), we have ﬁF{(I — P)Ae; = O,(v/Ayi) by
Markov’s inequality. For (v), let M = PA. E(e;M'e;e;Me;) — B(e;M'e;)E(e;Mej) = ¢1 >, M2, +
cotr(M?) + catr(M’' M), where c1, co, c3 are functions of moments of €;, €; and they are bounded by
finite constants by Assumption 1. As Y M2 tr(M?), tr(M'M) are O(K) by Lemma C.2, we have

ﬁ[egPAej — E(€;PAgj)] = Op(v/K/n) by Markov’s inequality. m
D Proofs

Proof of Proposition 1. E(JZ;) = J[E(GY1), X, GX] has full column rank if, for some r,
Jr [E(GTYL,-)dl + X,.do + G,-XT-CZ3] =0 (56)

implies dy =dy =d3=0. As J, =1, — %l !, (56) can be rewritten as

E(G Y1, )dy + Xyrdo + G Xy ds + 1, . = 0, (57)

where p = fil;lr [E(G,Y1,)di + X, da + G- X, d3]. Premultiply (57) by (I, — A1Gyr). As

n,
(In, — AM1G)E(G. Y1) = G X, By + G2X,y1 + Grlp, o
from the reduced-form equation, we have
X,do + G X, (B1d1 — Mida + d3) + G2X,(y1dy — Mads) + Ly, po+ Gyl (a1 ,0dy — A1) = 0.

Suppose G, has non-constant row sums. We consider 2 cases. (i) I,,,, G, G? are linearly independent.
In this case, do = B1d1 — Mide +d3 = vid1 — Aids = p = ay1,di — Adjip = 0, which implies
di =dy =d3 = p=0if ag, # 0or A\1f8; +7v; # 0. (ii) G2 = piL,, + poG,. In this case,
do+pi(v1d1 — Aads) = B1di — Mada +ds + po(v1d1 — A1ds) = pp = a1 »d1 — A1 p = 0, which implies
di=dy=dz=p=0if a1, #0and 1 — pyA;; — p;A}; #0.m

Proof of Corollary 1. For a symmetric adjacency matrix G, I, G,G? are linearly independent if
G has non-constant row sums. This can be shown by contradiction. As elements of G are either one
or zero, the ith diagonal element of G* equals Y-, gijg5i = >_; 97; = >, gij- Therefore, if I, G, G?

are linearly dependent such that G? = p,I + p,G, then all the diagonal elements of G? equal py, i.e.,
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> ; 9ij = py for all i. This is a contradiction as G' has non-constant row sums. The desired result

follows from Proposition 1(i). m

Proof of Proposition 2. E(JZ;) = J[E(Y2),E(GY7), X, GX] has full column rank if, for some r,
Jr[E(Ya,)d1 + E(G, Y1, )de + X, ds + G X,dy] =0 (58)
impliesd; =de =d3 =dy =0. As J, =1, — %lnrl;%, (58) can be rewritten as

E(YQ,r)dl + E(Gryl,'r)dQ + X7'd3 + GT'XT'd4 + lnT/f6 = Oa (59)

where p = —%l;r [E(Y2,,)d1 + E(G,Y1,)ds + X,d3 + G, X,d4]. Under the exclusion restrictions

A21 = A1z = 0, the reduced-form equations (16) and (17) become

S)\J‘E(Yl,r) = Xr((blﬂQ + Bl) + GTXT('Yl + ¢172 - >\22ﬁ1) - G%Xr)\22'71

+l7L’V‘ (¢1a2,7‘ + 051,7') - GTlnT A22041,7' (60)
SA,TE(YZT’) = Xr(¢2ﬁ1 + 52) + GrXr(’Yz + ¢271 - Allﬁz) - Ger)\qu

o, (P01, + 2) — Grlp, A1z, (61)

where Sy, = (1 — ¢105) 1. — (M1 + A22)Gr + A1 A22G?2. Premultiply (59) by Sy ,. As G,.Sy, =
Sx,rGr, it follows from (60) and (61) that

X,a1 + G Xa9 + G%X,«ag, + GiX,,a4 +ln,c1+Gply,co + Gflnrc;g =0,

where

a1 = (B + Bay)di + (1 — ¢y 09)ds3

az = (P71 +72 — M1B2)dr + (B + ¢182)d2 — (A1 + Aa2)dz + (1 — ¢15)dy
a3 = —A11Yedi + (V1 + D172 — A22B1)de + A1 doads — (A1 + Ag2)da
ag = —A271da + A11A22dy
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and

a1 = (a1, +az,)di+ (1 —¢109)p
o = —Anoag,di + (o + P )de — (A1 + Aa2)p
c3 = —Apaipda + A1 Aap.

