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Abstract 

 

We conduct the first-ever large-scale study of the relationship between air pollution and suicide 

using detailed cause of death data from all death certificates in the U.S. between 2003 and 2010. 

Using wind direction as an instrument for daily pollution exposure, we find that a 1 μg/m3 increase 

in daily PM2.5 is associated with a 0.49% increase in daily suicides (a 19.3% increase overall). 

Estimates using 2SLS are larger and more robust, suggesting a bias towards zero arising from 

measurement error. Event study estimates further illustrate that contemporaneous pollution 

exposure matters more than exposure to pollution in previous weeks.  
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I. Introduction 

The evidence establishing air pollution as a health hazard impacting 

human capital is substantial and expanding. There is growing evidence that air 

pollution affects the brain and behavior. The effects of air pollution on the brain 

begin early, altering development in utero and during early childhood (Gluckman 

et al. 2008; Currie, et al. 2014). Pollution can also affect cognitive functioning 

and decision making because small particulate matter can penetrate the lungs and 

inhibit the flow of oxygen into the bloodstream and hence the brain (Lavy et al, 

2014). Higher levels of air pollution have been shown to reduce performance on 

academic tests of many types (Heissel, Persico and Simon 2022; Lavy et al., 

2014; Marcotte, 2017; Persico and Venator 2021; Zhang et al., 2018).  

The effects of air pollution on the brain appear to be more far-reaching 

than inhibiting cognitive functioning, affecting human-decision making and 

behavior in other ways (Chen, 2019). For example, there is mounting evidence 

that higher exposure to contemporaneous air pollution can increase risky behavior 

including criminal activity (Herrnstadt and Muehlegger 2015) and misbehavior at 

school (Heissel, Persico and Simon 2019). These effects of pollution on behavior 

may operate though impacts of exposure on mood. There is evidence that air 

pollution is negatively associated with self-rated mental health (Zhang et al, 

2017), and hospitalization for major depression (Kioumourtzoglou et al 2017; 

Wang et al 2018). 

 A biological link for this relationship between air pollution and mental 

health has been identified. Fine particulate matter can greatly increase circulating 

proinflammatory cytokines and is associated with depressive mood states 

(Dowlati et al 2010; Gananca et al 2016; Kioumourtzoglou 2017; Janelidze et al 

2011; Tonelli et al 2008). Cytokines are a class of proteins involved in 

neurotransmission and produced by immune cells in response to infection and 

inflammation (Parkin and Cohen, 2001). Evidence from post-mortem tissue 

samples has found elevated levels of cytokines in the brains of suicide victims 

(Tonelli et al., 2008). However, this retrospective association cannot answer 

whether air pollution and its effects on the body and brain increase prospective 
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risk for suicide. Evidence on this question comes from epidemiological studies of 

individual cities but is quite limited and mixed. These studies often rely on small 

or isolated samples or use information on emergency department visits rather than 

suicide mortality.  

Understanding whether air pollution elevates suicide risk is an important 

question. Suicide rates are on the rise in the United States (U.S.), having increased 

by nearly 50% between 2000 and 2019.1 Suicide is now the tenth leading cause of 

death, claiming the lives of 47,511 Americans in 2019. The study of suicide and 

how rates vary has been a topic of study in public health and the social sciences 

for more than a century. Much of this research has been on the impacts of various 

policies or practices that might reduce suicide rates the population by restricting 

access to deadly means, such as firearms (e.g., Ludwig and Cook, 2000; Duggan 

et al., 2011), toxins (e.g. Kreitman, 1971; Gunnell et al., 2007; Cha et el, 2016), or 

access to high places (Bennewith et al., 2007). A different strand of this research 

has focused on the roles of social and economic conditions in explaining trends 

(e.g. Hamermesh and Soss, 1974; Ruhm, 2000 and 2015; Koo and Cox, 2008). 2  

Most relevant, there is a large body of research on the effects of psychoactive 

agents on suicide, including clinical trials of neuropsychiatric medications 

(Gunnell et al., 2005)  and a growing number of studies on the impact of opioids 

or other illicit drugs on suicide (e.g., Anderson et al., 2014; Borgshulte et al., 

2018).  

In this paper, we conduct the first-ever large-scale study of how pollution 

affects suicide, relying on data for all deaths in the U.S. over eight years. We 

estimate the impacts of individual pollutants on suicides throughout the U.S. 

using daily data on suicide counts by state-county matched to daily air quality 

data from the Center for Disease Control (CDC), daily weather data from the 

National Oceanic and Atmospheric Administration (NOAA), daily pollution data 

from the Environmental Protection Agency, and demographic data between 2003-

 
1 In 2000, age-adjusted suicide rates reached a post-World War II nadir of 10.4 per 100,000 in the 

U.S.  By 2019, suicide rates were 14.5 per 100,000 – the highest yet recorded in the post-war era. 

(https://www.cdc.gov/nchs/fastats/suicide.htm) 
2 Marcotte and Zejcirovic (2020) provide a recent review of the economic literature on suicide. 
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2010.  Using a difference in differences design controlling for weather, 

population, holidays, day of the week, and county, state-month and month-year 

fixed effects, we first estimate whether days in the same month, year and state-

county with elevated levels of pollution lead to atypical increases in suicide. We 

then use variation in wind direction as an instrument for pollution, to limit 

attenuation bias that results from measuring exposure to pollution within a 

county-day using fixed monitoring sites. We find that a 1 μg/m3 increase in daily 

PM2.5 is associated with a 0.49 percent increase in daily suicides (a 19.3 percent 

increase above the mean). In addition, we find that a 1 μg/m3 increase in PM2.5 is 

associated with a 0.3577 percent increase in all daily deaths, which is an increase 

of 0.4% above the mean. 

In addition to providing the first-ever national study of air pollution and 

suicide risk in the United States, this paper offers several additional advantages 

over previous work. First, we use high frequency daily data on air quality from 

the CDC and the EPA and the number of suicides by county collected by the CDC 

from all state vital records offices in the United States from 2003 to 2010. While 

air pollution varies substantially over time, effects on mortality are difficult to 

identify at the local level because suicide is a rare outcome at the daily level. To 

provide the first comprehensive study of the link between air pollution and suicide 

we daily data over many years for all counties in the U.S.  

Second, our study includes a methodological innovation over the existing 

literature on the health effects of pollution by using an instrumental variables (IV) 

design and a daily county panel that allows us to include a large number of 

location and time fixed effects. We compare different days in the same month in 

the same state-county, year and day of the week that happen to randomly differ in 

the amount of ambient air pollution because of daily variations in wind direction 

to estimate whether days with higher pollution have higher rates of suicide, 

compared with other counties on the same days. Our IV model builds on a 

difference in difference specification where we compare daily variation in 

pollution in a county, compared to variation in other counties in the same state 

over the same time using month, year, state-county and day of the week fixed 
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effects, as well as controls for weather, population and holidays. By comparing 

days in the same month in the same county that happen to differ in air quality, we 

alleviate concerns about time trends in unemployment, poverty, or other seasonal 

trends in suicide that could affect the results. However, our instrumental variables 

design better addresses measurement error in pollution by using daily pollution 

that affects an entire county at once because it is carried on the wind. 

Third, we estimate the effects of contemporaneous versus chronic 

pollution exposure using an event study design in which we regress weekly 

pollution levels leading up to the event on suicides in those weeks. This sheds 

light on the temporal mechanisms through which air pollution could lead to 

suicide. 

Because we have sufficient power, we also investigate what specific types 

of pollution, such as PM2.5, PM10, nitrous oxide, ozone, and sulfur dioxide are 

most likely to increase suicidality. We also investigate whether more population-

dense, poor, or polluted counties see the biggest increase in pollution-related 

suicide deaths by investigating the results by county-level population, pollution 

level, poverty and employment. Finally, we also are the first to investigate how 

these effects might vary by age, gender and race.  

II. Background 

Air pollution has many effects on human health. Exposure to air pollution 

increases incidence of both acute and chronic illnesses of the pulmonary system, 

including upper respiratory infections, asthma, and chronic obstructive pulmonary 

disease (COPD) (Cascio, 2018). Air pollution has also been shown to have 

harmful effects beyond the lungs, including increasing risk for cardiovascular 

disease and mortality (Kampa and Castanas, 2008), and cancer (Straif et al, 2013; 

Cheng et al, 2020). Whether or how the physiologic effects of air pollution on 

human health and behavior at the individual level translate into a relationship 

between air pollution and suicide rates in the community is an open question.  

The evidence from the medical literature of the body’s cytokine response 

suggests exposure to air pollution could increase suicide risk though three direct 

channels. The first is due to air pollution’s effects on worsening depression. Major 
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depression has long been linked to elevated risk for suicide attempts and mortality 

(Malone et al., 1995; Isometsa et al, 1994). The second is by increasing the 

propensity for risky behavior. For example, substance abuse is among the most 

important predictors of suicide from an analysis of 28,000 suicide deaths in the 

U.S. between 2003 and 2008 (Logan et al., 2011). Third, by impacting decision 

making and the propensity for errors, air pollution may increase the likelihood a 

suicide attempt is fatal. Most suicide attempts are survived, and economists have 

modelled attempts as signals. In clinical settings and research on survivors, this is 

referred to as a “cry for help” (Maple et al., 2020). Unfortunately, due to data 

limitations, we are unable to determine which of these factors contributes most to 

our results. However, we next review the evidence on these factors. 

Airborne fine particulate matter and toxins can have immediate effects on 

the functioning of the upper respiratory system by inflaming the bronchial tubes 

in the lungs and inducing acute asthma attacks. Regular exposure to unhealthy air 

can lead to chronic problems, including asthma and COPD. Pollutants can also 

have broader effects on the body, by being absorbed into the vascular system. 

Some of these effects can lead to harm human health over the long-term. For 

example, exposure to air pollution has been associated with depression, mood 

disorders, dementia, and ischemic strokes due to small blood vessel pathology and 

neuroinflammation (Calderon-Garciduenas et al., 2015a; Calderon-Garciduenas et 

al., 2015b; Bishop, Ketcham and Kuminoff, 2018).  

The broader effects of air pollution on human health are also due to 

immune response induced by the body’s effort to fight of any absorbed 

particulates. Fine particles trigger the release of antibodies that target them with 

receptor cells, releasing chemicals to combat the perceived threat.  These 

chemicals include cytokines that cause inflammation of tissue (Janeway et al. 

2001). Air pollution has also been implicated in other types of neuroinflammation 

and neural degradation (Block and Calderon-Gariduenas 2010; Calderon-

Gariduenas et al 2015; Bishop, Ketcham and Kuminoff, 2018). In one double-

blind randomized crossover study, Chen and colleagues (2018) used true and 

sham air purifiers to expose healthy young adults in Shanghai to reduced levels of 
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pollution. They find that people exposed to more air pollution have more 

circulating cytokines and miRNAs that regulate cytokine expression, which are 

associated with increases in symptoms of depression.  

There is substantial evidence in the medical and public health literatures 

that cytokines affect mood and are linked to major depression (Kronfol and 

Remick (2000); Dowlati, et al. (2009)). Consequently, in the environmental and 

public health literatures there has been a good amount of work on the relationship 

between air pollution and cytokines (Chen et al 2018; Kioumourtzoglou et al 

2017; Wang et al 2018). Furthermore, cytokines have been linked to depression 

through the inflammation itself that is induced by exposure to fine particulate 

matter (Dowlati et al 2010; Gananca et al 2016; Janelidze et al 2011; Tonelli et al 

2008). In a recent meta-analysis of 24 studies, Dowlati and colleagues find higher 

concentrations of proinflammatory cytokines in depressed patients compared with 

control subjects. Gananca and colleagues recently reviewed the evidence from 22 

studies and find that elevated cytokines are also implicated in suicidal ideation, 

suicide attempts or suicide completion. Janelidze et al (2010) also find evidence 

that blood cytokine levels might distinguish suicide attempters from depressed 

patients, where suicidal patients had even more elevated cytokine levels than 

depressed patients. Kioumourtzoglou and colleagues (2017) also find a direct 

association between air pollution and the onset of depression. Pun et al (2017) 

also find a relationship between ambient air pollution and depressive and anxiety 

symptoms in older adults.  

