# R\&D Networks and Industrial Strategy 

Michael D. König, Xiaodong Liu and Yves Zenou

IZA Workshop on Social Networks
$28^{\text {th }}$ June 2013

## Introduction

- R\&D partnerships have become a widespread phenomenon characterizing technological dynamics, especially in industries with rapid technological development (cf. Hagedoorn, 2002), ${ }^{1}$ such as, for instance, the pharmaceutical, chemical and computer industries (see e.g. Ahuja, 2000; Powell et al., 2005). ${ }^{2}$
- Firms have become more specialized on specific domains of a technology and they tend to combine their knowledge with the knowledge of other firms that are specialized in different technological domains (Powell et al., 1996; Weitzman, 1998). ${ }^{3}$
- Despite the importance of R\&D collaborations for technological change and economic growth, there is no comprehensive and applied study of R\&D policy (network design, key players, subsidies vs. tax) in such networked markets.

[^0]- We analyze R\&D collaboration networks in industries where firms are competitors in the product market.
- We build on the R\&D network model by Goyal and Moraga-Gonzalez (2001) ${ }^{4}$ in which benefits from collaborations arise by sharing knowledge about a cost-reducing technology. By forming collaborations, however, firms also change their own competitive position in the market as well as the overall market structure.
- We derive the equilibrium quantity and $\mathrm{R} \& D$ effort choices of firms when they are competing in different markets/sectors, while allowing for within and between sectoral R\&D collaborations.

[^1]- We then analyze welfare (producer and consumer surplus) in independent as well as interdependent markets, captured by varying degrees of substitutability between goods.
- We study key player firms, i.e. the firms whose exit reduces welfare the most.
- We then analyze R\&D subsidy programs, either as a fixed share of $R \& D$ expenditures homogeneous across firms, or targeted towards individual firms.


## Related Literature

- D'Aspremont \& Jacquemin (1988) ${ }^{5}$ analyze a Cournot duopoly model with and without R\&D collaboration.
- Goyal \& Moraga-Gonzalez (2001) ${ }^{6}$ introduce a network of R\&D collaborating firms (with both quantity and $\mathrm{R} \& \mathrm{D}$ effort choice).
- Westbrock (2010) ${ }^{7}$ analyzes welfare in R\&D collaboration networks.
- König et al. $(2011)^{8}$ study equilibria and welfare in R\&D collaboration networks, but assume independent markets.
$\Rightarrow$ We provide a complete characterization of equilibrium output and R\&D effort choices in multiple interdependent markets and analyze a range of policy instruments (network design, key player analysis, subsidy programs).

[^2]- Bloom et al. $(2012)^{9}$ study empirically a production function with both technology spillovers and market competition effects.
- Cabrales et al. $(2010)^{10}$ study spillover effects in random graph-like networks.
- Calvo-Armengol et al. (2004), ${ }^{11}$, and Liu et al. (2011) ${ }^{12}$ estimate peer effects and apply the key player policy to education and crime.
$\Rightarrow$ We provide a micro-foundation for the technology spillover and market competition effects, and estimate it with a unique panel data set on $\mathrm{R} \& \mathrm{D}$ alliances matched to annual financial reports.

[^3]
## The Model

- The demand $q_{i}$ for the good produced by firm $i$ in market $\mathcal{M}_{m}$, $m=1, \ldots, M$. A representative consumer in market $\mathcal{M}_{m}$ obtains the following gross utility from consumption of the goods $\left(q_{i}\right)_{i \in \mathcal{M}_{m}}{ }^{13}$
$\bar{U}_{m}\left(\left(q_{i}\right)_{i \in \mathcal{M}_{m}}\right)=\alpha_{m} \sum_{i \in \mathcal{M}_{m}} q_{i}-\frac{1}{2} \sum_{i \in \mathcal{M}_{m}} q_{i}^{2}-\varrho \sum_{i \in \mathcal{M}_{m}} \sum_{j \in \mathcal{M}_{m}, j \neq i} q_{i} q_{j}$.
- The consumer maximizes net utility $U_{m}=\bar{U}_{m}-\sum_{i \in \mathcal{M}_{m}} p_{i} q_{i}$, where $p_{i}$ is the price of good $i$. This gives the inverse demand function for firm $i$

$$
\begin{equation*}
p_{i}=\bar{\alpha}_{i}-q_{i}-\varrho \sum_{\substack{j \in \mathcal{M}_{m}, j \neq i}} q_{j}, \tag{1}
\end{equation*}
$$

where we have denoted by $\bar{\alpha}_{i}=\sum_{m=1}^{M} \alpha_{m} \mathbb{1}_{\left\{i \in \mathcal{M}_{m}\right\}}$.

[^4]- Firms can reduce their costs for production by investing into R\&D as well as by establishing an R\&D collaboration with another firm.
- The amount of this cost reduction depends on the effort $e_{i}$ that a firm $i$ and the effort $e_{j}$ that its R\&D collaboration partners $j \in \mathcal{N}_{i}$ invest into the collaboration.
- Given the effort level $e_{i} \in \mathbb{R}_{+}$, marginal cost $c_{i}$ of firm $i$ is given by

$$
\begin{equation*}
c_{i}=\bar{c}_{i}-e_{i}-\psi \sum_{j=1}^{n} a_{i j} e_{j} \tag{2}
\end{equation*}
$$

where $a_{i j}=1$ if firms $i$ and $j$ set up a collaboration ( 0 otherwise) and $a_{i i}=0$.

- We assume that R\&D effort is costly. In particular, the cost of $\mathrm{R} \& \mathrm{D}$ effort is an increasing function and given by $Z=\gamma e_{i}^{2}, \gamma>0$ (similar to e.g. D'Aspremont, 1988). Firm $i$ 's profit $\pi_{i}$ is then given by

$$
\begin{equation*}
\pi_{i}=\left(p_{i}-c_{i}\right) q_{i}-\gamma e_{i}^{2} . \tag{3}
\end{equation*}
$$

- Inserting marginal cost from Equation (2) and inverse demand from Equation (1) into Equation (3) gives

$$
\begin{align*}
\pi_{i} & =\left(p_{i}-\bar{c}_{i}+e_{i}+\psi \sum_{j=1}^{n} a_{i j} e_{j}\right) q_{i}-\gamma e_{i}^{2} \\
& =\left(\bar{\alpha}_{i}-\bar{c}_{i}\right) q_{i}-q_{i}^{2}-\varrho \sum_{j=1}^{n} b_{i j} q_{i} q_{j}+q_{i} e_{i}+\psi q_{i} \sum_{j=1}^{n} a_{i j} e_{j}-\gamma e_{i}^{2}, \tag{4}
\end{align*}
$$

where $b_{i j} \in\{0,1\}$ is the $i j$-th element of the matrix $\mathbf{B}$ defined by $\mathbf{B} \equiv \sum_{m=1}^{M}\left(\mathbf{u}_{m} \mathbf{u}_{m}^{\top}-\mathbf{D}_{m}\right)$, and $\mathbf{u}_{m}$ is a zero-one vector with elements $u_{m i}=1$ if $i \in \mathcal{M}_{m}$ and $u_{m i}=0$ otherwise for all $i=1, \ldots, n$, and $\mathbf{D}_{m}=\operatorname{diag}\left(\mathbf{u}_{m}\right)$ is the diagonal matrix with diagonal elements given by $\mathbf{u}_{m}$.

- The FOC of profits with respect to $\mathrm{R} \& \mathrm{D}$ effort $e_{i}$ of firm $i$ is given by

$$
\frac{\partial \pi_{i}}{\partial e_{i}}=q_{i}-2 \gamma e_{i}=0
$$

so that we obtain

$$
e_{i}=\frac{1}{2 \gamma} q_{i} .
$$

- This proportional relationship between R\&D effort levels and output has been confirmed in a number of empirical studies (see e.g. Cohen and Klepper, 1996). ${ }^{14}$

[^5] Journal 106 (437), 925951.

- The FOC with respect to quantity is given by

$$
\frac{\partial \pi_{i}}{\partial q_{i}}=\bar{\alpha}_{i}-\bar{c}_{i}-2 q_{i}-\varrho \sum_{j=1}^{n} b_{i j} q_{j}+e_{i}+\psi \sum_{j=1}^{n} a_{i j} e_{j} .
$$

- Inserting equilibrium efforts (assuming a simultaneous move game) and rearranging terms gives

$$
q_{i}=\frac{2 \gamma\left(\bar{\alpha}_{i}-\bar{c}_{i}\right)}{4 \gamma-1}-\frac{2 \gamma \varrho}{4 \gamma-1} \sum_{j=1}^{n} b_{i j} q_{j}+\frac{\psi}{4 \gamma-1} \sum_{j=1}^{n} a_{i j} q_{j} .
$$

- In the following we denote by

$$
\begin{equation*}
\mu_{i} \equiv \frac{2 \gamma\left(\bar{\alpha}_{i}-\bar{c}_{i}\right)}{4 \gamma-1}, \quad \rho \equiv \frac{2 \gamma \varrho}{4 \gamma-1}, \quad \lambda \equiv \frac{\psi}{4 \gamma-1} \tag{5}
\end{equation*}
$$

so that we obtain for equilibrium quantity

$$
\begin{equation*}
q_{i}=\mu_{i}-\rho \sum_{j=1}^{n} b_{i j} q_{j}+\lambda \sum_{j=1}^{n} a_{i j} q_{j} \tag{6}
\end{equation*}
$$

- This can be written in matrix-vector notation as follows

$$
\mathbf{q}=\boldsymbol{\mu}-\rho \mathbf{B} \mathbf{q}+\lambda \mathbf{A} \mathbf{q}
$$

or, equivalently,

$$
\left(\mathbf{I}_{n}+\rho \mathbf{B}-\lambda \mathbf{A}\right) \mathbf{q}=\boldsymbol{\mu}
$$

- The matrix $\mathbf{I}_{n}+\rho \mathbf{B}-\lambda \mathbf{A}$ is invertible if its determinant is not zero. This also guarantees the uniqueness and existence of the equilibrium. ${ }^{15}$ A sufficient condition for invertibility is given by

$$
\rho+\lambda<\left(\max \left\{\lambda_{\mathrm{PF}}(\mathbf{A}), \max _{m=1, \ldots, M}\left\{\left(\left|\mathcal{M}_{m}\right|-1\right)\right\}\right\}\right)^{-1}
$$

- When the inverse of $\mathbf{I}_{n}+\rho \mathbf{B}-\lambda \mathbf{A}$ exists, we can write equilibrium quantities as

$$
\mathbf{q}=\left(\mathbf{I}_{n}+\rho \mathbf{B}-\lambda \mathbf{A}\right)^{-1} \boldsymbol{\mu} .
$$

> ${ }^{15}$ The determinant of $\mathbf{I}_{n}-\sum_{j=1}^{p} \lambda_{j} \mathbf{W}_{j}$ is strictly positive if $\sum_{j=1}^{p}\left|\lambda_{j}\right|<1 / \max _{j=1, \ldots, p}\left\|\mathbf{W}_{j}\right\|$, where $\left\|\mathbf{W}_{j}\right\|$ is any matrix norm, including the spectral norm (which is the largest eigenvalue of $\mathbf{W}_{j}$ ). We have that the largest eigenvalue of the matrix $\mathbf{B}$ is equal to the size of the largest market $\left|\mathcal{M}_{m}\right|$ minus one (as this is a block-diagonal matrix with all elements being one in each block and zero diagonal), and the largest eigenvalue of $\mathbf{A}$ is the Perron-Frobenius eigenvalue $\lambda_{\mathrm{PF}}(\mathbf{A})$.

- Profits in equilibrium can be written as

$$
\pi_{i}=\left(\bar{\alpha}_{i}-\bar{c}_{i}\right) q_{i}-\varrho q_{i} \sum_{j=1}^{n} b_{i j} q_{j}+\frac{\psi}{2 \gamma} q_{i} \sum_{j=1}^{n} a_{i j} q_{j}-\left(1-\frac{1}{4 \gamma}\right) q_{i}^{2}
$$

which can be simplified to

$$
\begin{equation*}
\pi_{i}=\left(1-\frac{1}{4 \gamma}\right) q_{i}^{2} \tag{7}
\end{equation*}
$$

- If there is only a single market, with $M=1$, then $\rho \mathbf{B}=\rho\left(\mathbf{u} \mathbf{u}^{\top}-\mathbf{I}_{n}\right)$ where $\mathbf{u}=(1, \ldots, 1)^{\top}$ is an $n$-dimensional vector of ones.
- Equilibrium quantity is given by

$$
\begin{equation*}
\mathbf{q}=\frac{1}{1-\rho}\left(\mathbf{b}_{\mu}(G, \phi)-\frac{\rho\left\|\mathbf{b}_{\mu}(G, \phi)\right\|_{1}}{1+\rho\left(\left\|\mathbf{b}_{\boldsymbol{u}}(G, \phi)\right\|_{1}-1\right)} \mathbf{b}_{\mathbf{u}}(G, \phi)\right) . \tag{8}
\end{equation*}
$$

where $\phi=\frac{\lambda}{1-\rho}$ and $\mathbf{b}_{\boldsymbol{u}}(G, \phi)$ and $\mathbf{b}_{\boldsymbol{\mu}}(G, \phi)$ is the $\boldsymbol{\mu}$-weighted Bonacich centrality defined by ${ }^{16}$

$$
\mathbf{b}_{\boldsymbol{\mu}}(G, \phi)=\left(\mathbf{I}_{n}-\phi \mathbf{A}\right)^{-1} \boldsymbol{\mu} .
$$

[^6] networks in education. Review of Economic Studies 76, 12391267.

- When also $\mu_{i}=\mu$ for all $i=1, \ldots, n$ we can further simplify this to

$$
\begin{equation*}
\mathbf{q}=\frac{\mu}{1+\rho\left(\left\|\mathbf{b}_{\mathbf{u}}(G, \phi)\right\|_{1}-1\right)} \mathbf{b}_{\mathbf{u}}(G, \phi) \tag{9}
\end{equation*}
$$

where $\phi=\frac{\lambda}{1-\rho}$ and

$$
\mathbf{b}_{\mathbf{u}}(G, \phi)=\left(\mathbf{I}_{n}-\phi \mathbf{A}\right)^{-1} \mathbf{u}
$$

is the Bonacich centrality with parameter $\phi$ (Bonacich, 1987). ${ }^{17}$

- In the case of independent markets, when goods are non-substitutable $\rho=0$, this further simplifies to $\boldsymbol{q}=\mu \mathbf{b}_{\boldsymbol{u}}(G, \phi)$.

[^7]
## Welfare

- Inserting the inverse demand from Equation (1) into net utility $U_{m}$ of the consumer in market $\mathcal{M}_{m}$ shows that

$$
U_{m}=\frac{1}{2} \sum_{i \in \mathcal{M}_{m}} q_{i}^{2}+\frac{\varrho}{2} \sum_{i \in \mathcal{M}_{m}} \sum_{\substack{j \in \mathcal{M}_{m}, j \neq i}} q_{i} q_{j} .
$$

- In the special case of non-substitutable goods, when $\varrho=0$, we obtain

$$
U_{m}=\frac{1}{2} \sum_{i \in \mathcal{M}_{m}} q_{i}^{2}
$$

- while in the case of perfectly substitutable goods, when $\varrho=1$, we get

$$
U_{m}=\frac{1}{2}\left(\sum_{i \in \mathcal{M}_{m}} q_{i}\right)^{2}
$$

- Total consumer surplus is then given by $U=\sum_{m=1}^{M} U_{m}$. Producer surplus is given by aggregate profits $\Pi=\sum_{i=1}^{n} \pi_{i}$. Welfare is then given by $W=U+\Pi$.