Suppose G, has non-constant row sums and I, ,G,,G? are linearly independent. First, we
consider the case that [l,,,, G,ly,, G?l,,] has full column rank. In this case, if I, ,G,, G2, G3 are
linearly independent, then a; = as = a3 = a4 = ¢1 = ¢c2 = ¢3 = 0, which implies d; = dy = d3 =
dy = p = 0 if Dy given by (43) has full rank. If G2 = p,I,, + poG, + p3G2, then a; + pjay =
az + pyay = az + p3a4 = ¢1 = c2 = c3 = 0, which implies d; = dy = d3 = dy = o = 0 if D} given by
(44) has full rank.

Next, we consider the case that G2l,,, = nyln, + 79Grlyn, . In this case, if I, ,G,,G% G2 are
linearly independent, then a; = ay = ag = a4 = ¢1 + 1363 = co + nycs = 0, which implies
dy = dy = ds = dy = pp = 0 if D] given by (45) has full rank. If G3 = p, I, + poG, + p3G2, then
a1+ praq = az + pyas = asz + p3as = 1 + N3 = ca + Nyc3 = 0, which implies dy = ds = ds = dy =

u=0if D% given by (46) has full rank. m

Proof of Proposition 3. E(JZ;) = J[E(GY1),E(GY3), X, GX] has full column rank if, for some

T7
Jr [E(Gryl,r)dl + E(Gryéﬂ')d2 + Xrd3 + GT‘XTd4] =0 (62)
impliesd; =ds =d3 =dy =0. As J, =1, — %lnrl;r, (62) can be rewritten as
E(GT‘Yl,'r‘)dl + E(G7‘§/2,7‘)d2 + X’r'd3 + GT‘XT‘d4 + lnr,u = 07 (63)

where p = —%l;h_ [E(G,Y1,)d1 + E(G,Y2,)ds + X,ds + G, X,d4]. Under the exclusion restrictions

@1 = ¢9 = 0, the reduced-form equations (16) and (17) become

SerB(Y1,) = X814 GrXo(Aa1By — Ao2By + 1) + GrXr(A21ys — A1)

+lnral,'r + G’rlnT ()\21052,7' - /\22041,7-) (64)
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SeE(Yar) = XoBy+ GrXr(M2By — MiBs +72) + Gr X (A1271 — Mi172)

+n, o+ Grlp, (M20, — A102,r) (65)

where S¢7T = Inr — (/\11 + )\22)G7~ + (/\11)\22 — )\12/\21)G%. Premultiply (63) by S¢7T. As GTS(#,T =
Se.rGr, it follows from (64) and (65) that

X,a1 + G X, a9 + G,%X,«ag + GfX,,a4 +n,c1+Gply,ca+ Gflnrc;z, =0,

where
ap = d3
ay = fidi+ Bada — (A1 + Aa2)ds + da
az = (Aa1fBy — A22f1 +v1)d1 + (M1281 — M1B8sy + 72)do + (A11d22 — A2Aa1)ds — (A1 + Aa2)ds
as = (Aa1vg — A22yp)di + (M2y — Aiv2)de + (A1 A22 — A2 A21)dy
and

C1 = W
o = ai,d1+agrds — (A1 + A2)p
3 = (A1, — Ao )dr + (A2an,r — Adriag)da + (A1 22 — A2 a1 .

Suppose G, has non-constant row sums and I, ,G,,G? are linearly independent. First, we

consider the case that [l,,, , Gyly,, G?l,,] has full column rank. In this case, if I, ,G,, G2, G3 are
linearly independent, then a; = as = a3 = a4 = ¢ = ¢2 = ¢3 = 0, which implies d; = dy = d3 =
dy = p = 0 if Dy given by (47) has full rank. If G2 = p I, + pyG, + p3G?, then a1 + pjaq =
ag + pyay = ag + p3a4 = ¢1 = c2 = c3 = 0, which implies d; = dy = ds = dy = o = 0 if D3 given by
(48) has full rank.