There is also related evidence that suggests higher exposure to 

contemporaneous air pollution makes people more likely to engage in risky 

behavior. Heissel, Persico and Simon (2019) find that when elementary or middle 

school students switch schools from one that is upwind to one that is downwind 

from a highway in the same neighborhood students are significantly more likely 

to be suspended from school or absent from school. Similarly, Herrnstadt and 

Muehlegger (2015) find that people downwind from a highway are more likely to 

commit crimes than people upwind from the same highway. Persico and Venator 
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(2019) also find that factory openings near schools also increase suspensions and 

absences from school. 

Another strand of research has shown that being exposed to more air 

pollution also increases the likelihood that people make mistakes. Archsmith, 

Heyes and Saberian (2018) find that umpires are more likely to make mistakes in 

calling plays in baseball on days with high pollution. Similarly, Kunn, Palacios 

and Pestel (2019) find that chess players are more likely to make mistakes in 

games on days with higher air pollution. Students also score lower on exams on 

days with higher air pollution, compared with days with lower air pollution 

(Marcotte 2017; Heissel, Persico and Simon 2019).  

While these factors all suggest poor air quality could elevate suicide risk, 

in a community setting elevated levels of air pollution are often due to human 

activity that has its own impacts on suicide risk. As the COVID-19 pandemic 

restricted travel and economic production, air quality improved markedly around 

the globe, especially in urban areas (Venter et al., 2020; Slezakova and Perreira, 

2021). Air pollution due to factory and auto emissions increases with local 

economic activity and growth. Many empirical studies document a negative 

relationship between such growth and suicide rates (Koo and Cox, 2008; Reeves 

et al., 2012; Ruhm, 2000, 2015; see Chen et al. 2012 for an extensive list). Even 

as pollution may be associated with aggregate economic activity, it may also be 

positively related to poverty and other suicide risk factors within a city or local 

area. As Banzhaf et al (2019) review, the economic literature establishing higher 

risk for exposure to pollutants for the poor and other marginalized persons is 

robust. So, even as the body’s endogenous response to exposure to air pollution 

may increase suicide risk for the individual, that exposure is associated with 

contextual factors that also affect suicide risk. 

Several recent epidemiological studies of individual cities find mixed 

evidence on a relationship between suicide and air pollution. Bakian et al (2015) 

report an association between air pollution and suicide completion in Salt Lake 

County, Utah. Kim et al (2015) examine six years of data across South Korea and 

also find an association between air quality and suicide. Szyskowicz et al. find 
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that air pollution increases emergency department visits for suicide attempts in 

Vancouver. Ng et al. (2016) find effects of air pollution on suicide using data on 

29,000 suicide deaths in Tokyo. Using data from Taipei City, Yang et al (2011) 

also find that suicides follow a seasonal pattern, and that pollution contributes to 

suicide. However, Fernández-Niño et al. (2018) find no relationship in 4 

Columbian cities between air pollution and suicides. In addition, several recent 

comments by Chen and Samet (2017) and others (e.g., Afshari 2017) urge caution 

in drawing conclusions from small studies that might suffer from selection bias or 

other confounding factors. Furthermore, most of these studies use data from 

outside of the United States, in settings where pollution is often at higher levels.  

III. Description of the Data 

To advance our understanding of the impact of pollution on suicide in the 

U.S., we exploit daily data on deaths by type collected by the CDC from all state 

vital records offices, also matched to weather data from the CDC and the NOAA, 

data on daily Air Quality Index (AQI) data from the EPA and CDC, and 

additional county data from the Census and Bureau of Labor Statistics. We 

collected data on wind speed and wind direction data from the North American 

Regional Reanalysis (NARR) daily reanalysis data. Wind conditions are reported 

on a 32 by 32 kilometer grid and consist of vector pairs, one for the east-west 

wind direction (u-component) and one for the north-south wind direction (v-

component). We first locate each wind monitor in a county and then convert the 

average u- and v-components into wind direction and wind speed and average up 

to the county-day level. We define “wind direction” as the direction the wind is 

blowing from. We also obtain additional temperature and precipitation data from 

Deryugina et al (2019), who use data from PRISM and weather stations to obtain 

an average daily measure of temperature and precipitation in each county.  

We use cause of death data compiled from all death certificates between 

2003 and 2010 to calculate daily death rates by suicide (overall and by sex and 

age groups) in each county in the U.S.3 This is the most comprehensive panel of 

 
3 These detailed cause of death data are unavailable for more recent years. 
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mortality data to date. One big advantage of such a large panel of data is that our 

data set does not suffer from selection bias since it includes all deaths in the 

United States over this period that were ruled suicides in all 3007 counties in the 

United States.  

The EPA data include daily data on the Air Quality Index, which is a scale 

between 0 and 500 indicating the amount of pollution in the air. Higher scores 

indicate more air pollution. The AQI is predominantly determined by Particulate 

Matter 2.5 (PM2.5) and ozone. In addition, we have daily data on the amounts of 

PM2.5, PM10, ozone, sulfur dioxide, nitrogen dioxide, carbon monoxide and lead 

in the air, as measured by the EPA’s pollution monitors. Finally, we match these 

data on additional data from the CDC on daily PM2.5, temperature and 

precipitation at the county level and data from NOAA on temperature, 

precipitation, wind speed, and other weather variables. The CDC data includes 

daily satellite estimates of PM2.5 that were made in a collaboration with NASA. 

As a result, we have full information for daily PM2.5 for every county in the US 

from 2003-2010 and thus, do not need to rely on pollution monitor data. This is a 

strong advantage compared to previous studies that utilize pollution monitor data, 

since pollution monitors only exist in about 20% of US counties and frequently do 

not collect data every day. As shown in Figure 1, PM2.5 decreases in the first part 

of the sample period and then increases overall. 

We match these data to county-level data on demographics and 

unemployment from the Census and Bureau of Labor Statistics. Table 1 shows the 

average county characteristics, pollution levels, and suicide rates between 2003-

2010 for the counties in our sample, which includes nearly all counties in the 

United States.  

IV. Identification Strategy 

To estimate the effect of pollution on suicide, we first estimate the relation 

between daily variation in pollution levels within a county and suicide rates, net 

of county fixed effects.  Relying on within-county variation in pollution and 

suicide is vital to limit threats to validity from the contextual factors affecting 

suicide, described above. For example, suicide can vary by place because of 
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underlying economic or cultural factors (such as the availability of firearms). 

Because suicides vary both seasonally and based on the day of the week (as 

shown in Figures A1 and A2), we also control for state-month, month-year, 

county, day-of-the-week, and holiday fixed effects, as well as time varying 

measures of daily temperature, precipitation, and population. So, we estimate the 

impact of pollution on suicide by comparing changes in suicide within a county as 

pollution changes at the daily level, net of changes in suicide in other counties in 

the same county and month-year that saw different changes in pollution.  The 

basic reduced form fixed effects model we use is as follows: 

(1) 𝑌𝑖𝑑𝑚𝑦 = 𝛽1𝑃𝑀𝑖𝑑𝑚𝑦  + 𝑊𝑖𝑑𝑚𝑦+ 𝐻𝑖𝑑𝑚𝑦 + 𝜎𝑖 + 𝜑𝑑 + 𝛾𝑚 + 𝜏𝑦 + ɛ𝑖𝑑𝑚𝑦  

𝑌𝑖𝑑𝑚𝑦  is the log of daily suicides in county i on day of the week d in month 

m in year y. Because our unit of analysis is at the county/day level, zero is a 

common outcome. We apply the inverse hyperbolic sine (IHS) transformation to 

each daily count of suicides to account for zeros in daily suicides: asinh(Yidmy)= 

log(Yidmy +( Yidmy
2 +1)0.5). The IHS transformation is approximately equal to 

log(2(Yidmy)), except for very small values, and can be interpreted in the same 

way as a logarithmic transformation (as an approximation of percent change). 

𝑃𝑀𝑖𝑑𝑚𝑦  represents various measures of daily pollution in a county. We focus first 

on the average amount of daily ultrafine particulate matter (PM2.5) in the county, 

measured in μg/m3. 𝑊𝑖𝑑𝑚𝑦  are daily weather controls for temperature and 

precipitation and annual controls for county population and the unemployment 

rate, and 𝐻𝑖𝑑𝑚𝑦  are federal holiday fixed effects.  𝜎𝑖 are county fixed effects, 𝜑𝑑 

are day of the week fixed effects, 𝛾𝑚 are state-by-month fixed effects and 𝜏𝑦 are 

month-by-year fixed effects. We include state-month fixed effects to control for 

any seasonal correlation between pollution and mental health. In addition, the 

month-by-year fixed effects should control for common time-varying shocks, 

such as any broad changes that might affect suicide over our sample period, such 

as the FDA “black-box” warning on antidepressants in October, 2004. The effect 

of a 1 μg/m3 increase in PM2.5 on suicides is given by 𝛽1. Because we use the 

inverse hyperbolic sine transformation, 𝛽1 is adjusted by β* √1 +  
1

𝑦2. This is an 
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important adjustment in this context to account for the large number of zeros in 

the daily suicides data, which results in a low dependent variable mean. 

While our measures of daily pollution rely on the best available 

information from locally sited air quality monitors and satellite imaging, 

measurement error remains a fundamental problem in studies of human exposure 

to air pollution. This arises because measurements taken at fixed times and 

locations are inherently imperfect estimates of exposure to a population dispersed 

over space and active or outdoors at varying times (Gryparis et al., 2009). This 

introduces a classical measurement error problem that can induce bias into 

measures of pollution exposure and impact standard errors (Szpiro et al., 2011). 

To provide some intuition here, imagine a county where the population is evenly 

dispersed across the county, with a large source of air pollution located in its 

center. If the wind blows from one direction one day, and the opposite direction 

another, different residents will be downwind and exposed on different days. In 

this circumstance, even though exposure for the population could be the same, a 

single pollution monitor sited on one side of the county would measure high/low 

levels depending on wind direction. So, the net effect of pollution on health 

outcomes could be attenuated to zero since a county level measure of pollution 

would not vary, even if the health of the population exposed is harmed does. 

County-level aggregate measures of pollution and suicides would simply not 

measure the variation in within county exposure.   

To provide a clearer link between measures of pollution and population 

exposure, we make use of the fact that while wind can affect the dispersal of 

pollutants within a county, it also brings air pollution into the county from outside 

sources. Fine particulate matter (PM2.5) is often carried substantial distances by 

wind (Borgshulte, Molitor and Zou 2020; Deryugina et al 2019), as residents of 

the east coast of the U.S. learned following the California wildfires of 2021.4 

Since fine PM2.5 from external sources are broadly dispersed and just as harmful 

to human health as PM2.5 from proximate sources, it creates a threat to an entire 

 
4 See, for example, https://www.nytimes.com/interactive/2021/07/21/climate/wildfire-smoke-

map.html 
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county, and hence a clearer link between pollution exposure and population health 

(EPA, 2003). So, daily wind direction provides an additional exogenous source of 

within-county variation in pollution levels. 