## Welfare - Independent Markets

- When products are not substitutable then social welfare is given by producer and consumer surplus, which can then be written as

$$
W(G)=\sum_{i=1}^{n}\left(\frac{q_{i}^{2}}{2}+\pi_{i}\right)=\frac{\omega}{2} \sum_{i=1}^{n} q_{i}^{2},
$$

where we have denoted by $\omega \equiv 3-\frac{1}{2 \gamma}$.

- Assuming further that $\mu_{i}=\mu$ for all $i=1, \ldots, n$, we have that $\mathbf{q}=\mu \mathbf{M}(G, \lambda) \mathbf{u}$, where we have denoted by $\mathbf{M}(G, \lambda) \equiv\left(\mathbf{I}_{n}-\lambda \mathbf{A}\right)^{-1}$. We then obtain

$$
W(G)=\frac{\omega}{2} \mathbf{q}^{\top} \mathbf{q}=\frac{\mu^{2} \omega}{2} \mathbf{u}^{\top} \mathbf{M}(G, \lambda)^{2} \mathbf{u} .
$$

- Observe that the quantity $\mathbf{u}^{\top} \mathbf{M}(G, \phi) \mathbf{u}$ is the walk generating function $N_{G}(\lambda)$ of $G$ (Cvetkovic, 1995). ${ }^{18}$
- Let $N_{k}$ denote the number of walks of length $k$ in $G$. Then we can write $N_{k}$ as follows

$$
N_{k}=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j}^{[k]}=\mathbf{u}^{\top} \mathbf{A}^{k} \mathbf{u}
$$

where $a_{i j}^{[k]}$ is the $i j$-th element of $\mathbf{A}^{k}$.

[^8]- The walk generating function is then defined as

$$
\begin{aligned}
N_{G}(\lambda) & \equiv \sum_{k=0}^{\infty} N_{k} \lambda^{k} \\
& =\mathbf{u}^{\top}\left(\sum_{k=0}^{\infty} \lambda^{k} \mathbf{A}^{k}\right) \mathbf{u}=\mathbf{u}^{\top}\left(\mathbf{I}_{n}-\lambda \mathbf{A}\right)^{-1} \mathbf{u}=\mathbf{u}^{\top} \mathbf{M}(G, \lambda) \mathbf{u} .
\end{aligned}
$$

- For a $k$-regular graph $G_{k}$ we obtain

$$
N_{G_{k}}(\lambda)=\frac{n}{1-k \lambda} .
$$

It holds that $N_{G}(0)=n$, and one can show that $N_{G}(\lambda) \geq 0$.

- Using the fact that

$$
N_{k}=\mathbf{u}^{\top} \mathbf{A}^{k} \mathbf{u}=\sum_{i=1}^{n}\left(\mathbf{u}^{\top} \mathbf{v}_{i}\right)^{2} \lambda_{i}^{k}
$$

we can write the walk generating function as follows

$$
N_{G}(\lambda)=\mathbf{u}^{\top} \mathbf{M}(G, \lambda) \mathbf{u}=\sum_{k=0}^{\infty} N_{k} \lambda^{k}=\sum_{i=1}^{n} \frac{\left(\mathbf{v}_{i}^{\top} \mathbf{u}\right)^{2}}{1-\lambda_{i} \lambda}
$$

- We further have that

$$
\mathbf{u}^{\top} \mathbf{M}(G, \lambda)^{2} \mathbf{u}=\frac{d}{d \lambda}\left(\lambda N_{G}(\lambda)\right)=N_{G}(\lambda)+\lambda \frac{d}{d \lambda} N_{G}(\lambda)
$$

so that we can write

$$
\begin{aligned}
\mathbf{u}^{\top} \mathbf{M}(G, \lambda)^{2} \mathbf{u} & =\sum_{i=1}^{n} \frac{\left(\mathbf{v}_{i}^{\top} \mathbf{u}\right)^{2}}{1-\lambda_{i} \lambda}+\sum_{i=1}^{n}\left(\mathbf{u}^{\top} \mathbf{v}_{i}\right)^{2} \sum_{k=0}^{\infty} k \lambda^{k} \lambda_{i}^{k} \\
& =\sum_{i=1}^{n} \frac{\left(\mathbf{v}_{i}^{\top} \mathbf{u}\right)^{2}}{1-\lambda_{i} \lambda}+\sum_{i=1}^{n} \frac{\left(\mathbf{u}^{\top} \mathbf{v}_{i}\right)^{2} \lambda \lambda_{i}}{\left(1-\lambda \lambda_{i}\right)^{2}} \\
& =\sum_{i=1}^{n} \frac{\left(\mathbf{u}^{\top} \mathbf{v}_{i}\right)^{2}}{1-\lambda \lambda_{i}}\left(1+\frac{\lambda \lambda_{i}}{1-\lambda \lambda_{i}}\right) \\
& =\sum_{i=1}^{n} \frac{\left(\mathbf{u}^{\top} \mathbf{v}_{i}\right)^{2}}{\left(1-\lambda \lambda_{i}\right)^{2}}
\end{aligned}
$$

- From the above it follows that welfare can also be written as

$$
W(G)=\frac{\mu^{2} \omega}{2} \frac{d}{d \lambda}\left(\lambda N_{G}(\lambda)\right)=\frac{\mu^{2} \omega}{2} \sum_{i=1}^{n} \frac{\left(\mathbf{u}^{\top} \mathbf{v}_{i}\right)^{2}}{\left(1-\lambda \lambda_{i}\right)^{2}}
$$

- A similar calculation for the case of $\mu_{i} \neq \mu_{j}$ shows that

$$
\boldsymbol{\mu}^{\top} \mathbf{M} \boldsymbol{\mu}=\sum_{i=1}^{n} \frac{\left(\boldsymbol{\mu}^{\top} \mathbf{v}_{i}\right)^{2}}{1-\lambda \lambda_{i}}
$$

and similarly

$$
\boldsymbol{\mu}^{\top} \mathbf{M}^{2} \boldsymbol{\mu}=\sum_{i=1}^{n} \frac{\left(\boldsymbol{\mu}^{\top} \mathbf{v}_{i}\right)^{2}}{\left(1-\lambda \lambda_{i}\right)^{2}} .
$$

- Welfare can then be written as

$$
W(G)=\frac{\mu^{2} \omega}{2} \boldsymbol{\mu}^{\top} \mathbf{M}^{2} \boldsymbol{\mu}=\frac{\mu^{2} \omega}{2} \sum_{i=1}^{n} \frac{\left(\boldsymbol{\mu}^{\top} \mathbf{v}_{i}\right)^{2}}{\left(1-\lambda \lambda_{i}\right)^{2}}
$$

- In the limit of large $\lambda$ the efficient graph $G^{*}=\operatorname{argmax}_{G \in \mathcal{H}(n, m)} W(G)$ is a nested split graph in which the ordering of degrees $\left\{d_{i}\right\}_{i=1}^{n}$ follows the ordering of $\left\{\mu_{i}\right\}_{i=1}^{n}$.
- Note that similar results relating the largest eigenvalue to efficiency have been obtained in Corbo \& Parkes $(2006)^{19}$ and König et al. $(2011)^{20}$.

[^9]- Since, in the $k$-regular graph $G_{k}$ it holds that $N_{G}(\lambda)=\frac{n}{1-k \lambda}$ and $\frac{d}{d \lambda}\left(\lambda N_{G}(\lambda)\right)=N_{G}(\lambda)+\lambda \frac{d}{d \lambda}=N_{G}(\lambda)=\frac{n}{1-k \lambda}+\frac{n k \lambda}{(1-k \lambda)^{2}}=$ $\frac{n}{1-k \lambda}\left(1+\frac{k \lambda}{1-k \lambda}\right)=\frac{n}{(1-k \lambda)^{2}}$, we get a lower bound on welfare in the efficient graph $\frac{n}{\left(1-\frac{2 m}{n} \lambda\right)^{2}} \leq W\left(G^{*}\right)$, where we have used the fact that the number of links in a $k$-regular graph is given by $m=\frac{n k}{2}$.
- In order to derive an upper bound, observe that

$$
\mathbf{u}^{\top} \mathbf{M}(G, \lambda)^{2} \mathbf{u}=\sum_{i=1}^{n} \frac{\left(\mathbf{u}^{\top} \mathbf{v}_{i}\right)^{2}}{\left(1-\lambda \lambda_{i}\right)^{2}}
$$

and we can write welfare as follows

$$
\begin{aligned}
W(G) & =\frac{\mu^{2} \omega}{2} \sum_{i=1}^{n} \frac{\left(\mathbf{u}^{\top} \mathbf{v}_{i}\right)^{2}}{\left(1-\lambda \lambda_{i}\right)^{2}} \\
& \leq \frac{\mu^{2} \omega}{2} \frac{\sum_{i=1}^{n}\left(\mathbf{u}^{\top} \mathbf{v}_{i}\right)^{2}}{\left(1-\lambda \lambda_{1}\right)^{2}} \\
& \leq \frac{\mu^{2} \omega}{2} \frac{n}{\left(1-\lambda \lambda_{1}\right)^{2}}
\end{aligned}
$$

where we have used the fact that $N_{G}(0)=\sum_{i=1}^{n}\left(\mathbf{u}^{\top} \mathbf{v}_{i}\right)^{2}=n$ so that $\left(\mathbf{u}^{\top} \mathbf{v}_{1}\right)^{2}<n$.

- Moreover, the largest eigenvalue in a graph $G$ with $m$ links and $n$ nodes is bounded from above by $\lambda_{1} \leq \sqrt{\frac{2 m(n-1)}{n}} \leq n-1 .{ }^{21}$ This gives us an upper bound on welfare according to

$$
W\left(G^{*}\right) \leq \frac{\mu^{2} \omega}{2} \frac{n}{(1-\lambda \sqrt{2 m(n-1) / n})^{2}}
$$

- If the number of links $m$ can be chosen freely, because the largest eigenvalue $\lambda_{1}$ is upper bounded by the largest eigenvalue of the complete graph $K_{n}$, which is the ( $n-1$ )-regular graph. In this case, upper and lower bounds coincide, and the efficient graph $G^{*}$ is therefore complete, that is $K_{n}=\operatorname{argmax}_{G \in \mathcal{G}(n)} W(G)$.

[^10]- Proposition: Assume that $\mu_{i}=\mu$ for all $i \in \mathcal{N}$. Then welfare in the efficient graph $G^{*}=\operatorname{argmax}_{G \in \mathcal{H}(n, m)} W(G)$ can be bounded from above and from below as

$$
\frac{\mu^{2} \omega}{2} \frac{n}{(1-\lambda \bar{d})^{2}} \leq W\left(G^{*}\right) \leq \frac{\mu^{2} \omega}{2} \frac{n}{(1-\lambda \sqrt{(n-1) \bar{d}})^{2}}
$$

where $\bar{d}=\frac{2 m}{n}$ is the average degree in $G$.


Figure: The two bounds from the above proposition for $\varrho=0.1$, $\psi=0.001, \mu=1, m=n-1$ and $\gamma=1$ for varying values of $n$.

## Welfare - Interdependent Markets

- In this section we allow for products to be substitutable, i.e. $\varrho>0$. Then social welfare is given by

$$
W(G)=\frac{1}{2}\left(\sum_{i=1}^{n} q_{i}^{2}+\varrho \sum_{i=1}^{n} \sum_{j \neq i}^{n} b_{i j} q_{i} q_{j}\right)+\sum_{i=1}^{n} \pi_{i}
$$

where equilibrium output and profit are given by Equations (8) and (7).

- Inserting profits as a function of output delivers
$W(G)=\left(\frac{3}{2}-\frac{1}{4 \gamma}\right) \sum_{i=1}^{n} q_{i}^{2}+\frac{\varrho}{2} \sum_{i=1}^{n} \sum_{j \neq i}^{n} b_{i j} q_{i} q_{j}=\frac{\omega}{2} \mathbf{q}^{\top} \mathbf{q}+\frac{\varrho}{2} \mathbf{q}^{\top} \mathbf{B q}$,
where we have denoted by $\omega \equiv 3-\frac{1}{2 \gamma}$.
- Proposition: Denoted by $\mathbf{C}=\mathbf{A}-\frac{\rho}{\lambda} \mathbf{B}$, let $\left\{\nu_{i}\right\}_{i=1}^{n}$ be the eigenvalues of $\mathbf{C}$ and $\left\{\mathbf{v}_{i}\right\}_{i=1}^{n}$ the associated eigenvectors. Then welfare can be written as

$$
W(G)=\frac{\omega-\varrho}{2} \frac{\left(\boldsymbol{\mu}^{\top} \mathbf{v}_{1}\right)^{2}}{\left(1-\lambda \nu_{1}\right)^{2}}\left(1+\frac{\varrho}{\omega-\varrho} \mathbf{v}_{1}^{\top} \mathbf{B} \mathbf{v}_{1}\right)+o\left(\frac{1}{1-\lambda \nu_{1}}\right)^{2} .
$$

- This shows that when spillover effects are strong such that the leading terms in $1 /\left(1-\lambda \nu_{1}\right)$ dominate, then welfare is determined by the weighted sum of the eigenvector components $\boldsymbol{\mu}^{\top} \mathbf{v}_{1}=\sum_{i=1}^{n} \mu_{i} v_{1, i}$ and the pairwise eigenvector complementarity effects in different markets
$\mathbf{v}_{1}^{\top} \mathbf{B} \mathbf{v}_{1}=\sum_{i=1}^{n} \sum_{j=1}^{n} v_{1, i} b_{i j} v_{1, j}$.
- To gain further insights, we will assume in the following that there is only a single market (with $M=1, b_{i j}=1$ for $i \neq j$ and $b_{i i}=1$ for all $i, j \in \mathcal{N}$ ) and make the homogeneity assumption that $\mu_{i}=\mu$ for all $i \in \mathcal{N}$. Then welfare can be written as follows

$$
W(G)=\frac{\omega-\varrho}{2}\|\mathbf{q}\|_{2}^{2}+\frac{\varrho}{2}\|\mathbf{q}\|_{1}^{2}
$$

where $\|\mathbf{q}\|_{p} \equiv\left(\sum_{i=1}^{n} q_{i}^{p}\right)^{\frac{1}{p}}$ is the $\ell^{p}$-norm of $\mathbf{q}$ and $\mathbf{u}=(1, \ldots, 1)^{\top}$ is a vector of ones. Using the fact that $\|\mathbf{q}\|_{2} \leq\|\mathbf{q}\|_{1} \leq \sqrt{n}\|\mathbf{q}\|_{2}$, we obtain an upper bound on welfare given by

$$
W(G) \leq \frac{\omega+(n-1) \varrho}{2}\|\mathbf{q}\|_{2}^{2}=\frac{2 \gamma(\omega+(n-1) \varrho)}{4 \gamma-1} \Pi
$$

where aggregate profits are given by $\Pi=\sum_{i=1}^{n} \pi_{i}$. Hence, welfare is upper bounded by a proportionality factor times the total profits generated in the economy.