Next, we consider the case that G2l,,, = nyln, + 79Grly,, . In this case, if I, ,G,,G? G2 are
linearly independent, then a; = as = a3 = a4 = c1 + nyc3 = c2 + 1nyc3 = 0, which implies

dy = dy = d3 = dy = pp = 0 if D} given by (49) has full rank. If G3 = p, I, + poG, + p3G2, then

a1 + p1a4 = G2 + Pa@4 = a3 + p3a4 = €1 +11C3 = C2 + Nyc3 = 0, which implies dy =dy =d3 =dy =
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= 0 if D} given by (50) has full rank. m

Proof of Proposition 4. E(Z;) = [E(Y2), E(GY}),E(GY>2), X, GX, L] has full column rank if and
only if
E(}/Q)dl + E(Gyvl)dg + E(GYQ)dg + Xds + GXds + Ldg =0 (66)

implies d; = dy = d3 = d4 = d5 = dg = 0. Premultiply (66) by S. As GS = SG, it follows from (16)
and (17) that
Xay +GXas+G?*Xag +G*Xayg+ Ley + GLey + G?Les = 0,

where

a1 = ($oB) + Ba)dr + (1 — §10y)ds
az = (A28 — Aufy + 71 +72)d1 + (9182 + By)d2 + (9251 + B2)ds
—(A11 4 Aoz + P A2 + Poda1)da + (1 — ¢165)ds
az = (M271 = M1y2)di + (A21By — A2y + @172 +71)d2 + (Mi2B1 — A By + dav1 +72)ds

+(A11A22 — A2 A21)da — (A11 + Aoz + @1 Ai2 + Do ha1)ds

as = (Aa1yg — Aa2vp)da + (A127] — A1172)ds + (A11A22 — Ai2Aa1)ds
and
e = (¢pa1 +az)di + (1 — ¢10)ds
c2 = (A20q — Annae)dy + (dran + a1)da + (pp01 + a2)ds — (A11 + Aoz + P A2 + PaA21)ds
3 = (Ao1og — Aapan)de + (M2 — Ar1ae)ds + (A11d22 — A2da1)ds.

Then, if [X,GX,G%2X,G3X, L, GL,G?L] has full column rank, we have a; = as = a3 = a4 = ¢; =
cg = c3 = 0, which implies da = (A12 + ¢aA11)d1/ (@102 — 1), ds = (A2 + PoA21)d1/(P15 — 1),
dy = (Ba + ¢281)d1 /(109 — 1), d5s = (v2 + Pav1)d1/($192 — 1) and dg = (a2 + $ppa1)d1 /(P10 — 1).

Therefore, E(Z;) does not have full column rank. We can show that E(Z3) does not have full column

rank by the same token. m

Proof of Proposition 5. E(JZ;) = J[E(Y2),E(GY1),E(GY2), X1, GX1] has full column rank if,
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for some 7,
JrE(Y2,)di + E(G, Y1, )de + E(G, Y2, )ds + X1 »ds + G- X1 ds5] =0 (67)
impliesd) =dy =d3s =dys =ds =0. As J, =1, — ilml;w (67) can be rewritten as

E(1/2,T)d1 + E(Gryl,r)d2 + E(GTY2,T)d3 + Xl,rd4 + Ger,rd5 + lnT/f" = 07 (68)

where p = —n—lrlilr [E(Y2,)d1 + E(G,Y1,)de + E(G, Y2, )ds + X1,rd4 + G X1 +d5]. Premultiply (68)
by S,. As G,.S, = S.G,, it follows from (31) and (32) that

0 = Xi,a1+GrXia0+ GzXl,r% + Gi’Xl,razL + Xopb1 + Gr Xo b + G?«X2,rb3 + G§X2,rb4

+ln7,cl + Grlnrc2 + Gzlnrc&

where

ar = Gof1di+ (1 — ¢19)ds

az = (M2f1 + ¢o71)d1 + Brdz + dof1ds — (A1 + Aoz + d1 A2 + Poda1)da + (1 — ¢165)ds

az = Aav1di + (71 — A2281)d2 + (Ai2f1 + @271 )ds + (M1 22 — MaAa1)da — (A1 + A2z + 91 A2 + @ Aa1)ds
g = —)\2271652 + >\1271d3 + (>\11)\22 - /\12/\21)d5

bi = Bydi

by = (72— AuBy)di+ ¢185ds + Bods

bs = —Auvedi + (A218s + ¢172)de + (72 — A11B2)ds
by = Ao1vada — A1172d3
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and

a1 = (a2, + doarr)di + (1= ¢1d0)p
o = (Ao, —Aiagy)dy + (0 + oo )de + (o + Govr r)ds — (A1 + Aoz + ¢y A2 + P o1 )i
3 = (A1, — Ao p)do + (Ai2ar r — A1z )ds + (A1 22 — A2 Aa1) i