To estimate the impact of exposure to PM2.5 on suicide, we implement an 

instrumental variables design that uses daily wind direction as an instrument for 

daily pollution exposure at the county level, controlling for county, day, state-

month, month-year and day of the week fixed effects, as well as temperature, 

precipitation and holidays.5 We cluster pollution monitors into 200 monitor 

groups and interact these clusters with 4 different bins of wind direction (each 

being 90 degrees). The specification for our first stage is: 

(2) PM2.5 𝑖𝑑𝑚𝑦 = ∑ ∑ 𝛽𝑏
𝑔

𝑏=0𝑔∈𝐺 1[𝐺𝑐 = 𝑔] 𝑥 𝑊𝑖𝑛𝑑𝑑𝑖𝑟𝑖𝑑𝑚𝑦
90𝑏 +

𝑊𝑖𝑑𝑚𝑦+ 𝐻𝑖𝑑𝑚𝑦 + 𝜎𝑖 + 𝜑𝑑 +                       𝛾𝑚 + 𝜏𝑦 + ɛ𝑖𝑑𝑚𝑦  

In equation 2, the instruments are the variables 1[𝐺𝑐 = 𝑔] 𝑥 𝑊𝑖𝑛𝑑𝑑𝑖𝑟𝑖𝑑𝑚𝑦
90𝑏 .  

𝑊𝑖𝑛𝑑𝑑𝑖𝑟𝑖𝑑𝑚𝑦
90𝑏  are a set of binary variables equal to one if the daily average wind 

direction in county i falls within the relevant 90-degree interval [90b, 90b + 90) 

(and zero otherwise). The omitted category is the interval [270,360). Because we 

use satellite data for PM2.5 pollution, we use the k-means cluster algorithm to 

cluster all wind monitors in the United States into 200 spatial groups based on 

their locations. Figure 2 shows counties assigned to each monitor group.  

1[𝐺𝑐 = 𝑔] is a set of binary variables indicating that county i is assigned to 

monitor group g from the set of monitor groups G. Therefore, our coefficient of 

interest, 𝛽𝑏
𝑔

, is allowed to vary across geographic regions. The other control 

variables and fixed effects are the same as in equation (1).  

Figure 3 depicts our first stage visually using two county groups: the San 

Francisco Bay Area and Boston. When the wind blows from directions where 

there is more heavy industry (such as southeast of San Francisco and northeast of 

Boston), pollution increases. Similarly, Appendix Table A1 shows the coefficients 

of each of the dummy variables for wind direction interacted with pollution 

 
5 A similar identification strategy was used by Deryugina et al (2019) to estimate the effects of 

PM2.5 on all-cause mortality. 
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clusters in our first stage. Our first stage is very strong, with an F statistic of 

967.72. 

To provide additional insight into the relationship between pollution and 

suicide, we assess the relative importance of chronic versus contemporaneous 

exposure using an event study design that uses weekly averages of pollution in the 

weeks leading up to a reference day (within a state-county and within a month and 

year). The advantage of this event study is that it provides non-parametric 

estimates of mortality effects, since the medical literature provides no clear 

guidance about the timing of biological sequalae of exposure to air pollution. Our 

event study estimation is given by: 

(3)  𝑌𝑖𝑑𝑚𝑦 =  𝛽0 + ∑ 𝛽𝑗  𝟙[𝜏𝑖𝑡 = 𝑗]𝑠𝑡 +0
𝑗=−4 𝑊𝑖𝑑𝑚𝑦+ 𝐻𝑖𝑑𝑚𝑦 + 𝜎𝑖 + 𝜑𝑑 + 𝛾𝑚 +

𝜏𝑦 + ɛ𝑖𝑑𝑚𝑦      

 

𝛽𝑗 is the estimate of the effect of the weekly average air pollution, 

measured by average AQI in each of the weeks leading up to and following a 

suicide. We include 4 weeks of lags of air pollution in addition to estimating the 

effects of pollution on the week of the suicide (in week 0). The models also 

include county, day of the week, month and year fixed effects, as well as controls 

for weather, population, unemployment and holidays.  

V. Results 

A. Results on Suicides 

Panel A of Table 2 we show results from our reduced form OLS 

regressions of pollution on the log of suicide deaths, the suicide rate, and deaths 

from all causes at the daily level in all counties in the U.S. As specified in 

Equation 1, these models control for local unemployment, population, weather, 

holidays, county, state-month, month-year, and day of the week fixed effects. In 

Panel A, we find that a daily 1 μg/m3 increase in PM2.5 is associated with no 

significant change in suicide deaths, but a 0.0545 percent increase in deaths from 

all causes.  
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In Panel B of Table 2, we present results from our primary specification, 

the 2SLS model that uses daily wind direction as an instrument for daily pollution 

exposure. We find that a 1 μg/m3 increase in PM2.5 leads to a 0.4914 percent 

increase in daily suicides and a 0.4038 percent increase in the daily suicide rate 

per million individuals. This translates to a 19.3 percent increase in daily suicides 

above the mean. In addition, we find that a 1 μg/m3 increase in PM2.5 is 

associated with a 0.3577 percent increase in all deaths, which is an increase of 

0.4% above the mean. Compared to the OLS estimates, the IV estimates are 

larger, more positive and statistically significant. This is consistent with because 

measurement error creates attenuation bias in our estimates for the reasons we 

discussed above.  

Because deaths from suicide might occur with some lag, we also estimate 

a three-day measure of suicides in Column 3 of Table 2, based on day d and the 

following 2 days. Thus, a three-day measure nets out short-term mortality 

displacements onto subsequent days. To ensure that weather does not drive the 

results, we also control for two leads of our weather variables and two leads of 

our instruments. Our three-day results are somewhat smaller in magnitude than 

our one-day results, suggesting that there is a small suicide mortality lag from 

pollution, but that contemporaneous pollution is most closely linked to elevated 

suicide risk.6  

The relative importance of contemporaneous pollution is corroborated by 

our event study results, presented in Figure 4 showing the effects of pollution in 

the weeks leading up to, compared to pollution on the week we measure suicide 

mortality. As is clear in Figure 4, only pollution in the preceding week has a 

statistically significant effect on the daily suicide rate. While we estimate that 

pollution two, three and four weeks prior to the reference week are associated 

with slightly higher than normal suicide rates, they are not statistically significant 

at conventional levels. This suggests that the impact of air pollution on suicided is 

due to contemporaneous exposure. This is consistent with previous evidence that 

 
6 The results are even smaller using a five-day model. 
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pollution could affect suicides by worsening a person’s depression and decision-

making skills.  

B. Heterogeneity in Effects of Pollution 

Next, we assess whether the effects of pollution on suicide mortality 

depend on the type of pollution and affect demographic groups differently. In 

Table 3, we present results in which we include other pollutants in the same 

model, allowing wind to instrument for different types of pollution conditional on 

the other pollutants. Because data on other pollutants is limited, this decreases the 

number of observations available to estimate these effects. The results for PM2.5 

are even stronger when conditioning on other pollutants, suggesting that the 

effects on suicide are likely caused by PM2.5 and not other pollutants.  

Since residential segregation, economic and biological factors might 

increase risk for some groups, we next examine the results by race and gender in 

Table 4. While the effects of pollution are only statistically significant for Whites, 

this may be because we have more power to detect effects for Whites since their 

rates of suicide and daily variation are higher. In addition, we find statistically 

significant effects for males, though the point estimates for females are similar in 

magnitude. Again, we have more statistical power to detect effects for men than 

for women, since male suicide rates are higher. 

Because suicide risk and time spent outdoors varies by age, in Table 5 we 

present the results by age group.  The results are largest for people over 55 years 

of age, suggesting that older individuals might be most harmed by high air 

pollution days. A 1 μg/m3 increase in PM2.5 leads to a 0.775 percent increase in 

daily suicides for people aged 55-75, and a 0.965 percent increase for people over 

75. People aged 15-34 also show an increase in suicides from increased PM2.5, 

though the results are only significant at the p<0.1 level. This might be because 

younger people are more likely to be exposed to higher levels of pollution from 

commuting and being outdoors during rush hours. Giaccherini, Kopinska and 

Palma (2016) similarly find that people between the ages of 15-24 are more likely 

to have hospitalizations for pollution related causes, such as asthma, because of 

greater exposure to outdoor pollution.  
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C. Additional Threats to Internal Validity and Other Outcomes 

In any observational study where treatment cannot be randomized, threats 

to validity for interpreting outcome difference between treated and control 

subjects are possible. One way we can assess whether our results are driven by 

increases in air pollution, is to assess whether the dose-response relationship is 

consistent with the treatment effect identified in Table 2.  If pollution is affecting 

suicide risk, we would expect people exposed to higher levels of pollution to have 

higher mortality. To assess this, we estimate models in which we compared 

mortality in county/days when PM2.5 AQI is in the range of 25-49, 50-99, and 

over 100, compared to days when AQI is less than 25. These groups accord with 

EPA air quality levels of “Good” (< 50) “Moderate” (50-99) and “Unhealthy” 

(>100). We present the results in Figure 5. The coefficients for air pollution days 

of less than 100 AQI is close to zero. However, as the AQI increases to 100 or 

more, daily suicides also increase. Overall, this suggests that our main effects are 

primarily driven by very high air pollution days.  

To investigate the validity of the monotonicity assumption, in Table 6, we 

show results using 100 monitor groups, 200 monitor groups or 400 monitor 

groups. In all cases, our point estimates are quite similar to our main specification. 

This suggests that the number of monitor groups (and any potential monotonicity 

violations) has little effect on our estimates. Thus, we can interpret our estimates 

as a local average treatment effect (LATE).  

A remaining concern is whether the wind instrument only affects our 

outcomes through pollution and not anything else that could be correlated with 

daily wind direction. To test this, we estimate a series of regressions on placebo 

causes of death that we would not expect to be affected by pollution. Table 7 

presents the results of this placebo analysis. Columns 1 through 5 show the results 

of our main specification on deaths from Lyme disease, congenital anomalies, 

hernias, metabolic disorders, and digestive diseases. None of the estimates are 

statistically significant at conventional levels, and all are near zero.  

In columns 6-8 of Table 7 we show results from estimating our main 

specification on causes of death that are known to be affected by pollution: 
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diabetes, chronic obstructive pulmonary disease (COPD) and ischemic heart 

attack. As expected, we find larger and statistically significant point estimates for 

diabetes, COPD and ischemic heart attack, which are consistent with the 

economics and public health literature. A 1 μg/m3 increase in PM2.5 is associated 

with a 0.368 percent increase in daily diabetes deaths, a 0.331 percent increase in 

daily COPD deaths, and a 0.295 percent increase in daily heart attack deaths. 

In Table 8, we present results from a variety of alternative specifications. 

One lingering concern is that there are many counties in which suicides are rare, 

with zero suicides on nearly all days of the year. To assess the sensitivity of our 

findings to the inclusion of small counties were suicide is a rare event, in column 

1 of Table 8, we limit our sample to counties with more than 10,000 people. 

Similarly, in Column 2, we limit the sample to places that ever had more than one 

suicide in a day. In both cases, limiting to more populous places increases the size 

of our coefficient. Next, we address potential day of the month effects, which 

might occur if suicide risk changes over the month, perhaps because of timing of 

payments from work or social or health benefit programs. In column 3 of Table 8, 

we add day fixed effects to our main instrumental variables specification and find 

very similar results. Finally, to assess whether our results are sensitive to using 

OLS for an outcome variable with many zeros, we estimate our main IV 

specification using a Poisson regression by pseudo maximum likelihood (PPML) 

count model of daily suicides, conditional on the total population by county in 

Column 4 of Table 8. Reassuringly, the coefficient using PPML is very similar to 

that in our primary specification in Table 2.  