- Proposition: Consider a large market with substitutable goods where $\varrho>0$. Further, assume that $\mu_{i}=\mu$ for all $i=1, \ldots, n$. Denote by $\mathcal{G}(n)$ the class of graphs with $n$ nodes and the class of graphs with $n$ nodes and $m$ links by $\mathcal{H}(n, m) \subset \mathcal{G}(n)$. Then for small values of $\phi$, such that terms of the oder $O\left(\phi^{3}\right)$ can be neglected, welfare $W(G)$ is maximized in the graph $G \in \mathcal{H}(n, m)$ with the smallest degree variance $\sigma_{d}^{2}$.
- This contrasts to previous studies such as Westbrock (2010), where it is argued that welfare in $\mathrm{R} \& \mathrm{D}$ collaboration networks is increasing with the degree variance.
- Proposition: Consider a large market with substitutable goods where $\varrho>0$, assume that $\mu_{i}=\mu$ for all $i=1, \ldots, n$. Denote by $\mathcal{G}(n)$ the class of graphs with $n$ nodes and the class of graphs with $n$ nodes and $m$ links by $\mathcal{H}(n, m) \subset \mathcal{G}(n)$. Then for small values of $\phi$ such that terms of the oder $O\left(\phi^{4}\right)$ can be neglected, welfare $W(G)$ for two graphs $G, G^{\prime} \in \mathcal{H}(n, m)$ with the same degree variance $\sigma_{d}^{2}$ is higher for the one which is less degree assortative. ${ }^{22}$

[^11]- Proposition: Consider substitutable goods and assume that $\mu_{i}=\mu$ for all $i=1, \ldots, n$, and define $\omega \equiv 3-1 /(2 \gamma)$. Denote by $\mathcal{G}(n)$ the class of graphs with $n$ nodes and the class of graphs with $n$ nodes and $m$ links by $\mathcal{H}(n, m) \subset \mathcal{G}(n)$. Moreover, assume that $0<\rho<1$.
- Welfare in the efficient graph $G^{*}=\operatorname{argmax}_{G \in \mathcal{H}(n, m)} W(G)$ can be bounded from above and from below as

$$
\begin{aligned}
& \frac{\mu^{2}}{2} \frac{n((n-1) \varrho+\omega)}{((n-1)(\rho-\lambda)+1)^{2}} \leq W\left(G^{*}\right) \leq \\
& \quad \frac{\omega-\varrho}{2} \frac{\mu^{2}}{\rho^{2}}\left(\frac{\varrho}{\omega-\varrho}+\frac{1-\rho}{n(1-\rho-\lambda \sqrt{2 m(n-1) / n})}\right)
\end{aligned}
$$

- In the limit of weak spillovers and large population size the efficient graph in $\mathcal{G}(n)$ is the complete graph $K_{n}$, that is $\lim _{\lambda \rightarrow 0} \lim _{n \rightarrow \infty} W\left(K_{n}\right)=W\left(G^{*}\right)$.


Figure: (Left panel) The two bounds from the above proposition for $\varrho=0.1, \psi=0.001, \mu=1, m=n-1$ and $\gamma=1$ for varying values of $n$.

- Proposition: Consider substitutable goods and assume that $\mu_{i}=\mu$ for all $i=1, \ldots, n$, and define $\omega \equiv 3-1 /(2 \gamma)$. Then in the limit of $\phi$ approaching the inverse of the largest eigenvalue $\lambda_{\mathrm{PF}}$ from below welfare can be written as

$$
\lim _{\phi \uparrow 1 / \lambda_{\mathrm{PF}}} W(G)=\frac{\omega-\varrho}{2} \frac{\mu^{2}}{\rho^{2}}\left(\frac{\varrho}{\omega-\varrho}+\frac{1}{\left\|\mathbf{v}_{1}\right\|_{1}^{2}}\right)
$$

- Further, denote by $\mathcal{G}(n)$ the class of graphs with $n$ nodes and the class of graphs with $n$ nodes and $m$ links by $\mathcal{H}(n, m) \subset \mathcal{G}(n)$. Consider the class $\mathcal{S}(n, m) \subset \mathcal{H}(n, m)$ of graphs with a large spectral gap, such that $\lambda_{1}=\lambda_{\mathrm{PF}}$ is much larger than $\lambda_{j}$ for all $j \geq 2$. Then the welfare maximizing graph $G^{*}=\operatorname{argmax}_{G \in \mathcal{S}(n, m)} W(G)$ in this class is the one that minimizes the $\ell^{1}$-norm $\left\|\mathbf{v}_{1}\right\|_{1}$ of the principal eigenvector $\mathbf{v}_{1}$ associated with the largest eigenvalue $\lambda_{1}$.
- The quantity $\left\|\mathbf{v}_{1}\right\|_{1}^{2}=\left(\sum_{i=1}^{n} v_{1 i}\right)^{2}$ has been called mixedness of $G$ by Rucker et al. (2002), ${ }^{23}$ since it relates to the variance of the principal eigenvector components as follows

$$
\sigma_{\mathbf{v}_{1}}^{2}=\frac{1}{n-1}\left(\sum_{i=1}^{n} v_{1 i}^{2}-\frac{1}{n}\left(\sum_{i=1}^{n} v_{1 i}\right)^{2}\right)=\frac{n-\left\|\mathbf{v}_{1}\right\|_{1}^{2}}{n(n-1)}
$$

[^12]- The variance $\sigma_{\mathbf{v}_{1}}^{2}$ is decreasing in $\left\|\mathbf{v}_{1}\right\|_{1}$, and it is minimal for the regular graph where $v_{1 i}=1 / \sqrt{n}$ for all $i=1, \ldots, n$, that is to say they are maximally mixed. Welfare can then be written as

$$
\lim _{\phi \uparrow 1 / \lambda_{\mathrm{PF}}} W\left(K_{1, n-1}\right)=\frac{\omega-\varrho}{2} \frac{\mu^{2}}{\rho^{2}}\left(\frac{\varrho}{\omega-\varrho}+\frac{1}{n\left(1-(n-1) \sigma_{\mathbf{v}_{1}}^{2}\right)}\right) .
$$

- The implication for heterogeneity resembles the results in Westbrock (2010) on the role of the degree variance in the welfare maximizing graph.
- This suggests that the welfare maximizing graph (among the graphs with a large spectral gap) is eigenvector heterogeneous, or minimally mixed. Rucker et al. (2002) have shown by means of numerical computations for all networks of size $n \leq 10$ that graphs called $k$-kites minimize the mixedness.
- A graph with a principal eigenvalue $\lambda_{1}$ contains the more walks, the larger is $\left\|\mathbf{v}_{1}\right\|_{1}^{2}$. Moreover, the reciprocal $1 /\left\|\mathbf{v}_{1}\right\|_{1}^{2}$ measures the share of self returning walks among all walks. It follows that, a small value of $\left\|\mathbf{v}_{1}\right\|_{1}^{2}$ implies a large share of self returning walks, or a small probability that a randomly chosen walk ends at a vertex other than its origin.
- In terms of our model, where the network governs the way knowledge spillovers and diffusion are directed between firms, we thus find that the welfare maximizing graph has a large share of self returning walks, that is, knowledge originating in a firm passes through others before returning to its originator.
- This indicates that maximizing the cross-fertilization of knowledge and knowledge recombination between firms is welfare enhancing (cf. Weitzman, 1998). ${ }^{24}$

[^13] Economics 113 (2), 331360.

## The Key Player Policy

- When firms compete in independent markets $(\varrho=0)$ then social welfare is given by

$$
W(G)=\sum_{i=1}^{n}\left(\frac{q_{i}^{2}}{2}+\pi_{i}\right)=\frac{\omega}{2} \sum_{i=1}^{n} q_{i}^{2}
$$

where $\omega=3-\frac{1}{2 \gamma}$

- In interdependent markets $(\varrho>0)$ it is given by

$$
W(G)=\frac{1}{2}\left(\sum_{i=1}^{n} q_{i}^{2}+\varrho \sum_{i=1}^{n} \sum_{j \neq i}^{n} b_{i j} q_{i} q_{j}\right)+\sum_{i=1}^{n} \pi_{i},
$$

where equilibrium output and profit are given by Equations (8) and (7). Let $G^{-i}$ be the network obtained from $G$ by removing firm $i$.

- Then the key firm $i^{*} \in \mathcal{N}=\{1, \ldots, n\}$ is given by

$$
i^{*}=\arg \max _{i \in \mathcal{N}}\left\{W(G)-W\left(G^{-i}\right)\right\}
$$

## Key Player - Independent Markets

- Proposition: Assume that goods are not substitutable, i.e. $\rho=0$, let $\phi<1 / \lambda_{\mathrm{PF}}(G)$ and define $\mathbf{M} \equiv\left(\mathbf{I}_{n}-\phi \mathbf{A}\right)^{-1}$. Moreover, let $N_{G}(\phi, i)=m_{i i}(G, \phi)$ denote the generating function of the number of closed walks that start and terminate at node $i$. Then the key firm is given by $i^{*}=\arg \max _{i \in \mathcal{N}} c_{i}(G, \phi)$, where the centrality of firm $i$ is given by

$$
c_{i}(G, \phi)=\frac{b_{\mu, i}(G, \phi)}{N_{G}(\phi, i)}\left[\left(\mathbf{M}(G, \phi) \mathbf{b}_{\boldsymbol{\mu}}(G, \phi)\right)_{i}-\frac{1}{2} \frac{b_{\mu, i}(G, \phi)}{N_{G}(\phi, i)}\left(\mathbf{M}(G, \phi)^{2}\right)_{i i}\right]
$$

## Key Player - Interdependent Markets

- Proposition: Assume that goods are substitutable, i.e. $\rho>0$, that the matrix $\mathbf{M}(G, \rho, \lambda)=\left(\mathbf{I}_{n}+\rho \mathbf{B}-\lambda \mathbf{A}\right)^{-1}$ exists, and let $\mathbf{b}_{\boldsymbol{\mu}}(G, \rho, \lambda)=\mathbf{M}(G, \rho, \lambda) \boldsymbol{\mu}$. Then the key firm is given by $i^{*}=\arg \max _{i \in \mathcal{N}^{\prime}} c_{i}(G, \rho, \lambda)$, where the centrality of firm $i$ is given by

$$
\begin{gathered}
c_{i}(G, \rho, \lambda)=\frac{b_{\mu, i}(G, \rho, \lambda)}{m_{i i}(G, \rho, \lambda)}\left(\left(\mathbf{M}(G, \rho, \lambda)\left(\omega \mathbf{I}_{n}+\varrho \mathbf{B}\right) \mathbf{b}_{\mu}(G, \rho, \lambda)\right)_{i}\right. \\
\left.-\frac{1}{2} \frac{b_{\boldsymbol{\mu}, i}(G, \rho, \lambda)}{m_{i i}(G, \rho, \lambda)}\left(\mathbf{M}(G, \rho, \lambda)\left(\omega \mathbf{I}_{n}+\varrho \mathbf{B}\right) \mathbf{M}(G, \rho, \lambda)\right)_{i i}\right) .
\end{gathered}
$$

- Observe the difference in the weighted Bonacich cenralities $\mathbf{b}_{\boldsymbol{\mu}}(G, \cdot)$ in the two previous propositions: While the first is the standard weighted Bonacich centrality of the network $G$ with firm specific weights $\mu_{i}$ (cf. Definition 1 in Ballester et al. , 2006), the Bonacich centrality we consider depends on both, the adjacency matrix $\mathbf{A}$ and the block diagonal matrix $\mathbf{B}$ indicating which firm is competing with which other firm.
- We further find that the centrality measures introduced here differ from the inter centrality introduced in Ballester et al. (2006), where the intercentrality of an agent $i$ in network $G$ is defined as $c_{i}(G, \phi)=b_{i}^{2}(G, \phi) / N_{G}(\phi, i)$.


## The Homogeneous R\&D Subsidy Program

- We assume that firms obtain a subsidy $s \geq 0$ per unit of R\&D. The profit of firm $i$ can then be written as (cf. e.g. Hinloopen, 2001, 2003) ${ }^{25}$

$$
\begin{equation*}
\pi_{i}=\left(\bar{\alpha}-\bar{c}_{i}\right) q_{i}-q_{i}^{2}-\varrho q_{i} \sum_{j \neq i} b_{i j} q_{j}+q_{i} e_{i}+\psi q_{i} \sum_{j=1}^{n} a_{i j} e_{j}-\gamma e_{i}^{2}+s e_{i} \tag{10}
\end{equation*}
$$

[^14]- Assume that the matrix $\mathbf{M}=\left(\mathbf{I}_{n}+\rho \mathbf{B}-\lambda \mathbf{A}\right)^{-1}$ exists, then unique interior Nash equilibrium is given by

$$
\begin{equation*}
\mathbf{q}=\overline{\mathbf{q}}+s \mathbf{r}, \tag{11}
\end{equation*}
$$

- where we have denoted by

$$
\begin{aligned}
\overline{\mathbf{q}} & =\mathbf{M} \boldsymbol{\mu} \\
\mathbf{r} & =\lambda \mathbf{M}\left(\frac{1}{\psi} \mathbf{u}+\mathbf{d}\right),
\end{aligned}
$$

- and the vector $\overline{\mathbf{q}}$ gives equilibrium quantities in the absence of the subsidy.
- Furthermore, equilibrium profits are given by

$$
\begin{equation*}
\pi_{i}=\left(1-\frac{1}{4 \gamma}\right) q_{i}^{2}+\frac{1}{4 \gamma} s^{2} \tag{12}
\end{equation*}
$$

## Homogeneous R\&D Subsidy Independent Markets

- When firms operate in independent markets, where $\varrho=0$, respectively $\rho=0$, gross social welfare is given by

$$
W(G, s)=\sum_{i=1}^{n}\left(\frac{q_{i}^{2}}{2}+\pi_{i}\right) .
$$

- The optimal R\&D subsidy $s^{*}$ is found by maximizing welfare $W(G, s)$ less the cost of the subsidy $s \mathbf{u}^{\top} \mathbf{e}=s \sum_{i=1}^{n} e_{i}(c f$. Spencer, 1983). ${ }^{26}$

[^15]- The social planner's problem is then given by

$$
s^{*}=\arg \max _{s \in \mathbb{R}_{+}} \bar{W}(G, s)=\left(W(G, s)-s \mathbf{u}^{\top} \mathbf{e}\right),
$$

where equilibrium output and profit are given by (11) and (12).

- Net social welfare is given by

$$
\begin{aligned}
\bar{W}(G, s)=W(G, s)-s \sum_{i=1}^{n} e_{i} & =\sum_{i=1}^{n}\left(q_{i}^{2}+\pi_{i}-s e_{i}\right) \\
& =\frac{\omega}{2} \sum_{i=1}^{n} q_{i}^{2}-s \frac{1}{2 \gamma} \sum_{i=1}^{n} q_{i}-\frac{n}{4 \gamma} s^{2},
\end{aligned}
$$

where we have denoted by $\omega=3-\frac{1}{2 \gamma}$.