Suppose G, has non-constant row sums, X ,, X2, are vectors and [X; ,, X5 ] has full column
rank. First, we consider the case that [l,,,,G.l,,,G?l,, ] has full column rank. In this case, if
I,,.,G,,G?,G? are linearly independent, then a1 = az = a3 =ay =b;y =by =bg =by =c; =3 =
c3 = 0, which implies d; = dy = d3 = dy = d5 = pp = 0if D3 given by (51) has full rank. If I, , G,., G?
are linearly independent and G2 = p;I,,, + poG, + p3G2, then ay + pyas = az + pyas = az + p3as =
b1+ p1bs = ba+ pyby = b3+ p3bs = ¢4 = ca = c3 =0, which impliesd; =dy =ds =dy =ds =p=0
if D3 given by (52) has full rank.

Next, we consider the case that G2l,,, = nyln, + 79Grlyn,. In this case, if I, ,G,, G2 G2 are
linearly independent, then a1 = as = a3 = a4 = by = by = by = by = ¢1+1n,¢3 = ca+n9c3 = 0, which
implies d; =dy =ds =dy =ds = =0 if D;; given by (53) has full rank. If I, , G, G? are linearly
independent and G2 = p,I,,, + poG, + p3G2, then a; + pyas = az + pyas = az + p3aq = by + p1by =
ba + poby = b3 + p3by = c1 +11¢3 = ca +1nyc3 = 0, which implies d; =dy =ds =dy =ds = =0
if D% given by (54) has full rank. Finally, if G2 = 0, 1,,, + 715G, then G2 = n 0,1, + (1, +n3)G.,
then a1 +nya3 + 1717204 = ag + 1503 + (11 +13)as = by +11b3 + 717304 = bz + 1303 + (g +13)ba =
¢1 + nic3 = ¢a + nycg = 0, which implies dy = dy =d3 =dy =ds = p=0if Dg given by (55) has

full rank. m

Proof of Proposition 6. In this proof, we focus on 81,2515. The results for 82,2318 can be

derived by the same argument. \/75(51’2815 — 01 — b1,2s1s) = (%Z{PZl)_lﬁ[Z{Pel — E(U{Pey)).
As JZy = Fy + Uy, we have 27/ PZ, = LF{F\ — LF{(I - P)Fy + LF{PU, + U, PF, + LU, PU,
and ﬁ[ZiPel — E(U{Pey)] = ﬁF{el - ﬁF{(I — Pey + ﬁ

and Uy = J[S Y ug, GS ™ uy, GS~tuy,0], where u1 = (I — MoaG)er + (911 + Xo1G)ea and upy =
(I=M1G)ea+(dyI+X12G)ey, it follows by Lemma C.3 that 1 Z{ PZ; = Hi1+0(A11)+0,(/K/n) =
H11 +0p(1) and ﬁ[Zifkl —E(U{PGl)] = ﬁF{Gl +Op(\/A11)+Op(\/K/TL) = ﬁFllﬁl +Op(1) As

L Fle; 4N 0,02H;1) by Theorem A in Kelejian and Prucha (1999), the asymptotic distribution
/il 1

[UjPe; — E(U{Pey)]. As K/n — 0
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of 81 941 follows by Slutsky’s theorem. Furthermore, as LE(U{Pey) given by (36) is O(K/n) b
Lemma C.2, by 2515 = Op(K/n). m

Proof of Proposition 7. From the proof of Proposition 6, it is sufficient to show that ﬁ [E(U]Pe;)—

E(U{Pe1)] = 0,(1) and E(UjPey) — E(UjPey)] = o0,(1). Here, we show the first element of

vl
LBU{Pe) — BULPe), fe. (512 + 3,53 (PS ) — (013 + 0y0D)tr(PS )] + = [(hi2 —
AM1612)tr(PSTIG) — (M120% — Mi10o12)tr(PS™1G)], is 0p(1), where S = (1 — ¢y o) — (A1 + Aag +
b1 M2 + Gaha1)G + (A1 A2 — A12a1)G2. Convergence of other terms in —= [ (U{Pey) — E(U{ Pey)]
and —= [ (U Pey) — E(UjPey)] follows a similar argument. As 81,049,572, 53,51 are y/n-consistent
estimators and (51 — §71) = iSTHS — §)5 = iy — d162)S 5 + [V —
M) Vi (Azz = A22) + /A9 M2 — $1M2) + V(Do Ao — 9o A1) ST GS T+ [Vi(Aadar — Aiadar) —
V(A Aes = A1 A2)]ST1G?S T it follows that ——[(G12+0,67)tr(PS ™) = (0124507 tr(PS™1)] =
[V(512 = 012) + VU $257 = $207)] tr(PS ™) + (012 + 6507) £ tr(Py/n(S ™ = 571)) = O, (K /n) and
f[()\ual AM1612)tr(PST1G) — (M120% — A1012)tr(PST1@)] = [/n(M26% — M203) — v(A1612 —
M1012)] 2tr(PSTIG) + (M20? — A1012) 2tr(GPy/n(S™' — S71)) = O,(K/n). The desired result