VI. Conclusion 

This is the first study showing that air pollution increases suicides. Using 

daily wind direction as an instrument for daily ultrafine particulate matter 

exposure, we find that a 1 μg/m3 increase in PM2.5 leads to a 0.5 percent increase 

in the daily suicide rate. We further find that our results are primarily driven by 

contemporaneous exposure to air pollution, and that days of very high air 

pollution appear to drive the effects on suicides. We also find that increased 
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PM2.5 increases the likelihood of all deaths on days of high air pollution, as well 

as deaths from COPD, diabetes and ischemic heart attack.  

In our preferred instrumental variables model, we find that a 1 μg/m3 

increase in PM2.5 leads to a 0.4914 percent increase in daily suicides and a 

0.4038 percent increase in the daily suicide rate per million individuals. These 

results imply that on a day with PM2.5 at the threshold of unhealthy levels (35 

μg/m3), the average county would experience an increase in daily suicides about 

0.094 per million population average air quality compared to a day with average 

PM2.5 levels (11.6 μg/m3). 7 This is a small number, but it is a daily risk. So, in a 

county with a million resident, a year with 11 additional unhealthy air days would 

see 1 additional suicide death. 

To further quantify the number of additional deaths that occur due to air 

pollution over this time period, we attempt a back of the envelope calculation for 

the effect of a 1 μg/m3 increase in PM2.5 over this time period on suicide deaths. 

We find that a 1 μg/m3 increase in PM2.5 on each day over a year would lead to 

153.8 additional suicides in that year.8 The average amount air pollution increases 

(or decreases) from day to day within a county is about 4 μg/m3. Nevertheless, it 

is important to note that daily air pollution is highly variable in the U.S., and there 

are both increases and decreases over time in average annual amounts of PM2.5 

during our study period (as shown in Figure 1).  

Our work offers several important lessons for policy and treatment of 

depression. Understanding how air pollution impacts suicide risk will allow 

policymakers to target resources to places when there are likely to be greater 

risks. In addition, this research contributes to our understanding of the 

environmental processes that impact suicidality and the true costs of pollution. If 

certain types of pollution are most likely to increase suicide risks, we may be able 

to better regulate those types of pollutants. One last implication of this work is 

 
7 A linear extrapolation of the 0.004038 increase per million residents due to a 1 μg/m3 to the 23.4 

μg/m3 difference between 35 and the mean implies and increase of 0.094 per million. 
8 On average, there were 31,296.88 suicides per year between 2003-2010, or about 85.75 suicides 

per day. Using the 0.004914 percent increase, this suggests that there would be 0.4214 additional 

suicides per day from a 1 μg/m3 increase in PM2.5 on average. Multiplied by 356 days in the year 

gives us 153.8 additional suicides per year.  
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more direct for physicians and those who have persons at risk in their families. In 

the public health world, efforts to temporarily take guns from the suicidal appear 

to be protective (see the work of David Hemenway among others). If air pollution 

is a risk, then interventions to keep those at risk of suicide indoors or refrain from 

strenuous activity outdoors might make sense. For example, air purifiers could be 

employed in in-patient facilities that treat depressed patients on high air pollution 

days. 
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Tables 

Table 1: Descriptive Statistics of Counties in the Sample 

  (1)  
Characteristics of Counties 

in the U.S. from 2003-2010 

Total Population 95,615 

[311,963] 

Percent White 0.841 

[0.159] 

Percent Black 0.108 

[0.133] 

Percent Hispanic 0.197 

[0.246] 

Percent Poverty 0.152 

[0.058] 

Median Income 40,590 

[9,778] 

Unemployment Rate 0.063 

[0.02] 

Average Total Deaths by Suicide by County 88.3 

[242] 

Average Daily Suicide Rate 0.378 

[0.188] 

Average Daily PM2.5 Concentration 11.63 

[2.04] 

Number of Counties 2,835 

Number of County-day observations 8,262,736 

Notes: This table shows the average characteristics of counties in our main sample with standard 

deviations in brackets below each mean. Column 1 shows characteristics of all counties in the 

United States between 2003-2010
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Table 2: Effects of PM2.5 on Suicides and All Deaths using state-month, month-year, 

county, and day of the week FEs 

 (1)  

Log daily 

suicides (1 day 

model) 

(2)  

Log daily 

suicide rate 

(3) 

Log daily 

suicides (3 day 

model) 

(3) 

Log All Deaths 

 Panel A: OLS Estimates 

Average daily PM 

2.5, micrograms 

per cubic meter 

-0.000461 

(0.000367) 
 

-0.000063 

(0.000078) 
 

0.001480 

(0.001290) 

0.000545*** 

(0.000059) 

 Panel B: IV Estimates 

Average daily PM 

2.5, micrograms 

per cubic meter 

0.004914*** 

(0.001675) 
 

0.004038** 

(0.001902) 
 

0.002023* 

(0.001126) 

0.003577*** 

(0.000236) 

Mean of Outcome 0.0255 0.0623 0.0715 0.7842 

Observations 8262736 8262736 8243810 8262736 
Notes: This table reports the effect of PM2.5 on suicide deaths and all deaths. Each cell shows the results of a 

separate regression with standard errors in parenthesis. Column 1 shows estimates for the log of daily suicides, 

Column 2 shows estimates for the log of the daily suicide rate per million people, and Column 2 shows estimates for 
the log of all daily deaths. Panel A reports estimates using wind as an instrument for pollution. Our primary 

specification uses 200 monitor groups. Panel B reports estimates using OLS regression. All regressions control for 

county, state-month, month-year and day of week FEs, holidays, total population, deciles of average temperature, 

and precipitation, wind speed, and unemployment rate. Standard errors are clustered at the county level and are in 

parentheses. 
* p < .1, ** p < .05, *** p < .01 
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Table 3: IV effect of Different Pollutants on log of suicide using state-month, month-year, 

county, and day of the week FEs 

 Log Suicides 

 (1) 

Adjusted 

PM25 

(2) 

Adjusted 

SO2 

(3) 

Adjusted O3 

(4) 

Adjusted CO 

(5) 

Adjusted 

NO2 

      

Different 

Pollutants 

0.077578** 

(0.034646) 

0.050681 

(0.077261) 

-0.016548 

(0.029018) 

-0.003576* 

(0.001887) 

-0.041641 

(0.055045) 

Mean of Outcome 0.2492 0.2492 0.2492 0.2492 0.2492 

Observations 210426 210426 210426 210426 210426 
Notes: This table reports the effect of different pollutants on the log of daily suicide deaths. All pollutants are in the 

same regression with wind as an instrument for pollution. Our primary specification uses 200 monitor groups. All 

regressions control for county, state-month, month-year and day of week FEs, holidays, total population, deciles of 

average temperature, and precipitation, wind speed, and unemployment rate. Standard errors are clustered at the 
county level and are in parentheses. 
* p < .1, ** p < .05, *** p < .01 
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Table 4: Heterogeneity by Race, Gender and Education 

 
Log Suicides 

 (1) (2) (3) (4) 

  White Black Female Male 

Daily PM 2.5 0.003925** 0.006855 0.00487 0.00458** 

  (0.001793) (0.007107) (0.00364) (0.00190) 

Mean of Outcome 0.02338 0.001445 0.00547 0.02041 

Observations 8262736 8262736 8262736 8262736 

Notes: This table reports the effect of daily PM2.5 on the log of daily suicide deaths for different groups. Column 1 shows the results for Whites, Column 2 

shows the results for Blacks, Column 3 shows the results for females, and Column 4 shows the results for males. Columns 5-8 show the results for people with 

different levels of education. Our primary specification uses 200 monitor groups. All regressions control for county, state-month, month-year and day of week 

FEs, holidays, total population, deciles of average temperature, and precipitation, wind speed, and unemployment rate. Standard errors are clustered at the county 

level and are in parentheses. 
* p < .1, ** p < .05, *** p < .01 
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Table 5: Effect of PM2.5 on Log Suicides by Age 

 Log Suicides 

 (1) 

Age 0-14 

(2) 

Age 15-34 

(3) 

Age 35-54 

(4) 

Age 55-74 

(5) 

Age 75+ 

Daily  -0.00242 0.00517* 0.00174 0.00775** 0.00965* 

PM 2.5 (0.02046) (0.00290) (0.00262) (0.00359) (0.00554) 

Mean of Outcome 0.00019 0.00720 0.01082 0.00574 0.00230 

Observations 8262768 8262768 8262768 8262768 8262768 

Notes: This table reports the effect of daily PM2.5 on the log of daily suicide deaths for different age groups. Column 1 shows the results for people ages 0-14, 
Column 2 shows the results for ages 15-24, Column 3 shows the results for ages 25-34, Column 4 shows the results for ages 25-34, etc. Our primary specification 

uses 200 monitor groups. All regressions control for county, state-month, month-year and day of week FEs, holidays, total population, deciles of average 

temperature, and precipitation, wind speed, and unemployment rate. Standard errors are in parentheses.  
* p < .1, ** p < .05, *** p < .01 
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Table 6: IV effect of PM2.5 on log of suicide using state-month, month-year, county, and day of the week FEs with different 

numbers of Monitor Groups 

 (1) 

Log suicides 

 Panel A: 100 Monitor Groups 

Average daily PM 2.5, micrograms per cubic 

meter 

0.004080** 

(0.001641) 

 Panel B: 300 Monitor Groups 

Average daily PM 2.5, micrograms per cubic 

meter 

0.004459*** 

(0.001658) 

 Panel C: 400 Monitor Groups 

Average daily PM 2.5, micrograms per cubic 

meter 

0.004313** 

(0.001688) 

Mean of Outcome 0.025543 

Observations 8262736 

Notes: This table reports the effect of PM2.5 on the log of daily suicide deaths. Panel A reports estimates using 100 monitor groups. Panel B reports estimates 

using 300 monitor groups, and Panel C reports estimates using 400 monitor groups. Our primary specification uses 200 monitor groups. All regressions control 

for county, state-month, month-year and day of week FEs, holidays, total population, deciles of average temperature, and precipitation, wind speed, and 

unemployment rate. Standard errors are clustered at the county level and are in parentheses. 
* p < .1, ** p < .05, *** p < .01 
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Table 7: Effect of PM2.5 on Placebo deaths and Air Pollution-related Deaths 

 Placebo Causes of Death  Deaths Related to Air Pollution 

 (1) 

Log Deaths 

from Lyme 

disease 

(2) 

Log Deaths 

from 

Congenital 

anomalies 

(3) 

Log 

Deaths 

from 

Hernia 

(4) 

Log Deaths 

from 

Metabolic 

Disorder 

(5) 

Log 

Deaths 

from 

Digestive 

Disease 

 (6) 

Log 

Deaths 

from 

Diabetes 

(7) 

Log Deaths 

from Chronic 

Obstructive 

Pulmonary 

Disease 

(8) 

Log Deaths 

from 

Ischemic 

Heart Attack 

Daily PM 2.5 -0.01492 0.00341 0.00198 0.00142 0.00256  0.00368*** 0.00331*** 0.00295*** 

 (0.13661) (0.00384) (0.00868) (0.00291) (0.00259)  (0.00123) (0.00087) (0.00048) 

Mean of 

Outcome 

0.00001 0.00654 0.00115 0.01154 0.01438  0.05063 0.08967 0.25277 

Observations 8262736 8262736 8262736 8262736 8262736  8262736 8262736 8262736 
Notes: This table reports the effect of daily PM2.5 on the log of different daily causes of death. Each column represents the results from a different regression. 
Columns 1-5 shows the results for placebo causes of death we would not expect to be impacted by air pollution. Columns 6-8 show results for causes of death 

that have been shown to be affected by air pollution. Our primary specification uses 200 monitor groups. All regressions control for county, state-month, month-

year and day of week FEs, holidays, total population, deciles of average temperature, and precipitation, wind speed, and unemployment rate. Standard errors are 

in parentheses.  
* p < .1, ** p < .05, *** p < .01 
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Table 8: Results for Alternative Samples and Alternative Specifications 