- The FOC of net welfare $\bar{W}(G, s) \equiv W(G, s)-s \mathbf{u}^{\top} \mathbf{e}$ is given by

$$
\frac{\partial \bar{W}(G, s)}{\partial s}=\omega \sum_{i=1}^{n} \bar{q}_{i}\left(\omega r_{i}-\frac{1}{2 \gamma}\right)+s \sum_{i=1}^{n}\left(\omega r_{i}^{2}-\frac{1}{\gamma} r_{i}-\frac{1}{2 \gamma}\right)=0 .
$$

- We then obtain the optimal subsidy level

$$
s^{*}=\frac{\sum_{i=1}^{n} \bar{q}_{i}\left(\frac{1}{2 \gamma}-\omega r_{i}\right)}{\sum_{i=1}^{n}\left(r_{i}\left(\omega r_{i}-\frac{1}{\gamma}\right)-\frac{1}{2 \gamma}\right)},
$$

where the equilibrium quantities are given by Equation (11).

- For the second-order derivative we obtain

$$
\frac{\partial^{2} \bar{W}(G, s)}{\partial s^{2}}=-\frac{1}{2 \gamma} \sum_{i=1}^{n}\left(r_{i}^{2}(1-6 \gamma)+2 r_{i}+1\right)
$$

and we have an interior solution if the condition
$\sum_{i=1}^{n}\left(r_{i}^{2}(1-6 \gamma)+2 r_{i}+1\right) \geq 0$ is satisfied.

## Homogeneous R\&D Subsidy Interdependent Markets

- For a given network $G$, social welfare $W(G, s)$ is given by the sum of consumer surplus and firms' profits. When firms compete in a homogeneous product oligopoly then social welfare is given by

$$
W(G, s)=\frac{1}{2}\left(\sum_{i=1}^{n} q_{i}^{2}+\varrho \sum_{i=1}^{n} \sum_{j \neq i}^{n} b_{i j} q_{i} q_{j}\right)+\sum_{i=1}^{n} \pi_{i}
$$

- The optimal R\&D subsidy $s^{*}$ is found by maximizing welfare $W(G, s)$ less the cost of the subsidy $s \mathbf{u}^{\top} \mathbf{e}=s \sum_{i=1}^{n} e_{i}$ (Spencer, 1983).
- The social planner's problem is then given by

$$
s^{*}=\arg \max _{s \in \mathbb{R}_{+}} \bar{W}(G, s)=\left(W(G, s)-s \mathbf{u}^{\top} \mathbf{e}\right),
$$

where equilibrium output and profit are given by (11) and (12).

- Net welfare can be written as

$$
\begin{aligned}
\bar{W}(G, s) & =\frac{1}{2} \sum_{i=1}^{n} q_{i}^{2}+\frac{\varrho}{2} \sum_{i=1}^{n} \sum_{j \neq i}^{n} b_{i j} q_{i} q_{j}+\sum_{i=1}^{n} \pi_{i}-s \sum_{i=1}^{n} e_{i} \\
& =\frac{\omega}{2} \sum_{i=1}^{n} q_{i}^{2}+\frac{n}{4 \gamma} s^{2}+\frac{\varrho}{2} \sum_{i=1}^{n} \sum_{j \neq i}^{n} b_{i j} q_{i} q_{j}-\frac{1}{2 \gamma} \sum_{i=1}^{n}\left(q_{i}+s\right) s,
\end{aligned}
$$

where we have denoted by $\omega=3-\frac{1}{2 \gamma}$.

- The FOC of net welfare $\bar{W}(G, s)$ is given by

$$
\begin{aligned}
\frac{\partial \bar{W}(G, s)}{\partial s} & =\sum_{i=1}^{n}\left(\omega \bar{q}_{i} r_{i}-\frac{1}{2 \gamma} \bar{q}_{i}+\frac{\varrho}{2} b_{i j}\left(\bar{q}_{i} r_{j}+\bar{q}_{j} r_{i}\right)\right) \\
& +s \sum_{i=1}^{n}\left(\omega r_{i}^{2}-\frac{1}{\gamma} r_{i}-\frac{1}{2 \gamma}+\varrho \sum_{j=1}^{n} b_{i j} r_{i} r_{j}\right)=0
\end{aligned}
$$

- The optimal subsidy level is then given by

$$
s^{*}=\frac{\sum_{i=1}^{n}\left(\bar{q}_{i}\left(\omega r_{i}+\frac{1}{2 \gamma}\right)+\frac{\varrho}{2} \sum_{j=1}^{n} b_{i j}\left(\bar{q}_{i} r_{j}+\bar{q}_{j} r_{i}\right)\right)}{\sum_{i=1}^{n}\left(\frac{1}{2 \gamma}+r_{i}\left(\frac{1}{\gamma}-\omega r_{i}-\varrho \sum_{j=1}^{n} b_{i j} r_{j}\right)\right)}
$$

where the equilibrium quantities are given by Equation (11).

- The second-order derivative is given by

$$
\frac{\partial^{2} \bar{W}(G, s)}{\partial s^{2}}=-\frac{1}{2 \gamma} \sum_{i=1}^{n}\left(r_{i}^{2}(1-6 \gamma)+2 r_{i}+1-2 \gamma \varrho \sum_{j=1}^{n} b_{i j} r_{i} r_{j} .\right) .
$$

Hence, the solution is interior if

$$
\sum_{i=1}^{n}\left(r_{i}^{2}(1-6 \gamma)+2 r_{i}+1-2 \gamma \varrho \sum_{j=1}^{n} b_{i j} r_{i} r_{j}\right) \geq 0
$$

## Targeted R\&D Subsidy

- In the following we assume that each firm obtains a subsidy $s_{i} \geq 0$ per unit of R\&D for all $i=1, \ldots, n$. The profit of firm $i$ can then be written as (cf. e.g. Hinloopen, 2001)

$$
\pi_{i}=\left(\bar{\alpha}-\bar{c}_{i}\right) q_{i}-q_{i}^{2}-\varrho q_{i} \sum_{j \neq i} b_{i j} q_{j}+q_{i} e_{i}+\psi q_{i} \sum_{j=1}^{n} a_{i j} e_{j}-\gamma e_{i}^{2}+s_{i} e_{i} .
$$

- Assume that the matrix $\mathbf{M}=\left(\mathbf{I}_{n}+\rho \mathbf{B}-\lambda \mathbf{A}\right)^{-1}$ exists, then the unique interior Nash equilibrium is given by

$$
\begin{equation*}
\mathbf{q}=\overline{\mathbf{q}}+\mathbf{R s}, \tag{13}
\end{equation*}
$$

- where we have denoted by

$$
\begin{aligned}
\overline{\mathbf{q}} & =\mathbf{M} \boldsymbol{\mu} \\
\mathbf{R} & =\lambda \mathbf{M}\left(\frac{1}{\psi} \mathbf{I}_{n}+\mathbf{A}\right),
\end{aligned}
$$

- and equilibrium profits are given by

$$
\begin{equation*}
\pi_{i}=\left(1-\frac{1}{4 \gamma}\right) q_{i}^{2}+\frac{1}{4 \gamma} s_{i}^{2} \tag{14}
\end{equation*}
$$

## Targeted R\&D Subsidy - Independent Markets

- When firms operate in independent markets, where $\varrho=0$, social welfare is given by

$$
W(G, \mathbf{s})=\sum_{i=1}^{n}\left(\frac{q_{i}^{2}}{2}+\pi_{i}\right)
$$

- The optimal $\mathrm{R} \& D$ subsidy $\mathrm{s}^{*} \in \mathbb{R}_{+}^{n}$ is found by maximizing welfare $W(G, \mathbf{s})$ less the cost of the subsidy $\mathbf{~ s}^{\top} \mathbf{e}=\sum_{i=1}^{n} s_{i} e_{i}$ (Spencer, 1983). The social planner's problem is then given by

$$
\mathbf{s}^{*}=\arg \max _{\mathbf{s} \in \mathbb{R}_{+}^{n}} \bar{W}(G, \mathbf{s})=\left(W(G, \mathbf{s})-\mathbf{s}^{\top} \mathbf{e}\right),
$$

where equilibrium output and profit are given by (13) and (14).

- Net welfare can be written as follows

$$
\begin{aligned}
\bar{W}(G, \mathbf{s}) & =\sum_{i=1}^{n}\left(\frac{q_{i}^{2}}{2}+\pi_{i}-s_{i} e_{i}\right) \\
& =\frac{\omega}{2} \sum_{i=1}^{n} q_{i}^{2}-\frac{1}{2 \gamma} \sum_{i=1}^{n} q_{i} s_{i}-\frac{1}{4 \gamma} \sum_{i=1}^{n} s_{i}^{2}
\end{aligned}
$$

where we have denoted by $\omega=3-\frac{1}{2 \gamma}$.

- The FOC for net welfare $\bar{W}(G, \mathbf{s})$ yields the following system of linear equations

$$
\begin{aligned}
\frac{\partial \bar{W}(G, \mathbf{s})}{\partial s_{i}} & =-\frac{1}{2 \gamma} \bar{q}_{i}-\frac{1}{2 \gamma} s_{i}+\sum_{k=1}^{n} r_{k i}\left(\omega \bar{q}_{k}+\frac{\omega}{2} \sum_{j=1}^{n} r_{k j} s_{j}-\frac{1}{2 \gamma} s_{k}\right) \\
& +\sum_{k=1}^{n}\left(\sum_{j=1}^{n} r_{k j} s_{j}\right)\left(\frac{1}{2} r_{k i}-\frac{1}{2 \gamma} \delta_{k i}\right)=0 .
\end{aligned}
$$

- In vector-matrix notation this can be written as

$$
\left(\mathbf{I}_{n}+2 \mathbf{R}-2 \gamma \omega \mathbf{R}^{2}\right) \mathbf{s}=\left(2 \gamma \omega \mathbf{R}-\mathbf{I}_{n}\right) \overline{\mathbf{q}}
$$

- When the conditions for invertibility are satisfied, it then follows that the optimal subsidy levels can be written as

$$
\mathbf{s}^{*}=\left(\mathbf{I}_{n}+2 \mathbf{R}-2 \gamma \omega \mathbf{R}^{2}\right)^{-1}\left(2 \gamma \omega \mathbf{R}-\mathbf{I}_{n}\right) \overline{\mathbf{q}}
$$

with $\overline{\mathbf{q}}=\left(\mathbf{I}_{n}-\lambda \mathbf{A}\right)^{-1} \boldsymbol{\mu}=\mathbf{b}_{\boldsymbol{\mu}}$.

- The second-order derivative is given by

$$
\frac{\partial^{2} \bar{W}(G, \mathbf{s})}{\partial \mathbf{s} \partial \mathbf{s}^{\top}}=-\frac{1}{2 \gamma}\left(\mathbf{I}_{n}+2 \mathbf{R}-2 \gamma \omega \mathbf{R}^{2}\right) .
$$

- Hence, we obtain an interior solution if the matrix $\mathbf{I}_{n}+2 \mathbf{R}-2 \gamma \omega \mathbf{R}^{2}=\mathbf{I}_{n}+(1-6 \gamma) \mathbf{R}^{2}+2 \mathbf{R}$ is positive definite, which means that it is also invertible and its inverse is also positive definite.


## Targeted R\&D Subsidy - Interdependent Markets

- For a given network $G$, social welfare $W(G, \mathbf{s})$ is given by the sum of consumer surplus and firms' profits

$$
W(G)=\frac{1}{2}\left(\sum_{i=1}^{n} q_{i}^{2}+\varrho \sum_{i=1}^{n} \sum_{j \neq i}^{n} b_{i j} q_{i} q_{j}\right)+\sum_{i=1}^{n} \pi_{i}
$$

where equiplibrium output is given by Equation (13) and profits are given by (14)

- The optimal $\mathrm{R} \& \mathrm{D}$ subsidy $\mathbf{s}^{*} \in \mathbb{R}_{+}^{n}$ is found by maximizing welfare $W(G, \mathbf{s})$ less the cost of the subsidy $\mathbf{s}^{\top} \mathbf{e}=\sum_{i=1}^{n} s_{i} e_{i}$ (Spencer, 1983).
- The social planner's problem is then given by

$$
\mathbf{s}^{*}=\arg \max _{\mathbf{s} \in \mathbb{R}_{+}^{n}} \bar{W}(G, \mathbf{s})=\left(W(G, \mathbf{s})-\mathbf{s}^{\top} \mathbf{e}\right)
$$

where equilibrium output and profit are given by (13) and (14).

- One can show that if the matrix $\mathbf{I}_{n}-2 \mathbf{R}^{\top}\left(\gamma\left(\omega \mathbf{I}_{n}+\varrho \mathbf{B}\right) \mathbf{R}-\mathbf{I}_{n}\right)$ is positive definite, the optimal subsidy levels are given by

$$
\mathbf{s}^{*}=\left(\mathbf{I}_{n}-2 \mathbf{R}^{\top}\left(\gamma\left(\omega \mathbf{I}_{n}+\varrho \mathbf{B}\right) \mathbf{R}-\mathbf{I}_{n}\right)\right)^{-1}\left(2 \gamma \mathbf{R}^{\top}\left(\omega \mathbf{I}_{n}+\varrho \mathbf{B}\right)-\mathbf{I}_{n}\right) \overline{\mathbf{q}} .
$$

## Empirical Implications - Data

- For the purpose of estimating our model we use the MERIT-CATI database. ${ }^{27}$
- This database contains information about strategic technology agreements, including any alliance that involves some arrangements for mutual transfer of technology or joint research, such as joint research pacts, joint development agreements, cross licensing, R\&D contracts, joint ventures and research corporations.
- We used annual data about balance sheets and income statements from Standard \& Poor's Compustat US and Global fundamental databases to match it with the firm names in the MERIT-CATI data.
- For this purpose we adopted and extended the name matching algorithm developed as part of the NBER patent data project. ${ }^{28}$

[^16]

Figure: Network snapshots of the largest connected component for the years $1990(n=259, m=621)$ and $1995(n=256, m=434)$. A node's size indicates its eigenvector centrality. Node colors represent different industry SIC codes at the 4-digit level. The nodes' sizes indicate their degree.


Figure: Network snapshots of the largest connected component for the years $2000(n=403, m=635)$ and $2005(n=358, m=571)$. A node's size indicates its eigenvector centrality. Node colors represent different industry SIC codes at the 4-digit level. The nodes' sizes indicate their degree.


Figure: The number of firms $n$ participating in an alliance, the average degree $\bar{d}$, the degree variance $\sigma_{d}^{2}$ and the degree coefficient of variation $c_{v}=\sigma_{d} / \bar{d}$.

## Empirical Implications - Estimation

- Given the effort level $e_{i t}$, the empirical counterpart to the marginal cost $c_{i t}$ of firm $i$ of Equation (2) at period $t$ with $\bar{c}_{i t}=\mathbf{x}_{i t}^{\prime} \boldsymbol{\delta}+\eta_{i}^{*}+\varepsilon_{i t}$ is

$$
\begin{equation*}
c_{i t}=\mathbf{x}_{i t}^{\prime} \boldsymbol{\delta}+\eta_{i}^{*}+\varepsilon_{i t}-e_{i t}-\psi \sum_{j=1}^{n} a_{i j, t} e_{j t}, \tag{15}
\end{equation*}
$$

where $\mathbf{x}_{i t}$ is a $k$-dimensional vector of observed exogenous characteristics of firm $i, \eta_{i}^{*}$ captures the unobserved (to the econometrician) firm-specific fixed effect, and $\varepsilon_{i t}$ captures the remaining unobserved (to econometricians) characteristics of the firms. We assume $\eta_{i}^{*}$ and $\varepsilon_{i t}$ can be observed by other firms.