follows as K/n — 0. m

Proof of Proposition 8. First, we consider the infeasible 3SLS estimator 83515 =[Z'z'®
P)Z]7'Z/(£7 © P)Y such that v/n(bsss — 8 — baais) = [22/(S7' @ P)Z] 7' -{Z/(S7! @ P)e —
E[U (S '®P)e}. As (lLb®J)Z =F+U,wehave 22/ (S '@ P)Z = LF/(S7 '@ )F - 1F [ 1w
(I = PJF + :F'(S7 @ P)U + tU/(S7' @ P)F + JU'(S7' © P)U and -{Z'(S7' © P)e —
E[U'(S71@P)e]} = ﬁF’(ZA@I)ef%F’[E*I®(I—P)]eJrﬁ{U’(E*l®P)e—E[U’(E*1®P)e]}.
As F = diag{F,, F>} and U = diag{U;,Us}, where Uy = J[S™ us, GS™uy, GS uy,0], Uy =
J[S7 uy, GST ug, GS™ g, 0], uy = (I — MaaG)er + (¢11 + X21G)ez, and upy = (I — A\1G)ez +
(¢o1 4+ A12G)e, it follows by Lemma C.3 and K/n — 0 that 1 Z/(S7' @ P)Z = LF/(S7 ' @ I)F +
O(max; ;{A;;})+O0,(y/K/n) = H+o0,(1) and ﬁ{Z’(Z*@P)e—E[U’(E*l@P) df = HF(ETe
De+0,(max; j{\/A;;})+0,(v/K/n) = ﬁF’(E_l(XJI)e—I—Op( ). As F’(Z '@1)e <, N(0, H) by
Theorem A in Kelejian and Prucha (1999), it follows by Slutsky’s theorem that \/5(63815—5—193815) 4,
N(0,H™1). As LE[U' (7! @ P)é] given by (40) is O(K/n) by Lemma C.2, bgys = O,(K/n).
Then, to obtain the asymptotic distribution of the feasible 3SLS 535157 it is sufficient to show
that v/7(d3s15 — 03s15) = 0p(1). V(3515 — d3515) = [LZ/(E 1@ P)Z] 11 Z'[\/n(E7' = £71) @ Ple —
L1z/(2teP)Z YLz [/n(E -2 Yo PIZ}1Z/(S e P)Z] 1L Z/ (S @ P)e. As /n(E7! -
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Y1) = 0,(1), it follows by a similar argument as above that L Z'(X7!' @ P)Z = O,(1), %Z’(i_l ®
P)Z = 0,(1), and L Z'[\/n(E7! —=£71)® P]Z = O,(1). On the other hand, 2Z'[\/n(X~' -2 1) ®
Ple= L[S =5 )@ Ple+ 1U'[yA(S 1 — 1) @ Ple = Op(y/KTn) = 0p(1) and 2 2/(5 1
Ple=LF(ST @ P)e+ LU (571 @ P)e = 0,(v/K/n) = 0y(1). Therefore, \/n(d3s15 — d3s15) = 0p(1)

and the desired result follows. m

Proof of Proposition 9. From the proof of Proposition 8, it is sufficient to show that \/’ﬁ(i)?,sls -
basis) = R — Ra = 0p(1), where Ry = [LZ/(57' @ P)Z] 7' JA{E[U' (S~ @ P)d - E[U'(E7! @ P)e]}
and By = (12 @ P)Z] {12 [V(E 1 — 5 © PIZYL2/(5 ! @ P)ZI  EU/(S 1 o Pl
By a similar argument as in the proof of Proposition 7, ﬁ{E[U’(E’l ®@ P)e] —E[U(S71 @ P)]} =
Op(K/n). By a similar argument as in the proof of Proposition 8, 1Z/(X7! @ P)Z = O,(1),
L7251 ®@ P)Z = 0,(1), and 1 Z'[\/n(E~! = £71) ® P]Z = O,(1). By Lemma C.2, 2E[U'(Z"' ®
P)e] = O(K/n) = o(1). Therefore, R1 = 0p(1) and Ry = 0,(1) as K/n — 0. m
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