 Log Suicides  

 (1) 

Limiting to Counties 

with >10,000 people 

(2) 

Limiting to Counties that ever 

had 2 or more suicides/day 

(3) 

Using Day Fixed 

Effects 

(4) 

Using PPML with IV 

Daily PM 2.5 0.005849*** 

(0.001896) 

0.008233** 

(0.003630) 

0.004914*** 

(0.001675) 

0.003870*** 

(0.001262) 

Mean of Outcome 0.031839 0.064045 0.025543 0.025543 

Observations 6522413 2698046 8262736 8182898 
Notes: This table reports the effect of PM2.5 on the log of daily suicide deaths. Each column represents the results of a different regression. Column 1 reports 

estimates when limiting the sample to counties with more than 10,000 people. Column 2 reports estimates when limiting the sample to counties that ever had two 

or more suicides in a day. Column 3 presents the results of our primary specification when adding day of the month fixed effects. Column 4 presents the results 

when using PPML in the IV rather than OLS. All regressions control for county, state-month, month-year and day of week FEs, holidays, total population, 

deciles of average temperature, and precipitation, wind speed, and unemployment rate. Standard errors are clustered at the county level and are in parentheses. 
* p < .1, ** p < .05, *** p < .01 
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Figures 

Figure 1: Annual County-level PM2.5 over Time 

 

Notes: This figure shows the annual county mean of PM2.5 pollution over time. PM2.5 concentrations 

show some variety over the sample period. 
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Figure 2: Counties Assigned to 200 Monitor Groups 

 

 

Notes: This figure depicts the 200 monitor groups in our sample, which comprises nearly every county in the entire United States.  
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Figure 3: Examples of wind direction and pollution exposure 

 

  

Notes: This figure depicts our first stage in two example monitor groups: the Bay Area and Boston. As shown, in some wind directions, average 

PM2.5 concentrations increase, and in others, they decrease. 95% confidence intervals depicted in gray. 
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Figure 4: Effects of Contemporaneous and Previous Air Pollution on Suicide 

 

Notes: This figure depicts an event study of the effect of the log of the weekly AQI on the log of suicides 

over weeks of exposure. The week labeled 0/-1 is the week leading up to a suicide. We control for 

holidays, total population, average temperature, average precipitation, the unemployment rate, and 

county, month, year and day of the week fixed effects. 95% confidence intervals are depicted as vertical 

bars and standard errors are clustered at the county level. 

 

 



39 
 

Figure 5: Effect of Air Pollution on Suicide by Amount of Pollution 

 

Notes: This figure plots non-parametric estimates of the effect of different binned amounts of AQI on the 

log of daily suicides. The omitted category is AQI of less than 25. We control for county, state-month, 

month-year and day of week FEs, holidays, total population, deciles of average temperature, and 

precipitation, wind speed, and unemployment rate. Vertical bars represent 95% confidence intervals based 

on standard errors clustered at the county level.  
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Online Appendix Tables and Figures 

 

Figure A1: Trends in Suicides over Time and Day of the Week 

 

  
 

Figure 1A        Figure 1B 

 

Notes: Figure 1A depicts trends in suicides by age over our sample’s time period. Figure 1B depicts how suicides vary over day of the 

week.  
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Figure A2: Variation over Time in Suicides and AQI 

 

  
 

 Panel A        Panel B 

 

Notes: Panel A of Figure A2 depicts the variation over time in suicides over the day of the year. Panel B shows the mean and standard 

deviation of the AQI over days of the week each month.  
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Table A1: First Stage Effects of Daily Wind on Daily Pollution 

  (1) 

Binned Wind Direction Interacted with Pollution Clusters PM25 concentration 

Angle range 0-90 0.657462 

 (0.418599) 

Angle range 90-180 0.121036 

 (0.363051) 

Angle range 180-270 0.332466 

 (0.466601) 

1b.poll_cluster#0b.ang_range 0.000000 

 (0.000000) 

1b.poll_cluster#90.ang_range -0.682755*** 

 (0.048382) 

1b.poll_cluster#180.ang_range -0.905897*** 

 (0.048735) 

1b.poll_cluster#270.ang_range -0.335548*** 

 (0.010560) 

4.poll_cluster#0b.ang_range 3.020103*** 

 (0.182940) 

4.poll_cluster#90.ang_range 1.728198*** 

 (0.255016) 

4.poll_cluster#180.ang_range -0.993519*** 

 (0.165117) 

4o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

5.poll_cluster#0b.ang_range 1.155568*** 

 (0.126336) 

5.poll_cluster#90.ang_range 2.520459*** 

 (0.117477) 

5.poll_cluster#180.ang_range 1.238717*** 

 (0.083843) 

5o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

6.poll_cluster#0b.ang_range 2.699945*** 

 (0.110529) 

6.poll_cluster#90.ang_range 3.109083*** 

 (0.118307) 

6.poll_cluster#180.ang_range 1.053787*** 

 (0.126945) 

6o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

7.poll_cluster#0b.ang_range 3.361771*** 

 (0.104123) 

7.poll_cluster#90.ang_range 4.922075*** 

 (0.126225) 
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7.poll_cluster#180.ang_range 2.304450*** 

 (0.070106) 

7o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

8.poll_cluster#0b.ang_range -1.832307*** 

 (0.372914) 

8.poll_cluster#90.ang_range 1.438480*** 

 (0.255817) 

8.poll_cluster#180.ang_range 1.507893*** 

 (0.235089) 

8o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

9.poll_cluster#0b.ang_range -0.242917 

 (0.541405) 

9.poll_cluster#90.ang_range 0.006974 

 (0.577606) 

9.poll_cluster#180.ang_range -0.260134 

 (0.491887) 

9o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

10.poll_cluster#0b.ang_range -0.736382*** 

 (0.078182) 

10.poll_cluster#90.ang_range -1.230279*** 

 (0.098925) 

10.poll_cluster#180.ang_range 0.212761*** 

 (0.050492) 

10o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

11.poll_cluster#0b.ang_range 0.956841*** 

 (0.140342) 

11.poll_cluster#90.ang_range 1.863135*** 

 (0.189576) 

11.poll_cluster#180.ang_range 1.476981*** 

 (0.102226) 

11o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

12.poll_cluster#0b.ang_range 2.096488*** 

 (0.082981) 

12.poll_cluster#90.ang_range 3.767149*** 

 (0.069101) 

12.poll_cluster#180.ang_range 2.327743*** 

 (0.117717) 

12o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

13.poll_cluster#0b.ang_range -1.256299*** 

 (0.111901) 



44 
 

13.poll_cluster#90.ang_range -2.754201*** 

 (0.104636) 

13.poll_cluster#180.ang_range -1.141604*** 

 (0.116566) 

13o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

14.poll_cluster#0b.ang_range 2.745877*** 

 (0.194485) 

14.poll_cluster#90.ang_range 1.990708*** 

 (0.227156) 

14.poll_cluster#180.ang_range 0.138460 

 (0.236928) 

14o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

15.poll_cluster#0b.ang_range 1.453112*** 

 (0.092445) 

15.poll_cluster#90.ang_range 2.422154*** 

 (0.076431) 

15.poll_cluster#180.ang_range 1.909814*** 

 (0.088942) 

15o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

16.poll_cluster#0b.ang_range 3.249706*** 

 (0.077480) 

16.poll_cluster#90.ang_range 5.340938*** 

 (0.077926) 

16.poll_cluster#180.ang_range 2.467974*** 

 (0.082613) 

16o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

17.poll_cluster#0b.ang_range 3.593646*** 

 (0.113365) 

17.poll_cluster#90.ang_range 4.410900*** 

 (0.172290) 

17.poll_cluster#180.ang_range 1.939015*** 

 (0.049776) 

17o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

18.poll_cluster#0b.ang_range 0.764797*** 

 (0.113263) 

18.poll_cluster#90.ang_range -0.125169*** 

 (0.045309) 

18.poll_cluster#180.ang_range 0.604418*** 

 (0.018825) 

18o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 
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19.poll_cluster#0b.ang_range 1.142773*** 

 (0.105811) 

19.poll_cluster#90.ang_range 2.815342*** 

 (0.077107) 

19.poll_cluster#180.ang_range 2.006965*** 

 (0.077089) 

19o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

21.poll_cluster#0b.ang_range 1.347336*** 

 (0.145407) 

21.poll_cluster#90.ang_range 3.521453*** 

 (0.150367) 

21.poll_cluster#180.ang_range 1.751777*** 

 (0.123719) 

21o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

23.poll_cluster#0b.ang_range 1.894563*** 

 (0.202822) 

23.poll_cluster#90.ang_range 0.970286*** 

 (0.236397) 

23.poll_cluster#180.ang_range -0.985107*** 

 (0.188479) 

23o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

24.poll_cluster#0b.ang_range -2.132491*** 

 (0.618804) 

24.poll_cluster#90.ang_range -1.455090*** 

 (0.476750) 

24.poll_cluster#180.ang_range 0.904114 

 (0.838397) 

24o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

25.poll_cluster#0b.ang_range 1.833647*** 

 (0.108304) 

25.poll_cluster#90.ang_range 2.946865*** 

 (0.079254) 

25.poll_cluster#180.ang_range 1.843893*** 

 (0.048859) 

25o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

26.poll_cluster#0b.ang_range 2.355590*** 

 (0.158202) 

26.poll_cluster#90.ang_range 3.938911*** 

 (0.198732) 

26.poll_cluster#180.ang_range 1.483046*** 

 (0.129730) 
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26o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

27.poll_cluster#0b.ang_range -0.015083 

 (0.150523) 

27.poll_cluster#90.ang_range 0.238442 

 (0.160452) 

27.poll_cluster#180.ang_range 0.400190*** 

 (0.119360) 

27o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

28.poll_cluster#0b.ang_range 0.462410*** 

 (0.075249) 

28.poll_cluster#90.ang_range 2.216258*** 

 (0.054273) 

28.poll_cluster#180.ang_range 0.733836*** 

 (0.086518) 

28o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

29.poll_cluster#0b.ang_range 1.340002*** 

 (0.086469) 

29.poll_cluster#90.ang_range 3.259530*** 

 (0.110384) 

29.poll_cluster#180.ang_range 2.287978*** 

 (0.064644) 

29o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

30.poll_cluster#0b.ang_range 1.718159*** 

 (0.167431) 

30.poll_cluster#90.ang_range 1.863736*** 

 (0.225606) 

30.poll_cluster#180.ang_range 1.184355*** 

 (0.101730) 

30o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

32.poll_cluster#0b.ang_range 1.386950*** 

 (0.153598) 

32.poll_cluster#90.ang_range 3.465375*** 

 (0.133109) 

32.poll_cluster#180.ang_range 1.527326*** 

 (0.076184) 

32o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

34.poll_cluster#0b.ang_range -0.376033*** 

 (0.100797) 

34.poll_cluster#90.ang_range -0.032913 

 (0.151257) 
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34.poll_cluster#180.ang_range 0.221907 

 (0.194384) 

34o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

35.poll_cluster#0b.ang_range 2.276288*** 

 (0.230541) 

35.poll_cluster#90.ang_range 1.726223*** 

 (0.269944) 

35.poll_cluster#180.ang_range 0.714475*** 

 (0.154119) 

35o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

36.poll_cluster#0b.ang_range 2.099476*** 

 (0.070141) 

36.poll_cluster#90.ang_range 4.312308*** 

 (0.099430) 

36.poll_cluster#180.ang_range 2.031376*** 

 (0.076999) 