- At period $t$, firm $i$ 's profit is given by

$$
\begin{equation*}
\pi_{i t}=\left(p_{i t}-c_{i t}\right) q_{i t}-\frac{1}{2 \gamma} e_{i t}^{2} \tag{16}
\end{equation*}
$$

- The inverse demand function for firm $i$ is given by

$$
\begin{equation*}
p_{i t}=\bar{\alpha}_{m}+\bar{\alpha}_{t}-q_{i t}-\varrho \sum_{j=1}^{n} b_{i j} q_{j t} \tag{17}
\end{equation*}
$$

where $b_{i j}=1$ if $i$ and $j$ are in the same market and zero otherwise.

- $\bar{\alpha}_{m}$ captures the market-specific fixed effect and $\bar{\alpha}_{t}$ captures the time fixed effect due to exogenous demand shifters that affect consumer income, number of consumers (population), consumer taste and preferences, and expectations over future prices of complements and substitutes or future income.
- Inserting (15) and (17) into (16) gives

$$
\begin{align*}
\pi_{i t} & =\left(p_{i t}-c_{i t}\right) q_{i t}-\frac{1}{2 \gamma} e_{i t}^{2} \\
& =\left(\bar{\alpha}_{m}+\bar{\alpha}_{t}-\varrho \sum_{j=1}^{n} b_{i j} q_{j t}-\mathbf{x}_{i t}^{\prime} \boldsymbol{\delta}-\eta_{i}^{*}-\varepsilon_{i t}\right. \\
& \left.+e_{i t}+\psi \sum_{j=1}^{n} a_{i j, t} e_{j t}\right) q_{i t}-q_{i t}^{2}-\frac{1}{2 \gamma} e_{i t}^{2} . \tag{18}
\end{align*}
$$

- The FOC with respect to effort in Equation (18) is given by

$$
\frac{\partial \pi_{i t}}{\partial e_{i t}}=q_{i t}-\frac{1}{\gamma} e_{i t}=0,
$$

- which leads to the best response effort

$$
\begin{equation*}
e_{i t}=\gamma q_{i t} . \tag{19}
\end{equation*}
$$

- The FOC with respect to output $q_{i t}$ in (18) is given by

$$
\frac{\partial \pi_{i t}}{\partial q_{i t}}=\bar{\alpha}_{m}+\bar{\alpha}_{t}-\varrho \sum_{j=1}^{n} b_{i j} q_{j t}-\mathbf{x}_{i t}^{\prime} \boldsymbol{\delta}-\eta_{i}^{*}-\varepsilon_{i t}+e_{i t}+\psi \sum_{j=1}^{n} a_{i j, t} e_{j t}-2 q_{i t}=0,
$$

- which leads to the best response output

$$
\begin{equation*}
2 q_{i t}=\bar{\alpha}_{m}+\bar{\alpha}_{t}-\varrho \sum_{j=1}^{n} b_{i j} q_{j t}-\mathbf{x}_{i t}^{\prime} \boldsymbol{\delta}-\eta_{i}^{*}-\varepsilon_{i t}+e_{i t}+\psi \sum_{j=1}^{n} a_{i j, t} e_{j t} \tag{20}
\end{equation*}
$$

- or equivalently

$$
\begin{equation*}
q_{i t}=\frac{\bar{\alpha}_{m}-\eta_{i}^{*}}{2}+\frac{\bar{\alpha}_{t}}{2}-\frac{\varrho}{2} \sum_{j=1}^{n} b_{i j} q_{j t}-\frac{1}{2} \mathbf{x}_{i t}^{\prime} \boldsymbol{\delta}-\frac{1}{2} \varepsilon_{i t}+\frac{1}{2} e_{i t}+\frac{\psi}{2} \sum_{j=1}^{n} a_{i j, t} e_{j t} \tag{21}
\end{equation*}
$$

- We denote by $\kappa_{t} \equiv \frac{1}{2-\gamma} \bar{\alpha}_{t}, \eta_{i} \equiv \frac{1}{2-\gamma}\left(\bar{\alpha}_{m}-\eta_{i}^{*}\right), \epsilon_{i t} \equiv-\frac{1}{2-\gamma} \varepsilon_{i t}$, $\vartheta \equiv-\frac{1}{2-\gamma} \varrho, \boldsymbol{\beta} \equiv-\frac{1}{2-\gamma} \delta$ and $\varphi \equiv \frac{1}{2-\gamma} \psi \gamma$.
- Then we can write the best response output of firm $i$ as

$$
\begin{equation*}
q_{i t}=\varphi \sum_{j=1}^{n} a_{i j, t} q_{j t}+\vartheta \sum_{j=1}^{n} b_{i j} q_{j t}+\mathbf{x}_{i t}^{\prime} \boldsymbol{\beta}+\eta_{i}+\kappa_{t}+\epsilon_{i t}, \tag{22}
\end{equation*}
$$

- while the empirical counterpart to Equation (19) is

$$
\begin{equation*}
e_{i t}=\gamma q_{i t}+u_{i t}, \tag{23}
\end{equation*}
$$

with an i.i.d. error term $u_{i t}$.

- Observe that the econometric specification in Equation (22) is similar to the product competition and technology spillover production function estimation in Bloom et al. (2007). ${ }^{29}$
- However, differently to these authors, we explicitly take into account the technology spillovers stemming from $R \& D$ collaborations.

[^17]- In vector-matrix form we can write (22) and (23) as

$$
\begin{align*}
& \mathbf{q}_{t}=\varphi \mathbf{A}_{t} \mathbf{q}_{t}+\vartheta \mathbf{B} \mathbf{q}_{t}+\mathbf{X}_{t} \boldsymbol{\beta}+\boldsymbol{\eta}+\kappa_{t} \mathbf{1}_{n}+\boldsymbol{\epsilon}_{t},  \tag{24}\\
& \mathbf{e}_{t}=\gamma \mathbf{q}_{t}+\mathbf{u}_{t} \tag{25}
\end{align*}
$$

where $\mathbf{q}_{t}=\left(q_{1 t}, \cdots, q_{n t}\right)^{\prime}, \mathbf{e}_{t}=\left(e_{1 t}, \cdots, e_{n t}\right)^{\prime}, \mathbf{A}_{t}=\left[a_{i j, t}\right]$,
$\mathbf{B}=\left[b_{i j}\right], \mathbf{X}_{t}=\left(\mathbf{x}_{1 t}, \cdots, \mathbf{x}_{n t}\right)^{\prime}, \boldsymbol{\eta}=\left(\eta_{1}, \cdots, \eta_{n}\right)^{\prime}$,
$\boldsymbol{\epsilon}_{t}=\left(\epsilon_{1 t}, \cdots, \epsilon_{n t}\right)^{\prime}, \mathbf{u}_{t}=\left(u_{1 t}, \cdots, u_{n t}\right)^{\prime}$, and $\mathbf{1}_{n}$ is an $n$-dimensional vector of ones.

- For the $T$ periods, equations (24) and (25) can be written as

$$
\begin{equation*}
\mathbf{q}=\varphi \operatorname{diag}\left\{\mathbf{A}_{t}\right\} \mathbf{q}+\vartheta\left(\mathbf{I}_{T} \otimes \mathbf{B}\right) \mathbf{q}+\mathbf{X} \boldsymbol{\beta}+\mathbf{1}_{T} \otimes \boldsymbol{\eta}+\boldsymbol{\kappa} \otimes \mathbf{1}_{n}+\boldsymbol{\epsilon}, \tag{26}
\end{equation*}
$$

$$
\begin{equation*}
\mathbf{e}=\gamma \mathbf{q}+\mathbf{u} \tag{27}
\end{equation*}
$$

where $\mathbf{q}=\left(\mathbf{q}_{1}^{\prime}, \cdots, \mathbf{q}_{T}^{\prime}\right)^{\prime}, \mathbf{e}=\left(\mathbf{e}_{1}^{\prime}, \cdots, \mathbf{e}_{T}^{\prime}\right)^{\prime}, \mathbf{X}=\left(\mathbf{X}_{1}^{\prime}, \cdots, \mathbf{X}_{T}^{\prime}\right)^{\prime}$, $\boldsymbol{\kappa}=\left(\kappa_{1}, \cdots, \kappa_{T}\right)^{\prime}, \boldsymbol{\epsilon}=\left(\boldsymbol{\epsilon}_{1}^{\prime}, \cdots, \boldsymbol{\epsilon}_{T}^{\prime}\right)^{\prime}$, and $\mathbf{u}=\left(\mathbf{u}_{1}^{\prime}, \cdots, \mathbf{u}_{T}^{\prime}\right)^{\prime}$.

- We allow fixed effects $\boldsymbol{\eta}$ and $\boldsymbol{\kappa}$ to depend on $\operatorname{diag}\left\{\mathbf{A}_{t}\right\}, \mathbf{B}$ and $\mathbf{X}$ by treating them as vectors of unknown parameters. When the number of firms (or the number of time periods) is large, we may have the incidental parameter problem.
- To avoid this problem, we transform (26) using a within projector $\mathbf{J}=\mathbf{J}_{T} \otimes \mathbf{J}_{n}$ where $\mathbf{J}_{T}=\mathbf{I}_{T}-\frac{1}{T} \mathbf{1}_{T} \mathbf{1}_{T}^{\prime}$ and $\mathbf{J}_{n}=\mathbf{I}_{n}-\frac{1}{n} \mathbf{1}_{n} \mathbf{1}_{n}^{\prime}$. The transformed equation (26) is

$$
\begin{equation*}
\mathbf{J} \mathbf{q}=\varphi \mathbf{J} \operatorname{diag}\left\{\mathbf{A}_{t}\right\} \mathbf{q}+\vartheta \mathbf{J}\left(\mathbf{I}_{T} \otimes \mathbf{B}\right) \mathbf{q}+\mathbf{J} \mathbf{X} \boldsymbol{\beta}+\mathbf{J} \boldsymbol{\epsilon} \tag{28}
\end{equation*}
$$

- To estimate (28), we consider the IV matrix $\mathbf{Q}=\mathbf{J}\left[\operatorname{diag}\left\{\mathbf{A}_{t}\right\} \mathbf{X},\left(\mathbf{I}_{T} \otimes \mathbf{B}\right) \mathbf{X}, \mathbf{X}\right]$, where $\mathbf{J} \operatorname{diag}\left\{\mathbf{A}_{t}\right\} \mathbf{X}$ are IVs for the collaboration effect and $\mathbf{J}\left(\mathbf{I}_{T} \otimes \mathbf{B}\right) \mathbf{X}$ are IVs for the competition effect. Let $\mathbf{P}_{1}=\mathbf{Q}\left(\mathbf{Q}^{\prime} \mathbf{Q}\right)^{-1} \mathbf{Q}^{\prime}$ and $\mathbf{Z}=\left[\operatorname{diag}\left\{\mathbf{A}_{t}\right\} \mathbf{q},\left(\mathbf{I}_{T} \otimes \mathbf{B}\right) \mathbf{q}, \mathbf{X}\right]$. The 2SLS estimator for coefficients in (28) is given by $\left(\mathbf{Z}^{\prime} \mathbf{P}_{1} \mathbf{Z}\right)^{-1} \mathbf{Z}^{\prime} \mathbf{P}_{1} \mathbf{q}$.
- With the estimates of $\varphi, \vartheta, \boldsymbol{\beta}$, we can recover $\boldsymbol{\eta}$ and $\boldsymbol{\kappa}$ by the least squares dummy variable method.
- From (26), we can use $\mathbf{X}$ as an IV for the endogenous regressor $\mathbf{q}$ in equation (27). Let $\mathbf{P}_{2}=\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}$. The 2SLS estimator for $\gamma$ is given by $\left(\mathbf{q}^{\prime} \mathbf{P}_{2} \mathbf{q}\right)^{-1} \mathbf{q}^{\prime} \mathbf{P}_{2} \mathbf{e}$.

TABLE: Parameter estimates (with standard errors in parenthesis) from a panel regression with time dummies of Equations (24) and (25). Model A does not include firm fixed effects (f.e.), while Model B introduces also firm fixed effects.

|  | Model A |  | Model B |  |
| :---: | :---: | :---: | :---: | :---: |
| time f.e. | yes |  | yes |  |
| firm f.e. | no | yes |  |  |
| $\varphi$ | $0.0278^{* * *}$ | $(0.0034)$ | $0.0070^{* * *}$ | $(0.0026)$ |
| $\vartheta$ | $-0.0036^{* * *}$ | $(0.0004)$ | $-0.0019^{* * *}$ | $(0.0006)$ |
| $\beta_{1}$ | $0.0749^{* * *}$ | $(0.0056)$ | $0.0463^{* * *}$ | $(0.0089)$ |
| $\beta_{2}$ | $0.8465^{* * *}$ | $(0.0480)$ | $1.0523^{* * *}$ | $(0.0466)$ |
| $\phi$ | $0.0329^{* * *}$ | $(0.0018)$ | $0.0329^{* * *}$ | $(0.0018)$ |

[^18]

Figure: Predicted output $\hat{\mathbf{q}}$ vs. observed output $\mathbf{q}^{\text {obs }}$ with the estimates from Table 1. The coefficient of determination is $R^{2}=0.9447$.


Figure: (Left panel) Welfare from a lower bound on welfare in the efficient graph (dashed line) and actual welfare (straight line). (Right panel) A lower bound on the relative percentage welfare loss in the observed network structure.