36o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

38.poll_cluster#0b.ang_range 0.022567 

 (0.152984) 

38.poll_cluster#90.ang_range -0.360877 

 (0.228700) 

38.poll_cluster#180.ang_range -0.133212 

 (0.095903) 

38o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

39.poll_cluster#0b.ang_range 4.807981*** 

 (0.109846) 

39.poll_cluster#90.ang_range 3.910265*** 

 (0.191101) 

39.poll_cluster#180.ang_range 0.121878 

 (0.222570) 

39o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

40.poll_cluster#0b.ang_range 0.579251*** 

 (0.190808) 

40.poll_cluster#90.ang_range 1.395752*** 

 (0.184076) 

40.poll_cluster#180.ang_range 0.850242*** 

 (0.114856) 

40o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

41.poll_cluster#0b.ang_range 0.666534*** 

 (0.107945) 
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41.poll_cluster#90.ang_range 1.153586*** 

 (0.028529) 

41.poll_cluster#180.ang_range 1.157979*** 

 (0.071180) 

41o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

42.poll_cluster#0b.ang_range -0.514872*** 

 (0.076655) 

42.poll_cluster#90.ang_range -2.119304*** 

 (0.088464) 

42.poll_cluster#180.ang_range -1.638343*** 

 (0.086367) 

42o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

43.poll_cluster#0b.ang_range 4.679211*** 

 (0.187136) 

43.poll_cluster#90.ang_range 4.261648*** 

 (0.191975) 

43.poll_cluster#180.ang_range 0.168188 

 (0.122952) 

43o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

46.poll_cluster#0b.ang_range 4.123916*** 

 (0.149000) 

46.poll_cluster#90.ang_range 2.799957*** 

 (0.288256) 

46.poll_cluster#180.ang_range -0.444641 

 (0.297976) 

46o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

47.poll_cluster#0b.ang_range -1.073480 

 (1.410970) 

47.poll_cluster#90.ang_range 1.212940 

 (1.137833) 

47.poll_cluster#180.ang_range 0.100749 

 (0.401057) 

47o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

48.poll_cluster#0b.ang_range 2.170262*** 

 (0.126139) 

48.poll_cluster#90.ang_range 0.071388 

 (0.201102) 

48.poll_cluster#180.ang_range -0.292930*** 

 (0.105988) 

48o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 
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49.poll_cluster#0b.ang_range -0.438157*** 

 (0.152272) 

49.poll_cluster#90.ang_range -0.072123 

 (0.216422) 

49.poll_cluster#180.ang_range 0.617190*** 

 (0.201929) 

49o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

50.poll_cluster#0b.ang_range 1.787376*** 

 (0.133246) 

50.poll_cluster#90.ang_range 2.761226*** 

 (0.128676) 

50.poll_cluster#180.ang_range 2.210137*** 

 (0.077735) 

50o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

51.poll_cluster#0b.ang_range 1.091888*** 

 (0.148268) 

51.poll_cluster#90.ang_range 1.113780*** 

 (0.107507) 

51.poll_cluster#180.ang_range 0.489781*** 

 (0.111101) 

51o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

52.poll_cluster#0b.ang_range 2.224656*** 

 (0.080003) 

52.poll_cluster#90.ang_range 2.093280*** 

 (0.109649) 

52.poll_cluster#180.ang_range 1.590405*** 

 (0.103631) 

52o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

53.poll_cluster#0b.ang_range 1.812176*** 

 (0.085556) 

53.poll_cluster#90.ang_range 3.330273*** 

 (0.106628) 

53.poll_cluster#180.ang_range 1.409536*** 

 (0.077403) 

53o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

54.poll_cluster#0b.ang_range 2.099165*** 

 (0.138157) 

54.poll_cluster#90.ang_range 3.177539*** 

 (0.091200) 

54.poll_cluster#180.ang_range 2.190554*** 

 (0.102587) 
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54o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

55.poll_cluster#0b.ang_range 0.444800*** 

 (0.142952) 

55.poll_cluster#90.ang_range 1.742929*** 

 (0.439607) 

55.poll_cluster#180.ang_range 2.232807*** 

 (0.490722) 

55o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

58.poll_cluster#0b.ang_range -0.584134** 

 (0.256237) 

58.poll_cluster#90.ang_range 0.522590 

 (0.611011) 

58.poll_cluster#180.ang_range 2.041855*** 

 (0.761479) 

58o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

59.poll_cluster#0b.ang_range -2.046191*** 

 (0.105400) 

59.poll_cluster#90.ang_range -3.125409*** 

 (0.087334) 

59.poll_cluster#180.ang_range -2.038825*** 

 (0.158153) 

59o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

60.poll_cluster#0b.ang_range 1.664617*** 

 (0.129505) 

60.poll_cluster#90.ang_range 3.181001*** 

 (0.173031) 

60.poll_cluster#180.ang_range 2.027288*** 

 (0.088845) 

60o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

61.poll_cluster#0b.ang_range 3.479542*** 

 (0.092631) 

61.poll_cluster#90.ang_range 3.845574*** 

 (0.133849) 

61.poll_cluster#180.ang_range 1.966573*** 

 (0.076830) 

61o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

62.poll_cluster#0b.ang_range 1.240450*** 

 (0.086013) 

62.poll_cluster#90.ang_range 2.951830*** 

 (0.094045) 
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62.poll_cluster#180.ang_range 1.354202*** 

 (0.084515) 

62o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

64.poll_cluster#0b.ang_range -0.529978*** 

 (0.195955) 

64.poll_cluster#90.ang_range 1.721958*** 

 (0.369432) 

64.poll_cluster#180.ang_range 1.562525*** 

 (0.329634) 

64o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

65.poll_cluster#0b.ang_range 2.312312*** 

 (0.217036) 

65.poll_cluster#90.ang_range 3.607714*** 

 (0.152913) 

65.poll_cluster#180.ang_range 1.274112*** 

 (0.168829) 

65o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

66.poll_cluster#0b.ang_range 5.379033*** 

 (0.312888) 

66.poll_cluster#90.ang_range 2.623531*** 

 (0.323012) 

66.poll_cluster#180.ang_range -0.090753 

 (0.217790) 

66o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

67.poll_cluster#0b.ang_range 5.943604*** 

 (0.112441) 

67.poll_cluster#90.ang_range 6.437646*** 

 (0.202632) 

67.poll_cluster#180.ang_range 0.841732*** 

 (0.088971) 

67o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

70.poll_cluster#0b.ang_range -0.077965 

 (0.137618) 

70.poll_cluster#90.ang_range 0.299884 

 (0.241782) 

70.poll_cluster#180.ang_range 1.126774*** 

 (0.163560) 

70o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

71.poll_cluster#0b.ang_range 3.537330*** 

 (0.212764) 



52 
 

71.poll_cluster#90.ang_range 3.508613*** 

 (0.328092) 

71.poll_cluster#180.ang_range 0.358017** 

 (0.163549) 

71o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

72.poll_cluster#0b.ang_range 3.100285*** 

 (0.327003) 

72.poll_cluster#90.ang_range 1.564728*** 

 (0.157913) 

72.poll_cluster#180.ang_range -0.098885 

 (0.241870) 

72o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

73.poll_cluster#0b.ang_range 1.222237*** 

 (0.161482) 

73.poll_cluster#90.ang_range 3.803236*** 

 (0.141715) 

73.poll_cluster#180.ang_range 1.466282*** 

 (0.140764) 

73o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

74.poll_cluster#0b.ang_range 2.435419*** 

 (0.084973) 

74.poll_cluster#90.ang_range 1.574590*** 

 (0.104957) 

74.poll_cluster#180.ang_range 0.421916*** 

 (0.147743) 

74o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

76.poll_cluster#0b.ang_range 1.826103*** 

 (0.143336) 

76.poll_cluster#90.ang_range 3.463895*** 

 (0.149195) 

76.poll_cluster#180.ang_range 1.686707*** 

 (0.074675) 

76o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

77.poll_cluster#0b.ang_range 0.544934*** 

 (0.141831) 

77.poll_cluster#90.ang_range 1.546497*** 

 (0.229177) 

77.poll_cluster#180.ang_range 0.755923*** 

 (0.200792) 

77o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 



53 
 

78.poll_cluster#0b.ang_range 1.595192*** 

 (0.063375) 

78.poll_cluster#90.ang_range 3.697810*** 

 (0.097097) 

78.poll_cluster#180.ang_range 1.528540*** 

 (0.059593) 

78o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

79.poll_cluster#0b.ang_range 1.003463*** 

 (0.197282) 

79.poll_cluster#90.ang_range 0.699692 

 (0.619295) 

79.poll_cluster#180.ang_range 0.400529 

 (0.391032) 

79o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

81.poll_cluster#0b.ang_range 0.533267** 

 (0.213059) 

81.poll_cluster#90.ang_range 0.299057 

 (0.336135) 

81.poll_cluster#180.ang_range 0.334238 

 (0.205279) 

81o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

82.poll_cluster#0b.ang_range 4.032507*** 

 (0.208244) 

82.poll_cluster#90.ang_range 3.787875*** 

 (0.342659) 

82.poll_cluster#180.ang_range 0.093356 

 (0.109890) 

82o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

83.poll_cluster#0b.ang_range 1.239001*** 

 (0.138737) 

83.poll_cluster#90.ang_range -1.063524*** 

 (0.194055) 

83.poll_cluster#180.ang_range -0.197006* 

 (0.103482) 

83o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

84.poll_cluster#0b.ang_range 0.484809 

 (0.452123) 

84.poll_cluster#90.ang_range 0.228728 

 (0.265732) 

84.poll_cluster#180.ang_range 0.309210 

 (0.277485) 



54 
 

84o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

85.poll_cluster#0b.ang_range 4.774645*** 

 (0.182782) 

85.poll_cluster#90.ang_range 5.788659*** 

 (0.225577) 

85.poll_cluster#180.ang_range 0.649450*** 

 (0.123128) 

85o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

86.poll_cluster#0b.ang_range -0.306621*** 

 (0.082773) 

86.poll_cluster#90.ang_range 1.321408*** 

 (0.098699) 

86.poll_cluster#180.ang_range 2.450896*** 

 (0.052875) 

86o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

87.poll_cluster#0b.ang_range 2.349927*** 

 (0.063166) 

87.poll_cluster#90.ang_range 2.378455*** 

 (0.092558) 

87.poll_cluster#180.ang_range 1.288433*** 

 (0.060469) 

87o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

88.poll_cluster#0b.ang_range 3.402868*** 

 (0.068780) 

88.poll_cluster#90.ang_range 1.928112*** 

 (0.184438) 

88.poll_cluster#180.ang_range -0.403807*** 

 (0.083048) 

88o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

89.poll_cluster#0b.ang_range -1.382257*** 

 (0.162155) 

89.poll_cluster#90.ang_range 1.423189*** 

 (0.089005) 

89.poll_cluster#180.ang_range 1.318561*** 

 (0.185310) 

89o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

90.poll_cluster#0b.ang_range -0.407911 

 (0.368206) 

90.poll_cluster#90.ang_range 0.141854 

 (0.535802) 



55 
 

90.poll_cluster#180.ang_range 0.536553* 

 (0.319704) 

90o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

91.poll_cluster#0b.ang_range 0.915822*** 

 (0.092409) 

91.poll_cluster#90.ang_range 1.775904*** 

 (0.183934) 

91.poll_cluster#180.ang_range 1.682987*** 

 (0.086152) 

91o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

92.poll_cluster#0b.ang_range 1.129919*** 

 (0.151552) 

92.poll_cluster#90.ang_range 2.734865*** 

 (0.136978) 

92.poll_cluster#180.ang_range 2.197567*** 

 (0.063259) 