- The above figure compares a lower bound on welfare for the efficient graph with the actual value for each year of observation.
- For this lower bound we have evaluated welfare for the star network $K_{1, n-1}$ with the firm with the highest firm fixed effect $\mu_{i}$ among all $i=1, \ldots, n$ in the center.
- Welfare in the star network is always higher than in the observed network.
- Moreover, we find that the welfare loss incurred from a non-optimal network structure can go up to at least $15 \%$.
- This result indicates that industry concentration can be welfare improving (cf. Westbrock, 2010). ${ }^{30}$

[^19]Table: Key player ranking for the year 1990 for the first 25 firms.

| Firm | Share [\%] ${ }^{\text {a }}$ | d | cor ${ }^{\text {b }}$ | $\mathbf{v}_{\text {PF }}$ | Betweenness ${ }^{\text {c }}$ | Closeness ${ }^{\text {d }}$ | $q_{i} /\\|\mathbf{q}\\|_{1}[\%]^{\text {e }}$ | $\frac{\\|\mathbf{q}(G)\\|_{1}-\left\\|\mathbf{q}\left(G^{-i}\right)\right\\|_{1}}{\\|\mathbf{q}(G)\\|_{1}}[\%]^{\mathrm{f}}$ | $\frac{W(G)-W\left(G^{-i}\right)}{W(G)}[\%]$ | Rank |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| General Motors Corp. | 12.1445 | 71 | 13 | 0.0545 | 0.0436 | 451.4219 | 6.3868 | 6.9548 | 26.1895 | 1 |
| Exxon Corp. | 10.1151 | 20 | 12 | 0.0146 | 0.0023 | 352.7285 | 5.6310 | 5.6582 | 20.0114 | 2 |
| DaimlerChrysler Corp | 5.2310 | 14 | 11 | 0.0195 | 0.0017 | 330.0020 | 2.7845 | 2.7652 | 4.7664 | 3 |
| Siemens A.G. | 20.1008 | 142 | 14 | 0.1877 | 0.0911 | 518.0625 | 2.6481 | 3.0801 | 4.7141 | 4 |
| Toyota Motor Corp. | 6.2806 | 43 | 13 | 0.0549 | 0.0153 | 407.9688 | 2.3643 | 2.4894 | 3.6432 | 5 |
| Chevron | 3.7009 | 24 | 12 | 0.0141 | 0.0079 | 351.7266 | 2.3346 | 2.3785 | 3.6077 | 6 |
| Fiat SpA. | 4.7173 | 32 | 11 | 0.0408 | 0.0168 | 396.7344 | 2.2644 | 2.3316 | 3.4254 | 7 |
| Texaco Inc. | 3.9206 | 22 | 12 | 0.0158 | 0.0028 | 349.6562 | 2.0619 | 2.1155 | 2.8536 | 8 |
| Hitachi Ltd. | 37.6873 | 75 | 14 | 0.1289 | 0.0359 | 478.9062 | 2.0948 | 2.2311 | 2.8436 | 9 |
| Volkswagen A.G. | 4.1641 | 15 | 6 | 0.0096 | 0.0047 | 281.2852 | 2.0732 | 2.1032 | 2.7253 | 10 |
| Altria Group | 57.0787 | 0 | 0 | 0.0000 | 0.0000 | 0.0000 | 1.8096 | 1.8096 | 2.0193 | 11 |
| Renault | 2.9712 | 12 | 6 | 0.0042 | 0.0020 | 270.2812 | 1.4652 | 1.4655 | 1.3496 | 12 |
| Toshiba Corp. | 10.4548 | 78 | 14 | 0.1312 | 0.0313 | 460.5176 | 1.3695 | 1.4819 | 1.2849 | 13 |
| Hoechst A.G. | 13.8715 | 23 | 8 | 0.0115 | 0.0127 | 348.9766 | 1.3674 | 1.3890 | 1.1965 | 14 |
| Unilever N.V./Plc. | 8.2910 | 11 | 7 | 0.0068 | 0.0035 | 323.2695 | 1.3842 | 1.3815 | 1.1803 | 15 |
| Elf Aquitaine | 3.1007 | 7 | 3 | 0.0025 | 0.0049 | 259.8105 | 1.3961 | 1.3813 | 1.1778 | 16 |
| Sony Corp. | 32.0711 | 41 | 14 | 0.0883 | 0.0110 | 404.7207 | 1.2995 | 1.3867 | 1.1035 | 17 |
| Bayer A.G. | 12.8762 | 10 | 4 | 0.0016 | 0.0056 | 251.6250 | 1.2787 | 1.2797 | 1.0223 | 18 |
| Alcatel-Lucent | 31.0329 | 0 | 0 | 0.0000 | 0.0000 | 0.0000 | 1.2259 | 1.2030 | 0.9260 | 19 |
| Boeing Company | 37.1888 | 5 | 4 | 0.0086 | 0.0001 | 278.9453 | 1.2054 | 1.2029 | 0.9010 | 20 |
| Procter \& Gamble | 58.8860 | 5 | 3 | 0.0002 | 0.0013 | 168.6270 | 1.1413 | 1.1567 | 0.8038 | 21 |
| Metro AG | 11.3765 | 0 | 0 | 0.0000 | 0.0000 | 0.0000 | 1.0519 | 1.0519 | 0.6823 | 22 |
| Total SA | 2.2696 | 0 | 0 | 0.0000 | 0.0000 | 0.0000 | 1.0404 | 1.0227 | 0.6463 | 23 |
| Pepsico Inc. | 52.5069 | 0 | 0 | 0.0000 | 0.0000 | 0.0000 | 1.0222 | 1.0202 | 0.6441 | 24 |
| Thyssen A.G. | 76.5099 | 2 | 1 | 0.0005 | 0.0009 | 161.7305 | 0.9655 | 0.9655 | 0.5749 | 25 |

${ }^{\text {a }}$ Market share in the primary 4-digit sector in which the firm is operating.
${ }^{\mathrm{b}}$ The coreness of node $i, \operatorname{cor}_{i}$, is $k$ if and only if $i \in G_{k}$ and $i \notin G_{k+1}$. We have that $\operatorname{cor}_{i} \leq d_{i}$.
${ }^{c}$ The normalized betweenness centrality is the fraction of all shortest paths in the network that contain a given node, divided by ( $n-1$ ) $(n-2)$, the maximum number of such paths.
${ }^{\mathrm{d}}$ The closeness centrality of node $i$ is computed as $\sum_{j=1}^{n} 2^{-d_{G}(i, j)}$, where $d_{G}(i, j)$ is the length of the shortest path between $i$ and $j$ in the network $G$ (Dangalchev, 2006).
${ }^{\text {e }}$ The relative output of a firm $i$ is computed as $q_{i} /\|\mathbf{q}\|_{1}=b_{\boldsymbol{\mu}, i} /\left\|\mathbf{b}_{\boldsymbol{\mu}}\right\|_{1}$.
${ }^{\mathrm{f}}$ The decrease in output due to the removal of firm $i$ is computed as $\frac{\|\mathbf{q}(G)\|_{1}-\left\|\mathbf{q}\left(G^{-1}\right)\right\|_{1}}{\|\mathbf{q}(G)\|_{1}}=\frac{b_{\mathbf{u}, i}(G) b_{\mu, i}(G)}{m_{i i}(G)} /\left\|\mathbf{b}_{\boldsymbol{\mu}}(G)\right\|_{1}$.

Table: Key player ranking for the year 2005 for the first 25 firms.

| Firm | Share [\%] ${ }^{\text {a }}$ | d | $\operatorname{cor}^{\text {b }}$ | $\mathrm{v}_{\text {PF }}$ | Betweenness ${ }^{\text {c }}$ | Closeness ${ }^{\text {d }}$ | $q_{i} /\\|\mathbf{q}\\|_{1}[\%]^{\text {e }}$ | $\frac{\\|\mathbf{q}(G)\\|_{1}-\left\\|\mathbf{q}\left(G^{-i}\right)\right\\|_{1}}{\\|\mathbf{q}(G)\\|_{1}}[\%]^{\mathrm{f}}$ | $\frac{W(G)-W\left(G^{-i}\right)}{W(G)}[\%]$ | Rank |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Exxon Corp. | 7.8647 | 0 | 0 | 0.0000 | 0.0000 | 0.0000 | 3.7309 | 3.6956 | 16.7222 | 1 |
| DaimlerChrysler Corp | 7.5743 | 26 | 8 | 0.0086 | 0.0166 | 124.7754 | 2.8003 | 2.8927 | 9.7477 | 2 |
| Toyota Motor Corp. | 7.7760 | 10 | 8 | 0.0049 | 0.0010 | 103.9712 | 2.6744 | 2.6696 | 8.8657 | 3 |
| General Motors Corp. | 7.7341 | 17 | 7 | 0.0065 | 0.0086 | 119.6819 | 2.4176 | 2.4638 | 7.2635 | 4 |
| Total SA | 3.6544 | 0 | 0 | 0.0000 | 0.0000 | 0.0000 | 2.1774 | 2.1568 | 5.6712 | 5 |
| Mitsubishi Corp | 87.2569 | 11 | 10 | 0.1259 | 0.0004 | 168.5938 | 2.0457 | 2.1371 | 5.1913 | 6 |
| Chevron | 4.4312 | 6 | 6 | 0.0001 | 0.0000 | 44.0676 | 1.9724 | 1.9538 | 4.6487 | 7 |
| Volkswagen A.G. | 4.8178 | 11 | 8 | 0.0046 | 0.0051 | 104.1240 | 1.7631 | 1.7474 | 3.8583 | 8 |
| Mitsui Group | 30.0437 | 3 | 3 | 0.0008 | 0.0000 | 53.0688 | 1.7001 | 1.7056 | 3.4748 | 9 |
| Itochu Corp. | 21.1047 | 2 | 1 | 0.0000 | 0.0007 | 25.0889 | 1.3800 | 1.3842 | 2.2842 | 10 |
| Hitachi Ltd. | 27.8692 | 30 | 10 | 0.1718 | 0.0282 | 200.1504 | 1.2883 | 1.4023 | 2.1411 | 11 |
| Sumitomo Corp | 90.5320 | 1 | 1 | 0.0000 | 0.0000 | 1.5000 | 1.2806 | 1.2806 | 1.9770 | 12 |
| RWE AG | 3.5459 | 0 | 0 | 0.0000 | 0.0000 | 0.0000 | 1.2495 | 1.2262 | 1.8721 | 13 |
| Marubeni Corp. | 17.5319 | 0 | 0 | 0.0000 | 0.0000 | 0.0000 | 1.1755 | 1.1710 | 1.6550 | 14 |
| Siemens A.G. | 11.0608 | 13 | 5 | 0.0255 | 0.0059 | 140.9321 | 1.1065 | 1.1287 | 1.4847 | 15 |
| UBS AG | 66.4551 | 0 | 0 | 0.0000 | 0.0000 | 0.0000 | 0.9381 | 0.9381 | 1.0609 | 16 |
| Sony Corp. | 32.1340 | 33 | 10 | 0.2352 | 0.0171 | 212.3281 | 0.7980 | 0.8702 | 0.8779 | 17 |
| NTT DoCoMo | 4.3962 | 16 | 7 | 0.1035 | 0.0086 | 176.1514 | 0.8158 | 0.8445 | 0.8543 | 18 |
| Altria Group | 40.0416 | 0 | 0 | 0.0000 | 0.0000 | 0.0000 | 0.8349 | 0.8333 | 0.8390 | 19 |
| Fiat SpA. | 2.3538 | 17 | 9 | 0.0051 | 0.0044 | 97.6677 | 0.8024 | 0.7841 | 0.7784 | 20 |
| Metro AG | 17.6754 | 2 | 2 | 0.0171 | 0.0000 | 112.4143 | 0.7942 | 0.8048 | 0.7721 | 21 |
| Toshiba Corp. | 9.9939 | 40 | 10 | 0.2512 | 0.0215 | 214.1133 | 0.7217 | 0.8056 | 0.7381 | 22 |
| Intel Corp. | 9.8341 | 60 | 8 | 0.2462 | 0.0385 | 221.3911 | 0.7279 | 0.7321 | 0.7053 | 23 |
| Endesa | 1.5322 | 0 | 0 | 0.0000 | 0.0000 | 0.0000 | 0.7678 | 0.7535 | 0.7034 | 24 |
| Renault | 2.0905 | 6 | 4 | 0.0029 | 0.0013 | 91.4758 | 0.7420 | 0.7197 | 0.6349 | 25 |

${ }^{\text {a }}$ Market share in the primary 4-digit sector in which the firm is operating.
${ }^{\mathrm{b}}$ The coreness of node $i$, cor $_{i}$, is $k$ if and only if $i \in G_{k}$ and $i \notin G_{k+1}$. We have that $\operatorname{cor}_{i} \leq d_{i}$.
${ }^{c}$ The normalized betweenness centrality is the fraction of all shortest paths in the network that contain a given node, divided by $(n-1)(n-2)$, the maximum number of such paths.
${ }^{\mathrm{d}}$ The closeness centrality of node $i$ is computed as $\sum_{j=1}^{n} 2^{-d_{G}(i, j)}$, where $d_{G}(i, j)$ is the length of the shortest path between $i$ and $j$ in the network $G$ (Dangalchev, 2006).
${ }^{\text {e }}$ The relative output of a firm $i$ is computed as $q_{i} /\|\mathbf{q}\|_{1}=b_{\mu, i} /\left\|\mathbf{b}_{\mu}\right\|_{1}$.
${ }^{\mathrm{f}}$ The decrease in output due to the removal of firm $i$ is computed as $\frac{\|\mathbf{q}(G)\|_{1}-\left\|\mathbf{q}\left(G^{-1}\right)\right\|_{1}}{\|\mathbf{q}(G)\|_{1}}=\frac{b_{\mathbf{u}, i}(G) b_{\mu, i}(G)}{m_{i i}(G)} /\left\|\mathbf{b}_{\boldsymbol{\mu}}(G)\right\|_{1}$.

- A ranking of the first 25 firms with the highest impact on welfare upon exit in the year 1990 can be found in Table 2 while the corresponding ranking in the year 2005 is shown in Table 3.
- We observe that the ranking of degree, or other centrality measures often used in the literature such as betweenness centrality or closeness centrality (cf. Wasserman \& Faust, 1994) ${ }^{31}$ can explain the ranking of firms that we find.
- The table also shows the relative decrease in output incurred by a removal of the respective firm. This quantity is closest to the intercentrality index introduced in Ballester et al. (2006). ${ }^{32}$ However, we find that the ranking computed from a decline in welfare that we use here does not coincide with a ranking computed on the basis of a decline in aggregate production.

[^20]- From the tables showing the key player rankings we find that the decline in welfare due to the removal of the highest ranked firm can amount to $26 \%$ in the year 1990 while in the year 2005 it is $17 \%$.
- These tables also show the coreness of a firm. The coreness is a lower bound on the Bonacich centrality of a firm in the network.
- The coreness of networks of firms has also been studied empirically in Kitsak et al. $(2010)^{33}$, where it is found that the coreness of a firm correlates with its market value.
- We can easily explain this from our model because we know that firms in higher cores tend to have higher Bonacich centrality, and therefore higher sales and profits.

[^21]

General Motors Corp.
Exxon Corp.
DaimlerChrysler Corp
Siemens A.G.
5 Toyota Motor Corp.
Chevron
Fiat SpA.
Texaco Inc.
Hitachi Ltd.
Volkswagen A.G.
Altria Group
Renault
Toshiba Corp.
Hoechst A.G.
Unilever N.V./Plc.
Elf Aquitaine
17 Sony Corp.
18 Bayer A.G.
19 Alcatel-Lucent
20 Boeing Company
21 Procter \& Gamble
Metro AG
Total SA
Pepsico Inc.
Thyssen A.G.
Figure: The change in the ranking of the 25 highest ranked firms in the year 1990 from Table 2 to the year 2005.

- Figure 8 shows the change in the ranking of the 25 highest ranked firms in the year 1990 from Table 2 over the years 1990 to 2005.
- The ranking of firms can be quite stable for some, while it is rather versatile for others.
- For example Daimler Chrysler Corp. (respectively, Daimler Benz $A G)$ is among the three highest ranked firms in 1990, and in 2005 it is the second highest ranked firm.
- In contrast, Hoechst A.G., which was among the 14th highest ranked firms in 1990, slipped down to rank 1112 in the year 2003.


Figure: The ordered percentage decrease in welfare due to the removal of firm $i$ over the years 1990 to 2005. The exit of most firms has only a minor impact on welfare, while the highest ranked ones can considerably affect welfare.


Figure: (Left panel) The optimal subsidy level $s^{*}$ over time. (Right panel) The percentage increase in welfare due to the subsidy $s^{*}$ over time.