92o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

94.poll_cluster#0b.ang_range 2.473007*** 

 (0.076610) 

94.poll_cluster#90.ang_range 4.861084*** 

 (0.091280) 

94.poll_cluster#180.ang_range 2.360137*** 

 (0.058945) 

94o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

95.poll_cluster#0b.ang_range 2.938626*** 

 (0.096760) 

95.poll_cluster#90.ang_range 4.710121*** 

 (0.093226) 

95.poll_cluster#180.ang_range 2.042382*** 

 (0.084853) 

95o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

96.poll_cluster#0b.ang_range -0.768602 

 (0.489317) 

96.poll_cluster#90.ang_range 1.601669*** 

 (0.567302) 

96.poll_cluster#180.ang_range 1.506609*** 

 (0.258459) 

96o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

97.poll_cluster#0b.ang_range 1.989814*** 

 (0.124956) 



56 
 

97.poll_cluster#90.ang_range 3.060489*** 

 (0.113097) 

97.poll_cluster#180.ang_range 1.577659*** 

 (0.121320) 

97o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

98.poll_cluster#0b.ang_range 0.087820 

 (0.226270) 

98.poll_cluster#90.ang_range 1.229115 

 (0.943305) 

98.poll_cluster#180.ang_range 1.766526*** 

 (0.630672) 

98o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

99.poll_cluster#0b.ang_range 3.991946*** 

 (0.191849) 

99.poll_cluster#90.ang_range 1.777721*** 

 (0.078841) 

99.poll_cluster#180.ang_range -0.209905 

 (0.158230) 

99o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

100.poll_cluster#0b.ang_range 4.642196*** 

 (0.122501) 

100.poll_cluster#90.ang_range 3.463166*** 

 (0.159197) 

100.poll_cluster#180.ang_range -0.415264*** 

 (0.112539) 

100o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

103.poll_cluster#0b.ang_range 1.479391*** 

 (0.294192) 

103.poll_cluster#90.ang_range 0.672226 

 (0.701548) 

103.poll_cluster#180.ang_range 0.136409 

 (0.268788) 

103o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

104.poll_cluster#0b.ang_range 2.025529*** 

 (0.152859) 

104.poll_cluster#90.ang_range 3.091357*** 

 (0.091056) 

104.poll_cluster#180.ang_range 1.246586*** 

 (0.146518) 

104o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 



57 
 

105.poll_cluster#0b.ang_range 1.519938*** 

 (0.118978) 

105.poll_cluster#90.ang_range 3.577570*** 

 (0.076458) 

105.poll_cluster#180.ang_range 2.400977*** 

 (0.072584) 

105o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

106.poll_cluster#0b.ang_range 0.009745 

 (0.260471) 

106.poll_cluster#90.ang_range 0.712273 

 (0.487918) 

106.poll_cluster#180.ang_range 0.846522*** 

 (0.226045) 

106o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

107.poll_cluster#0b.ang_range 1.495379*** 

 (0.129463) 

107.poll_cluster#90.ang_range 2.249680*** 

 (0.164542) 

107.poll_cluster#180.ang_range 2.003661*** 

 (0.076431) 

107o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

109.poll_cluster#0b.ang_range -0.470018 

 (0.300372) 

109.poll_cluster#90.ang_range 0.017754 

 (0.348613) 

109.poll_cluster#180.ang_range 0.498221* 

 (0.302475) 

109o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

110.poll_cluster#0b.ang_range 3.131638*** 

 (0.138795) 

110.poll_cluster#90.ang_range 5.521875*** 

 (0.162977) 

110.poll_cluster#180.ang_range 1.930624*** 

 (0.106886) 

110o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

112.poll_cluster#0b.ang_range 5.278345*** 

 (0.187044) 

112.poll_cluster#90.ang_range 2.070669*** 

 (0.200980) 

112.poll_cluster#180.ang_range 0.202388* 

 (0.105630) 
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112o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

115.poll_cluster#0b.ang_range 0.533713*** 

 (0.108098) 

115.poll_cluster#90.ang_range 0.952290*** 

 (0.152207) 

115.poll_cluster#180.ang_range 1.260022*** 

 (0.080462) 

115o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

117.poll_cluster#0b.ang_range 1.754653*** 

 (0.144914) 

117.poll_cluster#90.ang_range 3.529662*** 

 (0.156888) 

117.poll_cluster#180.ang_range 2.498544*** 

 (0.103767) 

117o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

118.poll_cluster#0b.ang_range 1.990507*** 

 (0.083857) 

118.poll_cluster#90.ang_range 3.344773*** 

 (0.084817) 

118.poll_cluster#180.ang_range 1.511566*** 

 (0.049072) 

118o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

119.poll_cluster#0b.ang_range -0.605435* 

 (0.331944) 

119.poll_cluster#90.ang_range 0.427004 

 (0.511761) 

119.poll_cluster#180.ang_range 0.823789** 

 (0.366275) 

119o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

120.poll_cluster#0b.ang_range 1.820096*** 

 (0.078763) 

120.poll_cluster#90.ang_range 3.534257*** 

 (0.078469) 

120.poll_cluster#180.ang_range 1.399368*** 

 (0.091815) 

120o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

122.poll_cluster#0b.ang_range 4.145147*** 

 (0.105509) 

122.poll_cluster#90.ang_range 5.753827*** 

 (0.158518) 



59 
 

122.poll_cluster#180.ang_range 1.391262*** 

 (0.114392) 

122o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

123.poll_cluster#0b.ang_range 0.227820* 

 (0.130778) 

123.poll_cluster#90.ang_range 0.774530*** 

 (0.170063) 

123.poll_cluster#180.ang_range 0.999130*** 

 (0.084742) 

123o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

124.poll_cluster#0b.ang_range 1.313923*** 

 (0.127506) 

124.poll_cluster#90.ang_range 0.931678*** 

 (0.098745) 

124.poll_cluster#180.ang_range 0.599968*** 

 (0.097737) 

124o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

125.poll_cluster#0b.ang_range 3.677131*** 

 (0.190184) 

125.poll_cluster#90.ang_range 2.461350*** 

 (0.233017) 

125.poll_cluster#180.ang_range -0.227303 

 (0.158135) 

125o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

127.poll_cluster#0b.ang_range 5.006985*** 

 (0.089358) 

127.poll_cluster#90.ang_range 6.354382*** 

 (0.103558) 

127.poll_cluster#180.ang_range 1.931227*** 

 (0.095378) 

127o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

128.poll_cluster#0b.ang_range 2.302765*** 

 (0.080399) 

128.poll_cluster#90.ang_range 4.276665*** 

 (0.101957) 

128.poll_cluster#180.ang_range 3.006704*** 

 (0.068915) 

128o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

129.poll_cluster#0b.ang_range 1.451518*** 

 (0.309621) 
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129.poll_cluster#90.ang_range 2.497599*** 

 (0.323342) 

129.poll_cluster#180.ang_range 1.643165*** 

 (0.465142) 

129o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

130.poll_cluster#0b.ang_range 0.888868*** 

 (0.121206) 

130.poll_cluster#90.ang_range 0.850984*** 

 (0.202659) 

130.poll_cluster#180.ang_range 0.548061*** 

 (0.147528) 

130o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

131.poll_cluster#0b.ang_range -0.275537 

 (0.219585) 

131.poll_cluster#90.ang_range -0.122585 

 (0.168154) 

131.poll_cluster#180.ang_range 0.559008*** 

 (0.201139) 

131o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

133.poll_cluster#0b.ang_range 6.341920*** 

 (0.163961) 

133.poll_cluster#90.ang_range 7.722789*** 

 (0.315888) 

133.poll_cluster#180.ang_range 1.733008*** 

 (0.106852) 

133o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

134.poll_cluster#0b.ang_range 3.776768*** 

 (0.179886) 

134.poll_cluster#90.ang_range 2.911384*** 

 (0.230254) 

134.poll_cluster#180.ang_range 0.093669 

 (0.102145) 

134o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

135.poll_cluster#0b.ang_range -4.591385*** 

 (0.408428) 

135.poll_cluster#90.ang_range -3.208094*** 

 (0.302801) 

135.poll_cluster#180.ang_range 0.964074* 

 (0.563164) 

135o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 



61 
 

136.poll_cluster#0b.ang_range 2.844620*** 

 (0.099116) 

136.poll_cluster#90.ang_range 4.327178*** 

 (0.221003) 

136.poll_cluster#180.ang_range 1.138129*** 

 (0.107497) 

136o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

137.poll_cluster#0b.ang_range 0.837019*** 

 (0.101369) 

137.poll_cluster#90.ang_range 2.798002*** 

 (0.105812) 

137.poll_cluster#180.ang_range 1.037849*** 

 (0.072089) 

137o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

138.poll_cluster#0b.ang_range 0.066326 

 (0.114395) 

138.poll_cluster#90.ang_range -1.031696*** 

 (0.148307) 

138.poll_cluster#180.ang_range 0.166859* 

 (0.085294) 

138o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

139.poll_cluster#0b.ang_range 2.502838*** 

 (0.071106) 

139.poll_cluster#90.ang_range 1.221601*** 

 (0.116202) 

139.poll_cluster#180.ang_range 0.309008*** 

 (0.077914) 

139o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

140.poll_cluster#0b.ang_range 4.968246*** 

 (0.112984) 

140.poll_cluster#90.ang_range 5.981953*** 

 (0.205503) 

140.poll_cluster#180.ang_range 1.843864*** 

 (0.121001) 

140o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

141.poll_cluster#0b.ang_range 2.698651*** 

 (0.266333) 

141.poll_cluster#90.ang_range 2.634367*** 

 (0.206808) 

141.poll_cluster#180.ang_range 0.557174*** 

 (0.112354) 
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141o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

142.poll_cluster#0b.ang_range -0.094960 

 (0.392779) 

142.poll_cluster#90.ang_range 0.056107 

 (0.414479) 

142.poll_cluster#180.ang_range 1.677557*** 

 (0.567643) 

142o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

143.poll_cluster#0b.ang_range 1.744299*** 

 (0.102877) 

143.poll_cluster#90.ang_range 3.467672*** 

 (0.125099) 

143.poll_cluster#180.ang_range 2.047649*** 

 (0.083541) 

143o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

144.poll_cluster#0b.ang_range 1.704313*** 

 (0.080167) 

144.poll_cluster#90.ang_range 3.344019*** 

 (0.100567) 

144.poll_cluster#180.ang_range 2.132869*** 

 (0.078267) 

144o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

145.poll_cluster#0b.ang_range 0.304116 

 (1.125558) 

145.poll_cluster#90.ang_range 1.452138 

 (1.494664) 

145.poll_cluster#180.ang_range 1.625433* 

 (0.887678) 

145o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

148.poll_cluster#0b.ang_range 1.003240*** 

 (0.054729) 

148.poll_cluster#90.ang_range 2.767941*** 

 (0.038700) 

148.poll_cluster#180.ang_range 1.399731*** 

 (0.046783) 

148o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

149.poll_cluster#0b.ang_range 2.369887*** 

 (0.095061) 

149.poll_cluster#90.ang_range 1.796273*** 

 (0.141617) 
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149.poll_cluster#180.ang_range 0.871462*** 

 (0.109607) 

149o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

150.poll_cluster#0b.ang_range 2.196984 

 (1.672894) 

150.poll_cluster#90.ang_range 2.062069 

 (1.827293) 

150.poll_cluster#180.ang_range -1.301490 

 (0.815912) 

150o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

151.poll_cluster#0b.ang_range 0.659729*** 

 (0.127488) 

151.poll_cluster#90.ang_range 1.274982*** 

 (0.200912) 

151.poll_cluster#180.ang_range 1.353439*** 

 (0.067696) 