Table: Subsidies ranking for the year 1990 for the first 25 firms.

| Firm | Share [\%] ${ }^{\text {a }}$ | d | cor $^{\text {b }}$ | $\mathrm{v}_{\text {PF }}$ | Betweenness ${ }^{\text {c }}$ | Closeness ${ }^{\text {d }}$ | $q_{i} /\\|\mathbf{q}\\|_{1}[\%]^{\text {e }}$ | $\frac{\\|\mathbf{q}(G)\\|_{1}-\left\\|\mathbf{q}\left(G^{-i}\right)\right\\|_{1}}{\\|\mathbf{q}(G)\\|_{1}}[\%]^{\mathrm{f}}$ | $\mathrm{s}^{*} \cdot 10^{-12}$ | Rank |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Intel Corp. | 12.2966 | 66 | 14 | 0.1404 | 0.0222 | 458.6562 | 0.0757 | 0.0850 | 0.6835 | 1 |
| Siemens A.G. | 20.1008 | 142 | 14 | 0.1877 | 0.0911 | 518.0625 | 2.6481 | 3.0801 | 0.6296 | 2 |
| General Motors Corp. | 12.1445 | 71 | 13 | 0.0545 | 0.0436 | 451.4219 | 6.3868 | 6.9548 | 0.6161 | 3 |
| Sun Microsystems | 11.0880 | 88 | 14 | 0.1664 | 0.0222 | 434.1582 | 0.1983 | 0.2290 | 0.5603 | 4 |
| Texas Instruments Inc. | 20.5932 | 67 | 14 | 0.1217 | 0.0159 | 415.5879 | 0.3183 | 0.3528 | 0.5086 | 5 |
| Motorola Inc. | 18.5193 | 59 | 14 | 0.1340 | 0.0172 | 424.8301 | 0.6078 | 0.6790 | 0.5048 | 6 |
| National Semiconductor Corp. | 5.3366 | 42 | 14 | 0.1048 | 0.0045 | 422.4453 | 0.1260 | 0.1326 | 0.4912 | 7 |
| Toyota Motor Corp. | 6.2806 | 43 | 13 | 0.0549 | 0.0153 | 407.9688 | 2.3643 | 2.4894 | 0.4306 | 8 |
| Toshiba Corp. | 10.4548 | 78 | 14 | 0.1312 | 0.0313 | 460.5176 | 1.3695 | 1.4819 | 0.4208 | 9 |
| Electronic Data Systems Corp. | 6.8935 | 21 | 14 | 0.0711 | 0.0045 | 381.2832 | 0.4214 | 0.4393 | 0.4025 | 10 |
| TRW Inc | 7.0559 | 43 | 13 | 0.0515 | 0.0111 | 364.2559 | 0.4283 | 0.4569 | 0.4005 | 11 |
| Honeywell Inc. | 63.9769 | 51 | 14 | 0.1004 | 0.0117 | 416.0898 | 0.2564 | 0.2770 | 0.3924 | 12 |
| McDonnell Douglas Corp. | 21.8941 | 44 | 12 | 0.0338 | 0.0125 | 343.3789 | 0.7611 | 0.8368 | 0.3877 | 13 |
| Hitachi Ltd. | 37.6873 | 75 | 14 | 0.1289 | 0.0359 | 478.9062 | 2.0948 | 2.2311 | 0.3512 | 14 |
| Fiat SpA. | 4.7173 | 32 | 11 | 0.0408 | 0.0168 | 396.7344 | 2.2644 | 2.3316 | 0.3427 | 15 |
| Harris Corp. | 5.1937 | 31 | 14 | 0.0739 | 0.0050 | 388.8887 | 0.1532 | 0.1645 | 0.3241 | 16 |
| Texaco Inc. | 3.9206 | 22 | 12 | 0.0158 | 0.0028 | 349.6562 | 2.0619 | 2.1155 | 0.3082 | 17 |
| Tektronix Inc. | 17.5728 | 42 | 14 | 0.0909 | 0.0054 | 360.7246 | 0.0781 | 0.0845 | 0.2925 | 18 |
| Sequent Computer Systems Inc. | 1.1185 | 23 | 13 | 0.0632 | 0.0030 | 343.7422 | 0.0245 | 0.0253 | 0.2853 | 19 |
| Novell Inc. | 0.5695 | 37 | 14 | 0.0873 | 0.0061 | 366.3691 | 0.0236 | 0.0252 | 0.2812 | 20 |
| Xerox Corp. | 84.2264 | 30 | 14 | 0.0817 | 0.0045 | 385.7695 | 0.6497 | 0.6918 | 0.2793 | 21 |
| Chevron | 3.7009 | 24 | 12 | 0.0141 | 0.0079 | 351.7266 | 2.3346 | 2.3785 | 0.2737 | 22 |
| Unisys Corp. | 10.9318 | 38 | 14 | 0.0802 | 0.0181 | 366.0273 | 0.4398 | 0.4599 | 0.2727 | 23 |
| Sony Corp. | 32.0711 | 41 | 14 | 0.0883 | 0.0110 | 404.7207 | 1.2995 | 1.3867 | 0.2664 | 24 |
| Exxon Corp. | 10.1151 | 20 | 12 | 0.0146 | 0.0023 | 352.7285 | 5.6310 | 5.6582 | 0.2603 | 25 |

[^22]TABLE: Subsidies ranking for the year 2005 for the first 25 firms.

| Firm | Share [\%] ${ }^{\text {a }}$ | d | cor ${ }^{\text {b }}$ | $\mathbf{v}_{\text {PF }}$ | Betweenness ${ }^{\text {c }}$ | Closeness ${ }^{\text {d }}$ | $q_{i} /\\|\mathbf{q}\\|_{1}[\%]^{\text {e }}$ | $\frac{\\|\mathbf{q}(G)\\|_{1}-\left\\|\mathbf{q}\left(G^{-i}\right)\right\\|_{1}}{\\|\mathbf{q}(G)\\|_{1}}[\%]^{\mathrm{f}}$ | $\mathrm{s}^{*} \cdot 10^{-12}$ | Rank |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Toshiba Corp. | 9.9939 | 40 | 10 | 0.2512 | 0.0215 | 214.1133 | 0.7217 | 0.8056 | 0.7492 | 1 |
| Fujitsu Ltd. | 17.3622 | 30 | 10 | 0.1993 | 0.0159 | 204.4375 | 0.5489 | 0.5861 | 0.7061 | 2 |
| Sony Corp. | 32.1340 | 33 | 10 | 0.2352 | 0.0171 | 212.3281 | 0.7980 | 0.8702 | 0.6701 | 3 |
| Microsoft Corp. | 21.5980 | 53 | 8 | 0.1986 | 0.0856 | 245.1406 | 0.3186 | 0.3302 | 0.6051 | 4 |
| Hitachi Ltd. | 27.8692 | 30 | 10 | 0.1718 | 0.0282 | 200.1504 | 1.2883 | 1.4023 | 0.5715 | 5 |
| DaimlerChrysler Corp | 7.5743 | 26 | 8 | 0.0086 | 0.0166 | 124.7754 | 2.8003 | 2.8927 | 0.5409 | 6 |
| Intel Corp. | 9.8341 | 60 | 8 | 0.2462 | 0.0385 | 221.3911 | 0.7279 | 0.7321 | 0.5257 | 7 |
| Sharp Corp. | 8.5948 | 19 | 10 | 0.1325 | 0.0056 | 160.2207 | 0.3600 | 0.3670 | 0.4821 | 8 |
| General Motors Corp. | 7.7341 | 17 | 7 | 0.0065 | 0.0086 | 119.6819 | 2.4176 | 2.4638 | 0.4711 | 9 |
| Toyota Motor Corp. | 7.7760 | 10 | 8 | 0.0049 | 0.0010 | 103.9712 | 2.6744 | 2.6696 | 0.4686 | 10 |
| Mitsubishi Corp | 87.2569 | 11 | 10 | 0.1259 | 0.0004 | 168.5938 | 2.0457 | 2.1371 | 0.4509 | 11 |
| NTT DoCoMo | 4.3962 | 16 | 7 | 0.1035 | 0.0086 | 176.1514 | 0.8158 | 0.8445 | 0.3851 | 12 |
| Motorola Inc. | 12.4529 | 53 | 7 | 0.1643 | 0.0697 | 226.1182 | 0.2207 | 0.2409 | 0.3776 | 13 |
| Mitsubishi Electric Corp | 5.6782 | 13 | 8 | 0.1218 | 0.0054 | 189.0078 | 0.4231 | 0.4420 | 0.3755 | 14 |
| Continental A.G. | 4.3929 | 9 | 8 | 0.0046 | 0.0001 | 99.3442 | 0.2786 | 0.2777 | 0.3721 | 15 |
| Volkswagen A.G. | 4.8178 | 11 | 8 | 0.0046 | 0.0051 | 104.1240 | 1.7631 | 1.7474 | 0.3580 | 16 |
| Cisco Systems Inc | 63.1857 | 26 | 8 | 0.1322 | 0.0175 | 197.3105 | 0.2771 | 0.2984 | 0.3354 | 17 |
| Lear Corp | 26.7974 | 10 | 6 | 0.0130 | 0.0100 | 136.8804 | 0.2392 | 0.2473 | 0.3316 | 18 |
| Infineon Technologies AG | 2.1293 | 40 | 7 | 0.1879 | 0.0181 | 209.3833 | 0.1713 | 0.1682 | 0.3234 | 19 |
| Sun Microsystems | 7.3032 | 26 | 7 | 0.1003 | 0.0224 | 198.1792 | 0.1719 | 0.1822 | 0.3211 | 20 |
| Johnson Controls Inc. | 43.0902 | 10 | 6 | 0.0030 | 0.0027 | 93.0432 | 0.2931 | 0.3029 | 0.3039 | 21 |
| Texas Instruments Inc. | 3.3920 | 18 | 7 | 0.0814 | 0.0048 | 165.2466 | 0.1699 | 0.1591 | 0.2734 | 22 |
| Oracle Corp. | 7.8059 | 14 | 5 | 0.0358 | 0.0075 | 162.6182 | 0.1583 | 0.1478 | 0.2484 | 23 |
| Omron Corp. | 0.9875 | 8 | 3 | 0.0114 | 0.0054 | 103.6377 | 0.1137 | 0.1147 | 0.1678 | 24 |
| Comcast Corp | 16.9208 | 11 | 7 | 0.0585 | 0.0027 | 152.2764 | 0.5242 | 0.5389 | 0.1618 | 25 |

${ }^{\text {a }}$ Market share in the primary 4-digit sector in which the firm is operating.
${ }^{\mathrm{b}}$ The coreness of node $i, \operatorname{cor}_{i}$, is $k$ if and only if $i \in G_{k}$ and $i \notin G_{k+1}$. We have that $\operatorname{cor}_{i} \leq d_{i}$.
${ }^{c}$ The normalized betweenness centrality is the fraction of all shortest paths in the network that contain a given node, divided by $(n-1)(n-2)$, the maximum number of such paths.
${ }^{\mathrm{d}}$ The closeness centrality of node $i$ is computed as $\sum_{j=1}^{n} 2^{-d_{G}(i, j)}$, where $d_{G}(i, j)$ is the length of the shortest path between $i$ and $j$ in the network $G$ (Dangalchev, 2006).
${ }^{\text {e }}$ The relative output of a firm $i$ is computed as $q_{i} /\|\mathbf{q}\|_{1}=b_{\boldsymbol{\mu}, i} /\left\|\mathbf{b}_{\mu}\right\|_{1}$.
${ }^{\mathrm{f}}$ The decrease in output due to the removal of firm $i$ is computed as $\frac{\|\mathbf{q}(G)\|_{1}-\left\|\mathbf{q}\left(G^{-i}\right)\right\|_{1}}{\|\mathbf{q}(G)\|_{1}}=\frac{b_{\mathrm{u}, i}(G) b_{\mu, i}(G)}{m_{i i}(G)} /\left\|\mathbf{b}_{\mu}(G)\right\|_{1}$.


Intel Corp.
Siemens A.G.
General Motors Corp.
Sun Microsystems
Texas Instruments Inc.
Motorola Inc.
National Semiconductor Corp.
Toyota Motor Corp.
Toshiba Corp.
Electronic Data Systems Corp. TRW Inc
Honeywell Inc.
McDonnell Douglas Corp.
Hitachi Ltd.
Fiat SpA.
Harris Corp.
Texaco Inc.
Tektronix Inc.
Sequent Computer Systems Inc.
Novell Inc.
Xerox Corp.
Chevron
Unisys Corp.
Sony Corp.
Exxon Corp.

Figure: The change in the ranking of the 25 highest subsidized firms in the year 1990 from Table 4 to the year 2005.



Figure: (Left panel) The total subsidy level $\left\|\mathbf{s}^{*}\right\|_{1}$ when the subsidies are targeted towards specific firms. (Right panel) The percentage increase in welfare due to the targeted subsidies $\mathbf{s}^{*}$ over time.


Figure: The ordered targeted subsidy level of firm $i$ over the years 1990 to 2005.

- We find that a targeted subsidy program can improve welfare by up to $37 \%$.
- Moreover, the optimal subsidy levels show a strong variation over time. Both, the homogeneous and the aggregate targeted subsidy seem to follow a cyclical trend that resembles the one we have observed for the number of firms with R\&D collaborations and the average number of collaborations in a given year.
- This cyclical trend is also reminiscent of the R\&D expenditures observed in the empirical literature on business cycles (cf. Barlevy, 2007; Gali, 1999). ${ }^{34,35}$

[^23]- We can compare the optimal subsidy level predicted from our model with the R\&D tax subsidies actually implemented in the United States and selected other countries between 1979 to 1997 (see Bloom et al, 2002; Imullitti, 2010). ${ }^{36,37}$
- While these time series typically show an increase of R\&D subsidies over time, they do not seem to incorporate the cyclicality that we obtain for the optimal subsidy levels. Our analysis thus suggests that policy makers should adjust R\&D subsidies to these cycles.

[^24]- While studies such as Spencer \& Brander (1983) ${ }^{38}$ and Acemoglu et al. $(2012)^{39}$ find that R\&D often should be taxed rather than subsidized, we find in line with e.g. Hinloopen (2001) ${ }^{40}$ that R\&D subsidies can have a significantly positive effect on welfare.
- As argued by Hinloopen (2001) the reason why our results differ from Spencer \& Brander (1983) is that we take into account consumer surplus when deriving the optimal $R \& D$ subsidy.
- Moreover, in contrast to Acemoglu et al. (2012) we do not focus on entry and exit but incorporate the network of R\&D collaborating firms. We see our analysis as complementary to Acemoglu et al. (2012), and we show that R\&D subsidies can trigger considerable welfare gains when technology spillovers through R\&D alliances are incorporated.

[^25]
## Extension: Bertrand Competition

- In the case of price setting firms we obtain from the profit function (3) the FOC with respect to price $p_{i}$ for firm $i$

$$
\frac{\partial \pi_{i}}{\partial p_{i}}=\left(p_{i}-c_{i}\right) \frac{\partial q_{i}}{\partial p_{i}}-q_{i}=0 .
$$

- When $i \in \mathcal{M}_{m}$, then observe that from the inverse demand in Equation (1) we find that

$$
q_{i}=\frac{\alpha_{m}\left(1-\varrho_{m}\right)-\left(1-\left(n_{m}-2\right) \varrho_{m}\right) p_{i}+\varrho_{m} \sum_{\substack{j \in \mathcal{M}_{m}, j \neq i}} p_{j}}{(1-\rho)\left(1+\left(n_{m}-1\right) \varrho_{m}\right)}
$$

where $n_{m} \equiv\left|\mathcal{M}_{m}\right|$.