151o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

152.poll_cluster#0b.ang_range -0.683034*** 

 (0.084643) 

152.poll_cluster#90.ang_range 0.135930 

 (0.198346) 

152.poll_cluster#180.ang_range 0.477758*** 

 (0.073861) 

152o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

154.poll_cluster#0b.ang_range -0.635512*** 

 (0.181181) 

154.poll_cluster#90.ang_range -0.286976 

 (0.316748) 

154.poll_cluster#180.ang_range 0.061309 

 (0.187285) 

154o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

156.poll_cluster#0b.ang_range 4.259030*** 

 (0.139921) 

156.poll_cluster#90.ang_range 5.900223*** 

 (0.150902) 

156.poll_cluster#180.ang_range 1.590715*** 

 (0.129108) 

156o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

157.poll_cluster#0b.ang_range 2.469101*** 

 (0.105871) 
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157.poll_cluster#90.ang_range 2.180887*** 

 (0.139376) 

157.poll_cluster#180.ang_range 1.296182*** 

 (0.083416) 

157o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

158.poll_cluster#0b.ang_range 0.946947*** 

 (0.366349) 

158.poll_cluster#90.ang_range 0.716450** 

 (0.300740) 

158.poll_cluster#180.ang_range 1.058712*** 

 (0.200810) 

158o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

160.poll_cluster#0b.ang_range 0.961810*** 

 (0.086488) 

160.poll_cluster#90.ang_range 2.749685*** 

 (0.096668) 

160.poll_cluster#180.ang_range 1.485634*** 

 (0.050614) 

160o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

161.poll_cluster#0b.ang_range 0.748096*** 

 (0.090668) 

161.poll_cluster#90.ang_range 2.302867*** 

 (0.102519) 

161.poll_cluster#180.ang_range 1.029191*** 

 (0.107635) 

161o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

162.poll_cluster#0b.ang_range -0.371181 

 (0.312445) 

162.poll_cluster#90.ang_range 0.862109** 

 (0.385978) 

162.poll_cluster#180.ang_range 1.831291*** 

 (0.640958) 

162o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

163.poll_cluster#0b.ang_range 2.682191*** 

 (0.073693) 

163.poll_cluster#90.ang_range 0.925884*** 

 (0.176314) 

163.poll_cluster#180.ang_range -0.657941*** 

 (0.153033) 

163o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 
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164.poll_cluster#0b.ang_range -0.859730*** 

 (0.228303) 

164.poll_cluster#90.ang_range -0.212231 

 (0.306999) 

164.poll_cluster#180.ang_range -0.060566 

 (0.211230) 

164o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

165.poll_cluster#0b.ang_range -0.989570*** 

 (0.378597) 

165.poll_cluster#90.ang_range -2.167839*** 

 (0.546613) 

165.poll_cluster#180.ang_range -1.738329*** 

 (0.408502) 

165o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

167.poll_cluster#0b.ang_range -0.948229*** 

 (0.246683) 

167.poll_cluster#90.ang_range 0.678972* 

 (0.376550) 

167.poll_cluster#180.ang_range 1.602315*** 

 (0.369782) 

167o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

168.poll_cluster#0b.ang_range 1.251942*** 

 (0.333828) 

168.poll_cluster#90.ang_range 2.546530*** 

 (0.223473) 

168.poll_cluster#180.ang_range 1.369905*** 

 (0.129989) 

168o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

169.poll_cluster#0b.ang_range -0.157463 

 (0.103386) 

169.poll_cluster#90.ang_range 0.083926 

 (0.104353) 

169.poll_cluster#180.ang_range 0.910831*** 

 (0.088955) 

169o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

170.poll_cluster#0b.ang_range -0.802594* 

 (0.456439) 

170.poll_cluster#90.ang_range -1.068181** 

 (0.474840) 

170.poll_cluster#180.ang_range -0.278853 

 (0.276670) 
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170o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

171.poll_cluster#0b.ang_range 0.891880*** 

 (0.158376) 

171.poll_cluster#90.ang_range -0.164091 

 (0.242575) 

171.poll_cluster#180.ang_range 0.693168*** 

 (0.102309) 

171o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

172.poll_cluster#0b.ang_range 5.158632*** 

 (0.121542) 

172.poll_cluster#90.ang_range 5.303547*** 

 (0.206210) 

172.poll_cluster#180.ang_range 0.952832*** 

 (0.119396) 

172o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

173.poll_cluster#0b.ang_range -0.169509 

 (0.348384) 

173.poll_cluster#90.ang_range 1.235310*** 

 (0.471148) 

173.poll_cluster#180.ang_range -0.054023 

 (0.138268) 

173o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

174.poll_cluster#0b.ang_range 0.298099 

 (0.231944) 

174.poll_cluster#90.ang_range 2.031254*** 

 (0.243236) 

174.poll_cluster#180.ang_range 1.686156*** 

 (0.265483) 

174o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

175.poll_cluster#0b.ang_range 0.162523 

 (0.141091) 

175.poll_cluster#90.ang_range -0.348634 

 (0.230017) 

175.poll_cluster#180.ang_range -0.619542*** 

 (0.183800) 

175o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

176.poll_cluster#0b.ang_range 2.131629*** 

 (0.074841) 

176.poll_cluster#90.ang_range 3.667721*** 

 (0.084064) 
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176.poll_cluster#180.ang_range 2.646855*** 

 (0.059122) 

176o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

177.poll_cluster#0b.ang_range -0.359044** 

 (0.164306) 

177.poll_cluster#90.ang_range 0.088319 

 (0.196471) 

177.poll_cluster#180.ang_range 0.819916*** 

 (0.062208) 

177o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

178.poll_cluster#0b.ang_range 1.829982*** 

 (0.120018) 

178.poll_cluster#90.ang_range 2.208291*** 

 (0.120154) 

178.poll_cluster#180.ang_range 0.777756*** 

 (0.073721) 

178o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

179.poll_cluster#0b.ang_range -1.093473 

 (0.842528) 

179.poll_cluster#90.ang_range -0.234509 

 (0.407007) 

179.poll_cluster#180.ang_range -0.640913*** 

 (0.228960) 

179o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

180.poll_cluster#0b.ang_range -0.078483 

 (0.269227) 

180.poll_cluster#90.ang_range 0.382905 

 (0.238734) 

180.poll_cluster#180.ang_range -0.304803 

 (0.282300) 

180o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

181.poll_cluster#0b.ang_range -1.185844 

 (1.409439) 

181.poll_cluster#90.ang_range -1.064855 

 (1.208516) 

181.poll_cluster#180.ang_range -2.553860*** 

 (0.461464) 

181o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

182.poll_cluster#0b.ang_range -0.947691*** 

 (0.280257) 



68 
 

182.poll_cluster#90.ang_range 0.197641 

 (0.468842) 

182.poll_cluster#180.ang_range 0.924393 

 (0.597968) 

182o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

183.poll_cluster#0b.ang_range 1.453636*** 

 (0.110257) 

183.poll_cluster#90.ang_range 3.854372*** 

 (0.114798) 

183.poll_cluster#180.ang_range 1.719645*** 

 (0.084170) 

183o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

184.poll_cluster#0b.ang_range 2.533359*** 

 (0.106151) 

184.poll_cluster#90.ang_range 3.085518*** 

 (0.148593) 

184.poll_cluster#180.ang_range 1.212567*** 

 (0.135626) 

184o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

186.poll_cluster#0b.ang_range -1.160408*** 

 (0.329584) 

186.poll_cluster#90.ang_range 0.653763** 

 (0.290812) 

186.poll_cluster#180.ang_range 1.188235*** 

 (0.427988) 

186o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

187.poll_cluster#0b.ang_range 0.116318 

 (0.407580) 

187.poll_cluster#90.ang_range 0.172235 

 (0.613612) 

187.poll_cluster#180.ang_range -0.259806 

 (0.239720) 

187o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

188.poll_cluster#0b.ang_range 5.613249*** 

 (0.217449) 

188.poll_cluster#90.ang_range 2.001138*** 

 (0.179020) 

188.poll_cluster#180.ang_range 0.463536*** 

 (0.139739) 

188o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 
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189.poll_cluster#0b.ang_range -0.812685* 

 (0.446854) 

189.poll_cluster#90.ang_range 2.198955*** 

 (0.828166) 

189.poll_cluster#180.ang_range 1.262276*** 

 (0.451696) 

189o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

190.poll_cluster#0b.ang_range 0.094324 

 (0.138257) 

190.poll_cluster#90.ang_range -0.222745* 

 (0.119170) 

190.poll_cluster#180.ang_range 0.242428* 

 (0.136167) 

190o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

191.poll_cluster#0b.ang_range 1.653324*** 

 (0.112230) 

191.poll_cluster#90.ang_range 3.868206*** 

 (0.111128) 

191.poll_cluster#180.ang_range 1.782372*** 

 (0.069278) 

191o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

192.poll_cluster#0b.ang_range 1.940781*** 

 (0.176037) 

192.poll_cluster#90.ang_range 3.772523*** 

 (0.130452) 

192.poll_cluster#180.ang_range 1.789697*** 

 (0.076642) 

192o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

193.poll_cluster#0b.ang_range 1.770616 

 (1.277970) 

193.poll_cluster#90.ang_range 1.387669 

 (0.996782) 

193.poll_cluster#180.ang_range -0.650433 

 (0.740139) 

193o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

194.poll_cluster#0b.ang_range 0.151399 

 (0.271773) 

194.poll_cluster#90.ang_range 0.156003 

 (0.231919) 

194.poll_cluster#180.ang_range 0.061704 

 (0.161361) 
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194o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

195.poll_cluster#0b.ang_range 0.708519*** 

 (0.141139) 

195.poll_cluster#90.ang_range 0.973760*** 

 (0.240009) 

195.poll_cluster#180.ang_range 0.481221 

 (0.295006) 

195o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

196.poll_cluster#0b.ang_range -0.913288 

 (1.307208) 

196.poll_cluster#90.ang_range 1.646746 

 (1.367180) 

196.poll_cluster#180.ang_range 0.034782 

 (0.907179) 

196o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

197.poll_cluster#0b.ang_range 3.226251*** 

 (0.099918) 

197.poll_cluster#90.ang_range 4.710354*** 

 (0.114311) 

197.poll_cluster#180.ang_range 1.259862*** 

 (0.100766) 

197o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

198.poll_cluster#0b.ang_range -0.340742 

 (0.241652) 

198.poll_cluster#90.ang_range 0.879695** 

 (0.377379) 

198.poll_cluster#180.ang_range 0.834227*** 

 (0.225952) 

198o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

199.poll_cluster#0b.ang_range -0.745451 

 (1.109478) 

199.poll_cluster#90.ang_range 4.317208*** 

 (0.618195) 

199.poll_cluster#180.ang_range 6.119289*** 

 (0.527549) 

199o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

200.poll_cluster#0b.ang_range -1.107133*** 

 (0.418563) 

200.poll_cluster#90.ang_range 1.110151** 

 (0.474065) 
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200.poll_cluster#180.ang_range 1.762158*** 

 (0.346800) 

200o.poll_cluster#270o.ang_range 0.000000 

 (0.000000) 

Observations 8,262,768 
Notes: This table depicts our first stage, which is the association of daily wind direction and daily PM2.5 

concentrations. “ang_range” are a set of binary variables equal to one if the daily average wind direction in county i 

falls within the relevant 90 degree interval [90b, 90b + 90) (and zero otherwise). The omitted category is the interval 

[270,360). We interact these binary wind direction variables with our 200 pollution clusters (defined by the 

poll_cluster dummy variables). Therefore, our coefficient of interest is allowed to vary across geographic regions.  