- The FOC with respect to R\&D effort is the same as in the case of perfect competition, so that we get $e_{i}=\frac{1}{2 \gamma} q_{i}$. Inserting equilibrium effort and rearranging terms gives

$$
\begin{aligned}
q_{i} & =\frac{2 \gamma\left(1-\left(n_{m}-2\right) \varrho_{m}\right)\left(\alpha_{m}-\bar{c}_{i}\right)}{2 \gamma \varrho_{m}\left(4-\left(2-\varrho_{m}\right) n_{m}-\varrho_{m}\right)-1\left(1-\left(n_{m}-2\right) \varrho_{m}\right)} \\
& -\frac{2 \gamma \varrho_{m}\left(1-\left(n_{m}-2\right) \varrho_{m}\right)}{2 \gamma \varrho_{m}\left(4-\left(2-\varrho_{m}\right) n_{m}-\varrho_{m}\right)-1\left(1-\left(n_{m}-2\right) \varrho_{m}\right)} \sum_{\substack{\in \mathcal{M}_{m}, j \neq i}} q_{j} \\
& +\frac{\psi\left(1-\left(n_{m}-2\right) \varrho_{m}\right)}{2 \gamma \varrho_{m}\left(4-\left(2-\varrho_{m}\right) n_{m}-\varrho_{m}\right)-1\left(1-\left(n_{m}-2\right) \varrho_{m}\right)} \sum_{j=1}^{n} a_{i j} q_{j} .
\end{aligned}
$$

- If we denote by

$$
\begin{aligned}
\mu_{i} & \equiv \frac{2 \gamma\left(1-\left(n_{m}-2\right) \varrho_{m}\right)\left(\alpha_{m}-\bar{c}_{i}\right)}{2 \gamma \varrho_{m}\left(4-\left(2-\varrho_{m}\right) n_{m}-\varrho_{m}\right)-1\left(1-\left(n_{m}-2\right) \varrho_{m}\right)} \\
\rho & \equiv \frac{2 \gamma \varrho_{m}\left(1-\left(n_{m}-2\right) \varrho_{m}\right)}{2 \gamma \varrho_{m}\left(4-\left(2-\varrho_{m}\right) n_{m}-\varrho_{m}\right)-1\left(1-\left(n_{m}-2\right) \varrho_{m}\right)} \\
\lambda & \equiv \frac{\psi\left(1-\left(n_{m}-2\right) \varrho_{m}\right)}{2 \gamma \varrho_{m}\left(4-\left(2-\varrho_{m}\right) n_{m}-\varrho_{m}\right)-1\left(1-\left(n_{m}-2\right) \varrho_{m}\right)}
\end{aligned}
$$

- Then we can write equilibrium quantities as follows

$$
\begin{equation*}
q_{i}=\mu_{i}-\rho \sum_{j=1}^{n} b_{i j} q_{j}+\lambda \sum_{j=1}^{n} a_{i j} q_{j} \tag{29}
\end{equation*}
$$

- Observe that the reduced form Equation (29) is identical to the Cournot case in Equation (6).

Extension: Intra- vs. Interindustry

## Collaborations

- The marginal cost of production is

$$
c_{i}=\bar{c}_{i}-e_{i}-\psi_{1} \sum_{j=1}^{n} a_{i j}^{(1)} e_{j}-\psi_{2} \sum_{j=1}^{n} a_{i j}^{(2)} e_{j} .
$$

- If the matrix $\mathbf{I}_{n}+\rho \mathbf{B}+\lambda_{1} \mathbf{A}^{(1)}+\lambda_{2} \mathbf{A}^{(2)}$ is invertible, this gives us the equilibrium quantities

$$
\mathbf{q}=\left(\mathbf{I}_{n}+\rho \mathbf{B}+\lambda_{1} \mathbf{A}^{(1)}+\lambda_{2} \mathbf{A}^{(2)}\right)^{-1} \boldsymbol{\mu} .
$$

- The econometric specification in vector-matrix form can be written as

$$
\begin{align*}
& \mathbf{q}_{t}=\vartheta \mathbf{B} \mathbf{q}_{t}+\xi \mathbf{A}_{t}^{(1)} \mathbf{q}_{t}+\varphi \mathbf{A}_{t}^{(2)} \mathbf{q}_{t}+\mathbf{X}_{t} \boldsymbol{\beta}+\boldsymbol{\eta}+\boldsymbol{\kappa}_{t}+\boldsymbol{\epsilon}_{t},  \tag{30}\\
& \mathbf{e}_{t}=\Phi \mathbf{q}_{t}+\mathbf{u}_{t} \tag{31}
\end{align*}
$$

TABLE: Parameter estimates (with standard errors in parenthesis) from a fixed effects panel regression with time dummies of Equations (30) and (31). Model A does not include firm fixed effects (f.e.), while Model B introduces also firm fixed effects.

| Model C |  |  |  | Model D |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| time f.e. | yes |  | yes |  |  |
| firm f.e. | no |  | yes |  |  |
| $\varphi_{1}$ | $0.0606^{* * *}$ | $(0.0100)$ | $0.0242^{* * *}$ | $(0.0099)$ |  |
| $\varphi_{2}$ | $0.0231^{* * *}$ | $(0.0036)$ | $0.0037^{*}$ | $(0.0021)$ |  |
| $\vartheta$ | $-0.0042^{* * *}$ | $(0.0004)$ | $-0.0021^{* * *}$ | $(0.0006)$ |  |
| $\beta_{1}$ | $0.0741^{* * *}$ | $(0.0056)$ | $0.0495^{* * *}$ | $(0.0078)$ |  |
| $\beta_{2}$ | $0.8377^{* * *}$ | $(0.0502)$ | $1.0413^{* * *}$ | $(0.0502)$ |  |
| $\phi$ | $0.0329^{* * *}$ | $(0.0018)$ | $0.0329^{* * *}$ | $(0.0018)$ |  |

*** Statistically significant at $1 \%$ level.
** Statistically significant at $5 \%$ level.

* Statistically significant at 10\% level.


## Summary \& Conclusion

- We analyze R\&D collaboration networks in industries where firms are competitors in the product market.
- We provide a micro-foundation for the technology spillover and market competition effects, and estimate it with a unique panel data set on R\&D alliances and firms' annual financial reports.
- We then analyze welfare (producer and consumer surplus) in independent as well as interdependent markets, captured by varying degrees of substitutability between goods.
- We study key player firms, i.e. the firms whose exit reduces welfare the most.
- We then analyze R\&D subsidy programs, either as a fixed share of $\mathrm{R} \& \mathrm{D}$ expenditures homogeneous across firms, or targeted towards individual firms.


[^0]:    ${ }^{1}$ Hagedoorn, J., May 2002. Inter-firm R $\mathcal{B} D$ partnerships: an overview of major trends and patterns since 1960. Research Policy 31 (4), 477492.
    ${ }^{2}$ Ahuja, G., 2000. Collaboration networks, structural holes, and innovation: A longitudinal study. Administrative Science Quarterly 45, 425455
    ${ }^{3}$ Weitzman, M. L., 1998. Recombinant growth. The Quarterly Journal of Economics 113 (2), 331360.

[^1]:    ${ }^{4}$ Goyal, S., Moraga-Gonzalez, J. L., 2001. R $8 D$ Networks. RAND Journal of Economics 32 (4), 686707.

[^2]:    ${ }^{5}$ D'Aspremont, C. \& Jacquemin, A., Cooperative and noncooperative R\&D in duopoly with spillovers, The American Economic Review, 1988, 78, 1133-1137.
    ${ }^{6}$ Goyal, S. \& Moraga-Gonzalez, J. L., R\&D Networks, RAND Journal of Economics, 2001, 32, 686-707.
    ${ }^{7}$ Westbrock, B., Natural concentration in industrial research collaboration, The RAND Journal of Economics, 2010, 41, 351-371.
    ${ }^{8}$ König, M. D.; Battiston, S.; Napoletano, M. \& Schweitzer, F., The Efficiency and Stability of RछD Networks, Games and Economic Behavior, 2011, 75, 694-713.

[^3]:    ${ }^{9}$ Bloom, N.; Schankerman, M. \& Van Reenen, J., Identifying technology spillovers and product market rivalry, NBER Working Paper No. 13060, 2007.
    ${ }^{10}$ Cabrales, A.; Calvo-Armengol, A. \& Zenou, Y., Social interactions and spillovers, Games and Economic Behavior, Elsevier, 2010.
    ${ }^{11}$ Calvo-Armengol, A.; Patacchini, E. \& Zenou, Y., Peer Effects and Social Networks in Education, Review of Economic Studies, 2009, 76, 1239-1267.
    ${ }^{12}$ Liu, X.; Patacchini, E.; Zenou, Y. \& Lee, L., Criminal networks: Who is the key player?, Mimeo, Stockholm University, Department of Economics, 2011.

[^4]:    ${ }^{13}$ The parameter $\alpha_{m}$ captures the market size or heterogeneity in products, whereas $\varrho \in(0,1]$ measures the degree of substitutability between products. In particular, $\varrho=1$ depicts a market of perfectly substitutable goods, while $\varrho \rightarrow 0$ represents the case of local monopolies.

[^5]:    ${ }^{14}$ Cohen, W., Klepper, S., 1996. A reprise of size and $R$ \& $D$. The Economic

[^6]:    ${ }^{16}$ Calvo-Armengol, A., Patacchini, E., Zenou, Y., 2009. Peer effects and social

[^7]:    ${ }^{17}$ Bonacich, P., 1987. Power and centrality: A family of measures. American Journal of Sociology 92 (5), 1170.

[^8]:    ${ }^{18}$ Cvetkovic, D., Doob, M., Sachs, H., 1995. Spectra of Graphs: Theory and Applications. Johann Ambrosius Barth.

[^9]:    ${ }^{19}$ Corbo, J., Calvo-Armengol, A., Parkes, D., 2006. A study of nash equilibrium in contribution games for peer-to-peer networks. SIGOPS Operation Systems Review 40 (3), 6166.
    ${ }^{20}$ König, M. D., Battiston, S., Napoletano, M., Schweitzer, F., 2011. The efficiency and stability of RछDD networks. Games and Economic Behavior 75, 694713.

[^10]:    ${ }^{21}$ If we assume that $G$ is connected then we can also use the bound $\lambda_{1} \leq \sqrt{2 m-n+1} \leq n-1$.

[^11]:    ${ }^{22}$ The assortativity coefficient $\rho_{d}(G) \in[-1,1]$ is essentially the Pearson correlation coefficient of degree between nodes that are connected. Positive values of $\rho_{d}(G)$ indicate that nodes with similar degrees tend to be connected, while negative values indicate that nodes with different degrees tend to be connected. See Newman (2002) for further details.

[^12]:    ${ }^{23}$ Rucker, G., Rucker, C., Gutman, I., 2002. On kites, comets, and stars. sums of eigenvector coefficients in (molecular) graphs. Zeitschrift f ür Naturforschung 57 (3/4), 143153.

[^13]:    ${ }^{24}$ Weitzman, M. L., 1998. Recombinant growth. The Quarterly Journal of

[^14]:    ${ }^{25}$ Hinloopen, J., Subsidizing RED Cooperatives, De Economist, Springer, 2001, 149, 313-345.; Hinloopen, J., RED efficiency gains due to cooperation, Journal of Economics, Springer, 2003, 80, 107-125.

[^15]:    ${ }^{26}$ Spencer, B. J. \& Brander, J. A., International $R \&$ D Rivalry and Industrial Strategy, The Review of Economic Studies, Oxford University Press, 1983, 50, 707-722.

[^16]:    ${ }^{27}$ Hagedoorn, J., May 2002. Inter-firm RछD partnerships: an overview of major trends and patterns since 1960. Research Policy 31 (4), 477492.
    ${ }^{28}$ See https://sites.google.com/site/patentdataproject/Home.

[^17]:    ${ }^{29}$ Bloom, N., Schankerman, M., Van Reenen, J., 2007. Identifying technology spillovers and product market rivalry, NBER Working Paper No. 13060.

[^18]:    *** Statistically significant at $1 \%$ level.
    ** Statistically significant at 5\% level.

    * Statistically significant at $10 \%$ level.

[^19]:    ${ }^{30}$ Westbrock, B., 2010. Natural concentration in industrial research collaboration. The RAND Journal of Economics 41 (2), 351371.

[^20]:    ${ }^{31}$ Wasserman, S., Faust, K., 1994. Social Network Analysis: Methods and Applications. Cambridge University Press.
    ${ }^{32}$ Ballester, C., Calvo-Armengol, A., Zenou, Y., 2006. Whos who in networks. wanted: The key player. Econometrica 74 (5), 14031417.

[^21]:    ${ }^{33}$ Kitsak, M., Riccaboni, M., Havlin, S., Pammolli, F., Stanley, H., 2010.
    Scale-free models for the structure of business firm networks. Physical Review E 81, 036117.

[^22]:    ${ }^{\text {a }}$ Market share in the primary 4-digit sector in which the firm is operating.
    ${ }^{\mathrm{b}}$ The coreness of node $i, \operatorname{cor}_{i}$, is $k$ if and only if $i \in G_{k}$ and $i \notin G_{k+1}$. We have that $\operatorname{cor}_{i} \leq d_{i}$.
    ${ }^{c}$ The normalized betweenness centrality is the fraction of all shortest paths in the network that contain a given node, divided by $(n-1)(n-2)$, the maximum number of such paths.
    ${ }^{\mathrm{d}}$ The closeness centrality of node $i$ is computed as $\sum_{j=1}^{n} 2^{-d_{G}(i, j)}$, where $d_{G}(i, j)$ is the length of the shortest path between $i$ and $j$ in the network $G$ (Dangalchev, 2006).
    ${ }^{\text {e }}$ The relative output of a firm $i$ is computed as $q_{i} /\|\mathbf{q}\|_{1}=b_{\boldsymbol{\mu}, i} /\left\|\mathbf{b}_{\boldsymbol{\mu}}\right\|_{1}$.
    ${ }^{\mathrm{f}}$ The decrease in output due to the removal of firm $i$ is computed as $\frac{\|\mathbf{q}(G)\|_{1}-\left\|\mathbf{q}\left(G^{-i}\right)\right\|_{1}}{\|\mathbf{q}(G)\|_{1}}=\frac{b_{\mathbf{u}, i}(G) b_{\mu, i}(G)}{m_{i i}(G)} /\left\|\mathbf{b}_{\boldsymbol{\mu}}(G)\right\|_{1}$.

[^23]:    ${ }^{34}$ Barlevy, G., 2007. On the cyclicality of research and development. The American Economic Review 97 (4), 11311164.
    ${ }^{35}$ Gali, J., 1999. Technology, employment, and the business cycle: Do technology shocks explain aggregate fluctuations?, American Economic Review 89 (1), $=2492$ 登

[^24]:    ${ }^{36}$ Bloom, N., Griffith, R., Van Reenen, J., 2002. Do RछD tax credits work? evidence from a panel of countries 19791997. Journal of Public Economics 85 (1), 131.
    ${ }^{37}$ Impullitti, G., 2010. International competition and U.S. RछBD subsidies: $A$ quantitative welfare analysis. International Economic Review 51 (4), $1127 \ddagger 158$.

[^25]:    ${ }^{38}$ Spencer, B. J., Brander, J. A., 1983. International R\&D rivalry and industrial strategy. The Review of Economic Studies 50 (4), 707722
    ${ }^{39}$ Acemoglu, D., Akcigit, U., Bloom, N., Kerr, W., 2012. Innovation, reallocation and growth. Stanford University Working Paper.
    ${ }^{40}$ Hinloopen, J., 2001. Subsidizing R8̇D cooperatives. De Economist 149 (3), 313345.

